Residual Hw

- One of the points in a set of points is (4, 8). What is the residual for this point if the equation of the regression line for these points is $\hat{\mathcal{N}} = 3.6 + 1.7 \times ?$
 - A. -1.8
 - **B.** −2.4
 - C. -2.8
 - **D.** −3.2
 - **E.** −3.6
- A least squares regression line was fitted to the weights (in pounds) versus age (in months) of a group of many young children. The equation of the line is

$$\hat{y} = 16.6 + 0.65t,$$

where \hat{y} is the predicted weight and t is the age of the child. A 20-month-old child in this group has an actual weight of 25 pounds. Which of the following is the residual weight, in pounds, for this child?

- (A) -7.85
- (B) -4.60
- (C) 4.60
- (D) 5.00
- (E) 7.85
- 3) Which of the following statements about residuals are true?
 - I. The mean of the residuals is always zero.
 - II. The regression line for a residual plot is a horizontal line.
 - III. A definite pattern in the residual plot is an indication that a nonlinear model will show a better fit to the data than the straight regression line.
 - (A) I and II
 - (B) I and III
 - (C) II and III
 - (D) I, II, and III
 - (E) None of the above gives the complete set of true responses.

- Which of the following statements are true?
 - I. A residual plot with no pattern indicates that a linear model is appropriate.
 - II. A residual plot with no pattern indicates that the correlation between the variables is 0 or close to 0.
 - III. Nonlinear variable relationships result in nonlinear residual plots.
 - A. I and II
 - B. I and III
 - C. II and III
 - D. I, II, and III
 - E. None of the above are true.

Free Rosponse

Data show a trend in winning long jump distances for an international competition over the years 1972–92. With jumps recorded in inches and data years since 1900, a least squares regression line is fit to the data. The computer output and a graph of the residuals are as follows:

.1%

Variable	Coefficient	SE of Coeff	t-ratio	Prob
Constant	256.576	11.59	22.1	0.0001
Year	0.95893	0.141	6.81	0.0024

- (a) Does a line appear to be an appropriate model? Explain.
- (b) What is the slope of the least squares line? Give an interpretation of the slope.
- (c) What is the correlation?
- (d) What is the predicted winning distance for the 1980 competition?
- (e) What was the actual winning distance in 1980?

The least-squares regression equation for the given data is $\hat{y} = 3 + x$. Calculate the sum of the squared residuals for the LSRL.

O	o oqua-				
x	7	8	11	12	15
y	10	11	14	15	18