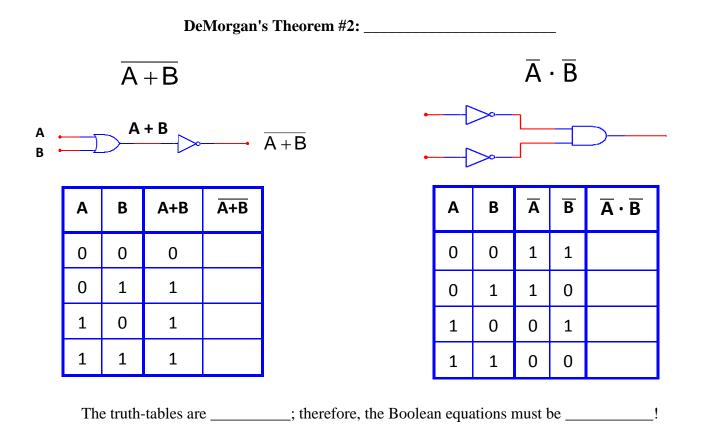
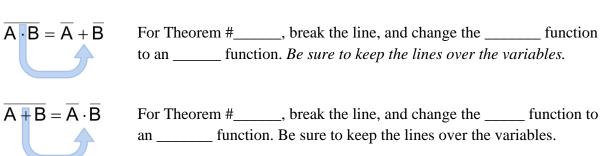

Digital Electronics

Unit 2.1.5 – DeMorgan's Theorems


DeMorgan's Theorems are _____ additional ______ techniques that can be used to simplify Boolean expressions. Again, the simpler the Boolean expression, the _____ the resulting logic.

Augustus DeMorgan

Augustus DeMorgan, an Englishman, born in India in 1806. He was instrumental in the advancement of mathematics and is best known for the ______ that bear his name.


The truth-tables are _____; therefore, the Boolean equations must be _____!

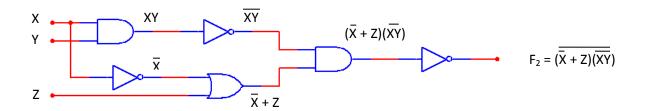
DeMorgan Shortcut

BREAK THE _____, CHANGE THE _____!

Break the LINE over the two variables, and change the SIGN directly under the line.

DeMorgan's: Example #1

Simplify the following Boolean expression and note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.


$$F_1 = \overline{(\overline{\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}}) \cdot (\overline{Y} + Z)}$$

$$F_1 = \overline{(\overline{\mathbf{X} \cdot \overline{\mathbf{Y}}}) \cdot (\overline{Y} + Z)}$$

 Theorem #14A
 Theorem #9 & #14B
 Theorem #9
 Rewritten without AND symbols and parentheses

DeMorgan's: Example #2

Take a look at the VERY poorly designed logic circuit shown below. If you were to analyze this circuit to determine the output function F₂, you would obtain the results shown.

Simplify the output function F₂. Be sure to note the Boolean or DeMorgan's theorem used at each step. Put the answer in SOP form.

 Theorem #14A
 Theorem #9
 Theorem #14B
 Theorem #9
Rewritten without AND symbols and parentheses