

Algebra 1 Curriculum

Board Approved: March 21, 2024

Course Information

Course Description: Algebra 1 is the foundation for all future high school math courses. This course fosters students' mathematical proficiency by encouraging problem-solving, reasoning, and communication skills, as well as promoting mathematical connections and applications to real-world situations. This course develops an understanding of algebraic concepts including but not limited to: linear, exponential, and quadratic functions, systems of equations and inequalities, and data and statistics.	 Transfer Goals: Problem-solving skills: Learn to understand and solve problems effectively. Logical and numerical thinking: Apply reasoning and math skills to solve different situations. Constructing arguments and critiquing: Build strong arguments and evaluate others' reasoning. Using math in real-life situations: Apply mathematical concepts to solve practical problems. Strategic thinking and attention to detail: Use the right tools and techniques with precision to solve problems efficiently.
Curriculum Standards: Algebra 1 Missouri	Learning Standards

Curriculum Resource(s): Reveal Algebra 1 © 2020 - McGraw Hill

Unit 1: Number & Quantity

Unit Description: Extend and use properties of rat	ional exponents. Use units to solve problems.
 Enduring Understandings: Rational exponents share the same properties as integer exponents. Conversion between rational exponent form and radical form yields equivalent expressions. Providing appropriate units to a number is essential to have an accurate answer. Conversation rates are needed when converting units. When using numbers in real-world contexts, it is important to be precise and use appropriate units. 	 Essential Questions: How do the properties compare of a rational exponent to an integer exponent? What are different ways in which you can write an equivalent version of a given expression involving rational exponents? Why is it important to have units when solving a problem? What do you need to know when converting units? How do numbers relate to real-world contexts and applications?

Unit 1 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.NQ.A.1</u>	I can explain the properties of exponents, including rational exponents.
<u>A1.NQ.A.2</u>	 I can rewrite expressions with rational exponents as equivalent radical expressions. I can rewrite radical expressions as equivalent expressions with rational exponents.
<u>A1.NQ.B.3</u>	 I can identify, label, and use appropriate units of measure within a problem. I can convert units and rates. I can use units within problems. I can choose and interpret the scale and origin in graphs and data displays.
<u>A1.NQ.B.4</u>	 I can define and use appropriate quantities for representing a given context or problem.
<u>A1.NQ.B.5</u>	I can choose the right amount of detail based on what I am measuring.

Unit 2: Seeing Structure in Expressions

Unit Description: Interpret and use structure.	
 Enduring Understandings: Terms of a formula or expression have meaning based on the context of the problem. Polynomial expressions can be written in many forms. (vertex, standard, factored) Equivalent forms of polynomial expressions provide information to support the context of the situation. Factored form provides the factors of the quadratic function and can be solved using the zero product property. A quadratic function in vertex form provides the maximum or minimum value of the function. 	 Essential Questions: How do you interpret the contextual meaning of individual terms of a formula or expression? What are the different forms to write a polynomial expression? How can you analyze polynomial expressions to be able to rewrite in equivalent forms? How does factored form provide the zeros of a quadratic function? Why is completing the square of a quadratic function important?

Unit 2 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.SSE.A.1</u>	 I can determine the real-world context of the variables in an expression (For example, the coefficient for the number of dimes is 0.10 because the value of a dime is 10 cents.) I can interpret the real-world context of each individual term or factor of an expression. I can interpret the meaning of individual terms or factors from a given problem that utilizes formulas or expressions in terms of the context of the situation. (For example, I can compare how doubling the principal affects the final amount when using the compound interest formula.)
<u>A1.SSE.A.2</u>	 I can factor the GCF out of a polynomial expression. I can factor a trinomial with a leading coefficient of 1. I can factor a trinomial with a leading coefficient that is not 1. I can factor special cases, such as a difference of two perfect squares and a perfect square trinomial. I can write a polynomial expression in equivalent forms. I can find the product of two polynomials.

<u>A1.SSE.A.3</u>	 I can find the zeros of a quadratic function by rewriting it in factored form.
	• I can complete the square to find the maximum or minimum value.

*Priority standards indicated in **bold** Algebra 1 - Page 4 BOE Approved: 3/21/2024 Patrons with questions about the course should contact <u>curriculum@fhsdschools.org</u>

Unit 3: Creating Equations

Unit Description: Create equations that describe	inear, quadratic, and exponential relationships.
 Enduring Understandings: A linear equation has a slope (rate of change), y-intercept (starting value), and ordered pairs. A quadratic equation has a vertex, y-intercept, x-intercept/s, and ordered pairs, depending on what form it is in. An exponential equation has a multiplier, initial value, and ordered pairs. Writing a one-variable equation means the input or output is provided. Writing a two-variable equation means neither is provided. To graph equations, they will need important characteristics (slope, x-intercepts, y-intercepts, vertex, points, etc.) of the graph. Students can also use graphing technology. The equation or inequality will provide solutions to a problem but sometimes the solutions do not make sense based on the context of the problem. To be able to solve for a variable in an equation they will use inverse operations. 	 Essential Questions: What important information is needed when creating a linear equation? What important information is needed when creating a quadratic equation? What important information is needed when creating an exponential equation? What is the difference between a one-variable equation and a two-variable equation? How can I graph linear, quadratic, and exponential equations? How can the solutions of equations and inequalities be interpreted in real-world contexts? Why is it important to be able to solve an equation for a certain variable?

Unit 3 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.CED.A.1</u>	 I can create linear equations in one variable and use them to model and solve problems given a scenario. I can create exponential equations in one variable and use them to model and solve problems given a scenario. I can model exponential growth using a one variable model. I can model exponential decay using a one-variable model I can create quadratic equations in one variable and use them to model and solve problems given a scenario.

	 I can create linear inequalities in one variable and use them to model and solve problems given a scenario.
<u>A1.CED.A.2</u>	 I can create a linear equation with two variables given a scenario, graph, and table. I can create a quadratic equation in standard form with two variables given a vertex. I can create an exponential equation with two variables given a scenario, graph, and table. I can graph a linear equation on the coordinate plane and create the labels and scales. I can graph a quadratic equation on the coordinate plane and create the labels and scales. I can graph an exponential equation on the coordinate plane and create the labels and scales. I can graph an exponential equation on the coordinate plane and create the labels and scales.
<u>A1.CED.A.3</u>	 I can represent constraints with an equation or inequality within a modeling context. I can represent constraints with a system of equations and/or inequalities within a modeling context. I can interpret data points to determine if they are a solution or non-solution within a modeling context.
A1.CED.A.4	 I can solve literal equations and formulas for a specified variable that highlights a quantity of interest.

Unit 4: Reasoning with Equations and Inequalities

Timeframe: see current scope and sequence

Unit Description: Understand solving equations as a process, and solve equations and inequalities in one variable. Solve systems of equations. Represent and solve linear and exponential equations and inequalities graphically.

 Enduring Understandings: Solving equations and inequalities can be done by using inverse properties. The steps to the solving process produce equivalent representations of the equations or inequalities. Completing the square on a quadratic equation creates an equivalent quadratic equation in vertex form. There are multiple ways to solve a quadratic equation including: inspection, square root property, completing the square, quadratic formula, graphing, and factoring. Mathematical fluency is about using an appropriate strategy and knowing multiple processes. Systems of equations can be solved algebraically or graphically. The solution to an equation with two variables is all of its solutions on the coordinate plane. The solution to a system of linear inequalities is where the graphs share common order pairs. Equations and inequalities can be used to solve real-world problems and support decision-making processes. 	 Essential Questions: What techniques can be utilized to solve equations and inequalities? How are the equations related in each step of the solving process? How can you rewrite a quadratic equation in vertex form? What ways are there to solve a quadratic equation? What is the most efficient method to solve a quadratic equation? How can you find the solution to a system of equations? What are the solutions to a two-variable equation? How can you identify the solutions to a system of linear inequalities? How can equations and inequalities be used to model mathematical relationships? How can equations and inequalities be used to solve real-world problems to make informed decisions?

Unit 4 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.REI.A.1</u>	 I can explain how each step taken when solving an equation in one variable creates an equivalent equation that has the same solution(s) as

	 the original. I can explain how each step taken when solving an inequality in one variable creates an equivalent inequality that has the same solution(s) as the original.
<u>A1.REI.A.2</u>	 I can solve a quadratic equation using the appropriate method(s): Completing the Square Factoring Inspection Square Root Property Quadratic Formula
<u>A1.REI.B.3</u>	 I can solve a system of linear equations graphically. I can solve a system of linear equations algebraically. (e.g., substitution, elimination)
<u>A1.REI.B.4</u>	 I can solve a system consisting of a linear equation and a quadratic equation graphically. I can solve a system consisting of a linear equation and a quadratic equation algebraically.
<u>A1.REI.B.5</u>	 I can justify that the technique of linear combination produces an equivalent system of equations.
<u>A1.REI.C.6</u>	 I can explain why an ordered pair is a solution to a linear function. I can explain why an ordered pair is a solution to an exponential function.
A1.REI.C.7	 I can graph the solution to a linear inequality in two variables.
A1.REI.C.8	 I can explain the solution of a system of inequalities in the context of a real-world situation. I can solve a system of linear inequalities by graphing. I can explain if an ordered pair is a solution to a system of linear inequalities

Unit 5: Arithmetic with Polynomials and Rational Expressions

Unit Description: Perform operations on polynom	nials.
 Enduring Understandings: Polynomials can be simplified by using addition, subtraction, or multiplication. The properties of polynomials are essential in making mathematical connections and recognizing equivalent forms. 	 Essential Questions: What operations can be used to simplify polynomials? How can polynomial operations be used to identify equivalent forms?

Unit 5 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.APR.A.1</u>	 I can add polynomials. I can subtract polynomials. I can multiply polynomials.
<u>A1.APR.A.2</u>	I can divide a polynomial by a monomial.

Unit 6: Interpreting Functions

Timeframe: see current scope and sequence

Unit Description: Understand the concept of a function and use function notation. Interpret linear, quadratic and exponential functions in terms of the context. Analyze linear, quadratic and exponential functions using different representations.

 Enduring Understandings: A function is a relation where each element of the domain corresponds to exactly one element of the range. Functions can be represented using <i>f</i>, but also commonly used are <i>g</i> and <i>h</i>. All of the ordered pairs on the graph of a function labeled <i>g</i> are solutions to <i>g(x)</i> such that <i>y</i> = <i>g(x)</i>. Function notation is another way to name a specific type of equation, where the input is <i>x</i>. The key characteristics of a function include: slope, x-intercept, y-intercept, intervals where the function is increasing, decreasing or constant, intervals where the function output is positive, negative or zero, relative maximum or minimum, and end behavior. The average rate of change is the slope between two points on a graph. (linear, exponential quadratic) Graphing a function provides the characteristics of a given function. 	 Essential Questions: What is a function? How can functions be represented and interpreted using different mathematical representations? How can you evaluate a function in function notation? What key characteristics can be included on a linear, exponential, or quadratic function? How can you interpret the characteristics of a function? Why is it important to identify the domain and range of a function? How is the average rate of change related to the graph over a specific interval? How do you find the key characteristics of a function when graphing? What methods can be used to compare functions?

Unit 6 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.IF.A.1</u>	• I can represent a function using function notation $f(x)$.

*Priority standards indicated in **bold** Algebra 1 - Page 10 BOE Approved: 3/21/2024 Patrons with questions about the course should contact <u>curriculum@fhsdschools.org</u>

	 I understand that a function is a relation in which every input has exactly one output.
<u>A1.IF.A.2</u>	 I can evaluate functions in function notation. I can interpret statements that use function notation in terms of a context.
<u>A1.IF.B.3</u>	 I can interpret key features of a linear function using tables, graphs, and verbal descriptions. Slope/Rate of Change x-intercept & y-intercept I can interpret key features of an exponential function using tables, graphs, and verbal descriptions.
<u>A1.IF.B.4</u>	 I can relate the domain and range of a function to its graph. I can describe how the domain and range within the context of a situation affect the characteristics of the graph of the function.
<u>A1.IF.B.5</u>	 I can determine the average rate of change of a function over a specified interval. I can interpret the meaning of the average rate of change over a specified interval in a given context.
<u>A1.IF.B.6</u>	I can interpret the parameters of a linear and exponential function in terms of the context.
<u>A1.IF.C.7</u>	 I can graph, identify, and interpret key features of a linear equation. Slope/Rate of Change x-intercept & y-intercept I can graph, identify, and interpret key features of an exponential equation. x-intercepts & y-intercepts increasing/decreasing Multiplier I can graph, identify, and interpret key features of a quadratic equation. x-intercepts & y-intercepts increasing/decreasing Multiplier I can graph, identify, and interpret key features of a quadratic equation. x-intercepts & y-intercepts increasing/decreasing intervals Vertex

	 Axis of symmetry Maximum/minimum
<u>A1.IF.C.8</u>	 I can translate between different but equivalent forms of a function to reveal and explain different properties of the function and interpret these in terms of a context.
<u>A1.IF.C.9</u>	 I can compare two functions given a table, graph, equation, or verbal description.

Unit 7: Building Functions Timeframe: see current scope and sequence

Unit Description: Build new functions from existin	ng functions (linear, quadratic and exponential).
 Enduring Understandings: The transformations of a function include vertical and horizontal translations, vertical dilations (stretch, compress), and reflections. The transformed function can be rewritten by applying the transformations to the original function. Mathematical reasoning and critical thinking are essential in constructing and analyzing translated functions. 	 Essential Questions: How can you analyze the effect of translations and scale changes on functions? How can you identify the new function given the transformations to the original function? How do mathematical reasoning and critical thinking play a role in constructing and analyzing functions?

Unit 7 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.BF.A.1</u>	 I can analyze the effect of translations and scale changes on functions. I can create a quadratic equation in vertex form from a verbal description of translations from the parent function. I can state how a quadratic given in vertex form is different from the parent function. I can look at the graph of a parabola and use its differences from the parent function to write an equation in vertex form.

Unit 8: Linear, Quadratic, and Exponential Models

Timeframe: see current scope and sequence

Unit Description: Construct and compare linear, quadratic and exponential models and solve problems. Use arithmetic and geometric sequences.

Enduring Understandings:

Students will understand that:

- Key features of linear, quadratic, and exponential functions provide valuable insights into their behavior and applications.
- Different problem-solving strategies and techniques can be used to analyze and solve problems involving linear, quadratic, and exponential models.
- Connections between linear, quadratic, and exponential models and their real-world applications can be made.

Essential Questions:

- How can we model and analyze real-world situations using linear, quadratic, and exponential functions?
- How can we analyze and solve problems involving linear, quadratic, and exponential functions?
- How can we make connections between linear, quadratic, and exponential models and their real-world applications?

Unit 8 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.LQE.A.1</u>	 I can show that the slope of a linear function is constant between any two points. I can recognize situations in which one quantity changes at a constant rate per unit interval relative to another. I can recognize exponential situations in which a quantity grows or decays by a constant percent rate per unit interval. I can show that exponential functions change by equal factors over equal intervals.
<u>A1.LQE.A.2</u>	 I can describe using tables and graphs that a quantity increasing exponentially eventually exceeds a quantity increasing linearly or quadratically.
<u>A1.LQE.A.3</u>	 I can construct a linear equation given a graph, verbal description and a table. I can construct an exponential equation given a graph, verbal description, and a table. I can construct a quadratic equation with a leading coefficient of 1 given rational x-intercepts given a graph, verbal description, and a table.

<u>A1.LQE.B.4</u>	 I can write an arithmetic sequence in recursive and explicit form given graphs, verbal descriptions, or tables. I can write a geometric sequence in recursive and explicit form given graphs, verbal descriptions, or tables. I can translate between explicit and recursive forms of arithmetic and geometric sequences.
<u>A1.LQE.B.5</u>	 I can write arithmetic sequences in recursive and explicit forms given graphs, verbal descriptions, or tables. I can connect arithmetic sequences to linear functions. I can model situations with arithmetic sequences. I can write geometric sequences in recursive and explicit forms given graphs, verbal descriptions, or tables. I can connect geometric sequences to exponential functions. I can model situations with geometric sequences.
<u>A1.LQE.B.6</u>	 I can find the term of a general sequence given an explicit or recursive formula.

Unit 9: Data and Statistical Analysis

Unit Description: Summarize, represent, and inte	rpret data.
 Enduring Understandings: Students will understand that: Data can be collected, organized, and analyzed to find patterns and make informed conclusions. Statistical measures and techniques can be used to summarize and interpret data. Analyzing statistics allows us to draw conclusions and make generalizations based on data. 	 Essential Questions: How can data be collected, organized, and analyzed to reveal patterns and trends? What statistical measures and techniques can be used to summarize and interpret data? How does analyzing statistics allow us to draw conclusions and make generalizations based on data?

Unit 9 Standards	
STANDARD CODE	STUDENTS WILL KNOW, BE ABLE TO, AND UNDERSTAND:
<u>A1.DS.A.1</u>	 I can analyze and interpret graphical displays of data (including dot plot, histogram, and box and whisker plot). I can determine the shape of data by looking at a dot plot, histogram, and box plot. I can describe how an outlier changes or does not change the measures of the center. I can determine the best measure of center based on having or not having outliers in a data set.
<u>A1.DS.A.2</u>	 I can use statistics appropriate to the shape of the data distribution to compare the center (median, mean, mode) of two or more different data sets. I can use statistics appropriate to the shape of the data distribution to compare spread (interquartile range) of two or more different data sets. I can calculate and use statistics appropriate to the shape of the data distribution to distribution to compare spread (standard deviation) of two or more different data sets.
<u>A1.DS.A.3</u>	 I can interpret differences in shape, center and spread in the context of the data sets, accounting for possible effects of outliers.
<u>A1.DS.A.4</u>	 I can interpret relative frequencies in the context of the data. I can recognize possible associations and trends in the data.

<u>A1.DS.A.5</u>	 I can construct a scatter plot of bivariate quantitative data and determine the type of function that models the relationship. I can construct a linear function to model the bivariate data on a scatter plot that minimizes residuals (distance from the mean) using calculation and/or technology. I can construct a scatter plot of bivariate quantitative data and determine the type of function that models the relationship. I can construct an exponential function to model the bivariate data on a scatter plot that minimizes residuals using calculation and/or technology.
<u>A1.DS.A.6</u>	 I can interpret the slope (rate of change) and y-intercept (constant term) of a linear model in the context of the data.
<u>A1.DS.A.7</u>	 I can use technology to determine the correlation coefficient of a data set with a linear association. I can describe the strengths and weaknesses of a correlation coefficient of a data set with a linear association.
<u>A1.DS.A.8</u>	I can distinguish between correlation and causation.