Since the problem asked for "more than 100," exclude the bar valued at 100 and begin at 100.5.

$$z = \frac{x - \mu}{\sigma} = \frac{100.5 - 114}{8.4} = -1.61$$

This *z*-score corresponds to a probability of 0.0537. This represents the probability for less than or equal to 100 successes. Subtract from 1 to get the correct answer of 0.9463.

Compare this value with the more accurate value of 0.9468 obtained from the TI-83/4 using 1-binomcdf(300,0.38,100).

Review Questions and Answers

Multiple Choice Questions

Directions: Solve each of the following problems. Decide which is the best of the choices given.

- 1. Which of the following are true about the normal distribution?
 - I. The total area under the standard normal curve is equal to 1.
 - II. The total area under a nonstandard normal curve is equal to 1.
 - III. Every normal distribution can be standardized.
 - A. I only
 - B. III only
 - C. I and II
 - D. I and III
 - E. I. II, and III
- 2. Which of the following are true about the normal distribution?
 - I. The standard deviation gets smaller as z increases.
 - II. Approximately 68% of the area under a normal curve lies within one variance of the mean.
 - III. Normal distributions are asymmetric about the mean.
 - A. I and II
 - B. I and III
 - C. II and III
 - D. All of the statements are true.
 - E. None of the statements is true.

- **3.** What is the probability that a randomly selected member of a normally distributed population will lie more than 1.8 standard deviations from the mean?
 - A. 0.0359
 - **B.** 0.0718
 - C. 0.1841
 - D. 0.8159
 - E. 0.9641
- 4. A standardized test has $\mu = 100$ and $\sigma = 250$. What score would be necessary to score at the 85th percentile?
 - A. 740
 - **B.** 1040
 - C. 1250
 - **D.** 1260
 - E. 1900
- 5. Which of the following are true about the normal distribution?
 - It is symmetric about the mean; the mean, median, and mode are all the same; more than 90% of the distribution is within 2 standard deviations of the mean.
 - II. The normal density curve is defined by its mean and standard deviation and nothing else; there is no largest or smallest data value.
 - III. An interval x units wide and centered about the mean represents more data values than any other interval x units wide.
 - A. I only
 - B. I and II
 - C. I and III
 - D. II and III
 - E. I, II, and III
- **6.** Using a normal distribution, find two positive z-scores such that the z-scores differ by 0.10, and the probabilities to their left differ by 0.01. What is the larger of the two z-scores?
 - A. 0.705
 - **B.** 1.615
 - C. 1.715
 - D. 1.960
 - E. 2.760
- 7. In a normal distribution with $\mu = 4$ and $\sigma = 1$, where would the points of inflection be located?
 - A. $z = \pm 1$
 - **B.** $z = 4 \pm 1$
 - **C.** $z = 1 \pm 4$
 - **D.** $z = 4 \pm 4$
 - E. None of the above is a correct response to the question.

- **8.** The ERA of starting pitchers is normally distributed with a mean of 3.82 and a standard deviation of 1.14. What proportion of pitchers have ERAs between 3 and 4?
 - A. 0.24
 - **B.** 0.33
 - C. 0.56
 - **D.** 0.72
 - **E.** 0.88
- **9.** You are given a very large normal distribution with $\mu = 200$ and $\sigma = 85$. A sample of 500 is drawn from the population. How many would you expect to have values between 150 and 250?
 - A. 0.7224
 - B. 139
 - C. 222
 - D. 361
 - E. 372
- 10. Given the graph of a normal distribution, what happens to the shape of the curve if μ increases and σ decreases?
 - A. The curve will move to the right and get taller.
 - B. The curve will move to the right and get shorter.
 - C. The curve will move to the left and get taller.
 - D. The curve will move to the left and get shorter.
 - E. Cannot tell since the distribution is not standardized.
- 11. Which of the following are true about the normal distribution?
 - I. The area in the range of z = -2 to z = -1 is less than half of the area in the range of z = 0 to z = 1.
 - II. The area to the left of z = 2 is equal to the area to the right of z = -2.
 - III. If z = -1 represents the 40th percentile, then z = -2 represents the 30th percentile.
 - A. II only
 - B. I and II
 - C. I and III
 - D. II and III
 - E. I, II, and III
- 12. Jack scored 82 on a test in which $\mu = 76$ and $\sigma = 7$. Jill scored 85 on a test in which $\mu = 78$ and $\sigma = 8$. If both sets of scores are normally distributed, who scored better on their test relative to the rest of their class?
 - A. Jack, since his z-score was higher
 - B. Jack, since the standard deviation was smaller
 - C. Jill, since her z-score was higher
 - D. Jill, since the standard deviation is greater
 - E. Cannot tell since the distributions are not compatible
- 13. What is the difference in percentiles associated with the z-scores of z = -2.34 and z = 2.34?
 - A. 50%
 - B. 86%
 - C. 96%
 - D. 98%
 - E. 99%