Fields

- No, not these fields.
- We will consider *scientific* fields.

 A field is a region <u>space</u> in which there is a <u>quantity</u> that can be measured at <u>every location</u>.

A. Examples of Types of Fields

1. Earth's <u>magnetic</u> field – strength varies from place to place, depending on the distance from the Poles.

2. Earth's gravity field

 Objects are attracted Earth with varying force, depending on the distance from the center of Earth

3. A Temperature Field

4. An Air Pressure Field

5. A Precipitation Field

THURSDAY RAINFALL AMOUNTS

©2004 AccuWeather, Inc.

accuweather.com

6. <u>Elevations of Earth's surface with respect to sea level</u>

B. Scalar and Vector Fields

- 1. <u>Scalar</u> field: measured completely in terms of AMOUNT, or MAGNITUDE.
 - a. EXAMPLES:

temperature, air pressure, elevation, rainfall, snowfall, insolation

2. <u>Vector</u> field: measured in terms of MAGNITUTDE and <u>direction</u>

a. EXAMPLES: Gravity, magnetic,

wind on weather maps

- C. Field Maps: These are maps of a particular field on which the various readings for the property being studied are marked.
- 1. <u>Isoline</u>: a line connecting all points having the SAME field value.
- 2. Importance of isolines
 - a. Provide a good idea of the SHAPE of a field.
 - b. Show the pattern of change within the field.

3. Types of Isolines

c. <u>Contour Lines</u> : lines of equal land elevation

d. **Isopachs** : lines of equal thickness.

Volcanic ash depth map of a volcanic eruption in Nicaragua

e. <u>Isohyets</u>: lines of equal amounts of rainfall

Hurricane Alicia, August 18-19, 1983

D. Isolines

- 1. Show field conditions on a two-dimensional surface
- ISOSURFACE NOT a line, but a surface passing through all points of 3-dimensional space with the same field value.
 - This gives a <u>three-dimensional</u> picture of the field.

An Isosurface

3. RULES FOR DRAWING ISOLINES

- a. EVERY point on an isoline will have the **SAME** field value.
- b. Isolines CANNOT touch or cross other isolines
- c. Isolines MUST form closed loops or extend to the edges of the map. Isolines NEVER begin or end on the map!
- d. Isolines tend to form **smooth curves** (no sharp points).
- e. Isolines tend to be **paralle** to one another.

EXAMPLE

- The field values on the first map show the amount of snow that fell during a snowstorm.
- The numbers seem scattered and jumbled.
- Just looking at the map would not tell you much.

EXAMPLE

- The pattern of the isolines makes it much easier to see
 - Where the snow was deepest
 - How it gets thinner as you travel away from the deepest place.

E. Gradient — the change in a field quantity as we go from one point to another

Amount of change in field quantity

1. Average Gradient = -

Distance over which the change occurs

You can find the equation in the ESRT

2010 2010 2010 2010 2010 2010 2010 2010	Heso Jeists Ano	k Man Ing Gng	ni bəzu əd bluodə notinasə təri toftanimasə təri təftanimasi	o EDITION s the January 2010 R s the January 2010 R EDITION	201 Article Statistics of the Earth Science assroom beginning in the 2009- thich these tables will be used it mysical Setting / Earth Science	ld M P IL
	0.1	0.1	20.0	16.0	Other	
	0.87	0'99			Nhrogen (N) Hvdrogen (H)	
N			1.42	5.09	Potessium (K)	

Equations

Eccentricity = distance between foci length of major axis				
Gradient = <u> </u>				
Rate of change = time				
Density = $\frac{\text{mass}}{\text{volume}}$				

2. EXAMPLES

EXAMPLES

3. Gradient and the Spacing of Isolines

- a. Closer spacing means there is <u>higher</u> gradient.
- b. Farther spacing means there is a <u>lower</u> gradient.

Isobars Showing Air Pressure

F. Fields and Time

- Some field values may change with time (DYNAMIC FIELD). Others may not (STATIC FIELD). A field map may be accurate for only the time at which it was made.
- 2. Fields that undergo slow change with time include: elevation of Earth's surface, gravity, magnetism
- Fields that undergo fast change with time include: temperature, air pressure, humidity, wind precipitation, insolation

- Try UPCO RB page 46 # 19, 20, 21.
 (for # 21 use ESRT pg. 13)
- Try Worksheets
- Start Lab 1-4 Proc. B first