

Circuit Simplification: DeMorgan's Theorems

Digital Electronics

DeMorgan's Theorems

DeMorgan's Theorems are <u>two</u> additional <u>simplification</u> techniques that can be used to simplify Boolean expressions. Again, the simpler the Boolean expression, the <u>simpler</u> the resulting logic.

$A + B = A \cdot B$

$\overline{A \cdot B} = \overline{A} + \overline{B}$

Augustus DeMorgan

Augustus DeMorgan, an Englishman, born in India in 1806. He was instrumental in the advancement of mathematics and is best known for the **logic** theorems that bear his name.

Augustus DeMorgan

Augustus DeMorgan, an Englishman, born in India in 1806. He was instrumental in the advancement of mathematics and is best known for the **logic** theorems that bear his name.

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	
0	1	0	
1	0	0	
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	
0	1	0	
1	0	0	
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	
1	0	0	
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	
1	0	0	
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

DeMorgan's Theorem #1 $A \cdot B = A + \overline{B}$

 $\mathbf{0}$

 \mathbf{O}

 \mathbf{O}

DeMorgan's Theorem #1 $A \cdot B = A + \overline{B}$

 $\mathbf{0}$

 \mathbf{O}

 \mathbf{O}

		Ā	ļ		
A⊷				>	► Ā+B
B⊷	$\neg \triangleright$	 □ □ 			
A	В	Ā	B	$\overline{A} + \overline{B}$	
0	0	1	1	1	

 $\mathbf{0}$

16	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	
1	1	0	0	

DeMorgan's Theorem #1 $A \cdot B = A + \overline{B}$

 \mathbf{O}

	_		
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	

А	В	A∙B	$\overline{A \cdot B}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	A∙B	$\overline{A\cdotB}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

А	В	Ā	B	$\overline{A} + \overline{B}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

The truth-tables are <u>equal</u>; therefore, the Boolean equations must be <u>equal</u>!

А	В	A+B	$\overline{A+B}$
0	0	0	
0	1	1	
1	0	1	
1	1	1	

А	В	Ā	B	$\overline{A} \cdot \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

А	В	A+B	$\overline{A+B}$
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Α	В	Ā	B	$\overline{A} \cdot \overline{B}$
0	0	1	1	
0	1	1	0	
1	0	0	1	
1	1	0	0	

The truth-tables are <u>equal</u>; therefore, the Boolean equations must be <u>equal</u>!

Summary

Boolean & DeMorgan's Theorems

10A) $X \cdot Y = Y \cdot X$ 10B) X + Y = Y + X Commutative Law 1) $X \cdot 0 = 0$ $X \cdot 1 = X$ 2) 11A) X(YZ) = (XY)Z11B) X + (Y + Z) = (X + Y) + Z $X \cdot X = X$ 3) Associative $X \cdot \overline{X} = 0$ 4) Law 12A) X(Y+Z) = XY + XZX + 0 = X5) Distributive 12B) (X + Y)(W + Z) = XW + XZ + YW + YZLaw X + 1 = 16) 7) X + X = X13A) X + XY = X + Y13B) $\overline{X} + XY = \overline{X} + Y$ 8) X + X = 1Consensus 13C) $X + \overline{X}\overline{Y} = X + \overline{Y}$ Theorem 9) $\overline{X} = X$ 13D) $\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$ 14A) $\overline{XY} = \overline{X} + \overline{Y}$ 14B) $\overline{X+Y} = \overline{X} \overline{Y}$ - DeMorgan's

DeMorgan Shortcut

BREAK THE LINE, CHANGE THE SIGN!

Break the LINE over the two variables, and change the SIGN directly under the line.

For Theorem #**14A**, break the line, and change the **AND** function to an **OR** function. Be sure to keep the lines over the variables.

DeMorgan Shortcut

BREAK THE LINE, CHANGE THE SIGN!

Break the LINE over the two variables, and change the SIGN directly under the line.

For Theorem #<u>14B</u>, break the line, and change the <u>OR</u> function to an <u>AND</u> function. Be sure to keep the lines over the variables.

Simplify the following Boolean expression and note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.

$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

Theorem #14A

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \mathsf{Y}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$F_{I} = (\overline{X \cdot \overline{Y}}) + (\overline{\overline{Y} + Z})$$
 Theorem #14A

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})\cdot(\overline{\mathsf{Y}}+\mathsf{Z})$$

$$F_{I} = (X \cdot \overline{Y}) + (\overline{Y} + Z)$$
 Theorem #14A

Theorem # &

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$F_{I} = (X \cdot \overline{Y}) + (\overline{Y} + Z)$$
 Theorem #14A

Theorem #9 & #14B

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$F_{I} = (\overline{\overline{X} \cdot \overline{\overline{Y}}}) + (\overline{\overline{Y}} + \overline{Z})$$
 Theorem #14A
$$F_{I} = (\overline{X} \cdot \overline{\overline{Y}}) + (\overline{\overline{\overline{Y}}} \cdot \overline{\overline{Z}})$$
 Theorem #9 & #14B

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) + (\overline{\overline{\mathsf{Y}}} + Z)$$

$$\mathsf{F}_{_{1}} = (\mathsf{X} \cdot \overline{\mathsf{Y}}) + (\overline{\mathsf{Y}} \cdot \overline{\mathsf{Z}})$$

Theorem #14A

Theorem #9 & #14B

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) + (\overline{\overline{\mathsf{Y}} + \mathsf{Z}})$$

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})+(\overline{\mathsf{Y}}\cdot\overline{\mathsf{Z}})$$

Theorem #14A

Theorem #9 & #14B

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$\mathsf{F}_{_{1}}=(\overline{\mathsf{X}\cdot\overline{\mathsf{Y}}})+(\overline{\overline{\mathsf{Y}}+\mathsf{Z}})$$

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})+(\overline{\mathsf{Y}}\cdot\overline{\mathsf{Z}})$$

 $F_{I} = (X \cdot Y) + (Y \cdot Z)$

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$\mathsf{F}_{_{1}}=(\overline{\mathsf{X}\cdot\overline{\mathsf{Y}}})+(\overline{\overline{\mathsf{Y}}+\mathsf{Z}})$$

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})+(\overline{\mathsf{Y}}\cdot\overline{\mathsf{Z}})$$

 $F_1 = (X \cdot Y) + (Y \cdot Z)$

Rewritten without AND symbols and parentheses

$$\mathsf{F}_{_{1}} = (\overline{\mathsf{X} \cdot \overline{\mathsf{Y}}}) \cdot (\overline{\mathsf{Y}} + \mathsf{Z})$$

$$\mathsf{F}_{_{1}}=(\overline{\mathsf{X}\cdot\overline{\mathsf{Y}}})+(\overline{\overline{\mathsf{Y}}+\mathsf{Z}})$$

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})+(\overline{\mathsf{Y}}\cdot\overline{\mathsf{Z}})$$

$$\mathsf{F}_{_{1}}=(\mathsf{X}\cdot\overline{\mathsf{Y}})+(\mathsf{Y}\cdot\overline{\mathsf{Z}})$$

Theorem #14A

Theorem #9 & #14B

Theorem #9

 $F_{_1} = X\overline{Y} + Y\overline{Z}$

Rewritten without AND symbols and parentheses

Take a look at the VERY poorly designed logic circuit shown below. If you were to analyze this circuit to determine the output function F_2 , you would obtain the results shown.

Simplify the output function F_2 . Be sure to note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.

 $F_2 = (X + Z)(XY)$

 $F_{2} = (X + Z)(XY)$

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}}\overline{\mathsf{Y}})$$

Theorem #14A

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_{2} = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

Theorem #14B

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$F_2 = (\overline{X} \overline{Z}) + (XY)$$
 Theorem #14B

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$F_2 = (\overline{X} \overline{Z}) + (XY)$$
 Theorem #14B

Theorem #

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$F_2 = (\overline{X} \overline{Z}) + (XY)$$
 Theorem #14B

Theorem #9

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$F_2 = (\overline{X} \overline{Z}) + (XY)$$
 Theorem #14B

$$F_2 = (X \overline{Z}) + (XY)$$
 Theorem #9

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$F_2 = (\overline{X} \overline{Z}) + (XY)$$
 Theorem #14B

 $F_2 = (X \overline{Z}) + (XY)$ Theorem #9

Rewritten without parentheses

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

$$F_2 = (\overline{X} + Z) + (\overline{XY})$$
 Theorem #14A

$$F_2 = (\overline{X} + Z) + (XY)$$
 Theorem #9

$$F_2 = (\overline{X} \overline{Z}) + (XY)$$
 Theorem #14B

$$F_2 = (X \overline{Z}) + (XY)$$
 Theorem #9

 $F_2 = X \overline{Z} + X Y$

Rewritten without parentheses

$$\mathsf{F}_{2} = (\overline{\mathsf{X}} + \mathsf{Z})(\overline{\mathsf{X}})$$

can be simplified to...

$F_2 = X \overline{Z} + X Y$

