

Roanoke County Public Schools

Curriculum Guide

June 2015

Pre-AP Computer
Programming (6640P)

Mathematics & CTE Curriculum Guide
Revised 2015. Available at www.rcs.k12.va.us.

Roanoke County Public Schools does not discriminate with regard to race, color, age, national origin, gender, or handicapping condition in an
educational and/or employment policy or practice. Questions and/or complaints should be addressed to the Director of Administration/Title IX
Coordinator at (540) 562-3900 ext. 10121 or the Director of Pupil Personnel Services/504 Coordinator at (540) 562-3900 ext. 10181.

Acknowledgements

The following people have made tremendous contributions to the completion of this curriculum guide and all are appreciated.

Phifer Herrala
William Byrd High School

Skip Larrington
Hidden Valley High School

Bob Powers
Cave Spring High School

Stephanie Schilling
Northside High School

Roanoke County Public Schools Administration

Dr. Lorraine Lange
Superintendent

Dr. Ken Nicely
Director of Secondary Instruction

Dr. Linda Wright
Director of Elementary Instruction

Linda Bowden
Mathematics Coordinator

Preface
This curriculum guide is written for the teachers to assist them in using the textbooks/resources in a most effective way. This guide will assist the mathematics
teacher in preparing students for the challenges of the twenty-first century. As established by the National Council of Teachers of Mathematics Principles and
Standards for School Mathematics, educational goals for students are changing. Students should have many and varied experiences in their mathematical
training to help them learn to value mathematics, become confident in their ability to do mathematics, become problem solvers, and learn to communicate and
reason mathematically. This guide, along with the available textbook resources, other professional literature, alternative assessment methods, and varied
instruction in-service activities will assist the mathematics teacher in continuing to integrate these student goals into the curriculum.

i

Table of Contents

Introduction/General Comments ... iii

Textbook/Resources Overview .. iii

Sequence of Instruction and Pacing Suggestions .. iv

Mapping for Instruction - First Nine Weeks .. 1

Mapping for Instruction - Second Nine Weeks .. 2

Mapping for Instruction - Third Nine Weeks ... 3

Mapping for Instruction - Fourth Nine Weeks ... 4

Supplemental Resources ... 5

CTE Correlation ... 32

2015/2016 Student Competency Record .. 37

SOL Correlation by Task .. 42

ii

Introduction/General Comments
1. As always, the instructor should exercise their own judgment on what exercises or activities to use from this curriculum guide as well as their

judgment when it comes to the pacing. It is suggested that the instructor spends ample time on loops as it is a difficult concept
for students to master. Students MUST be familiar with a while loop, and standard for loop, and an enhanced for loop (also known as a for-each loop).

2. The concept behind this guide is that the instructor moves through the sections as outlined in the guide. They have the option of assigning the
exercises listed in the guide, assigning others from the back of the chapters, or finding other assignments from other texts. Plenty of exercises are listed
in the back of each chapter.

3. As you look through the guide, you will notice that there are no SOL guidelines noted and the last page which discusses the SOL blueprints is notably
blank. The reason for this is because there are no SOL guidelines for computer programming classes.

4. This course is specifically designed as a precursor to the AP Computer Science class. This class will introduce many of the basic concepts from the AP
Computer Science class, but will not cover them in as much depth as they will need to be covered for the AP exam.

5. The Magpie Chatbot Lab is suggested by the College Board as foundational material for the AP exam. It is highly recommended.

6. When students have completed this class, they should have a solid foundation for the upcoming AP Computer Science Class.

7. The instructor may find that some programs seem redundant, or that time is limited and they want to move on. It is perfectly acceptable to skip some
programming assignments that are listed here. If this is done, the instructor should keep a record of the programs that are skipped. These would
constitute an excellent review of these concepts when planning the AP class for the following year.

8. The instructor might find that certain programs they feel are excellent projects that combine all the concepts of a chapter are missing from this
curriculum guide. This is intentional! These programs are left for the AP Computer Science curriculum. The AP Computer Science curriculum will use
these programs during the first nine weeks to review and enhance understanding of the material in the six chapters covered in this class.

Textbook/Resources Overview
Book Title: Java Software Solutions for AP* Computer Science (Third Edition)

Authors: John Lewis, William Loftus, Cara Cocking

Publisher: Pearson

Year: 2011

This book is specifically designed to allow a student to prepare for the AP Computer Science Exam. It is not intended to be strictly an introductory Java textbook.
For this reason, this material can be supplemented with other material of an introductory nature from other textbooks.

The textbook comes with a companion website that the instructor is urged to register with. The website contains a variety of video lessons, bonus chapters, and
source code to utilize with the class. The website can be found at http://www.pearsonschool.com/Access_Request and select "access to online instructor
resources."

iii

Sequence of Instruction and Pacing Suggestions

First Nine Weeks

SOL Chapter/Sections/Topic *Time Frame

 Chapter 1 – Computer Systems 4.00 blocks

 Chapter 2 – Objects and Primitive Data 16.00 blocks

 Chapter 3 - Program Statements 2.50 blocks

*Time Frame is based on 95 minutes of instruction per block. First Nine Weeks Total 22.5 blocks

Second Nine Weeks

SOL Chapter/Sections/Topic *Time Frame

 Chapter 3 - Program Statements 11.50 blocks

 Chapter 4 – Writing Classes 11.00 blocks

*Time Frame is based on 95 minutes of instruction per block. Second Nine Weeks Total 22.5 blocks

iv

Sequence of Instruction and Pacing Suggestions

Third Nine Weeks

SOL Chapter/Sections/Topic *Time Frame

 Chapter 4 – Writing Classes 14.00 blocks

 Chapter 5 – Enhancing Classes 8.50 blocks

*Time Frame is based on 95 minutes of instruction per block. Third Nine Weeks Total 22.5 blocks

Fourth Nine Weeks

SOL Chapter/Sections/Topic *Time Frame

 Chapter 5 – Enhancing Classes 2.50 blocks

 Chapter 6 – Arrays (Including sorting and searching) 15.0 blocks

 Magpie Chatbot Lab 4.00 blocks

 Final Exam 1.00 block

*Time Frame is based on 95 minutes of instruction per block. Fourth Nine Weeks Total 22.5 blocks

v

Mapping for Instruction - First Nine Weeks

Chapter: 1 Computer Systems
Textbook Chapters/Sections/Topics Supporting Materials Comments

1.0: Introduction Short Answer: 1.2, 1.3 All references to problems are from the textbook unless stated
otherwise.

1.1: Hardware Components Short Answer: 1.1, 1.4

1.2: Networks Short Answer: 1.5, 1.6

1.3: Programming Short Answer: 1.7, 1.8
Programming Projects: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6

1.4: Programming Languages Short Answer: 1.9

Chapter: 2 Objects and Primitive Data
Textbook Chapters/Sections/Topics Supporting Materials Comments

2.0 An Introduction to Objects
2.1 Using Objects

Supplemental Programs: 2.1, 2.2, 2.3 Supplemental Programs are attached as part of this curriculum
guide.

2.2 String Literals
2.3 Variables and Assignment
2.4 Primitive Data Types
2.5 Arithmetic Expressions
2.6 Enumerated Types

Programming Projects: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.7
Supplemental Programs: Painting a Room

Programming Projects are listed at the end of every chapter in the
book.

2.7 Creating Objects
2.8 Class Libraries and Packages
2.9 Interactive Programs
2.10 Formatting Output

Programming Projects: 2.8, 2.9, 2.10, 2.11, 2.12,
2.13

Always have students use Math.random() since this is what is used
on the AP exam.

Note: Program 2.14 is an excellent project for the purpose of putting
everything in this chapter together; however, it is intentionally
omitted from this class as it will be used as a review in the AP
class..

Chapter: 3 Program Statements
Textbook Chapters/Sections/Topics Supporting Materials Comments

3.0 Program Development
3.1 Control Flow
3.2 The if Statement

Programming Projects: 3.1, 3.2 Cover DeMorgan’s Law during this unit.

1

Mapping for Instruction - Second Nine Weeks

Chapter: 3 Program Statements

Textbook Chapters/Sections/Topics Supporting Materials Comments

3.3 Boolean Expressions Revisited
3.4 More Operators

Supplemental Programs: Rock, Paper, Scissors

3.5 The while Statement Programming Projects: 3.3 Make sure to cover the while statement. The do-while statement is
optional.

3.6 Iterators
3.7 The for Statement

Programming Projects: 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 Note that this now includes the for-each loop which is also referred
to as the enhanced for loop.

3.8 Program Development Revisited Programming Projects 3.10, 3.11, 3.12, 3.13, 3.15 Note that program 3.14 is intentionally omitted so it can be used as
a review program in the AP Computer Science class.

Chapter: 4 Writing Classes - Part 1

Textbook Chapters/Sections/Topics Supporting Materials Comments

4.0 Objects Revisited
4.1 Anatomy of a Class

Programming Projects 4.1, 4.2

4.2 Anatomy of a Method Programming Projects 4.3, 4.4, Notice that programming project 4.3 allows the students to use the
Die class from the book. Some teachers may choose to
interactively write the Die class with their students in class. This will
help the students learn the structure of a class. Also note that
program 4.5 will be used as a review program in the AP class and
is intentionally omitted from this section.

2

Chapter: 4 Writing Classes - Continued

Textbook Chapters/Sections/Topics Supporting Materials Comments

4.3 Method Overloading Programming Projects 4.6, 4.8

4.4 Method Decomposition Programming Projects 4.4

4.5 Object Relationships Programming Projects 4.8
Supplemental Programs: Tracking Grades, Band
Booster Class

Cover an “is-a” relationship versus a “has a” relationship.

Chapter: 5 Enhancing Classes

Textbook Chapters/Sections/Topics Supporting Materials Comments

5.0 References Revisited
5.1 The static Modifier

Programming Projects: 5.1 Discuss both static methods and static variables.

5.2 Exceptions Students need to recognize exceptions, not throw them.

5.3 Interfaces Programming Projects: 5.2, 5.3, 5.4 Students need to be able to recognize and interface. Students
should also be able to create their own interfaces.

Mapping for Instruction - Third Nine Weeks

3

Mapping for Instruction - Fourth Nine Weeks

Chapter: 5 Enhancing Classes

Textbook Chapters/Sections/Topics Supporting Materials Comments

5.3 Interfaces Programming Projects: 5.5, 5.6 Project 5.6 is complex. Make sure you have done this first before
asking your students to do it.

5.4 Identifying Classes and Objects Discuss white box testing, black box testing, and debugging.

Chapter: 6 Arrays

Textbook Chapters/Sections/Topics Supporting Materials Comments

6.0 Arrays Programming Projects: 6.1, 6.2, 6.4, 6.5 It is entirely possible that some of the assignments in this chapter
might be put off until the AP Computer Science class. It all depends
on the students in the class. If that is done, the teacher will have to
cover them in the first part of the AP class.

6.1 Arrays of Objects Programming Projects: 6.6, 6.7, 6.8, 6.9, 6.10

6.2 Searching Supplemental Programs: Search Projects

6.3 Sorting Supplemental Programs: Sort Projects

6.4 Comparing Sorts Supplemental Programs: Comparing Sorts Project This section may be moved completely to the AP class if necessary.

 Magpie Chatbot Lab

Textbook Chapters/Sections/Topics Supporting Materials Comments

Strings / Random Numbers /
Conditional Statements / Arrays

Magpie Chatbot Lab – Activities 1-5 This lab is provided in its entirety from AP Central at College Board.
Teachers may choose to make modifications to the lab and/or the
software as desired. Teachers may choose to modify the lab in an
effort to make it easier to work with in Eclipse.

4

Supplemental Resources

Chapter 1 - Computer Systems – Supplemental Materials
Chapter Notes – Relation to AP subset:

Students must know how to count in binary, both forward and backward.

They must understand the difference between a compiler and an interpreter and how Java fits into that picture. They also need to
understand that Eclipse is neither, but is an Integrated Development Environment (IDE). They must understand the concept of Java
byteCode.

From a programming perspective, students must understand how to output data to the screen (System.out.println).

They need to understand how to write and use comments. Comments can be designated in many ways such as // or /* */ or /** */.
Javadoc comments @param and @return are part of the AP subset.

They need to understand the difference between syntax and semantics.

They also need to understand the difference between compile-time, run-time, and logic errors.

Supplemental Resources:

Some teachers use a video by Mark Gugnor about Men’s Brains / Women’s Brains. It can be found on YouTube by searching for
the author and title or by going here: https://www.youtube.com/watch?v=0BxckAMaTDc. There are many different versions, the
5 ½ minute version is sufficient to make the point of how men and women think differently, and it is very important to have
both type of thinking in the workplace.

Some teachers reference trailers for the One Million Minutes (or 2 or 4) video to demonstrate global competition and diversity.
Some are: https://www.youtube.com/watch?v=vFQ6j-BPwTs or https://www.youtube.com/watch?v=9bFmWlyBcrs.

5

https://www.youtube.com/watch?v=0BxckAMaTDc
https://www.youtube.com/watch?v=vFQ6j-BPwTs
https://www.youtube.com/watch?v=9bFmWlyBcrs

Chapter 1 - Activity 1

History Project

Some teachers use a history project to meet some of the CTE competencies as well as give the students experience researching a topic and presenting
on it.

There are many people / topics that can be researched. The list below is not an exhaustive list, so feel free to add to it. Also, depending on the size of
the class, you may choose to remove some of the items from the list.

People Equipment / Innovations Languages / Software Personal Computers

Charles Babbage Abacus Machine Language Intel 8080
Ada Byron Lovelace Napier’s Bones Assemblers Altair
Herman Hollerith Slide Rule Compilers Apple I
Vannevar Bush Pascaline Engine Interpreters Apple II
Tommy Flowers Stepped Rekoner Basic Macintosh
Alan Turing Calculator (les Xavier de Colmar) Fortran IBM PC
Claude Shannon Vacuum Tubes COBOL Compaq Portable PC
George Stibitz Atanasoff / Berry Computer C, C+, C++, C# Gateway
William Hewlett & David Packard Colossus Computer Pascal Dell
Konrad Zuse Mark I Java
Grace Hopper ENIAC
John Mauchly Transistor LINIX / UNIX Machine Components
Von Neumann UNIVAC I MS DOS Core Memory
Paul Baran Semi-Conductor Windows IC Memory
Ray Tomlinson Integrated Circuit Mac OS Disk Drives (Floppy, hard, SSD)
Bob Metcalfe IBM 360 Tape Drives
Vint Cerf & Bob Kahn Cray I VisiCalc Keyboards, Mice, Touch Screens
Richard Stallman Hayes Modem WordStar CPU / ALU / Registers
Larry Page & Sergey Brin WordPerfect CDs/ DVDs
Jimmy Wales & Larry Sanger Word / Excel / PowerPoint Paper Tape / Punch Cards
 TurboTax Bus / Serial / Parallel ports

6

Chapter 1 - Activity 2

Communication Activity

Arrange students so that they paired up but they cannot see one another’s desks using boxes or some other item. There are two
different activities that the students can participate in. One is a drawing activity while the other is a building activity. For the drawing
activity, one student will have a plain sheet of paper and a pencil/pen. The other student will have a picture of basic shapes. Neither
student can see the other student’s paper. Only the student with the picture is allowed to speak. The other partner has to follow the
instructions they are given. The student with the picture will describe in detail to the other student how to draw the picture without
telling the student what the final picture is supposed to look like.

Similarly, this activity can be done using legos/k’nex. One student would have a picture of something to build while the other student
has the exact number of parts needed to build what¹s in the picture. As before, only the student with the picture can talk and neither
student can see what the other student has.

Purpose of this activity - this is to mimic what it is like for a student to talk to a computer. The computer will follow the directions as
given and will not be able to ask questions. This forces the students to be very detail oriented and they quickly see how order of
commands and how you say something matters.

NOTE - You may want to contact Stephanie Schilling or Phifer Herrala for some of the pictures they have their students draw.

7

Chapter 1 - Activity 3

Introduction to Algorithms

Have the students write down directions for how to make a peanut butter and jelly sandwich. The students are not to write their names
on this page as this is a participation activity and not for an accuracy grade. You can either pick at random or find the worst ones and
then begin to follow the algorithm to make a peanut butter and jelly sandwich following their instructions literally.

Talk to the students about how there are a variety of solutions to this problem. However, some of the solutions are better than the
others. It’s the same with writing algorithms for code.

Now, have the students again write down the instructions for making a peanut butter and jelly sandwich. Display a few of them on the
board to demonstrate that there are multiple ways to solve the problem.

Purpose of this activity - students will realize how important the little details are. They cannot make any assumptions when writing
code.

For fun - show the students the friendship algorithm clip from The Big Bang Theory. (this can easily be found on YouTube) This is a
good pictorial demonstration of a flowchart.

8

Chapter 2 - Objects and Primitive Data - Supplemental Materials

Chapter Notes – Relation to AP subset:

Students are responsible for 3 primitive data types: int, double, and boolean. While the AP subset ignores chars, stating that they
might confuse students because of their close relationships to Strings, the book uses them extensively. Also, if this confusion issue
were true, then the same issue exists for ints versus Integers and doubles versus Doubles. Because knowledge of the char data type
can be extremely useful when answering free response questions on the AP exam, it is recommended that the students be extremely
familiar with the char primitive data type. Warning - the AP people like to test the substring method heavily. They almost always have a
question that walks off the end of the String because the ending position in a substring method is always confusing. Also, they like to
ask unique things about the substring method. Compare the following three things ... what do you expect to happen? By the way, try
them - what you get may not be what you would expect.

String myString = new String("abcde");

String s1 = myString.substring(myString.length()-1);

String s2 = myString.substring(myString.length());

String s3 = myString.substring(myString.length()+1);

Students must understand operator precedence. Casting should be covered in this chapter, especially as related to ints and doubles.
This is often a question on the AP exam and usually relates to how averages are calculated (see page 73 of the textbook). Enumerated
types are new to the AP subset and must be covered here. Students MUST understand truncation towards zero when casting from a
double to an int (i.e. 4.5  4 and -4.5  -4). Students need to know how to round instead of truncate (i.e. if (x>0) (int)(x + 0.5)) else
(int)(x - 0.5))

Students need to understand String literals, String concatenation, and the String methods listed on page 78 of the textbook. They need
to understand constants and variables, and how to manipulate variables. They must understand the main arithmetic operators (+, -, /,
*, and %). They must understand the dual nature of the plus sign(+). They must understand escape sequences for use in Strings,
highlighted on page 60 of the textbook.

The Integer and Double classes (the Objects!) are covered in this chapter. While auto boxing and unboxing are not part of the AP
subset, they should be covered since this is something the students will run into when they are testing casts. This can be very
confusing as something is going on behind the scenes that is not intuitively obvious to the students. This is an excellent time to discuss
class libraries and packages. Refer to the book to know which ones the students have to be familiar with (Integer, Double, String,
Math, etc.) Note: the Random class is NOT part of the AP subject. The Math class is! Suggestion - use Math.random() and not

9

Random.nextInt(). The NumberFormat class and DecimalFormat class are not part of the AP subset.

Note: user input (Scanner class) is NOT tested on the AP Exam.

When creating objects, students MUST use the keyword “new”. This is a common error on the AP Exam and is ALWAYS tested.

Students must understand and be familiar with the terminology of a “method signature”. The method signature depends on the
number, types, and order of its parameters ONLY, and does not include the return type. This terminology is frequently used on the AP
Exam.

In the AP subset, ALMOST ALL CLASSES SHOULD BE DECLARED AS PUBLIC. In the AP subset, ALL INSTANCE VARIABLES
SHOULD BE DEFINED AS PRIVATE. Methods, constants (static final variables), and constructors may be either public or private.

Students need to understand how to make a variable into a constant (final).

Static variables are part of the subset. Using static methods is also part of the subset (i.e. Math.random()).

The rules for default initialization are not in the AP subset.

Supplemental Programs:

Something that is used by a number of teachers is www.codingbat.com. This includes hundreds of practice problems for students (done like
puzzles) that challenge students to solve a problem. If their answer is incorrect, the computer tells them what test cases they did not prepare
for and gives them the opportunity to try again. This program also tracks, by student, their completion rate and success. The assignments
given can correlate to the chapters the students are studying.

See other resources below.

10

http://www.codingbat.com/

Chapter 2 - Activity 1

Computer Corporation Activity

CTE Skills List: 1 – 29 (with regards to the simulation); other skills apply depending on the programming project(s) assigned

Creating the company

Students will work in small groups of two to three people. The group will come up with a name for their corporation, a mission
statement, where their headquarters are located, as well as stats for their company. Within the group, they will assign the following
roles to every person (one person may hold more than one role): Chief Executive Officer (CEO), Chief Financial Officer (CFO) and Chief
Information Officer (CIO). Each role has a specific function with relation to the client, which is being role-played by the teacher. The
CEO is the only one who can make bids with the client. The CFO is only the one who can make purchases for the company and
authorize any financial transaction. The CIO is only the one who can ask questions about the specification and/or client modifications
as well as turns in the program to the client. After the company is set up, the teacher verifies the information and should everything
check out, the company is allowed to make bids.

Making bids

The company simply looks through the chapter exercises and makes bids on the various programs to do. The goal for each chapter is a
set amount of money, adjustable by the teacher. The baseline cost for each program, also set by the teacher, can be adjusted
accordingly to difficulty level (i.e., harder programs are worth more, easier ones are cheaper). When the CEO for the company is
making the bid for the chapter exercise, the teacher/client can role-play the interactions with the student and depending on their
interactions, can affect the value of the bid and/or whether the bid is even accepted.

Turning in projects

CIOs are responsible for turning in the bids to the client. Again, teachers role-play the client and test the program for any bugs and
whether or not they fulfill the original specifications. Should the program meet with the client’s satisfaction, the client can award them
the agreed upon amount in the initial bid. Should the project not meet the client’s specification or requirements, the client may have
the options of: a) rejecting the attempt and ask the company to fix the mistakes; b) accept the attempt however award them less than
the stated amount of the initial bid; or c) completely deny the bid. No money is awarded and the company loses the bid.

11

Accumulated Revenue

The money that is earned by the company is accumulated and can be used in various ways in this simulation. First, and foremost, it
can be used as a grade for the individuals in the company. Reaching a set goal, or a percentage thereof, can determine a grade.
Secondly, the revenue that the companies have accrued can be used to spend on various aspects of their simulation. For example, they
may purchase computer equipment or hire lawyers to boost various stats with respect to their company. You’ll find that some students
may think outside of the box and try to use their revenue in different ways. It’s entirely up to the teacher on whether or not it plays in
the simulation.

Contact

This activity was provided by Bob Powers from Cave Spring High School. It is an involved activity, but well worth the time and effort. If
you would like more information on this activity, please contact him directly.

12

Chapter 2 - Activity 2

Names and Places

The goal of this exercise is to develop a program that will print a list of student names together with other
information for each. The tab character (an escape sequence) is helpful in getting the list to line up nicely. A
program with only two names is in the file Names.java.

a. Save Names.java to your directory. Compile and run it to see how it works.

b. Modify the program so that your name and hometown and the name and hometown of at least two
classmates sitting near you in class are also printed. Save, compile and run the program. Make sure the columns
line up.

c. Modify the program to add a third column with the intended major of each person (assume Sally's major is
Computer Science and Alexander's major is Math). Be sure to add a label at the top of the third column and be sure
everything is lined up (use tab characters!).

13

Chapter 2 - Activity 3

Two Meanings of Plus

In Java, the symbol + can be used to add numbers or to concatenate Strings. This exercise illustrates both uses. When using a String
literal (a sequence of characters enclosed in double quotation marks) the complete String must fit on one line. The following is NOT
legal (it would result in a compile-time error).

 System.out.println ("It is NOT okay to go to the next line

 in a LONG string!!!");

The solution is to break the long String up into two shorter Strings that are joined using the concatenation operator (which is the +
symbol). This is discussed in Section 2.2 in the text. The following would be legal:

 System.out.println ("It is OKAY to break a long string into " +

 "parts and join them with a + symbol.");

When working with Strings, the + symbol means to concatenate the Strings (join them). When working with numbers the + means
what it has always meant -- add! Remember operator precedence. Work from left to right. This can impact whether the “+” sign means
add or concatenate.

1. Observing the Behavior of +.

To see the behavior of + in different settings do the following:

 a. Study the program below, which is in file PlusTest.java.

14

// ***

// PlusTest.java

//

// Demonstrate the different behaviors of the + operator

// ***

public class PlusTest

{

 // ---

 // main prints some expressions using the + operator

 // ---

 public static void main (String[] args)

 {

 System.out.println ("This is a long String that is the " +

 "concatenation of two shorter Strings.");

 System.out.println ("The first computer was invented about" + 55 +

 "years ago.");

 System.out.println ("8 plus 5 is " + 8 + 5);

 System.out.println ("8 plus 5 is " + (8 + 5));

 System.out.println (8 + 5 + " equals 8 plus 5.");

 }

15

}

b. Save PlusTest.java to your directory.

c. Compile and run the program. For each of the last three output statements (the ones dealing with 8 plus 5) write down what
was printed. Now for each explain why the computer printed what it did given that the following rules are used for +. Write your
explanations on one of the programs you have already printed out.

If both operands are numbers + is treated as ordinary addition. (NOTE: in the expression a + b the a and b are called the operands.)

If at least one operand is a String, the other operand is converted to a String and + is the concatenation operator.

If an expression contains more than one operation, expressions inside parentheses are evaluated first. If there are no parentheses, the
expression is evaluated left to right.

d. The statement about when the computer was invented is too scrunched up. How should that be fixed?

2. Writing Your Own Program With +.

Now write a complete Java program that prints out the following sentence:

 Ten robins plus 13 canaries is 23 birds.

Your program must use only one statement that invokes the println method. It must use the + operator both to do arithmetic and
String concatenation. In other words, there must be a 10+13 somewhere in your println statement.

16

Chapter 2 - Activity 4

A Table of Student Grades

Write a Java program that prints a table with a list of at least 5 students together with their grades earned (lab points, bonus points,
and the total) in the format below.

///////////////////\\\\\\\\\\\\\\\\\\\

== Student Points ==

\\\\\\\\\\\\\\\\\\\///////////////////

Name Lab Bonus Total

---- --- ----- -----

Joe 43 7 50

William 50 8 58

Mary Sue 39 10 49

The requirements for the program are as follows:

1. Print the border on the top as illustrated (using the slash and backslash characters).

2. Use tab characters to get your columns aligned. You MUST use the + operator both for addition and String concatenation.

3. Make up your own student names and points -- the ones shown are just for illustration purposes. You need 5 names.

17

Chapter 2 - Activity 5

Painting a Room

File Paint.java contains the partial program below which, when complete, will calculate the amount of paint needed to paint the walls of
a room of the given length, width, and height. It assumes that the paint covers 350 square feet per gallon. Use the Scanner class to
read in values from the keyboard.

//***

//File: Paint.java

//

//Purpose: Determine how much paint is needed to paint the walls

//of a room given its length, width, and height

//***

public class Paint

{

 public static void main(String[] args)

 {

 final int COVERAGE = 350; //paint covers 350 sq ft/gal

 //declare integers length, width, and height;

 //declare double totalSqFt;

 //declare double paintNeeded;

 //Prompt for and read in the length of the room

 //Prompt for and read in the width of the room

18

 //Prompt for and read in the height of the room

 //Compute the total square feet to be painted—think about the dimensions of each wall

 //Compute the amount of paint needed

 //Print the length, width, and height of the room and the number of gallons of paint needed.

 }

}

Save this file to your directory and do the following:

1. Fill in the missing statements (the comments tell you where to fill in) so that the program does what it is supposed to. Compile
and run the program and correct any errors.

2. Suppose the room has doors and windows that don't need painting. Ask the user to enter the number of doors and number of
windows in the room, and adjust the total square feet to be painted accordingly. Assume that each door is 20 square feet and each
window is 15 square feet.

19

Chapter 3 - Program Statements - Supplemental Materials

Chapter Notes – Relation to AP subset:

Flowcharting is an excellent concept to cover. While flowcharting is not part of the AP subset, it is very helpful when trying to
understand a process.

In this chapter, students must master the if statement, if-else statement, nested if-else statements, and block statements (statements
within curly braces {}). They must understand the difference between assignment operators and relational operators. They must
understand how to use relational operators and their precedence (and, or, not). They must be able to create and read truth tables.
They need to understand when to use “=” versus "==" versus ".equals". They need to understand the inherent problems with
comparing floating point numbers for equality, and learn to use tolerances instead. Increment operators, decrement operators, and
special java assignment operators must be understood (page 135).

Note that students might run into the following problem. In the early days of Java, the statement String s1 = new String(“abc”); was
functionally equivalent to String s1 = “abc”:. This is no longer true.

 String s1 = new String("abc");
 String s2 = new String("abc");
 if (s1==s2)
 System.out.println ("This does not print");
 String s3 = "abc";
 String s4 = "abc";
 if (s3==s4)
 System.out.println ("This does print");

It is imperative that students understand the concept of short-circuiting. It almost always appears on the AP Exam in some form (either
an “and” or an “or” relational operator can short circuit). Also ensure that students understand DeMorgan’s law. It also appears every
year somewhere in the AP exam.

Students must learn how to use the while statement. Note that the do-while statement is NOT part of the AP subset although it might
be helpful to introduce the concept. They must understand the for loop and the enhanced for loop (also called the for-each loop). They
must understand when to use, and when NOT to use, each of the looping constructs mentioned above. They must understand infinite
loops and nested loops. They must learn about iterators, something that is new to the AP subset in the past couple of years, and how
to use these with loops. The break and continue statements are NOT part of the AP subset.

Supplemental Programs: See below.

20

Chapter 3 - Activity 1

Rock, Paper, Scissors Program

Program Rock.java contains a skeleton for the game Rock, Paper, Scissors. Open it and save it to your directory. Add statements to the
program as indicated by the comments so that the program asks the user to enter a play, generates a random play for the computer,
compares them, and announces the winner (and why). Some teachers may choose to not give the students the skeleton but make
them create it on their own.

For example, one run of your program might look like this:

Enter your play: R, P, S, or Q to quit

r

Computer play is S

Rock crushes scissors, you win!

Note that the user should be able to enter either upper or lower case r, p, s, and q. The user's play is stored as a String to make it easy
to convert whatever is entered to upper case. Use an if-else statement to convert the randomly generated int for the computer's play
to a String or to convert the character the user entered into an int. If the user enters an invalid letter, tell them that their entry was
invalid and force them to enter a valid character.

This program can be enhanced to address more of the CTE competencies by keeping score and reporting the number or wins, losses,
and ties at the end of the game (or along the way).

21

Chapter 3 - Activity 2

Pig Program

Using the PairOfDice class, design and implement a class to play a game called Pig.

In this game, the user competes against the computer. (I found it easier to write this as a two person game first, and then extend it to make one
of the players the computer.)

Players alternate turns (I call them rounds) until one player reaches 100 points. The first player to 100 points wins the game. The game should stop
IMMEDIATELY when either player earns 100 points.

Each player’s round is made up of one or more rolls of the dice. You may assume the user rolls at least one time. The player rolls the pair of dice
and adds up their points.

• If the player rolls snake eyes (two 1’s), they lose all the points they have earned so far in the game (their “gameScore”), they lose all the

points they have earned so far this round (their “roundScore”), and the dice go to the other player.
• If the player rolls a 1 on either of the two die (but not both), they lose all their points for this round (their “roundScore”), their total for the

game so far (their “gameScore”) remains the same, and the dice go to the other player.
• If the player does not roll any 1’s, then the points they received on the pair of dice are added to their score for this round (“roundScore”).

o If the player’s total points for the game so far (“roundScore” plus “gameScore”) is 100 or greater, the game immediately ends and
this player is declared the winner.

o If the player’s total points for the game so far (“roundScore plus “gameScore”) are less than 100 points, then the player has a choice
to make. The player is given the option of continuing to roll (being a pig), or passing the dice to the other player. If the player
passes the dice to the other player, their “roundScore” is added to their “gameScore”, and their “roundScore” is reset to zero.

The first player to 100 wins. (In other words, play stops automatically when either player gets to 100!)

When you decide to make this a human against a computer, the only thing you have to change is in the third bullet above. It has to do with
whether the computer chooses to pass the dice or not. Assuming the computer’s round has not ended because they rolled either a single or double
1, then the computer has to choose whether to pass the dice or not. Here is how you make that choice –

• If the computer has earned less than 20 points on this round, they roll again (pig)
• If the computer has earned 20 or more points on this round, then the round ends and the computer gives the dice to the player.

22

Chapter 4 - Writing Classes - Supplemental Materials

Chapter Notes – Relation to AP subset:

This chapter focuses on writing classes. Students need to be very skilled at writing classes, defining instance data, and writing
methods. They need to be extremely clear on the difference between a class, an object, instance data, and methods. They need to
understand the concept of private versus public data (protected data is not covered in the AP subset). They also need to understand
the difference between public and private methods, and when to use each. The use of the return statement (for a non-void method)
and the passing of parameters needs to be stressed. This is something that students often miss on the AP Exam since almost every
free response question has to do with writing a class, a method, or both. The difference between a formal parameter and the actual
parameter is often confusing. The concept of constructors needs to be hit hard. Students should hear the following statement almost
every day: "The purpose of a constructor is to initialize the instance variables." Overloaded methods and method decomposition
(breaking a large method into smaller ones) need to be learned here. Also, having objects made up of other objects should be dealt
with here (a student object contains an Address object which contains String objects).

Supplemental Programs: See below.

23

Chapter 4 - Activity 1

Tracking Grades Program

A teacher wants a program to keep track of grades for students and decides to create a Student class for this program as follows:

Each Student will be described by three pieces of data: name, score on test #1, and score on test #2.

There will be one constructor, which will have one argument -- the name of the Student.

There will be three methods: printName, which will print the student's name; inputGrades, which will prompt for and read in the
student's test grades; and getAverage, which will compute and return the student's average as a double.

1. File Student.java contains an incomplete definition for the Student class. Save it to your directory and complete the class
definition as follows:

a. Declare the instance data (name, score for test1, and score for test2).

b. Add the missing method headers.

c. Add the missing method bodies.

2. File Grades.java contains a shell program that declares two Student objects. Save it to your directory and use the inputGrades
method to read in each student's test scores, then use the getAverage method to find their average. Print the average with the
student's name, e.g., "The average for Joe is 87.5" You can use the printName method to print the student's name.

3. The printName method is rather cumbersome for producing the output described above. Add a method getName to your
Student class that, instead of printing the name, returns it as a String. Now modify your Grades program to use getName instead of
printName in printing each student's average.

4. Modify the inputGrades method of the Student class so that it validates the grades it reads in. That is, if a grade entered is less
than 0 or greater than 100, it should print a warning message and ask for another grade. This should be repeated (for each grade
entered) until the grade is between 0 and 100. Note that this means you can’t use an if statement, but you will need to use a while
statement.

5. Add statements to your Grades program that print the values of your Student variables directly, e.g.:

 System.out.println("Student 1: " + student1);

24

This should compile, but notice what it does when you run it -- nothing very useful! When an Object is printed, Java looks for a
toString method for that Object. This method must have no parameters and must return a String. If such a method has been defined
for this object, it is called and the String it returns is printed. Otherwise the default toString method, which is inherited from the Object
class, is called. It simply returns a unique hexadecimal identifier (the address of the Object) for the Object such as the ones you saw
above.

Add a toString method to your Student class that returns a String containing the student's name and test scores, e.g.:

 Name: Joe Test1: 85 Test2: 91

Note that the toString method does not call System.out.println -- it just returns a String.

Recompile your Student class and the Grades program (you shouldn't have to change the Grades program -- you don't have to call
toString explicitly). Now see what happens when you print a student Object -- much nicer!

25

Chapter 4 - Activity 1

Band Booster Class

In this exercise, you will write a class that models a band booster and use your class to update sales of band candy.

1. Write the BandBooster class assuming a BandBooster Object is described by two pieces of instance data: name (a String) and
boxesSold (an int that represents the number of boxes of band candy the booster has sold in the band fundraiser). The class
should have the following methods:

• A constructor that has one parameter -- a String containing the name of the BandBooster. The constructor should set
boxesSold to 0.

• A method getName that returns the name of the BandBooster (it has no parameters).

• A method updateSales that takes a single int parameter representing the number of additional boxes of candy sold. The
method should add this number to boxesSold.

• A toString method that returns a String containing the name of the BandBooster and the number of boxes of candy sold in a
format similar to the following:

• Joe: 16 boxes

2. Write a program that uses BandBooster objects to track the sales of 3 boosters over several weeks. Your program should do the
following:

• Read in the names of the three band boosters and construct an Object for each.

• Read in the number of weeks for the current fundraising campaign.

• Have a count controlled loop that, for each week, gets the number of boxes of candy sold by each booster. Your prompts
should include the booster's name. For example,

 Enter the number of boxes sold by Joe this week:

• For each member, after reading in the weekly sales, invoke the updateSales method to update the total sales by that
member.

• After the loop, print the name and total sales for each member (you will implicitly use the toString method here).

26

Chapter 5 - Enhancing Classes - Supplemental Materials

Chapter Notes – Relation to AP subset:

Using "null" needs to be discussed in detail. The use of automatically created "getters" and "setters" can be used to help with this
concept. Creating stub methods that return null for the object as a temporary fix can be useful. The use of the word “this” does not
need to be discussed as it is not part of the subset; however, if you automatically generate getters and setters, then an explanation if
“this” will be required as it is used in the setter methods.

Static variables need to be learned here.

Understanding an exception is an important concept that must be grasped. The students DO NOT need to be able to throw an
exception - they only need to understand the concept behind one and why one might want to "catch" one. They DO NOT need to use
the "try" and "catch" features of Java.

Using an Interface is another important concept that must be grasped. Students are expected to implement an Interface. They are
NOT expected to create one. Implementing the Comparable Interface, Interator, and ListIterator Interfaces is expected.

Nested classes are covered in this chapter. Nested classes are NOT part of the AP subset.

Supplemental Programs:

There are no supplemental programs for this chapter.

27

Chapter 6 - Arrays - Supplemental Materials

Chapter Notes – Relation to AP subset:

This is an absolutely HUGE chapter when it comes to the AP Exam - probably the most important chapter in the book. Arrays and
ArrayLists are hit repeatedly on the AP Exam. At this point, the Die class must implement the Comparable interface (if you have not
done this, do it now). Students need to be fully conversant with one dimensional arrays, two dimensional arrays, and ArrayLists. They
need to know when to use them and how to access their elements. They need to fully understand how to use a for loop, and a for-
each loop, to look at the data. They also need to be very aware of when to use which type of loop (for example, you can’t remove an
element from a list if using the for-each loop). One big thing the AP people like to test is where array subscripts start and end. Watch
this one carefully!

Students need to be able to create an array using an initializer list (i.e. int[] foo = {2,5,8};)

Students need to be able to pass arrays (or ArrayLists) as parameters and determine the length (size) of them inside the methods. It is
especially important that they are able to determine the number of rows and/or the number of columns in a two dimensional array
inside a method! They need to keep track of whether an array is full or potentially partially empty. Note that all two dimensional arrays
in the AP subset are rectangular. There are no ragged arrays in the subset, although they are completely permissible in Java.

Students need to be fully conversant with Selection Sorts, and Insertion Sorts. They need to know what happens in each pass of the
sorts, and be able to recognize a sorting type from the appearance of the data. (Note: Merge Sort will be covered in the recursion
unit.)

Supplemental Programs: See below.

28

Chapter 6 - Activity 1

BlackJack Program

Write a program that implements BlackJack. This program must use a Card Class, Deck class, and BlackJack Player class.

Write this assuming that an Ace is always worth 11 points. Eventually, you may enhance this to allow a 1 or 11.

Write this assuming that you have three players (last one being the dealer). Eventually, allow the user to choose the number of
players.

Write this showing all cards of all players. Eventually, hide the first card dealt.

 Write this as a text based program. Eventually, add graphics to the program using Java or Greenfoot.

29

Chapter 6 - Activity 2

Searching and Sorting Program:

The following are all portions of a large program. The methods are all static and are called from a main program that changes many
times for testing purposes.

Program a – Create a random int array

Design and implement a static method called createIntArray that takes three parameters – the size of an array, the lowest value of the
range, and the highest value of the range. This method will create an array of that size containing random ints between the starting
and ending values of the range (inclusive). Return this array to the calling method. If any parameters are invalid, return null. Design
and implement a second static method called printIntArray that takes one parameter – the array – and prints the array, 1 int per line.
Create a main program that creates an array and prints it using the two methods above.

Program b – Linear Search for an int in the above array

Design and implement a static method called intLinearSearch that takes an array of int values as a parameter and also takes a single
int as a second parameter. This method should perform a linear search of the unsorted array to see if the number can be found. If
found, return the value to the user of the location of the found number. If not found, indicate this by returning -1. Create a main
program that tests this by prompting the user for which item to search for in an array of your choosing.

Program c – Bubble Sort (Optional – easy sort to understand and code; however, not tested on the AP exam).

Design and implement a static method called intBubbleSort that takes an array of int values as a parameter. This method should
perform a bubble sort on the array. Test this by creating and printing an array, sorting it, and printing it again.

Program d – Selection Sort

Design and implement a static method called intSelectionSort that takes an array of int values as a parameter. This method should
perform a selection sort on the array. Test your method.

Program e – Insertion Sort

Design and implement a static method called intInsertionSort that takes an array of int values as a parameter. This method should
perform an insertion sort on the array. Test your method.

30

 Program f – Binary Search for an int in the above array

Design and implement a static method called intBinarySearch that takes an array of sorted int values as a parameter and also takes a
single int as a second parameter. This method should perform a binary search of the sorted array to see if the number can be found. If
found, return the value to the user of the location of the found number. If not found, indicate this by returning -1. Test your method.

Program g – Repeat steps a, c, d, e, and f for Die

Design and implement static methods called createDieArray, printDieArray, dieBubbleSort, dieSelectionSort, and dieInsertionSort. Note
that the createDieArray will only take two parameters, the size of the array and the number of sides on each Die. For example, you
could create an array of 10 Die where each Die had 1,000 sides. dieBinarySearch that takes an array of Die as a parameter and also
takes a single int as a second parameter.

Program h – Compare Searches

Using the methods and programs developed above, compare the speed of searches above. Use the following code to help determine
speed. Even if you use a billion items, you may have to do something similar using the Die class to get meaningful differences in the
numbers.

 long startTimeMs = System.currentTimeMillis();

 // do your search or sort here

 long taskTimeMs = System.currentTimeMillis() - startTimeMs;
 long milliseconds = taskTimeMs % 1000;
 long seconds = taskTimeMs / 1000 % 60;
 long minutes = taskTimeMs / 60000 % 60;
 long hours = taskTimeMs / 3600000 % 24;
 System.out.println(hours + " hours, " +
 minutes + " minutes, " +
 seconds + " seconds, " +
 milliseconds + " milliseconds");

Program i – Compare Sorts

Using the methods and programs developed above, compare the speed of sorts above. Use the above code to help determine speed.
Start with 1,000 ints and double each time. You can then extrapolate for higher numbers if necessary. You must also try this for the
Die class, but your numbers will not have to be as high for valid comparisons. Again, start at 1,000 Die.

31

CTE Correlation

Number Competency Section / Activity

6640.001 Demonstrate positive work ethic. Every Project, all year. Computer Corporation Activity.
6640.002 Demonstrate integrity. Discuss Day 2 of class. Maintain focus on every project.

Computer Corporation Activity.
6640.003 Demonstrate teamwork skills. Discuss Day 1 of class. Virtually all projects are group

projects. Computer Corporation Activity.
6640.004 Demonstrate self-representation skills. Chapter 1.2: History Project. Computer Corporation Activity.
6640.005 Demonstrate diversity awareness. Discuss as part of “Men’s Brains, Women’s Brains” video.

Computer Corporation Activity.
6640.006 Demonstrate conflict-resolution skills. Discuss Day 1 of class. Virtually all projects are group

projects that require collaboration and conflict resolution.
Computer Corporation Activity.

6640.007 Demonstrate creativity and resourcefulness. Chapters 4 & 6: Pig and Blackjack Projects. Computer
Corporation Activity, Magpie Lab.

6640.008 Demonstrate effective speaking and listening skills. Chapter 1.2: History Project. Computer Corporation Activity.
6640.009 Demonstrate effective reading and writing skills. Chapter 1.2: History Project. Computer Corporation Activity,

Magpie Lab.
6640.010 Demonstrate critical-thinking and problem-solving skills. Chapter 1.3: Required for all projects. Computer Corporation

Activity, Magpie Lab.
6640.011 Demonstrate healthy behaviors and safety skills. Discuss Week 1. Computer Corporation Activity.
6640.012 Demonstrate an understanding of workplace organizations, systems,

and climates.
Chapter 1.2: Discuss as part of jobs in the Computer
Industry. Computer Corporation Activity, Magpie Lab.

6640.013 Demonstrate lifelong-learning skills. Chapter 1.2: Discuss as part of jobs in the Computer
Industry. Computer Corporation Activity, Magpie Lab.

6640.014 Demonstrate job-acquisition and advancement skills. Chapter 1.2: Discuss as part of jobs in the Computer
Industry. Computer Corporation Activity, Magpie Lab.

6640.015 Demonstrate time-, task-, and resource-management skills. Discuss weeks 1 & 2. Required in all Projects. Computer
Corporation Activity, Magpie Lab.

6640.016 Demonstrate job-specific mathematics skills. Chapter 2.5. Computer Corporation Activity.
6640.017 Demonstrate customer-service skills. Chapter 1.3: Company Profile Project. Computer Corporation

32

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1325378427
http://www.cteresource.org/verso/courses/6640/programming-tasklist/383229022
http://www.cteresource.org/verso/courses/6640/programming-tasklist/383229023
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1325378428
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030883
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030884
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030885
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030888
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388185
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388186
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388187
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388188
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388188
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388189
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388190
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388191
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388192
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388193

Activity, Magpie Lab.

6640.018 Demonstrate proficiency with technologies common to a specific
occupation.

Chapter 1.3: Company Profile Project. Computer Corporation
Activity, Magpie Lab.

6640.019 Demonstrate information technology skills. Chapter 1.3 and continue throughout the year. Computer
Corporation Activity, Magpie Lab.

6640.020 Demonstrate an understanding of Internet use and security issues. Chapter 1.2. Computer Corporation Activity.
6640.021 Demonstrate telecommunications skills. Chapter 1.3: Company Profile Project. Computer Corporation

Activity.
6640.022 Examine aspects of planning within an industry/organization. Chapter 1.3: Company Profile Project. Computer Corporation

Activity, Magpie Lab.
6640.023 Examine aspects of management within an industry/organization. Chapter 1.3: Company Profile Project. Computer Corporation

Activity.
6640.024 Examine aspects of financial responsibility within an

industry/organization.
Chapter 1.3: Company Profile Project. Computer Corporation
Activity.

6640.025 Examine technical and production skills required of workers within an
industry/organization.

Chapter 1.3: Company Profile Project. Computer Corporation
Activity, Magpie Lab.

6640.026 Examine principles of technology that underlie an
industry/organization.

Chapter 1.3: Company Profile Project. Computer Corporation
Activity, Magpie Lab.

6640.027 Examine labor issues related to an industry/organization. Chapter 1.3: Company Profile Project. Computer Corporation
Activity.

6640.028 Examine community issues related to an industry/organization. Chapter 1.3: Company Profile Project. Computer Corporation
Activity.

6640.029 Examine health, safety, and environmental issues related to an
industry/organization.

Chapter 1.3: Company Profile Project. Computer Corporation
Activity.

6640.030 Identify the purposes and goals of the student organization. Week 1 & 2: Discuss as part of the study of involvement in
clubs / organizations with the school and the work place

6640.031 Explain the benefits and responsibilities of membership in the student
organization as a student and in professional/civic organizations as an
adult.

Week 1 & 2: Discuss as part of the study of involvement in
clubs / organizations with the school and the work place

6640.032 Demonstrate leadership skills through participation in student
organization activities, such as meetings, programs, and projects.

Week 1 & 2: Discuss as part of the study of involvement in
clubs / organizations with the school and the work place

6640.033 Identify Internet safety issues and procedures for complying with
acceptable use standards.

Chapter 1.2

6640.034 Describe the development of computers and current industry trends
in the programming field.

Chapter 1.4, History Project, Magpie Lab.

33

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388196
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388196
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388197
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388198
http://www.cteresource.org/verso/courses/6640/programming-tasklist/350031302
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916591
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916592
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916593
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916593
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916594
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916594
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916595
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916595
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916596
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916597
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916598
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916598
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396614
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396615
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396615
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396615
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396616
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396616
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396617
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1138396617
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407789
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407789

6640.035 Describe the development of programming languages and

applications.
Chapter 1.4, History Project.

6640.036 Describe the functions of computer hardware, computer software,
and computer system components.

Chapter 1.0, 1.1, History Project.

6640.037 Compare computer operating systems. Chapter 1.0, 1.4, History Project.
6640.038 Identify the software development life cycle (SDLC). Chapter 1.3, 1.4, Magpie Lab.
6640.039 Describe the development environment for a specific programming

language.
Week 2: Discuss as part of Eclipse IDE, Magpie Lab.

6640.040 Analyze the problem statement. Chapter 1.3 and continues throughout the course,
Introduction to Algorithms Activity, Magpie Lab.

6640.041 Create possible solutions to the problem. Chapter 1.3 and continues throughout the course,
Introduction to Algorithms Activity, Magpie Lab.

6640.042 Determine the best solution to the problem. Chapter 6.4 and continues throughout the course,
Introduction to Algorithms Activity, Magpie Lab.

6640.043 Design a program, using an algorithm, pseudocode, a flowchart,
and/or a decision table.

Chapter 3.1 and continues throughout the course, Magpie
Lab.

6640.044 Code the program, using a programming language. Chapter 1.3 and continues throughout the course, Magpie
Lab.

6640.045 Test the program with sample data. Chapter 2.2 and continues throughout the course, Magpie
Lab.

6640.046 Debug the program. Chapter 2.2 and continues throughout the course, Magpie
Lab.

6640.047 Document the program. Chapter 1.3 and continues throughout the course, Magpie
Lab.

6640.048 Describe maintenance procedures. Chapter 1.4 and in Dice programs, Magpie Lab.
6640.049 Identify syntax errors of a given programming language. Chapter 1.4 and continues throughout the course, Magpie

Lab.
6640.050 Identify industry standards for a graphical user interface (GUI). Chapter 2.11. Also discuss with Hour of Code, Alice, and

Greenfoot. Also discuss as part of Excel, Word, PowerPoint,
etc.

6640.051 Create a graphical user interface that adheres to industry standards. Alice, Scratch, Code.org, Greenfoot, or Visual Basic
6640.052 Code a program that will produce formatted output. Chapter 2.10, Magpie Lab.
6640.053 Code an application that uses mathematical operations and built-in

functions.
Chapter 2.8 and repeated throughout the course, Magpie
Lab.

34

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407790
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407790
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407791
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407791
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407792
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407793
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407794
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407794
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407797
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407799
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407798
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407803
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407803
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407804
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407805
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407806
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407807
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407808
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407811
http://www.cteresource.org/verso/courses/6640/programming-tasklist/549077915
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407812
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407813
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407814
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407814

6640.054 Write a program that uses variables and constants. Chapter 2.3 and repeated throughout the course, Magpie

Lab.
6640.055 Write a program that accepts user input. Chapter 2.9 and repeated throughout the course, Magpie

Lab.
6640.056 Write a program that uses arrays. Chapter 6.0 and repeated throughout the course, Magpie

Lab.
6640.057 Write a modular program that uses functions or methods. Chapter 2.1 and repeated throughout the course, Magpie

Lab.
6640.058 Write a program that uses conditional structures. Chapter 3.2 and repeated throughout the course, Magpie

Lab.
6640.059 Write a program that uses looping structures. Chapter 3.7 and repeated throughout the course, Magpie

Lab.
6640.060 Write a program that uses counters and accumulators. Chapter 3.5 and repeated throughout the course
6640.061 Identify the purpose of an executable file. Chapter 1.4: Discuss with Interpreters versus Compilers
6640.062 Create an object-oriented program. Chapter 2.0 and repeated throughout the course, Magpie

Lab.
6640.063 Code a program to display graphics. Chapter 1.5, Alice, Greenfoot, Visual Basic
6640.064 Code a program to incorporate multimedia. Chapter 3,9, Alice, Python
6640.065 Code a program to animate objects. Chapter 4.7, Code.org
6640.066 Examine the history of game design and development. Chapter 4 and 6. Discuss once students have completed

writing some of their own games.
6640.067 Analyze the impact of intellectual property law on game design. Chapter 4 and 6. Discuss once students have completed

writing some of their own games.
6640.068 Identify the target markets for game applications. Chapter 4 and 6. Discuss once students have completed

writing some of their own games, Magpie Lab.
6640.069 Identify game genres. Chapter 4 and 6. Discuss once students have completed

writing some of their own games.
6640.070 Examine a variety of game programming platforms. Alice, Scratch, Code.org, Greenfoot, or Visual Basic
6640.071 Create a storyboard. Do as part of 70 above
6640.072 Code a program from the storyboard. Alice, Scratch, Code.org, Greenfoot, or Visual Basic
6640.073 Create an object within the context of a game. Pig, BlackJack
6640.074 Specify behaviors of an object within the context of a game. Pig, BlackJack
6640.075 Develop a game program that uses a scoring method. Pig, BlackJack

35

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407815
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407816
http://www.cteresource.org/verso/courses/6640/programming-tasklist/2136623971
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407817
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407818
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407819
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407820
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814576
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814562
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814559
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814560
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814561
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814563
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814564
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814566
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814567
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814568
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814569
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814570
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814571
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814572
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814573

6640.076 Create a game program with multiple levels. Pig, BlackJack, Magpie Lab.
6640.077 Explain how to locate resources and references to aid program

development.
Chapter 2.8: API for Java

6640.078 Evaluate the validity of sample code obtained from the Internet
and/or other sources.

Tic-Tac_Toe: Pull From Internet and Test, Magpie Lab.

6640.079 Develop a Web page, using HTML and/or JavaScript. (Optional) N/A
6640.080 Publish a program link on a Web page. (Optional) N/A
6640.081 Describe the process and requirements for obtaining industry

certifications related to the Programming course. (Optional)
N/A

6640.082 Identify testing skills/strategies for a certification examination.
(Optional)

N/A

6640.083 Demonstrate ability to successfully complete selected practice
examinations (e.g., practice questions similar to those on certification
exams). (Optional)

N/A

6640.084 Successfully complete an industry certification examination
representative of skills learned in this course (e.g., MCP, IC3, NOCTI).
(Optional)

N/A

6640.085 Identify careers in the information technology industry. Chapter 1.2: Discuss as part of jobs in the Computer
Industry, Magpie Lab.

6640.086 Describe ways that computer programs can be used in business and
industry.

Chapter 1.2: Discuss as part of jobs in the Computer
Industry, Magpie Lab.

6640.087 Create or update a résumé. Chapter 1.2: Discuss as part of jobs in the Computer Industry
6640.088 Investigate information technology educational and job opportunities. Chapter 1.2: Discuss as part of jobs in the Computer Industry
6640.089 Assemble a professional portfolio. This is done automatically by Eclipse. Students will save all

their projects on a regular basis throughout the year
culminating with the final portfolio at the end of the year

6640.090 Describe basic employment activities. Chapter 1.2: Discuss as part of jobs in the Computer Industry
6640.091 Deliver an oral presentation of the professional portfolio. (Optional) N/A
6640.092 Identify potential education and employment barriers for

nontraditional groups and ways to overcome those barriers.
Chapter 1.2: Discuss as part of jobs in the Computer Industry

The Student Competency Record is given on the next few pages for reference. The most recent version should be downloaded annually by the
teacher from: http://www.cteresource.org/verso/courses/6640/programming-scrs

36

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814574
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407837
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407837
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407838
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407838
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407839
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1831722771
http://www.cteresource.org/verso/courses/6640/programming-tasklist/420508574
http://www.cteresource.org/verso/courses/6640/programming-tasklist/420508574
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1751058745
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1751058746
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1751058746
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1751058746
http://www.cteresource.org/verso/courses/6640/programming-tasklist/332620893
http://www.cteresource.org/verso/courses/6640/programming-tasklist/332620893
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407856
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407857
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407857
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407858
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407860
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407861
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407859
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407862
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407863
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407863

2015/2016 Student Competency Record

Programming
6640 - 36 weeks

Student

School Year

School

Teacher Signature

Traditional letter or numerical grades do not provide adequate documentation of student achievement in competency-based
education; therefore, the Virginia Standards for CBE require a recording system to provide information about competencies
achieved to employer, student-employee, and teacher. The Student Competency Record provides a means for keeping track of
student progress. Ratings are assigned by the teacher for classroom competency achievement and by the teacher-coordinator in
conjunction with the training sponsor when competence is evaluated on the job.

Tasks/competencies designated "Required" are considered essential statewide and are required of all students. In some courses, all
tasks/competencies have been identified as required. Tasks/competencies marked "Optional" are considered optional; they and/or
additional tasks/competencies may be taught at the discretion of the school division. Tasks/competencies marked with an asterisk
(*) are considered sensitive, and teachers should obtain approval by the school division before teaching them.

Note: Students with an Individualized Education Program (IEP) or an Individualized Student Alternative Education Plan
(ISAEP) will be rated, using the following scale, only on the competencies identified in their IEP or ISAEP.

Students will be expected to achieve a satisfactory rating (one of the three highest marks) on the Student Competency Record
(SCR) rating scale on at least 80% of the required (essential) competencies in a CTE course.

...RATING SCALE...
1 - Can teach others
2 - Can perform without supervision
3 - Can perform with limited supervision
4 - Can perform with supervision
5 - Cannot perform

6640
36 weeks

Programming
TASKS/COMPETENCIES Date Rating

 Demonstrating Workplace Readiness Skills: Personal Qualities and People Skills
Required 1 Demonstrate positive work ethic.
Required 2 Demonstrate integrity.
Required 3 Demonstrate teamwork skills.
Required 4 Demonstrate self-representation skills.
Required 5 Demonstrate diversity awareness.
Required 6 Demonstrate conflict-resolution skills.
Required 7 Demonstrate creativity and resourcefulness.

 Demonstrating Workplace Readiness Skills: Professional Knowledge and Skills

37

6640

36 weeks
Programming

TASKS/COMPETENCIES Date Rating

Required 8 Demonstrate effective speaking and listening skills.
Required 9 Demonstrate effective reading and writing skills.
Required 10 Demonstrate critical-thinking and problem-solving skills.
Required 11 Demonstrate healthy behaviors and safety skills.

Required 12 Demonstrate an understanding of workplace organizations, systems,
and climates.

Required 13 Demonstrate lifelong-learning skills.
Required 14 Demonstrate job-acquisition and advancement skills.
Required 15 Demonstrate time-, task-, and resource-management skills.
Required 16 Demonstrate job-specific mathematics skills.
Required 17 Demonstrate customer-service skills.

 Demonstrating Workplace Readiness Skills: Technology Knowledge and Skills

Required 18 Demonstrate proficiency with technologies common to a specific
occupation.

Required 19 Demonstrate information technology skills.
Required 20 Demonstrate an understanding of Internet use and security issues.
Required 21 Demonstrate telecommunications skills.

 Examining All Aspects of an Industry
Required 22 Examine aspects of planning within an industry/organization.
Required 23 Examine aspects of management within an industry/organization.

Required 24 Examine aspects of financial responsibility within an
industry/organization.

Required 25 Examine technical and production skills required of workers within an
industry/organization.

Required 26 Examine principles of technology that underlie an
industry/organization.

Required 27 Examine labor issues related to an industry/organization.
Required 28 Examine community issues related to an industry/organization.

Required 29 Examine health, safety, and environmental issues related to an
industry/organization.

 Addressing Elements of Student Life
Required 30 Identify the purposes and goals of the student organization.

Required 31
Explain the benefits and responsibilities of membership in the student
organization as a student and in professional/civic organizations as an

adult.

Required 32 Demonstrate leadership skills through participation in student
organization activities, such as meetings, programs, and projects.

Required 33 Identify Internet safety issues and procedures for complying with
acceptable use standards.

38

6640

36 weeks
Programming

TASKS/COMPETENCIES Date Rating

 Exploring Programming Concepts

Required 34 Describe the development of computers and current industry trends in
the programming field.

Required 35 Describe the development of programming languages and
applications.

Required 36 Describe the functions of computer hardware, computer software, and
computer system components.

Required 37 Compare computer operating systems.
Required 38 Identify the software development life cycle (SDLC).

Required 39 Describe the development environment for a specific programming
language.

 Using Algorithmic Procedures
Required 40 Analyze the problem statement.
Required 41 Create possible solutions to the problem.
Required 42 Determine the best solution to the problem.

 Implementing Programming Procedures

Required 43 Design a program, using an algorithm, pseudocode, a flowchart,
and/or a decision table.

Required 44 Code the program, using a programming language.
Required 45 Test the program with sample data.
Required 46 Debug the program.
Required 47 Document the program.
Required 48 Describe maintenance procedures.

 Mastering Programming Fundamentals
Required 49 Identify syntax errors of a given programming language.
Required 50 Identify industry standards for a graphical user interface (GUI).
Required 51 Create a graphical user interface that adheres to industry standards.
Required 52 Code a program that will produce formatted output.

Required 53 Code an application that uses mathematical operations and built-in
functions.

Required 54 Write a program that uses variables and constants.
Required 55 Write a program that accepts user input.
Required 56 Write a program that uses arrays.
Required 57 Write a modular program that uses functions or methods.
Required 58 Write a program that uses conditional structures.
Required 59 Write a program that uses looping structures.
Required 60 Write a program that uses counters and accumulators.
Required 61 Identify the purpose of an executable file.

39

6640

36 weeks
Programming

TASKS/COMPETENCIES Date Rating

 Developing Interactive Multimedia Applications
Required 62 Create an object-oriented program.
Required 63 Code a program to display graphics.
Required 64 Code a program to incorporate multimedia.
Required 65 Code a program to animate objects.
Required 66 Examine the history of game design and development.
Required 67 Analyze the impact of intellectual property law on game design.
Required 68 Identify the target markets for game applications.
Required 69 Identify game genres.
Required 70 Examine a variety of game programming platforms.
Required 71 Create a storyboard.
Required 72 Code a program from the storyboard.
Required 73 Create an object within the context of a game.
Required 74 Specify behaviors of an object within the context of a game.
Required 75 Develop a game program that uses a scoring method.
Required 76 Create a game program with multiple levels.

 Using Web Technology

Required 77 Explain how to locate resources and references to aid program
development.

Required 78 Evaluate the validity of sample code obtained from the Internet and/or
other sources.

Optional 79 Develop a Web page, using HTML and/or JavaScript.
Optional 80 Publish a program link on a Web page.

 Preparing for Industry Certification

Optional 81 Describe the process and requirements for obtaining industry
certifications related to the Programming course.

Optional 82 Identify testing skills/strategies for a certification examination.

Optional 83
Demonstrate ability to successfully complete selected practice

examinations (e.g., practice questions similar to those on certification
exams).

Optional 84
Successfully complete an industry certification examination

representative of skills learned in this course (e.g., MCP, IC3,
NOCTI).

 Developing Employability Skills
Required 85 Identify careers in the information technology industry.

Required 86 Describe ways that computer programs can be used in business and
industry.

Required 87 Create or update a résumé.

40

6640

36 weeks
Programming

TASKS/COMPETENCIES Date Rating

Required 88 Investigate information technology educational and job opportunities.
Required 89 Assemble a professional portfolio.
Required 90 Describe basic employment activities.
Optional 91 Deliver an oral presentation of the professional portfolio.

Required 92 Identify potential education and employment barriers for
nontraditional groups and ways to overcome those barriers.

 Locally Developed Tasks/Competencies

41

SOL Correlation by Task

Task/Competency
Number Task/Competency Statement Standards

6640.001 Demonstrate positive work ethic.

History and Social Science
CE.4, GOVT.17

6640.002 Demonstrate integrity.

History and Social Science
CE.3, CE.4, GOVT.17

6640.003 Demonstrate teamwork skills.

History and Social Science
CE.4, GOVT.17

6640.004 Demonstrate self-representation skills.

History and Social Science
CE.4, GOVT.17

6640.005 Demonstrate diversity awareness.

History and Social Science
CE.3, CE.4, GOVT.3, GOVT.11,

GOVT.17, VUS.14

6640.006 Demonstrate conflict-resolution skills.

History and Social Science
CE.4, GOVT.17

6640.007 Demonstrate creativity and
resourcefulness.

History and Social Science
CE.4, GOVT.17

6640.008 Demonstrate effective speaking and
listening skills.

English 6.2, 7.1, 7.2, 8.2, 9.1,
10.1, 11.1, 12.1

6640.009 Demonstrate effective reading and
writing skills.

English 6.6, 6.7, 6.8, 7.6, 7.7,
7.8, 8.6, 8.7, 8.8, 9.5, 9.6, 9.7,

10.5, 10.6, 10.7, 11.5, 11.6,
11.7, 12.5, 12.6, 12.7

6640.010 Demonstrate critical-thinking and
problem-solving skills.

History and Social Science
CE.1, CE.4

6640.011 Demonstrate healthy behaviors and
safety skills.

History and Social Science
GOVT.16, GOVT.17, VUS.15

6640.012
Demonstrate an understanding of

workplace organizations, systems, and
climates.

History and Social Science
CE.12, GOVT.15, VUS.15

6640.013 Demonstrate lifelong-learning skills.

History and Social Science
CE.3, CE.14

6640.014 Demonstrate job-acquisition and
advancement skills.

History and Social Science
CE.12, CE.14

6640.015 Demonstrate time-, task-, and resource-
management skills.

History and Social Science
CE.4, CE.11, GOVT.17

6640.018
Demonstrate proficiency with

technologies common to a specific
occupation.

History and Social Science
CE.14, VUS.15

6640.019 Demonstrate information technology
skills.

History and Social Science
CE.14, VUS.15

6640.020 Demonstrate an understanding of
Internet use and security issues.

History and Social Science
CE.14, VUS.15

6640.021 Demonstrate telecommunications skills.

History and Social Science
CE.14, VUS.15

42

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1325378427
http://www.cteresource.org/verso/courses/6640/programming-tasklist/383229022
http://www.cteresource.org/verso/courses/6640/programming-tasklist/383229023
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1325378428
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030883
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030884
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030885
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030885
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030888
http://www.cteresource.org/verso/courses/6640/programming-tasklist/908030888
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388185
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388185
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388186
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388186
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388187
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388187
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388188
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388188
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388188
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388189
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388190
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388190
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388191
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388191
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388196
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388196
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388196
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388197
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388197
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388198
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1402388198
http://www.cteresource.org/verso/courses/6640/programming-tasklist/350031302

Task/Competency

Number Task/Competency Statement Standards

6640.022 Examine aspects of planning within an
industry/organization.

English 9.5, 10.5, 11.5, 12.5
Mathematics PS.8

6640.023 Examine aspects of management within
an industry/organization.

English 9.5, 10.5, 11.5, 12.5
History and Social Science

GOVT.18

6640.024 Examine aspects of financial responsibility
within an industry/organization.

English 9.5, 10.5, 11.5, 12.5
Mathematics MA.14

6640.025
Examine technical and production skills

required of workers within an
industry/organization.

English 9.5, 10.5, 11.5, 12.5

6640.026 Examine principles of technology that
underlie an industry/organization.

English 9.5, 10.5, 11.5, 12.5

6640.027 Examine labor issues related to an
industry/organization.

English 9.5, 10.5, 11.5, 12.5
History and Social Science

GOVT.16, GOVT.17

6640.028 Examine community issues related to an
industry/organization.

English 9.5, 10.5, 11.5, 12.5
History and Social Science

GOVT.16, GOVT.18

6640.029
Examine health, safety, and

environmental issues related to an
industry/organization.

English 9.5, 10.5, 11.5, 12.5
History and Social Science

GOVT.9, GOVT.16

6640.034
Describe the development of computers

and current industry trends in the
programming field.

English 10.5, 11.5, 12.5
History and Social Science

VUS.15, WHII.16

6640.035 Describe the development of
programming languages and applications.

English 10.5, 11.5, 12.5
History and Social Science

VUS.15

6640.036
Describe the functions of computer
hardware, computer software, and

computer system components.

English 10.5, 11.5, 12.5

6640.038 Identify the software development life
cycle (SDLC).

History and Social Science
GOVT.1

6640.040 Analyze the problem statement.

English 10.5, 11.5, 12.5
Mathematics COM.1, COM.4

6640.041 Create possible solutions to the problem.

History and Social Science
GOVT.1

Mathematics COM.1, COM.3,
COM.4

6640.042 Determine the best solution to the
problem.

History and Social Science
GOVT.1

Mathematics COM.1, COM.4

6640.043
Design a program, using an algorithm,

pseudocode, a flowchart, and/or a
decision table.

Mathematics COM.1, COM.2,
COM.4

43

http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916591
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916591
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916592
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916592
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916593
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916593
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916594
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916594
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916594
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916595
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916595
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916596
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916596
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916597
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916597
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916598
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916598
http://www.cteresource.org/verso/courses/6640/programming-tasklist/965916598
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407789
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407789
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407789
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407790
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407790
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407791
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407791
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407791
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407793
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407793
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407797
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407799
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407798
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407798
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407803
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407803
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407803

Task/Competency

Number Task/Competency Statement Standards

6640.044 Code the program, using a programming
language.

Mathematics COM.1, COM.2,
COM.4

6640.045 Test the program with sample data. Mathematics COM.2, COM.18

6640.046 Debug the program.

Mathematics COM.2,
COM.18, COM.19, COM.20

6640.047 Document the program. Mathematics COM.2, COM.20
6640.048 Describe maintenance procedures. English 10.5, 11.5, 12.5

6640.049 Identify syntax errors of a given
programming language.

Mathematics COM.2,
COM.18, COM.19, COM.20

6640.050 Identify industry standards for a
graphical user interface (GUI).

English 10.5, 11.5, 12.5

6640.051 Create a graphical user interface that
adheres to industry standards.

Mathematics COM.6

6640.052 Code a program that will produce
formatted output.

Mathematics COM.7

6640.053
Code an application that uses

mathematical operations and built-in
functions.

Mathematics COM.1,
COM.11, COM.12, COM.13

6640.054 Write a program that uses variables and
constants.

Mathematics COM.9,
COM.10, COM.11

6640.055 Write a program that accepts user input. Mathematics COM.6

6640.056 Write a program that uses arrays.

Mathematics COM.15,
COM.16

6640.057 Write a modular program that uses
functions or methods.

Mathematics COM.5

6640.058 Write a program that uses conditional
structures.

Mathematics COM.3,
COM.13, COM.14, COM.15,

COM.16

6640.059 Write a program that uses looping
structures.

Mathematics COM.3,
COM.14, COM.15

6640.060 Write a program that uses counters and
accumulators.

Mathematics COM.3, COM.15

6640.062 Create an object-oriented program.

Mathematics COM.3, COM.5,
COM.13, COM.16, COM.20

6640.063 Code a program to display graphics. Mathematics COM.7, COM.8

6640.064 Code a program to incorporate
multimedia.

Mathematics COM.6, COM.7,
COM.8

6640.065 Code a program to animate objects.

Mathematics COM.6, COM.8,
COM.15, COM.16

6640.066 Examine the history of game design and
development.

English 10.5, 11.5, 12.5

6640.067 Analyze the impact of intellectual
property law on game design.

English 10.5, 11.5, 12.5

6640.071 Create a storyboard. English 10.5, 11.5, 12.5

44

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407804
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407804
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407805
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407806
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407807
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407808
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407811
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407811
http://www.cteresource.org/verso/courses/6640/programming-tasklist/549077915
http://www.cteresource.org/verso/courses/6640/programming-tasklist/549077915
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407812
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407812
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407813
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407813
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407814
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407814
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407814
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407815
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407815
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407816
http://www.cteresource.org/verso/courses/6640/programming-tasklist/2136623971
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407817
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407817
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407818
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407818
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407819
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407819
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407820
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407820
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814562
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814559
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814560
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814560
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814561
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814563
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814563
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814564
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814564
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814569

Task/Competency

Number Task/Competency Statement Standards

6640.072 Code a program from the storyboard. Mathematics COM.3, COM.4

6640.073 Create an object within the context of a
game.

Mathematics COM.8

6640.074 Specify behaviors of an object within the
context of a game.

Mathematics COM.5, COM.16

6640.075 Develop a game program that uses a
scoring method.

Mathematics COM.3, COM.15

6640.076 Create a game program with multiple
levels.

Mathematics COM.13,
COM.20

6640.078
Evaluate the validity of sample code

obtained from the Internet and/or other
sources.

Mathematics COM.2, COM.18

6640.079 Develop a Web page, using HTML and/or
JavaScript.

Mathematics COM.19

6640.085 Identify careers in the information
technology industry.

English 10.5, 11.5, 12.5

6640.086 Describe ways that computer programs
can be used in business and industry.

English 10.5, 11.5, 12.5
History and Social Science

VUS.15, WHII.16

6640.087 Create or update a résumé.

English 10.6, 10.7, 11.6, 11.7,
12.6, 12.7

6640.088 Investigate information technology
educational and job opportunities.

English 10.5, 10.8, 11.5, 11.8,
12.5, 12.8

6640.091 Deliver an oral presentation of the
professional portfolio.

English 10.1, 11.1, 12.1

45

http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814570
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814571
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814571
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814572
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814572
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814573
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814573
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814574
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1649814574
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407838
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407838
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407838
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407839
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407839
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407856
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407856
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407857
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407857
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407858
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407860
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407860
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407862
http://www.cteresource.org/verso/courses/6640/programming-tasklist/1407862

	Introduction/General Comments
	Textbook/Resources Overview
	Sequence of Instruction and Pacing Suggestions
	Sequence of Instruction and Pacing Suggestions
	Mapping for Instruction - First Nine Weeks
	Mapping for Instruction - Second Nine Weeks

	Mapping for Instruction - Third Nine Weeks
	Mapping for Instruction - Fourth Nine Weeks

	Supplemental Resources
	CTE Correlation
	2015/2016 Student Competency Record
	SOL Correlation by Task

