Earth's Interior and Geophysical Properties

Studying Rocks from Earth's Interior

- Geologists can't sample rocks very far below Earth's surface.
- Deep mines may be 3 km deep.
- Some oil wells reach depths of 8 km.
- No well has ever reached Earth's mantle.

The Deepest Scientific Well

- 12 km deep
- Penetrated ancient Precambrian basement rocks
- Took 15 years to drill

Second Deepest Well

- KTB hole in SE Germany
- Depth of 10 km
- Cost more than \$ 1 billion
- Technically as complex as space exploration

Analysis of Indirect Information

- The only method for learning about Earth's interior
- Geophysics
 - The branch of geology that applies physical laws and principles to a study of Earth
 - Includes the study of:
 - Seismic Waves
 - Earth's Magnetic Field
 - Gravity
 - Heat

A. Evidence From Seismic Waves

1. Seismic <u>Reflection</u>

- Return of some energy to Earth's surface from a boundary
- Boundary between two layers of differing density

"Artificially" Creating Seismic Waves Thumper Trucks

Artificially Creating Seismic Waves "Elbow Grease"

Seismic Reflection Data

2. Seismic <u>Refraction</u>

- Bending of Seismic Waves
- Occurs only if velocity differs in each layer (caused by density differences)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3. First and Second Arrival Seismic Waves

- a. Deeper Wave <u>refracts</u> and arrives at a seismograph station first.
- b. Can infer depth of boundaries between layers

Refraction Without an Interface

- Increasing density in a thick layer of uniform rock
- Increase in velocity
- Curved paths from many small changes in direction as wave passes through many layers

B. Earth's Internal Structure

1. Crust

Continental Crust -Thickest under mountains

- a. Outer thin layer (varies from 7 km to 50 km in thickness)
- b. Mohorovičić Discontinuity (called the <u>MOHO</u>
 - (1) A discontinuity is a boundary where seismic waves experience an abrupt change in velocity or direction
 - (2) Separates the crust from the mantle

Ocean Crust – Average Thickness: 7km

2. Mantle

a. Upper Mantle: Part of the Lithosphere

- (1) Crust and Upper Mantle.
- (2) Outer shell of Earth and is strong and brittle

2. Mantle

b. Asthenosphere

- (1) Low-Velocity Zone
- (2) Extends to 200 km
- (3) Rocks close to melting point (1 to
 - 10% molten.
- (4) Rocks may have little strength and be capable of flowing

1. Mantle

Lower Mantle

- (1) Consists of mostly silicate and oxides of Mg and Fe (ultramafic rocks
- (2) Rearranged into denser and more compact crystals

Lithosphere and Upper Mantle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Earth's Concentric Shell Structure Inferred from P- and P- Wave Velocity Variations

Inferred Properties of Earth's Interior

3. The Core

a. **Shadow** Zones:

Seismic Waves do not reach certain areas on the opposite side of Earth from a large Earthquake

(1) P-Wave Shadow Zone

- Refraction of P-waves when they encounter the core boundary
- Size and shape of core can be determined because the paths of Pwaves can be accurately determined.

(2) S-Wave Shadow Zone

- Larger than the P-wave shadow zone
- Direct S-Waves are not recorded in the entire region more than 103° from the epicenter
- Indicates that S-waves do not pass through the core at all

(3) Conclusions

(a) Infer that the core has <u>two</u> parts
(b) Outer core is <u>liquid</u>.
(c) Inner core is a <u>solid</u> iron crystal

Composition of the Core

- (1) Density is very high when averaged with crust and mantle
- (2) Evidence for iron
 - (a) Meteorites may represent basic material that created the solar system and 10% are composed of Fe and Ni (may represent the cores of fragmented planetismals and asteroids
 - (b) Seismic and density data along with assumptions based on meteorite composition, point to a largely iron core
 - (c) The presence of Earth's magnetic field also suggests a metallic core.

Isostacy

A. Balance or <u>equilibrium</u> of adjacent rocks of brittle crust that float on the plastic mantle.

Wood blocks float in water with most of their mass submerged

Crustal blocks "float" on mantle in a similar way.

The thicker the block the deeper it extends into the mantle.

Isostatic Adjustment

- A. Areas that lose mass <u>rise</u>.
- B. Areas that gain mass <u>sink</u>.
- C. Isostatic Adjustment
 - 1. <u>Vertical</u> movement to reach equilibrium
 - 2. <u>Depth of Equal Pressure</u>: Depth where each column of rock is in balance with others.

E. Crustal Rebound

- 1. Upward movements of the crust
- 2. Loss of huge mass of ice (glaciers) at the end of the Pleistocene Epoch

D Crustal rebound as crust rises toward original position

Crustal Rebound in Canada and the northern United States

Isostatic Adjustment Due to the "Underplating" Theory

- Rising blobs of magma accumulate at a the base of a continent
- The continent becomes thicker due to *underplating*.
- The thickened continental crust causes it to be out of isostatic equilibrium, so it rises.

Gravity Measurements

A. Force of gravity is affected by the <u>distance</u> between two masses and the masses of the two objects

B. Gravity Meter (Gravitometer)

 Measures gravitational attraction between Earth at a specific location and mass within the instrument

C. Gravity is affected by

- 1. <u>**Denser**</u> rock underground (such as metallic ore deposits)
- 2. Degree of isostatic equilibrium of a region

D. Positive Gravity Anomaly

- 1. Higher than normal gravity measurements
- 2. Can indicate location of metallic subsurface ores and rocks

Positive Gravity Anomoly

- Uplift creates a mountain range without a mountain root.
- There is a thicker section of denser mantle rock under the mountain range.
- The central "column" has more mass.

E. Negative Gravity Anomaly

1. A region with <u>low</u> gravity measurements

Salt Domes

Salt is less dense than the surrounding rocks

Negative Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gravity Anomaly Oil Cap rock 1 Kilometer

Negative Gravity Anomaly

- Regions with mass deficiencies
- Areas still experiencing isostatic rebound

F. Isostatic Balance

- Uniform gravity readings
- Corrections for differences in elevation

Earth's Magnetic Field

- A. Believed to be generated in the <u>**Outer**</u> core.
 - 1. The hot liquid outer core flows and convecting metal creates electric currents.
 - 2. Current along with Earth's rotation create a magnetic field.

B. Magnetic Reversals: Evidence in sea-floor rocks

Evidence of Magnetic Reversals in Lava Flows

Worldwide Magnetic Polarity Time Scale (Mesozoic and Cenozoic Eras)

- Black indicates normal polarity
- Tan indicates reversed
 polarity

C. Magnetic Anomalies

1. Positive Magnetic Anomalies

- a. <u>Higher</u> than normal.
- b. Can be caused by
 - concentration of magnetite ore
 - concentration of denser minerals in mafic rocks
 - Hidden geologic structures

2. Negative Magnetic Anomalies

- a. Lower than normal
- b. Can be caused by downdropped fault blocks

The End

Earth's Heat Buoys Up Its Crust

New Information Published in 2008 (June 23rd Journal of Geophysical Research)

Denser Rock Beneath N. America Was Located Using Seismic Data

- Researchers
 - David Chapman, Geophysicist at the University of Utah
 - Derrick Hasterok, a graduate student at the university
- Compared seismic results with known densities of various rocks
 - Determined crustal density at a location
- After correcting for this variability in density, they determined how much of an impact temperature has on elevation

Heat Alone Accounts for Half of the Elevation of Most Parts of N. America

- If the crust beneath cities such as New York and Los Angeles cooled to an average of 400° C (about 750° F)
 - The same temperature as the continent's oldest crust
- These areas would sink

Inferred Properties of Earth's Interior

The Core-Mantle Boundary

- Great changes in seismic velocity
- ULVZ may be due to hot core that partially melts overlying rock
- Less dense silicate "sediment"
 - Iron silicates formed from reaction of lighter iron alloys in the liquid outer core reacting with silicates in the lower mantle
 - Collects in uneven layers and is squeezed out of pore spaces
 - Forms an electrically conductive layer and explains the low seismic velocities
- Both the mantle and core undergo convection.
- Transition Zone up 200 km thick **Decrease in P-wave velocities** Copyright © The McGraw-Hill companies, Inc. Permission required for reproduction Lower mantle ULVZ CMB **Outer core**

Ultralow-Velocity Zone

A Faster Rotating Core

- Seismic waves indicate the core rotates 1º/year faster
- Solid line Shows position of a point in the core relative to Earth's surface
- Dashed line Shows where the point was in 1900

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

