EARTH SCIENCE

REGENTS REVIEW

Name:	
Exam Date :	Time:
Location:	

- Different shapes/sizes of the same material have the same density at the same temperature and pressure. $D = \frac{m}{v}$
- As pressure increases, density increases.
- As temperature increases, density decreases.
- Most Earth materials are most dense in the solid phase and least dense in the gas phase
- Water is an exception. It is least dense as a solid (ice) because water expands when it freezes
- Water is most dense at 4°C, when it is a liquid.
 - Substances greater than the density of water (1 g/cm³) sink.
 - Substances less than the density of water float.
- Most changes in the environment are cyclic.
- The true shape of the Earth is an oblate spheroid. (slightly flattened at the poles)
- The best model of the Earth's shape is a sphere.
- Latitude measure distances north and south of the equator
- The altitude of Polaris (North Star) equals your latitude. Polaris is located using the pointer stars of the big dipper.
- Longitude measures distances east and west of the Prime Meridian.
- Longitude is based on observations of the sun.
- The Earth rotates (spins) west to east (in 24 hours at 15° / hour = one day)
- Evidence the Earth rotates:
 - Foucaults pendulum appears to change its direction of swing
 - Coriolis Effect deflection to the right in the northern hemisphere
- Due to Earth's rotation, the sun and all celestial objects (stars, moon, etc) appear to move in an arc across the sky from east to west. (example: the Sun rises in the east and sets in the west)
- Circumpolar constellations never set but appear to move in circles around the pole.
- The Earth revolves around the sun counterclockwise (in 365 ¼ days = one year)
- Due to Earth's revolution, some constellations are only visible during a particular season (depends on Earth's position in its orbit).

- Earth is closer to the sun in winter (perihelion); the sun appears larger
- The closer a planet is to the sun the faster it orbits
- Gravitational attraction between two objects is greatest when their masses are large and they a close together

- Geocentric Earth-centered universe, Heliocentric Sun-centered universe
- Our Solar System is sun-centered (heliocentric)
- Our solar system consists of our <u>Sun</u>; the nine planets, and all the other objects that revolve around our sun (comets, asteroids).
- The sun is the largest object in our solar system
- Sun is composed mainly of hydrogen and helium (converts hydrogen to helium in its core)
- Milky Way galaxy (spiral shaped) -consists of several billion stars; contains our solar system
- Universe is everything, all matter, in existence

- According to star spectra, the universe is expanding (red-shift)
- Planets in our solar system orbit the sun:

- The planets' orbits are elliptical (not perfect circles)
- An ellipse is a closed curve around two fixed points, called foci. The orbits of all planets around the Sun are ellipses
- Eccentricity is the out of roundness of an ellipse. (values 0 to 1, one being most eccentric)

eccentricity = distance between foci example :
$$\underline{d} = \underline{50} = .55$$
 (no units) length of major axis

- The moon has phases because of the angle at which we view its surface. (half is always lit)
- It takes 29 ½ days for the moon to go through all its phases (lunar month)

• The moon is waxing when more of lighted portion becomes more visible from Earth

New Moon

Waxing — Full Moon Waning — New Moon

The moon is waning when less of lighted portion becomes more visible from Earth

- Tides are caused by the pull of gravity by both the moon and the Sun.
- The moon's gravitational force has a greater tide causing effect because the moon is closer to Earth than the sun.
- Spring tides are unusually high or low tides that occur when the moon is in the new and full moon phase.
- Neap tides are moderate high and low tides that occur during the quarter moon phases
- A lunar eclipse occurs when the moon moves into Earth's shadow. The sun, Earth, and moon line up with the Earth in the middle (occurs in the full moon phase).
- A solar eclipse occurs when the moon passes directly between the Earth and the sun. Moon blocks sun (occurs during new moon phase).
- Seasons occur because of Earth's tilt as it revolves around the sun.

Summer solstice:

- June 21st
- 15 hours of daylight (sun is at its highest noon altitude, solar radiation most intense)
- Sun rises north of east, sets north of west
- vertical ray on 23 ½° north (Tropic of Cancer)

Winter solstice:

- December 21st
- 9 hours of daylight (sun is at it lowest noon altitude, solar radiation least intense)
- sun rises south of east, sets south of west
- vertical ray on 23 ½ ° south (Tropic of Capricorn)

Equinoxes: Spring Equinox – March 21 and Fall Equinox – September 23

- 12 hours of daylight
- sun rises due east and sets due west

Earth's positions relative to the sun on the dates of the seasonal changes.

- The duration of Insolation (incoming solar radiation) is greatest in the summer
- The angle of insolation (angle the sun strikes Earth's surface) is greatest in the summer

- Zenith point on the celestial sphere that is directly above an observer on Earth's surface.
- Altitude distance of a celestial object, in degrees, above the observer's horizon.
- Solar noon highest altitude of the sun for the day and never at zenith outside the tropics.
- The longer the Sun's daily path across the sky, the longer the period of daylight.
- The length of day varies with the seasons.
- The lower the altitude of the sun, the longer shadow it casts.
- In a given day, the sun's angle of insloation increases from sunrise to its solar noon position, then begins to decrease from solar noon to sunset.

- Hottest part of the day is after 12 noon (time lag).
- Hottest part of the year is after June 21st (time lag).
- Good absorbers of heat energy are good re-radiators
- Dark colors absorb and re-radiate heat better than light colors.
- Soil absorbs and re-radiates heat better than water.
- Water bodies moderate temperatures
- Inland locations have greater temperature ranges (difference between high and low temp.)
- Isolines connect equal values (isotherms → temperature; isobars → air pressure)
- The closer the lines are, the steeper the gradient
- Objects absorb short visible wavelengths (as well as infrared) but re-radiate only the longer infrared wavelengths.

 Carbon dioxide, water vapor, and methane are "greenhouse" gases: they absorb heat energy and warm the atmosphere.

Wet ·

Mountain tange

Dry (leeward side)

Rain

shadow

(windward side)

Prevailing

wind

- Air cools as it rises.
- Orographic effect (adiabatic changes)
 - rising air cools and condenses, precipitation occurs
 - compressing sinking air is dry
- Climate is the average surface temperature and precipitation for a region
- Latitude has the greatest affect on climate
- Conduction energy moves molecule to molecule through collision
- Convection energy moves through fluids (liquids & gases) due to density differences
- Radiation energy moves through space (vacuum) examples: light, infrared
- As air temperature increases, air pressure decreases.
- As moisture content increases, air pressure decreases.
- Air pressure decreases with altitude.
- Highs are cool and dry, Lows are warm and wet.
- Wind is named for the direction it is coming from.
- Wind is due to air pressure differences.
- Winds move from a high pressure region to a low pressure region.
- Energy moves from source to sink (high to low)

Cool, dry air warm, moist air more dense less dense rises

- The air moving from high to low pressure follows a spiraling route, outwards from high pressure and inwards towards low pressure.
- Lows are regions of convergence (winds move inward counterclockwise) cyclone
- Highs are regions of divergence (winds move outward clockwise) anticyclone

- The closer air temperature is to dew point temperature, the greater the chance of precipitation.
- Weather moves from west to east across the United States.
- Air masses are huge bodies of air in the troposphere
 - within an air mass temperature, humidity and air pressure are fairly uniform
 - characteristics of an air mass depend on where it formed (source region)
- Fronts are boundaries between air masses of different temperatures
- Cold front: leading edge of colder air replaces warmer air (precipitation at the front)
- Cold fronts move the fastest

• Warm front: leading edge of warmer air replaces colder air (precipitation ahead of the front)

• Occluded front: when a cold front catches up to a warm front

Stationary Front: A front that is not moving

- Chemical weathering occurs mostly in warm, humid climates
- Physical weathering occurs mostly in cold, humid climates (good for frost wedging)
- When a rock is broken into smaller pieces, surface area increases and weathering rate increases
- Soil is the product of weathering
- Isostasy earth's crust in equilibrium.
- Dynamic equilibrium means balance
- Convection currents in the mantle move the plates.
- Mountains form by uplift, folding and faulting
- Mid-ocean ridges (diverging plates, sea-floor spreading) crust is created

Trenches (converging plates, subduction) - crust is destroyed

- Most earthquake and volcanic activity occur along plate boundaries
- P- waves are faster than S- waves.
- P- waves travel through solids and liquids, while S- waves only go through solids.
- Need three seismograph stations to locate an epicenter.
- In undisturbed strata, the bottom layer is the oldest.
- Intrusions and faults are younger than the rock they are in.
- Index fossils are good time markers (widely spread, lived a short time)

- Porosity (the amount of holes) does not depend on particle size.
- Permeability (connection of holes) does depend on particle size: as particle size increases, permeability increases.
- Capillarity (movement of water upward) increases when particle size decreases
- Ep (potential evaporation) depends on temperature.
- Maximum storage is 100 mm.
- Deficit: Storage = 0 and Precipitation is less than Ep.
- Surplus: Storage = 100 and Precipitation is greater than Ep.
- Usage: Storage is greater than 0 and Precipitation is less than Ep.
- Recharge: Storage is less than 100 and Precipitation is greater than Ep.
- Gravity is behind all erosion. (running water, glaciers, mass wasting except wind erosion)
- Streams are the number one agent of erosion.
- Stream velocity depends on slope and discharge.
- Velocity of the water is greater on the outside of meander bend.

- Heavy, dense, round particles settle out first in water.
- Graded bedding (vertical sorting) biggest sediments on the bottom.
- Glacial sediments are unsorted and scratched. Glaciers create U- shaped valleys.
- Stream deposits are sorted, round, and smooth. Streams create V shaped valleys.
- Sedimentary rock characteristics: strata, flat layers, fossils may be present, rock fragments
- Igneous rock characteristics: cooled quickly → small crystals, glassy, or vesicular cooled slowly → large crystals
- Metamorphic rock characteristics: banding, distorted structure, platy mica crystals
- Mineral properties depend on internal arrangement of atoms.
- Silicon oxygen tetrahedron is the basic unit.

- Arid landscapes → steep slopes
- Humid landscapes → smooth, rounded slopes
- Uranium 235 dates old rocks
- Carbon –14 dates recent, once living objects
- Temperature or rock size does not change the half-life of a substance
- Always try to eliminate two answers.
- Memorize the "Dreaded 13".
- Use complete sentences for the constructed response questions (CRQ)
- Know how to read and interpret in Earth Science Reference tables.
- When in doubt, see if the reference tables can help you.
- USE THE REFERNCE TABLES!

The 13 Dreaded Earth Science Facts

- 1. If you cut an object into pieces, you do not change its density.
- 2. The altitude of Polaris equals your latitude.
- 3. The Coriolis Effect deflects things to the right in the northern hemisphere.
- 4. Condensation: water vapor changing to liquid water (remove heat)
- 5. Boiling: liquid water changing to water vapor (add heat)
- 6. There is no change in temperature during a phase change.
- 7. Low pressure: wet weather (warm)
- 8. High pressure: dry weather (cool)
- 9. Weather moves west to east across the United States.
- 10. Porosity does not depend on particle size.
- 11. Potential evapotranspiration (ep) depends only on temperature.
- 12. Minerals have different properties because of the way their atoms are arranged.
- 13. Marine (sea) fossils on mountain tops indicate that the land has been uplifted.