Radiometric (Isotopic) Dating

I.					(Numerical) Age: Determ	ination of the actual age of a rock unit in
	A.	years. uses radioactive minerals.				
		1. 2.	Previously called			by geochronologists.
			a. 1 1 b.	Provides a "clock" that starts when radioactive elements are sealed into newly crystallized ninerals. The of decay is known.		
			() (2	1) Isotoj into r 2)	pes of some elements have nu new elements which are often unstable and	clei and spontaneously change or "" and decay into new elements. _ leave these atoms producing energy.
			(.	3) There the	e are three types of radioactive dec <i>isotope</i> and the new isoto	ay. The original isotope is referred to as pe formed is called the product.
				(a)	$(\alpha) Emission$ i) Two protons leave and two neutries ii) Reduction of the atomic number results are shown in the state of the state o	ons leave the nucleus. results in a new element.
				(b)	(β) Emission	
					 i) Release of an electron from the mail A neutron is actually a proton we neutral. iii) When a neutron emits an electron, number by one. iv) After the ²³⁸U undergoes <i>alpha e beta decay</i> to become ²³⁴Pa (the a lost electron's weight is negligible). ²³⁴ Th → ²³⁴ Pa + β Particle 	ith an electron inside it making it electrically it becomes a proton which increases the atomic <i>mission</i> to become ²³⁴ Th, the ²³⁴ Th undergoes tomic mass number is unchanged because the e. (electron)
					90 91	
				(c)	<i>Capture</i> i) A proton captures an orbiting electric ii) The atomic number decreases by iii) The potassium-argon system is an	etron and becomes a neutron. one, thereby changing it into another element. a example.
					$\int_{19}^{40} K + \beta \text{ Particle (electron)} \rightarrow$	40 Ar 18

- 3.
- a. The time required for half the amount of atoms of radioactive isotope to decay.
- b. Determine the ratio of a radioactive element to its daughter product.
- c. Method:
 - (1) Chemical analysis determines the amount of parent isotope and daughter isotope present in a rock.
 - (2) Age is calculated mathematically on the basis of it's known half-life.
 - (3) The parent/daughter ratio is measured using a mass spectrometer, an instrument that measures proportions of atoms with different masses.
 - (4) Whenever possible, more than one isotope pair will be used.
- d. Reliability
 - (1) : When the rock or mineral was sealed off so that neither isotope could enter or leave the environment.
 - (2) Must be able to infer no______ products were present at time of closure.
 - (3) There must have been sufficient time for measurable result by a mass spectrometer.
 - (4) Half-Life is not affected by
 - (a) _____
 - (b) _____
 - (c) _____
 - (5) If a rock_____, it's radioactive clock is _____ and the age will be the time of solidification.
- 4. <u>Radioactive Isotopes Commonly Used</u>
 - a. Uranium-Lead (Rocks must be at least 10 Ma (million years old).
 - b. *Potassium-Argon* (Argon gas becomes trapped in different crystal structures)
 - c. Carbon 14 (Radiocarbon)
 - (1) Used for organic matter
 - (2) Short half-life (5,730 years)
 - (3) Useful only in dating objects accurately back to 40,000 years.
 - (4) Fundamentally different from parent-daughter systems because ¹⁴C is continuously created in the atmosphere by bombardment of nitrogen by cosmic rays .
 - (a) Cosmic radiation bombards nitrogen.
 - (b) A neutron strikes and is captured by a ^{14}N atom.
 - (c) A proton is expelled from the nucleus and becomes ${}^{14}C$.
 - (d) While ¹⁴C eventually reverts to ¹⁴N because its nucleus is unstable, the rate of ¹⁴C production provides a balance so that the amount of ¹⁴C remains constant.
 - (e) Living matter incorporates ¹²C and ¹⁴C into its tissues. The ratio of ¹²C to ¹⁴C remains constant while it's alive.
 - (f) Upon death, ¹⁴C decays and no further ¹⁴C replacement occurs.
 - (g) Age is estimated from the ratio of ${}^{14}C$ to all other carbon in the sample.

- 1. Can date young and old rocks.
 - a. Can be used to date rocks only a few centuries old
 - b. Can date rocks billions of years in age
 - c. Helps to date the period between 50,000 and 1 million years ago (for which neither carbon-14 nor potassium-argon methods are suitable).
 - 2. Uses tracks in mica (really small tunnels like bullet holes).
 - a. Produced when high energy particles of the uranium atom's nucleus were fired off as a result of spontaneous fission.
 - b. Track is produced by particle tearing away electrons from atoms along the path.
 - c. Can be seen only with an electron microscope so the tracks are enlarged by immersing the sample in a solution so that it they can be seen with an ordinary microscope.
 - d. Track production is slow but occurs at a constant rate and can therefore be used to determine the time that has passed since the uranium-bearing mineral solidified.
 - (1) Count tracks (determines the number of disintegrated atoms)
 - (2) Find number of original uranium atoms by bombarding the sample with neutrons in a reactor. This causes the remaining uranium atoms to undergo fission (a second count of tracks provides this number).
 - (3) Compare to known rate spontaneous fission decay rate for uranium-238 by counting tracks in a sample of uranium-bearing synthetic glass of known date of manufacture.

II. Earth's Age

B.

- A. <u>Oldest Earth Materials</u>
 - I.
 Oldest ______
 on Earth (as of 2002)
 - a. 4.03 billion years old
 - b. From northwestern Canada
 - 2. Oldest known _____ (found in 2001)
 - a. Zircon crystal from Australia
 - b. 4.4 billion years old
- B. Estimates of Earth's Age
 - 1. 4.6 billion years
 - 2. Based on isotopic dating of _____ and _
 - a. According to current theories on formation of the Solar System, the sun, planets, and other objects in the Solar System formed ______.
 - b. Even though no rocks as old as Earth have been found, the age has been inferred from dating meteorites and Moon rocks because it's probable that they and Earth formed