Livonia Schools Franklin High School Electrical Gear Replacement
15125 Farmington Rd. Livonia, MI 48154

MEP TECHNICAL SPECIFICATIONS
TABLE OF CONTENTS

DIVISION 26 - ELECTRICAL

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 0005</td>
<td>BASIC ELECTRICAL REQUIREMENTS</td>
</tr>
<tr>
<td>26 0505</td>
<td>SELECTIVE DEMOLITION FOR ELECTRICAL</td>
</tr>
<tr>
<td>26 0519</td>
<td>VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
</tr>
<tr>
<td>26 0526</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0529</td>
<td>HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0533.13</td>
<td>CONDUIT FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0553</td>
<td>IDENTIFICATION FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 0573</td>
<td>POWER SYSTEM STUDIES</td>
</tr>
<tr>
<td>26 2413</td>
<td>SWITCHBOARDS</td>
</tr>
<tr>
<td>26 2813</td>
<td>FUSES</td>
</tr>
<tr>
<td>26 2816.16</td>
<td>ENCLOSED SWITCHES</td>
</tr>
</tbody>
</table>
SECTION 26 0005
BASIC ELECTRICAL REQUIREMENTS

PART 1 GENERAL

1.01 RELATED DOCUMENTS
A. This section applies to all sections of Division 26 and Division 28.
B. Drawings and general provisions of the contract, including Division 00 and Division 01 specification sections, apply to work of this section.
C. Provide all items, articles, materials, operations or methods listed, mentioned or scheduled on drawings and/or herein, including all labor, materials, equipment and incidentals necessary and required for their completion.
D. The items in this section are supplementary to the requirements set forth in other portions of the specifications as indicated under Item "A" above.

1.02 DRAWINGS
A. The drawings show the location and general arrangement of equipment, electrical systems and related items. They shall be followed as closely as elements of the construction will permit.
B. Examine the drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly, providing such fittings, conduit, junction boxes and accessories as may be required to meet such conditions.
C. Deviations from the drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.
D. The architectural and structural drawings take precedence in all matters pertaining to the building structure, mechanical drawings in all matters pertaining to mechanical trades and electrical drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.

1.03 INSPECTION OF SITE
A. Visit the site, examine and verify the conditions under which the work must be conducted before submitting proposal.
B. The submitting of a proposal implies that the contractor has visited the site and understands the conditions under which the work must be conducted.

1.04 TEMPORARY FACILITIES
A. Provide and remove upon completion of the project, in accordance with the general conditions, a complete temporary electrical and telephone service during construction.

1.05 ALTERNATES
A. Refer to Division 01 - General Requirements for procedures.

1.06 GUARANTEE
A. Contractor guarantees that the installation is free from defects and agrees to replace or repair, any part of this installation which becomes defective within a period of one year following final acceptance, unless noted otherwise, provided that such failure is due to defects in the equipment, material or installation or to follow the specifications and drawings. File with the Owner any and all guarantees from the equipment manufacturers.

1.07 CODES, PERMITS AND FEES
A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for electrical work shall be secured and paid for by the contractor. All work shall conform to all applicable codes, rules and regulations. Applicable publications listed in all sections of Division 26 shall be the latest issue, unless otherwise noted.
B. Rules of local utility companies shall be complied with. Check with the utility company supplying service to the installation and determine all devices including, but not limited to, all current and potential transformers, meter boxes, C.T. cabinets and meters which will be required and include the cost of all such items in proposal.

C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed drawings or diagrams which may be required by the governing authorities. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern.

1.08 STANDARDS OF MATERIAL AND WORKMANSHIP:

A. All materials shall be new, unless noted otherwise. The electrical and physical properties of all materials, and the design, performance characteristics, and methods of construction of all items of equipment, shall be in accordance with the latest issue of the various, applicable standard specifications of the following recognized authorities:

1. N.S.I. - American National Standards Institute
2. S.T.M. - American Society for Testing Materials
3. C.E.A. - Insulated Cable Engineers Association
4. E.E.E. - Institute of Electrical and Electronics Engineers
5. E.C. - National Electrical Code (NFPA 70)
6. E.C.A. - National Electrical Contractors Association
7. E.M.A. - National Electrical Manufacturer's Association
8. F.P.A. - National Fire Protection Association
9. L. - Underwriters Laboratories, Inc.

B. Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the Trades involved.

C. All equipment of the same or similar systems shall be by the same manufacturer.

1.09 RECORD DRAWINGS

A. Refer to Division 01 - General Requirements for procedures. All literature shall be furnished in accordance with requirements listed in Division 01.

B. Contractor shall provide the following record drawings as part of the Project closeout document process:

1. Contract Documents, specifications and submittals, indicating "As-Built" conditions and actual products selected for use.
2. Product and Maintenance manuals for all equipment listed within this specification manual and in Contract Documents. Provide with parts lists as applicable.

1.10 SUBMITTALS

A. Refer to Division 01 - General Requirements for procedures.

B. Contractor shall provide submittals where items are referred to by symbolic designation on the drawings. All submittals shall bear the same designation (light fixtures, wiring devices, etc.). Refer to other sections of the electrical specifications for additional requirements.

C. Engineer WILL NOT REVIEW:

1. Submittals not specified.
2. Submittals which do not indicate optional equipment being provided.
3. Submittals not reviewed by Contractor; including Contractor stamp with signature comments.
4. Submittals made after work is delivered to site and/or installed.
5. Submittal resubmissions unless resubmission is required by Architect/Engineer.

1.11 MANUFACTURERS LISTED

A. The listing of specific manufacturers does not imply acceptance of their products that do not meet the specified ratings, features and functions. Manufacturers listed are not relieved from meeting these specifications in their entirety.
B. Products in compliance with the specification and manufactured by others not named will be considered only if pre-approved by the Engineer five (5) days prior to bid date.

1.12 USE OF EQUIPMENT
A. The use of any equipment, or any part thereof for purposes other than testing even with the Owner's consent, shall not be construed to be an acceptance of the work on the part of the Owner, nor be construed to obligate the Owner in any way to accept improper work or defective materials.
B. Do not use Owner's light fixtures for temporary lighting except as allowed and directed by the Owner.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 INSTALLATION OF EQUIPMENT
A. Install all equipment in strict accordance with all directions and recommendations furnished by the manufacturer. Where such directions are in conflict with the drawings and specifications, report such conflicts to the Architect/Engineer for resolution.
B. Equipment location shall be as close as practical to locations shown on the drawings.
C. Working clearances shall not be less than specified in NFPA 70 (National Electric Code).

3.02 COORDINATION
A. Install work to avoid interference with work of other trades including, but not limited to, architectural and mechanical trades. Remove and relocate any work that causes an interference at Contractor's expense. Disputes regarding the cause of an interference will be resolved by the Construction Manager or Architect/Engineer.

3.03 CUTTING, PATCHING AND DAMAGE TO OTHER WORK
A. Refer to Division 01 - General Requirements and Division 02 - Existing Conditions.
B. All cutting, patching and repair work shall be performed by the contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

3.04 EXCAVATION AND BACKFILLING
A. Provide all excavation, trenching, tunneling, dewatering and backfilling required for the electrical work. Coordinate the work with other excavating and backfilling in the same area.
B. Where conduit is installed less than 30" below the surface of pavement, provide concrete encasement, 4" minimum coverage, all around or as shown on the electrical drawings.
C. Backfill all excavations inside building, under drives and parking areas with well-tamped granular material. Backfill all excavations under wall footings with lean mix concrete up to underside of footings and extend concrete within excavation a minimum of four (4) feet each side of footing. Granular backfill shall be placed in layers not more than 8 inches in thickness, 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.
D. Backfill outside building with granular material to a height 12 inches over top of pipe compacted to 95 percent compaction as specified above. Backfill remainder of excavation with unfrozen, excavated material in such a way to prevent settling. Tamp, roll as required.

3.05 EQUIPMENT FOUNDATION AND SUPPORTS
A. Shall be as required or as shown on plans or specified.
B. Provide concrete house keeping bases 4" above finished floor, with leveling channels, where noted, for floor-mounted equipment. Coordinate requirements with Division 03 - Concrete.
C. For equipment suspended from ceilings or walls, furnish and install all inserts, rods, structural steel frames, brackets and platforms required.

3.06 EQUIPMENT CONNECTIONS
A. Make connections to equipment, motors, lighting fixtures, and other items included in the work in accordance with the approved shop drawings and rough-in measurements furnished by the manufacturers of the particular equipment furnished. All additional connections not shown on the drawings, but called out by the equipment manufacturer's shop drawings shall be provided.

3.07 ACCESS DOORS AND PANELS
A. Refer to Division 08 - Openings; Provide access doors in locations as required per N.E.C. Coordinate locations with architectural trades.

3.08 CLEANING
A. Refer to Division 01 - General Requirements; All equipment shall be cleaned as frequently as necessary through the construction process and again prior to project completion.
B. Final cleanup shall include, but not be limited to, washing of fixture lenses or louvers, switchboards, substations, motor control centers, panels, etc. Fixture reflectors and lenses or louvers shall be left with no water marks or cleaning streaks.

3.09 DELIVERY, STORAGE AND PROTECTION OF EQUIPMENT AND MATERIALS
A. Refer to Division 01 - General Requirements; All equipment and materials shall be delivered, stored and secured per manufacturer's recommendations.
B. On-site storage shall be coordinated with Construction Manager and be performed in a manner as to avoid damage, deterioration and loss.

3.10 DRAWINGS AND MEASUREMENTS
A. Electrical drawings are not intended to be scaled for rough-in measurements nor to serve as submittals. Field measurements necessary for ordering materials and fitting the installation to the building construction and arrangement shall be taken by the Contractor.

END OF SECTION
SECTION 26 0505
SELECTIVE DEMOLITION FOR ELECTRICAL

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Electrical demolition and extension of existing electrical work.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements.
C. Section 26 0005 - Basic Electrical Requirements.

PART 2 PRODUCTS

2.01 MATERIALS AND EQUIPMENT
A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that abandoned wiring and equipment serve only abandoned facilities.
B. Demolition drawings are based on casual field observation and existing record documents.
C. Beginning of demolition means installer accepts existing conditions.

3.02 PREPARATION
A. Disconnect electrical systems in walls, floors, and ceilings to be removed.
B. Coordinate utility service outages with utility company.
C. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations.
D. Existing Electrical Service: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Minimize outage duration.
 1. Obtain permission from Owner at least 24 hours before partially or completely disabling system.
 2. Make temporary connections to maintain service in areas adjacent to work area.
E. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Minimize outage duration.
 1. Notify Owner before partially or completely disabling system.
 2. Notify local fire service.
 3. Make notifications at least 24 hours in advance.
 4. Make temporary connections to maintain service in areas adjacent to work area.

3.03 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK
A. Perform work for removal and disposal of equipment and materials containing toxic substances regulated under the Federal Toxic Substances Control Act (TSCA) in accordance with applicable federal, state, and local regulations. Applicable equipment and materials include, but are not limited to:
 1. PCB-containing electrical equipment, including transformers, capacitors, and switches.
 2. PCB- and DEHP-containing lighting ballasts.
 3. Mercury-containing lamps and tubes, including fluorescent lamps, high intensity discharge (HID), arc lamps, ultra-violet, high pressure sodium, mercury vapor, ignitron tubes, neon, and incandescent.
B. Remove, relocate, and extend existing installations to accommodate new construction.
C. Remove abandoned wiring to source of supply.
D. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.

E. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets that are not removed.

F. Disconnect and remove abandoned panelboards and distribution equipment.

G. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.

H. Repair adjacent construction and finishes damaged during demolition and extension work.

I. Maintain access to existing electrical installations that remain active. Modify installation or provide access panel as appropriate.

3.04 CLEANING AND REPAIR

A. See Division 01 - General Requirements.

B. Clean and repair existing materials and equipment that remain or that are to be reused.

C. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.

D. Luminaires: Remove existing luminaires for cleaning. Use mild detergent to clean all exterior and interior surfaces; rinse with clean water and wipe dry. Replace lamps, ballasts and broken electrical parts.

END OF SECTION
SECTION 26 0519
VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Single conductor building wire.
B. Metal-clad cable.
C. Wiring connectors.
D. Electrical tape.
E. Heat shrink tubing.
F. Oxide inhibiting compound.
G. Wire pulling lubricant.
H. Cable ties.
I. Firestop sleeves.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, and repairs.
C. Section 07 8400 - Firestopping.
D. Section 26 0005 - Basic Electrical Requirements.
E. Section 26 0505 - Selective Demolition for Electrical: Disconnection, removal, and/or extension of existing electrical conductors and cables.
F. Section 26 0526 - Grounding and Bonding for Electrical Systems: Additional requirements for grounding conductors and grounding connectors.
G. Section 26 0536 - Cable Trays for Electrical Systems: Additional installation requirements for cables installed in cable tray systems.
H. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
I. Section 28 4600 - Fire Detection and Alarm: Fire alarm system conductors and cables.
J. Division 31 - Earthwork: Excavating, bedding, and backfilling.

1.03 REFERENCE STANDARDS
E. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
F. NECA 120 - Standard for Installing Armored Cable (AC) and Metal-Clad Cable (MC) 2012.
I. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Coordinate sizes of raceways, boxes, and equipment enclosures installed under other sections with the actual conductors to be installed, including adjustments for conductor sizes increased for voltage drop.
 2. Coordinate with electrical equipment installed under other sections to provide terminations suitable for use with the conductors to be installed.

1.05 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.

1.06 QUALITY ASSURANCE
A. Comply with requirements of NFPA 70.
B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.
C. Product Listing Organization Qualifications: An organization recognized by OSHA as a Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having jurisdiction.

1.07 FIELD CONDITIONS
A. Do not install or otherwise handle thermoplastic-insulated conductors at temperatures lower than 14 degrees F, unless otherwise permitted by manufacturer's instructions. When installation below this temperature is unavoidable, notify Architect and obtain direction before proceeding with work.

PART 2 PRODUCTS
2.01 CONDUCTOR AND CABLE APPLICATIONS
A. Do not use conductors and cables for applications other than as permitted by NFPA 70 and product listing.
B. Provide single conductor building wire installed in suitable raceway unless otherwise indicated, permitted, or required.
C. Nonmetallic-sheathed cable is not permitted.
D. Underground feeder and branch-circuit cable is not permitted.
E. Service entrance cable is not permitted.
F. Armored cable is not permitted.
G. Metal-clad cable is permitted only as follows:
 1. Where not otherwise restricted, may be used:
 a. Where concealed above accessible ceilings for final connections from junction boxes to luminaires.
 1) Maximum Length: 6 feet.
 b. Where concealed in hollow stud walls, above accessible ceilings, and under raised floors for branch circuits up to 20 A.
H. Manufactured wiring systems are not permitted.

2.02 CONDUCTOR AND CABLE GENERAL REQUIREMENTS

A. Provide products that comply with requirements of NFPA 70.
B. Provide products listed, classified, and labeled as suitable for the purpose intended.
C. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, etc. as required for a complete operating system.
D. Comply with NEMA WC 70.
E. Thermoplastic-Insulated Conductors and Cables: Listed and labeled as complying with UL 83.
F. Thermoset-Insulated Conductors and Cables: Listed and labeled as complying with UL 44.
G. Conductor Material:
 1. Provide copper conductors only. Aluminum conductors are not acceptable for this project. Conductor sizes indicated are based on copper.
 2. Copper Conductors: Soft drawn annealed, 98 percent conductivity, uncoated copper conductors complying with ASTM B3, ASTM B8, or ASTM B787/B787M unless otherwise indicated.
 3. Tinned Copper Conductors: Comply with ASTM B33.
H. Minimum Conductor Size:
 1. Branch Circuits: 12 AWG.
 a. Exceptions:
 1) 20 A, 120 V circuits longer than 75 feet: 10 AWG, for voltage drop.
 2) 20 A, 120 V circuits longer than 150 feet: 8 AWG, for voltage drop.
 3) 20 A, 277 V circuits longer than 150 feet: 10 AWG, for voltage drop.
I. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.
J. Conductor Color Coding:
 1. Color code conductors as indicated unless otherwise required by the authority having jurisdiction. Maintain consistent color coding throughout project.
 2. Color Coding Method: Integrally colored insulation.
 3. Color Code:
 a. 480Y/277 V, 3 Phase, 4 Wire System:
 1) Phase A: Brown.
 2) Phase B: Orange.
 3) Phase C: Yellow.
 4) Neutral/Grounded: Gray.
 b. 208Y/120 V, 3 Phase, 4 Wire System:
 1) Phase A: Black.
 2) Phase B: Red.
 3) Phase C: Blue.
 4) Neutral/Grounded: White.
 c. Equipment Ground, All Systems: Green.
 d. For modifications or additions to existing wiring systems, comply with existing color code when existing code complies with NFPA 70 and is approved by the authority having jurisdiction.

2.03 SINGLE CONDUCTOR BUILDING WIRE

A. Manufacturers:
 1. Copper Building Wire:
B. Description: Single conductor insulated wire.

C. Conductor Stranding:
 1. Feeders and Branch Circuits:
 a. Size 10 AWG and Smaller: Stranded.
 b. Size 8 AWG and Larger: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation:
 1. Copper Building Wire: Type THHN/THWN or THHN/THWN-2, except as indicated below.

2.04 METAL-CLAD CABLE

A. Manufacturers:
 1. AFC Cable Systems Inc: www.afcweb.com/#sle.

B. Description: NFPA 70, Type MC cable listed and labeled as complying with UL 1569, and listed for use in classified firestop systems to be used.

C. Conductor Stranding:
 1. Size 10 AWG and Smaller: Stranded.
 2. Size 8 AWG and Larger: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation: Type THHN, THHN/THWN, or THHN/THWN-2.

F. Provide oversized neutral conductors where indicated or required.

G. Grounding: Full-size integral equipment grounding conductor.

H. Armor: Steel, interlocked tape.

2.05 WIRING CONNECTORS

A. Description: Wiring connectors appropriate for the application, suitable for use with the conductors to be connected, and listed as complying with UL 486A-486B or UL 486C as applicable.

B. Connectors for Grounding and Bonding: Comply with Section 26 0526.

C. Wiring Connectors for Splices and Taps:
 1. Copper Conductors Size 8 AWG and Smaller: Use twist-on insulated spring connectors.
 2. Copper Conductors Size 6 AWG and Larger: Use mechanical connectors or compression connectors.

D. Wiring Connectors for Terminations:
 1. Provide terminal lugs for connecting conductors to equipment furnished with terminations designed for terminal lugs.
 2. Provide compression adapters for connecting conductors to equipment furnished with mechanical lugs when only compression connectors are specified.
 3. Where over-sized conductors are larger than the equipment terminations can accommodate, provide connectors suitable for reducing to appropriate size, but not less than required for the rating of the overcurrent protective device.
 4. Copper Conductors Size 8 AWG and Larger: Use mechanical connectors or compression connectors where connectors are required.

E. Do not use insulation-piercing or insulation-displacement connectors designed for use with conductors without stripping insulation.

F. Do not use push-in wire connectors as a substitute for twist-on insulated spring connectors.

G. Twist-on Insulated Spring Connectors: Rated 600 V, 221 degrees F for standard applications and 302 degrees F for high temperature applications; pre-filled with sealant and listed as complying with UL 486D for damp and wet locations.
H. Mechanical Connectors: Provide bolted type or set-screw type.
I. Compression Connectors: Provide circumferential type or hex type crimp configuration.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that interior of building has been protected from weather.
B. Verify that work likely to damage wire and cable has been completed.
C. Verify that raceways, boxes, and equipment enclosures are installed and are properly sized to accommodate conductors and cables in accordance with NFPA 70.
D. Verify that field measurements are as indicated.
E. Verify that conditions are satisfactory for installation prior to starting work.

3.02 PREPARATION
A. Clean raceways thoroughly to remove foreign materials before installing conductors and cables.

3.03 INSTALLATION
A. Circuiting Requirements:
 1. Unless dimensioned, circuit routing indicated is diagrammatic.
 2. When circuit destination is indicated without specific routing, determine exact routing required.
 3. Arrange circuiting to minimize splices.
 4. Include circuit lengths required to install connected devices within 10 ft of location indicated.
 5. Maintain separation of Class 1, Class 2, and Class 3 remote-control, signaling, and power-limited circuits in accordance with NFPA 70.
 6. Maintain separation of wiring for emergency systems in accordance with NFPA 70.
 7. Circuiting Adjustments: Unless otherwise indicated, when branch circuits are indicated as separate, combining them together in a single raceway is not permitted.
 8. Common Neutrals: Unless otherwise indicated, sharing of neutral/grounded conductors among up to three single phase branch circuits of different phases installed in the same raceway is not permitted. Provide dedicated neutral/grounded conductor for each individual branch circuit.
 9. Provide oversized neutral/grounded conductors where indicated and as specified below.
 a. Provide 200 percent rated neutral for feeders fed from K-rated transformers.
 b. Provide 200 percent rated neutral for feeders serving panelboards with 200 percent rated neutral bus.
B. Install products in accordance with manufacturer's instructions.
C. Perform work in accordance with NECA 1 (general workmanship).
D. Install metal-clad cable (Type MC) in accordance with NECA 120.
E. Installation in Raceway:
 1. Tape ends of conductors and cables to prevent infiltration of moisture and other contaminants.
 2. Pull all conductors and cables together into raceway at same time.
 3. Do not damage conductors and cables or exceed manufacturer's recommended maximum pulling tension and sidewall pressure.
 4. Use suitable wire pulling lubricant where necessary, except when lubricant is not recommended by the manufacturer.
F. Paralleled Conductors: Install conductors of the same length and terminate in the same manner.
G. Secure and support conductors and cables in accordance with NFPA 70 using suitable supports and methods approved by the authority having jurisdiction. Provide independent
support from building structure. Do not provide support from raceways, piping, ductwork, or other systems.

H. Terminate cables using suitable fittings.
 1. Metal-Clad Cable (Type MC):
 a. Use listed fittings.
 b. Cut cable armor only using specialized tools to prevent damaging conductors or insulation. Do not use hacksaw or wire cutters to cut armor.

I. Install conductors with a minimum of 12 inches of slack at each outlet.

J. Where conductors are installed in enclosures for future termination by others, provide a minimum of 5 feet of slack.

K. Neatly train and bundle conductors inside boxes, wireways, panelboards and other equipment enclosures.

L. Group or otherwise identify neutral/grounded conductors with associated ungrounded conductors inside enclosures in accordance with NFPA 70.

M. Make wiring connections using specified wiring connectors.
 1. Make splices and taps only in accessible boxes. Do not pull splices into raceways or make splices in conduit bodies or wiring gutters.
 2. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors.
 3. Do not remove conductor strands to facilitate insertion into connector.
 4. Clean contact surfaces on conductors and connectors to suitable remove corrosion, oxides, and other contaminate. Do not use wire brush on plated connector surfaces.
 5. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
 6. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.

N. Insulate splices and taps that are made with uninsulated connectors using methods suitable for the application, with insulation and mechanical strength at least equivalent to unspliced conductors.

O. Insulate ends of spare conductors using vinyl insulating electrical tape.

P. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Division 07.

Q. Unless specifically indicated to be excluded, provide final connections to all equipment and devices, including those furnished by others, as required for a complete operating system.

3.04 FIELD QUALITY CONTROL

A. Inspect and test in accordance with NETA ATS, except Section 4.

B. Perform inspections and tests listed in NETA ATS, Section 7.3.2. The insulation resistance test is required for all conductors. The resistance test for parallel conductors listed as optional is not required.
 1. Disconnect surge protective devices (SPDs) prior to performing any high potential testing. Replace SPDs damaged by performing high potential testing with SPDs connected.

C. Correct deficiencies and replace damaged or defective conductors and cables.

END OF SECTION
SECTION 26 0526
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Grounding and bonding requirements.
B. Conductors for grounding and bonding.
C. Connectors for grounding and bonding.
D. Ground bars.
E. Ground rod electrodes.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, repairs.
C. Section 26 0005 - Basic Electrical Requirements
D. Section 26 0519 - Low-Voltage Electrical Power Conductors and Cables: Additional requirements for conductors for grounding and bonding, including conductor color coding.
E. Section 26 0536 - Cable Trays for Electrical Systems: Additional grounding and bonding requirements for cable tray systems.
F. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
G. Section 26 5600 - Exterior Lighting: Additional grounding and bonding requirements for pole-mounted luminaires.
H. Division 31 - Earthwork: Excavating, trenching and fill.

1.03 REFERENCE STANDARDS
B. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
E. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Verify exact locations of underground metal water service pipe entrances to building.
 2. Coordinate the work with other trades to provide steel reinforcement complying with specified requirements for concrete-encased electrode.
 3. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.
B. Sequencing:
 1. Do not install ground rod electrodes until final backfill and compaction is complete.

1.05 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.
B. Project Record Documents: Record actual locations of grounding electrode system components and connections.

PART 2 PRODUCTS
2.01 GROUNDING AND BONDING REQUIREMENTS

A. Existing Work: Where existing grounding and bonding system components are indicated to be reused, they may be reused only where they are free from corrosion, integrity and continuity are verified, and where acceptable to the authority having jurisdiction.

B. Do not use products for applications other than as permitted by NFPA 70 and product listing.

C. Unless specifically indicated to be excluded, provide all required components, conductors, connectors, conduit, boxes, fittings, supports, accessories, etc. as necessary for a complete grounding and bonding system.

D. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

E. Grounding System Resistance:
 1. Achieve specified grounding system resistance under normally dry conditions unless otherwise approved by Architect. Precipitation within the previous 48 hours does not constitute normally dry conditions.
 2. Grounding Electrode System: Not greater than 5 ohms to ground, when tested according to IEEE 81 using "fall-of-potential" method.
 3. Between Grounding Electrode System and Major Electrical Equipment Frames, System Neutral, and Derived Neutral Points: Not greater than 0.5 ohms, when tested using "point-to-point" methods.

F. Grounding Electrode System:
 1. Provide connection to required and supplemental grounding electrodes indicated to form grounding electrode system.
 a. Provide continuous grounding electrode conductors without splice or joint.
 b. Install grounding electrode conductors in raceway where exposed to physical damage. Bond grounding electrode conductor to metallic raceways at each end with bonding jumper.
 2. Metal Underground Water Pipe(s):
 a. Provide connection to underground metal domestic and fire protection (where present) water service pipe(s) that are in direct contact with earth for at least 10 feet at an accessible location not more than 5 feet from the point of entrance to the building.
 b. Provide bonding jumper(s) around insulating joints/pipes as required to make pipe electrically continuous.
 c. Provide bonding jumper around water meter of sufficient length to permit removal of meter without disconnecting jumper.
 3. Concrete-Encased Electrode:
 a. Provide connection to concrete-encased electrode consisting of not less than 20 feet of either steel reinforcing bars or bare copper conductor not smaller than 4 AWG embedded within concrete foundation or footing that is in direct contact with earth in accordance with NFPA 70.
 4. Ground Ring:
 a. Provide a ground ring encircling the building or structure consisting of bare copper conductor not less than 2 AWG in direct contact with earth, installed at a depth of not less than 30 inches.
 b. Where location is not indicated, locate ground ring conductor at least 24 inches outside building perimeter foundation.
 c. Provide ground enhancement material around conductor.
 d. Provide connection from ground ring conductor to:
 1) Perimeter columns of metal building frame.
 2) Ground rod electrodes located as indicated.
5. Ground Rod Electrode(s):
 a. Provide three electrodes in an equilateral triangle configuration unless otherwise indicated or required.
 b. Space electrodes not less than 10 feet from each other and any other ground electrode.
 c. Where location is not indicated, locate electrode(s) at least 5 feet outside building perimeter foundation as near as possible to electrical service entrance; where possible, locate in softscape (uncovered) area.

6. Provide additional ground electrode(s) as required to achieve specified grounding electrode system resistance.

7. Ground Bar: Provide ground bar, separate from service equipment enclosure, for common connection point of grounding electrode system bonding jumpers as permitted in NFPA 70. Connect grounding electrode conductor provided for service-supplied system grounding to this ground bar.
 a. Ground Bar Size: 1/4 by 2 by 12 inches unless otherwise indicated or required.
 b. Where ground bar location is not indicated, locate in accessible location as near as possible to service disconnect enclosure.
 c. Ground Bar Mounting Height: 18 inches above finished floor unless otherwise indicated.

G. Bonding and Equipment Grounding:
 1. Provide bonding for equipment grounding conductors, equipment ground busses, metallic equipment enclosures, metallic raceways and boxes, device grounding terminals, and other normally non-current-carrying conductive materials enclosing electrical conductors/equipment or likely to become energized as indicated and in accordance with NFPA 70.
 2. Provide insulated equipment grounding conductor in each feeder and branch circuit raceway. Do not use raceways as sole equipment grounding conductor.
 3. Where circuit conductor sizes are increased for voltage drop, increase size of equipment grounding conductor proportionally in accordance with NFPA 70.
 4. Unless otherwise indicated, connect wiring device grounding terminal to branch circuit equipment grounding conductor and to outlet box with bonding jumper.
 5. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on neutral (grounded) or isolated/insulated ground bus.
 6. Provide bonding jumper across expansion or expansion/deflection fittings provided to accommodate conduit movement.

H. Cable Tray Systems: Also comply with Section 26 0536.

I. Pole-Mounted Luminaires: Also comply with Section 26 5600.

2.02 GROUNDING AND BONDING COMPONENTS

A. General Requirements:
 1. Provide products listed, classified, and labeled as suitable for the purpose intended.
 2. Provide products listed and labeled as complying with UL 467 where applicable.

B. Conductors for Grounding and Bonding, in Addition to Requirements of Section 26 0526:
 1. Use insulated copper conductors unless otherwise indicated.
 a. Exceptions:
 1) Use bare copper conductors where installed underground in direct contact with earth.
 2) Use bare copper conductors where directly encased in concrete (not in raceway).

C. Connectors for Grounding and Bonding:
 1. Description: Connectors appropriate for the application and suitable for the conductors and items to be connected; listed and labeled as complying with UL 467.
 2. Unless otherwise indicated, use exothermic welded connections for underground, concealed and other inaccessible connections.
3. Unless otherwise indicated, use mechanical connectors, compression connectors, or exothermic welded connections for accessible connections.

4. Manufacturers - Mechanical and Compression Connectors:
 b. Burndy LLC: www.burndy.com
 c. Harger Lightning & Grounding: www.harger.com
 d. Thomas & Betts Corporation: www.tnb.com

5. Manufacturers - Exothermic Welded Connections:
 a. Burndy LLC: www.burndy.com
 b. Cadweld, a brand of Erico International Corporation: www.erico.com
 c. thermOweld, subsidiary of Continental Industries; division of Burndy LLC: www.thermoweld.com

D. Ground Bars:
 1. Description: Copper rectangular ground bars with mounting brackets and insulators.
 2. Size: As indicated.
 3. Holes for Connections: As indicated or as required for connections to be made.
 4. Manufacturers:
 b. Erico International Corporation: www.erico.com
 c. Harger Lightning & Grounding: www.harger.com
 d. thermOweld, subsidiary of Continental Industries; division of Burndy LLC: www.thermoweld.com

E. Ground Rod Electrodes:
 1. Comply with NEMA GR 1.
 3. Size: 3/4 inch diameter by 10 feet length, unless otherwise indicated.
 4. Where rod lengths of greater than 10 feet are indicated or otherwise required, sectionalized ground rods may be used.
 5. Manufacturers:

PART 3 EXECUTION

3.01 EXAMINATION
 A. Verify that work likely to damage grounding and bonding system components has been completed.
 B. Verify that field measurements are as indicated.
 C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION
 A. Install products in accordance with manufacturer's instructions.
 B. Perform work in accordance with NECA 1 (general workmanship).
 C. Ground Rod Electrodes: Unless otherwise indicated, install ground rod electrodes vertically. Where encountered rock prohibits vertical installation, install at 45 degree angle or bury horizontally in trench at least 30 inches (750 mm) deep in accordance with NFPA 70 or provide ground plates.
 D. Make grounding and bonding connections using specified connectors.
 1. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors. Do not remove conductor strands to facilitate insertion into connector.
2. Remove nonconductive paint, enamel, or similar coating at threads, contact points, and contact surfaces.
3. Exothermic Welds: Make connections using molds and weld material suitable for the items to be connected in accordance with manufacturer's recommendations.
4. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
5. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.

E. Identify grounding and bonding system components in accordance with Section 26 0553.

3.03 FIELD QUALITY CONTROL

A. Inspect and test in accordance with NETA ATS except Section 4.
B. Perform inspections and tests listed in NETA ATS, Section 7.13.
C. Perform ground electrode resistance tests under normally dry conditions. Precipitation within the previous 48 hours does not constitute normally dry conditions.
D. Investigate and correct deficiencies where measured ground resistances do not comply with specified requirements.

END OF SECTION
SECTION 26 0529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Support and attachment requirements and components for equipment, conduit, cable, boxes, and other electrical work.

1.02 RELATED REQUIREMENTS
 A. Division 01 - General Requirements: Project administrative and procedural requirements
 B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, and cutting and patching requirements.
 C. Division 03 - Concrete: Concrete equipment pads.
 D. Section 03 3000 - Cast-in-Place Concrete: Concrete equipment pads.
 E. Section 26 0005 - Basic Electrical Requirements
 F. Section 26 0533.13 - Conduit for Electrical Systems: Additional support and attachment requirements for conduits.
 G. Section 26 0536 - Cable Trays for Electrical Systems: Additional support and attachment requirements for cable tray.
 H. Section 26 0533.16 - Boxes for Electrical Systems: Additional support and attachment requirements for boxes.
 I. Section 26 5100 - Interior Lighting: Additional support and attachment requirements for interior luminaires.
 J. Section 26 5600 - Exterior Lighting: Additional support and attachment requirements for exterior luminaires.

1.03 REFERENCE STANDARDS
 D. MFMA-4 - Metal Framing Standards Publication 2004.
 E. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
 F. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
 G. UL 5B - Strut-Type Channel Raceways and Fittings Current Edition, Including All Revisions.

1.04 ADMINISTRATIVE REQUIREMENTS
 A. Coordination:
 1. Coordinate sizes and arrangement of supports and bases with the actual equipment and components to be installed.
 2. Coordinate the work with other trades to provide additional framing and materials required for installation.
 3. Coordinate compatibility of support and attachment components with mounting surfaces at the installed locations.
 4. Coordinate the arrangement of supports with ductwork, piping, equipment and other potential conflicts installed under other sections or by others.
 5. Notify Architect of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.
B. Sequencing:
 1. Do not install products on or provide attachment to concrete surfaces until concrete has fully cured in accordance with Division 03.

1.05 QUALITY ASSURANCE
A. Comply with NFPA 70.
B. Comply with applicable building code.

PART 2 PRODUCTS

2.01 SUPPORT AND ATTACHMENT COMPONENTS
A. General Requirements:
 1. Provide all required hangers, supports, anchors, fasteners, fittings, accessories, and hardware as necessary for the complete installation of electrical work.
 2. Provide products listed, classified, and labeled as suitable for the purpose intended, where applicable.
 3. Where support and attachment component types and sizes are not indicated, select in accordance with manufacturer's application criteria as required for the load to be supported. Include consideration for vibration, equipment operation, and shock loads where applicable.
 4. Do not use products for applications other than as permitted by NFPA 70 and product listing.
 5. Steel Components: Use corrosion resistant materials suitable for the environment where installed.
 a. Zinc-Plated Steel: Electroplated in accordance with ASTM B633.
 b. Galvanized Steel: Hot-dip galvanized after fabrication in accordance with ASTM A123/A123M or ASTM A153/A153M.
B. Conduit and Cable Supports: Straps, clamps, etc. suitable for the conduit or cable to be supported.
 1. Conduit Straps: One-hole or two-hole type; steel or malleable iron.
 2. Conduit Clamps: Bolted type unless otherwise indicated.
 3. Manufacturers:
 a. Cooper Crouse-Hinds, a division of Eaton Corporation: www.cooperindustries.com
 b. Erico International Corporation: www.erico.com
 c. HoldRite, a brand of Reliance Worldwide Corporation: www.holdrite.com
 d. O-Z/Gedney, a brand of Emerson Electric Co: www.emerson.com
 e. Thomas & Betts Corporation: www.tnb.com
C. Outlet Box Supports: Hangers, brackets, etc. suitable for the boxes to be supported.
 1. Manufacturers:
 e. Thomas & Betts Corporation: www.tnb.com/#sle.
D. Metal Channel (Strut) Framing Systems: Factory-fabricated continuous-slot metal channel (strut) and associated fittings, accessories, and hardware required for field-assembly of supports.
 2. Channel (Strut) Used as Raceway (only where specifically indicated): Listed and labeled as complying with UL 5B.
 3. Manufacturers:
 a. Cooper B-Line, a division of Eaton Corporation: www.cooperindustries.com
 b. Thomas & Betts Corporation: www.tnb.com
 c. Unistrut, a brand of Atkore International Inc: www.unistrut.com
E. Hanger Rods: Threaded zinc-plated steel unless otherwise indicated.
 1. Minimum Size, Unless Otherwise Indicated or Required:
 a. Equipment Supports: 1/2 inch diameter.
 b. Single Conduit up to 1 inch (27 mm) trade size: 1/4 inch diameter.
 c. Single Conduit larger than 1 inch (27 mm) trade size: 3/8 inch diameter.
 d. Trapeze Support for Multiple Conduits: 3/8 inch diameter.
 e. Outlet Boxes: 1/4 inch diameter.
 f. Luminaires: 1/4 inch diameter.

F. Non-Penetrating Rooftop Supports for Low-Slope Roofs: Steel pedestals with thermoplastic or rubber bases that rest on top of roofing membrane, not requiring any attachment to the roof structure and not penetrating the roofing assembly, with support fixtures as specified.
 1. Base Sizes: As required to distribute load sufficiently to prevent indentation of roofing assembly.
 2. Attachment/Support Fixtures: As recommended by manufacturer, same type as indicated for equivalent indoor hangers and supports.
 3. Mounting Height: Provide minimum clearance of 6 inches under supported component to top of roofing.
 4. Manufacturers:
 a. Cooper B-Line, a division of Eaton Corporation: www.cooperindustries.com
 b. Erico International Corporation: www.erico.com
 c. PHP Systems/Design: www.phpsd.com
 d. Unistrut, a brand of Atkore International Inc: www.unistrut.com

G. Anchors and Fasteners:
 1. Unless otherwise indicated and where not otherwise restricted, use the anchor and fastener types indicated for the specified applications.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.
D. Unless specifically indicated or approved by Architect, do not provide support from suspended ceiling support system or ceiling grid.
E. Unless specifically indicated or approved by Architect, do not provide support from roof deck.
F. Do not penetrate or otherwise notch or cut structural members without approval of Structural Engineer.

G. Equipment Support and Attachment:
 1. Use metal fabricated supports or supports assembled from metal channel (strut) to support equipment as required.
 2. Use metal channel (strut) secured to studs to support equipment surface-mounted on hollow stud walls when wall strength is not sufficient to resist pull-out.
 3. Use metal channel (strut) to support surface-mounted equipment in wet or damp locations to provide space between equipment and mounting surface.
 4. Unless otherwise indicated, mount floor-mounted equipment on properly sized 4 inch high concrete pad constructed in accordance with Division 03.
 5. Securely fasten floor-mounted equipment. Do not install equipment such that it relies on its own weight for support.

H. Conduit Support and Attachment: Also comply with Section 26 0533.13.
I. Cable Tray Support and Attachment: Also comply with Section 26 0536.
J. Box Support and Attachment: Also comply with Section 26 0533.16.
K. Secure fasteners according to manufacturer's recommended torque settings.
L. Remove temporary supports.

3.02 FIELD QUALITY CONTROL
A. See Division 01 - General Requirements for additional requirements.
B. Inspect support and attachment components for damage and defects.
C. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.
D. Correct deficiencies and replace damaged or defective support and attachment components.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Galvanized steel rigid metal conduit (RMC).
B. Aluminum rigid metal conduit (RMC).
C. Flexible metal conduit (FMC).
D. Electrical metallic tubing (EMT).
E. Rigid polyvinyl chloride (PVC) conduit.
F. Conduit fittings.
G. Accessories.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, and repairs.
C. Division 07 - Thermal and Moisture Protection: Firestopping.
D. Section 07 8400 - Firestopping.
E. Section 26 0005 - Basic Electrical Requirements
F. Section 26 0519 - Low-Voltage Electrical Power Conductors and Cables.
G. Section 26 0526 - Grounding and Bonding for Electrical Systems.
H. Section 26 0529 - Hangers and Supports for Electrical Systems.
I. Section 26 0533.16 - Boxes for Electrical Systems.
J. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
K. Section 28 4600 - Fire Detection and Alarm: Fire alarm wiring in conduit.
L. Division 31 - Earthwork: Excavating, trenching and fill.
M. Section 31 2316.13 - Trenching: Excavating, bedding, and backfilling.

1.03 REFERENCE STANDARDS
B. ANSI C80.3 - American National Standard for Electrical Metallic Tubing -- Steel (EMT-S) 2015.
G. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable 2014.
H. NEMA RN 1 - Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit 2018.
J. NEMA TC 3 - Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing 2016.
K. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
L. UL 1 - Flexible Metal Conduit Current Edition, Including All Revisions.
M. UL 6 - Electrical Rigid Metal Conduit-Steel Current Edition, Including All Revisions.
N. UL 514B - Conduit, Tubing, and Cable Fittings Current Edition, Including All Revisions.
O. UL 651 - Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings Current Edition, Including All Revisions.

PART 2 PRODUCTS

2.01 CONDUIT APPLICATIONS

A. Do not use conduit and associated fittings for applications other than as permitted by NFPA 70 and product listing.

B. Unless otherwise indicated and where not otherwise restricted, use the conduit types indicated for the specified applications. Where more than one listed application applies, comply with the most restrictive requirements. Where conduit type for a particular application is not specified, use galvanized steel rigid metal conduit.

C. Underground:
1. Under Slab on Grade: Use galvanized steel rigid metal conduit or rigid PVC conduit.
2. Exterior, Direct-Buried: Use galvanized steel rigid metal conduit or rigid PVC conduit.
3. Exterior, Embedded Within Concrete: Use galvanized steel rigid metal conduit or rigid PVC conduit.
4. Where rigid polyvinyl (PVC) conduit is provided, transition to galvanized steel rigid metal conduit where emerging from underground.
5. Where rigid polyvinyl (PVC) conduit larger than 2 inch (53 mm) trade size is provided, use galvanized steel rigid metal conduit elbows for bends.

D. Embedded Within Concrete:
1. Within Slab on Grade (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit or rigid PVC conduit.
2. Within Slab Above Ground (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), PVC-coated galvanized steel rigid metal conduit, or rigid PVC conduit.

E. Concealed Within Masonry Walls: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).

F. Concealed Within Hollow Stud Walls: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).

G. Concealed Above Accessible Ceilings: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).

H. Interior, Damp or Wet Locations: Use galvanized steel rigid metal conduit.

I. Exposed, Interior, Not Subject to Physical Damage: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).

J. Exposed, Interior, Subject to Physical Damage: Use galvanized steel rigid metal conduit or intermediate metal conduit (IMC).

K. Exposed, Exterior: Use galvanized steel rigid metal conduit or PVC-coated galvanized steel rigid metal conduit.

L. Concealed, Exterior, Not Embedded in Concrete or in Contact With Earth: Use galvanized steel rigid metal conduit.

M. Connections to Luminaires Above Accessible Ceilings: Use flexible metal conduit.
1. Maximum Length: 6 feet.

N. Connections to Vibrating Equipment:
1. Dry Locations: Use flexible metal conduit.
2. Damp, Wet, or Corrosive Locations: Use liquidtight flexible metal conduit.
3. Vibrating equipment includes, but is not limited to:
 a. Transformers.
 b. Motors.

O. Fished in Existing Walls, Where Necessary: Use flexible metal conduit.

2.02 CONDUIT REQUIREMENTS

A. Existing Work: Where existing conduits are indicated to be reused, they may be reused only
 where they comply with specified requirements, are free from corrosion, and integrity is verified
 by pulling a mandrel through them.

B. Provide all conduit, fittings, supports, and accessories required for a complete raceway system.

C. Provide products listed, classified, and labeled as suitable for the purpose intended.

D. Minimum Conduit Size, Unless Otherwise Indicated:
 1. Branch Circuits: 3/4 inch (21 mm) trade size.
 2. Flexible Connections to Luminaires: 3/8 inch (12 mm) trade size.
 3. Underground, Interior: 1 inch (27 mm) trade size.
 4. Underground, Exterior: 1 inch (27 mm) trade size.

E. Where conduit size is not indicated, size to comply with NFPA 70 but not less than applicable
 minimum size requirements specified.

2.03 GALVANIZED STEEL RIGID METAL CONDUIT (RMC)

A. Manufacturers:
 1. Allied Tube & Conduit: www.alliedeg.com
 2. Republic Conduit: www.republic-conduit.com
 3. Wheatland Tube, a Division of Zekelman Industries: www.wheatland.com

B. Description: NFPA 70, Type RMC galvanized steel rigid metal conduit complying with ANSI
 C80.1 and listed and labeled as complying with UL 6.

C. Fittings:
 1. Non-Hazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled
 as complying with UL 514B.
 2. Material: Use steel or malleable iron.
 3. Connectors and Couplings: Use threaded type fittings only. Threadless set screw and
 compression (gland) type fittings are not permitted.

2.04 FLEXIBLE METAL CONDUIT (FMC)

A. Manufacturers:
 1. AFC Cable Systems, Inc: www.afcweb.com
 2. Electri-Flex Company: www.electriflex.com
 3. International Metal Hose: www.metalhose.com

B. Description: NFPA 70, Type FMC standard wall steel flexible metal conduit listed and labeled
 as complying with UL 1, and listed for use in classified firestop systems to be used.

C. Fittings:
 1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with
 UL 514B.
 2. Material: Use steel or malleable iron.

2.05 ELECTRICAL METALLIC TUBING (EMT)

A. Manufacturers:
 1. Allied Tube & Conduit: www.alliedeg.com
 2. Republic Conduit: www.republic-conduit.com
 3. Wheatland Tube, a Division of Zekelman Industries: www.wheatland.com

B. Description: NFPA 70, Type EMT steel electrical metallic tubing complying with ANSI C80.3
 and listed and labeled as complying with UL 797.

C. Fittings:
1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
2. Material: Use steel or malleable iron.
3. Connectors and Couplings: Use compression (gland) or set-screw type.
 a. Do not use indenter type connectors and couplings.
4. Damp or Wet Locations (where permitted): Use fittings listed for use in wet locations.
5. Embedded Within Concrete (where permitted): Use fittings listed as concrete-tight. Fittings that require taping to be concrete-tight are acceptable.

2.06 RIGID POLYVINYL CHLORIDE (PVC) CONDUIT

A. Manufacturers:
 1. Cantex Inc: www.cantexinc.com
 2. Carlon, a brand of Thomas & Betts Corporation: www.carlon.com
 3. JM Eagle: www.jmeagle.com

B. Description: NFPA 70, Type PVC rigid polyvinyl chloride conduit complying with NEMA TC 2 and listed and labeled as complying with UL 651; Schedule 40 unless otherwise indicated, Schedule 80 where subject to physical damage; rated for use with conductors rated 90 degrees C.

C. Fittings:
 1. Manufacturer: Same as manufacturer of conduit to be connected.
 2. Description: Fittings complying with NEMA TC 3 and listed and labeled as complying with UL 651; material to match conduit.

2.07 ACCESSORIES

A. Conduit Joint Compound: Corrosion-resistant, electrically conductive; suitable for use with the conduit to be installed.
B. Solvent Cement for PVC Conduit and Fittings: As recommended by manufacturer of conduit and fittings to be installed.
C. Pull Strings: Use nylon cord with average breaking strength of not less than 200 pound-force.
D. Sealing Compound for Sealing Fittings: Listed for use with the particular fittings to be installed.
E. Modular Seals for Conduit Penetrations: Rated for minimum of 40 psig; Suitable for the conduits to be installed.
F. Sealing Systems for Roof Penetrations: Premanufactured components and accessories as required to preserve integrity of roofing system and maintain roof warranty; suitable for conduits and roofing system to be installed; designed to accommodate existing penetrations where applicable.
G. Firestop Sleeves: Listed; provide as required to preserve fire resistance rating of building elements.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that field measurements are as indicated.
B. Verify that mounting surfaces are ready to receive conduits.
C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION

A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Install galvanized steel rigid metal conduit (RMC) in accordance with NECA 101.
D. Install rigid polyvinyl chloride (PVC) conduit in accordance with NECA 111.
E. Conduit Routing:
 1. Unless dimensioned, conduit routing indicated is diagrammatic.
2. When conduit destination is indicated without specific routing, determine exact routing required.
3. Conceal all conduits unless specifically indicated to be exposed.
4. Conduits in the following areas may be exposed, unless otherwise indicated:
 a. Electrical rooms.
 b. Mechanical equipment rooms.
5. Unless otherwise approved, do not route conduits exposed:
 a. Across floors.
 b. Across roofs.
 c. Across top of parapet walls.
 d. Across building exterior surfaces.
6. Conduits installed underground or embedded in concrete may be routed in the shortest possible manner unless otherwise indicated. Route all other conduits parallel or perpendicular to building structure and surfaces, following surface contours where practical.
7. Arrange conduit to maintain adequate headroom, clearances, and access.
8. Arrange conduit to provide no more than the equivalent of four 90 degree bends between pull points.
9. Arrange conduit to prevent moisture traps. Provide drain fittings at low points and at sealing fittings where moisture may collect.
10. Group parallel conduits in the same area together on a common rack.

F. Conduit Support:
1. Secure and support conduits in accordance with NFPA 70 and Section 26 0529 using suitable supports and methods approved by the authority having jurisdiction.
2. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.
3. Installation Above Suspended Ceilings: Do not provide support from ceiling support system. Do not provide support from ceiling grid or allow conduits to lay on ceiling tiles.
4. Use conduit strap to support single surface-mounted conduit.
 a. Use clamp back spacer with conduit strap for damp and wet locations to provide space between conduit and mounting surface.
5. Use metal channel (strut) with accessory conduit clamps to support multiple parallel surface-mounted conduits.
6. Use trapeze hangers assembled from threaded rods and metal channel (strut) with accessory conduit clips to support multiple parallel suspended conduits.
7. Use of wire for support of conduits is not permitted.

G. Connections and Terminations:
1. Use approved zinc-rich paint or conduit joint compound on field-cut threads of galvanized steel conduits prior to making connections.
2. Where two threaded conduits must be joined and neither can be rotated, use three-piece couplings or split couplings. Do not use running threads.
3. Use suitable adapters where required to transition from one type of conduit to another.
4. Terminate threaded conduits in boxes and enclosures using threaded hubs or double lock nuts for dry locations and raintight hubs for wet locations.
5. Provide insulating bushings or insulated throats at all conduit terminations to protect conductors.
6. Secure joints and connections to provide maximum mechanical strength and electrical continuity.

H. Penetrations:
1. Do not penetrate or otherwise notch or cut structural members, including footings and grade beams, without approval of Structural Engineer.
2. Make penetrations perpendicular to surfaces unless otherwise indicated.
3. Provide sleeves for penetrations as indicated or as required to facilitate installation. Set sleeves flush with exposed surfaces unless otherwise indicated or required.
4. Conceal bends for conduit risers emerging above ground.
5. Seal interior of conduits entering the building from underground at first accessible point to prevent entry of moisture and gases.
6. Where conduits penetrate waterproof membrane, seal as required to maintain integrity of membrane.
7. Make penetrations for roof-mounted equipment within associated equipment openings and curbs where possible to minimize roofing system penetrations. Where penetrations are necessary, seal as indicated or as required to preserve integrity of roofing system and maintain roof warranty. Include proposed locations of penetrations and methods for sealing with submittals.
8. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Division 07.

I. Underground Installation:
1. Provide trenching and backfilling in accordance with Division 31.

J. Embedment Within Structural Concrete Slabs (only where approved by Structural Engineer):
1. Secure conduits to prevent floating or movement during pouring of concrete.

K. Concrete Encasement: Where conduits not otherwise embedded within concrete are indicated to be concrete-encased, provide concrete in accordance with Division 03 with minimum concrete cover of 2 inches on all sides unless otherwise indicated.

L. Conduit Movement Provisions: Where conduits are subject to movement, provide expansion and expansion/deflection fittings to prevent damage to enclosed conductors or connected equipment. This includes, but is not limited to:
1. Where conduits cross structural joints intended for expansion, contraction, or deflection.
2. Where calculated in accordance with NFPA 70 for rigid polyvinyl chloride (PVC) conduit installed above ground to compensate for thermal expansion and contraction.
3. Where conduits are subject to earth movement by settlement or frost.

M. Condensation Prevention: Where conduits cross barriers between areas of potential substantial temperature differential, provide sealing fitting or approved sealing compound at an accessible point near the penetration to prevent condensation. This includes, but is not limited to:
1. Where conduits pass from outdoors into conditioned interior spaces.
2. Where conduits pass from unconditioned interior spaces into conditioned interior spaces.

N. Provide grounding and bonding in accordance with Section 26 0526.

O. Identify conduits in accordance with Section 26 0553.

3.03 PROTECTION

A. Immediately after installation of conduit, use suitable manufactured plugs to provide protection from entry of moisture and foreign material and do not remove until ready for installation of conductors.

END OF SECTION
SECTION 26 0553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Electrical identification requirements.
B. Identification nameplates and labels.
C. Wire and cable markers.
D. Voltage markers.
E. Underground warning tape.
F. Floor marking tape.
G. Warning signs and labels.

1.02 RELATED REQUIREMENTS

A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 09 - Finishes: Interior and Exterior Painting.
C. Section 09 9113 - Exterior Painting.
D. Section 09 9123 - Interior Painting.
E. Section 26 0005 - Basic Electrical Requirements
F. Section 26 0519 - Low-Voltage Electrical Power Conductors and Cables: Color coding for power conductors and cables 600 V and less; vinyl color coding electrical tape.
G. Section 26 0536 - Cable Trays for Electrical Systems: Additional identification requirements for cable tray systems.
H. Section 26 0573 - Power System Studies: Arc flash hazard warning labels.
I. Section 26 2726 - Wiring Devices: Device and wallplate finishes; factory pre-marked wallplates.

1.03 REFERENCE STANDARDS

A. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 FIELD CONDITIONS

A. Do not install adhesive products when ambient temperature is lower than recommended by manufacturer.

PART 2 PRODUCTS

2.01 IDENTIFICATION REQUIREMENTS

A. Existing Work: Unless specifically excluded, identify existing elements to remain that are not already identified in accordance with specified requirements.

B. Identification for Equipment:
 1. Use identification nameplate to identify each piece of electrical distribution and control equipment and associated sections, compartments, and components.
 a. Panelboards:
 1) Identify ampere rating.
 2) Identify voltage and phase.
 3) Identify power source and circuit number. Include location when not within sight of equipment.
 4) Use typewritten circuit directory to identify load(s) served for panelboards with a door. Identify spares and spaces using pencil.
5) For power panelboards without a door, use identification nameplate to identify load(s) served for each branch device. Do not identify spares and spaces.

b. Transformers:
 1) Identify kVA rating.
 2) Identify voltage and phase for primary and secondary.
 3) Identify power source and circuit number. Include location when not within sight of equipment.

c. Enclosed switches, circuit breakers, and motor controllers:
 1) Identify voltage and phase.
 2) Identify power source and circuit number. Include location when not within sight of equipment.
 3) Identify load(s) served. Include location when not within sight of equipment.

d. Transfer Switches:
 1) Identify voltage and phase.
 2) Identify short circuit current rating based on the specific overcurrent protective device type and settings protecting the transfer switch.

2. Service Equipment:
 a. Use identification nameplate to identify each service disconnecting means.

3. Emergency System Equipment:
 a. Use identification nameplate or voltage marker to identify emergency system equipment in accordance with NFPA 70.
 b. Use identification nameplate at each piece of service equipment to identify type and location of on-site emergency power sources.

4. Use identification nameplate to identify disconnect location for equipment with remote disconnecting means.

5. Use identification label or handwritten text using indelible marker on inside of door at each fused switch to identify required NEMA fuse class and size.

6. Use field-painted floor markings, floor marking tape, or warning labels to identify required equipment working clearances where indicated or where required by the authority having jurisdiction.
 a. Field-Painted Floor Markings: Alternating black and white stripes, 3 inches wide, painted in accordance with Section 09 9123 and 09 9113.

7. Available Fault Current Documentation: Use identification label to identify the available fault current and date calculations were performed at locations requiring documentation by NFPA 70 including but not limited to the following.
 a. Service equipment.
 b. Industrial control panels.
 c. Motor control centers.
 d. Elevator control panels.
 e. Industrial machinery.

8. Arc Flash Hazard Warning Labels: Comply with Section 26 0573.

C. Identification for Conductors and Cables:
 1. Color Coding for Power Conductors 600 V and Less: Comply with Section 26 0519.
 2. Use identification nameplate or identification label to identify color code for ungrounded and grounded power conductors inside door or enclosure at each piece of feeder or branch-circuit distribution equipment when premises has feeders or branch circuits served by more than one nominal voltage system.

D. Identification for Cable Tray: Comply with Section 26 0536.

E. Identification for Boxes:
 1. Use voltage markers to identify highest voltage present.
 2. Use voltage markers or color coded boxes to identify systems other than normal power system.
 a. Color-Coded Boxes: Field-painted in accordance with Division 09 per the same color code used for raceways.
2.02 IDENTIFICATION NAMEPLATES AND LABELS

A. Identification Nameplates:
 1. Materials:
 a. Indoor Clean, Dry Locations: Use plastic nameplates.
 b. Outdoor Locations: Use plastic, stainless steel, or aluminum nameplates suitable for exterior use.
 2. Plastic Nameplates: Two-layer or three-layer laminated acrylic or electrically non-conductive phenolic with beveled edges; minimum thickness of 1/16 inch; engraved text.
 3. Stainless Steel Nameplates: Minimum thickness of 1/32 inch; engraved or laser-etched text.
 4. Aluminum Nameplates: Anodized; minimum thickness of 1/32 inch; engraved or laser-etched text.
 5. Mounting Holes for Mechanical Fasteners: Two, centered on sides for sizes up to 1 inch high; Four, located at corners for larger sizes.

B. Identification Labels:
 1. Materials: Use self-adhesive laminated plastic labels; UV, chemical, water, heat, and abrasion resistant.
 2. Text: Use factory pre-printed or machine-printed text. Do not use handwritten text unless otherwise indicated.

C. Format for Caution and Warning Messages:
 1. Minimum Size: 2 inches by 4 inches.
 2. Legend: Include information or instructions indicated or as required for proper and safe operation and maintenance.
 3. Text: All capitalized unless otherwise indicated.
 4. Minimum Text Height: 1/2 inch.
 5. Color: Black text on yellow background unless otherwise indicated.

D. Format for Receptacle Identification:
 1. Minimum Size: 3/8 inch by 1.5 inches.
 2. Legend: Power source and circuit number or other designation indicated.
 3. Text: All capitalized unless otherwise indicated.
 5. Color: Black text on clear background.

E. Format for Fire Alarm Device Identification:
 1. Minimum Size: 3/8 inch by 1.5 inches.
 2. Legend: Designation indicated and device zone or address.
 3. Text: All capitalized unless otherwise indicated.
 5. Color: Red text on white background.

2.03 VOLTAGE MARKERS

A. Markers for Boxes and Equipment Enclosures: Use factory pre-printed self-adhesive vinyl or self-adhesive vinyl cloth type markers.
B. Minimum Size:
 1. Markers for Pull Boxes: 1 1/8 by 4 1/2 inches.
C. Legend:
 1. Markers for Voltage Identification: Highest voltage present.
 2. Markers for System Identification:
 a. Emergency Power System: Text "EMERGENCY".
D. Color: Black text on orange background unless otherwise indicated.

2.04 UNDERGROUND WARNING TAPE
A. Materials: Use non-detectable type polyethylene tape suitable for direct burial, unless otherwise indicated.
B. Non-detectable Type Tape: 6 inches wide, with minimum thickness of 4 mil.
C. Legend: Type of service, continuously repeated over full length of tape.
D. Color:
 1. Tape for Buried Power Lines: Black text on red background.

2.05 FLOOR MARKING TAPE
A. Floor Marking Tape for Equipment Working Clearance Identification: Self-adhesive vinyl or polyester tape with overlaminate, 3 inches wide, with alternating black and white stripes.

2.06 WARNING SIGNS AND LABELS
A. Comply with ANSI Z535.2 or ANSI Z535.4 as applicable.
B. Warning Signs:
 1. Materials:
 a. Indoor Dry, Clean Locations: Use factory pre-printed rigid plastic or self-adhesive vinyl signs.
 b. Outdoor Locations: Use factory pre-printed rigid aluminum signs.
 2. Rigid Signs: Provide four mounting holes at corners for mechanical fasteners.
 3. Minimum Size: 7 by 10 inches unless otherwise indicated.
C. Warning Labels:
 1. Materials: Use factory pre-printed or machine-printed self-adhesive polyester or self-adhesive vinyl labels; UV, chemical, water, heat, and abrasion resistant; produced using materials recognized to UL 969.
 3. Minimum Size: 2 by 4 inches unless otherwise indicated.

PART 3 EXECUTION
3.01 PREPARATION
A. Clean surfaces to receive adhesive products according to manufacturer's instructions.

3.02 INSTALLATION
A. Install products in accordance with manufacturer's instructions.
B. Install identification products to be plainly visible for examination, adjustment, servicing, and maintenance. Unless otherwise indicated, locate products as follows:
 3. Free-Standing Equipment: Enclosure front; also enclosure rear for equipment with rear access.
 4. Elevated Equipment: Legible from the floor or working platform.
5. Branch Devices: Adjacent to device.
6. Interior Components: Legible from the point of access.
7. Boxes: Outside face of cover.
8. Conductors and Cables: Legible from the point of access.

C. Install identification products centered, level, and parallel with lines of item being identified.
D. Secure nameplates to exterior surfaces of enclosures using stainless steel screws and to interior surfaces using self-adhesive backing or epoxy cement.
E. Install self-adhesive labels and markers to achieve maximum adhesion, with no bubbles or wrinkles and edges properly sealed.
F. Install underground warning tape above buried lines with one tape per trench at 3 inches below finished grade.
G. Secure rigid signs using stainless steel screws.
H. Mark all handwritten text, where permitted, to be neat and legible.

END OF SECTION
SECTION 26 0573
POWER SYSTEM STUDIES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Short-circuit study.
B. Protective device coordination study.
C. Arc flash and shock risk assessment.
 1. Includes arc flash hazard warning labels.
D. Criteria for the selection and adjustment of equipment and associated protective devices not specified in this section, as determined by studies to be performed.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Section 26 0005 - Basic Electrical Requirements.
C. Section 26 0553 - Identification for Electrical Systems: Additional requirements for arc flash hazard warning labels.
D. Section 26 2416 - Panelboards.
E. Section 26 2813 - Fuses.
F. Section 26 2816.16 - Enclosed Switches.

1.03 REFERENCE STANDARDS
G. NEMA MG 1 - Motors and Generators 2018.
I. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Existing Installations: Coordinate with equipment manufacturer(s) to obtain data necessary for completion of studies.
 2. Coordinate the work to provide equipment and associated protective devices complying with criteria for selection and adjustment, as determined by studies to be performed.
B. Sequencing:
 1. Submit study reports prior to or concurrent with product submittals.
2. Do not order equipment until matching study reports and product submittals have both been evaluated by Architect.

1.05 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.
B. Study reports, stamped or sealed and signed by study preparer.
C. Product Data: In addition to submittal requirements specified in other sections, include manufacturer's standard catalog pages and data sheets for equipment and protective devices indicating information relevant to studies.
 1. Identify modifications made in accordance with studies that:
 a. Can be made at no additional cost to Owner.
 b. As submitted will involve a change to the contract sum.

1.06 POWER SYSTEM STUDIES
A. Scope of Studies:
 1. Perform analysis of new electrical distribution system as indicated on drawings.
 2. Except where study descriptions below indicate exclusions, analyze system at each bus from primary protective devices of utility source down to each piece of equipment involved, including parts of system affecting calculations being performed (e.g. fault current contribution from motors).
 3. Include in analysis alternate sources and operating modes (including known future configurations) to determine worst case conditions.
B. General Study Requirements:
 1. Comply with NFPA 70.
 2. Perform studies utilizing computer software complying with specified requirements; manual calculations are not permitted.
C. Data Collection:
 1. Compile information on project-specific characteristics of actual installed equipment, protective devices, feeders, etc. as necessary to develop single-line diagram of electrical distribution system and associated input data for use in system modeling.
 a. Utility Source Data: Include primary voltage, maximum and minimum three-phase and line-to-ground fault currents, impedance, X/R ratio, and primary protective device information.
 1) Obtain up-to-date information from Utility Company.
 b. Generators: Include manufacturer/model, kW and voltage ratings, and impedance.
 c. Motors: Include manufacturer/model, type (e.g. induction, synchronous), horsepower rating, voltage rating, full load amps, and locked rotor current or NEMA MG 1 code letter designation.
 d. Transformers: Include primary and secondary voltage ratings, kVA rating, winding configuration, percent impedance, and X/R ratio.
 e. Protective Devices:
 1) Circuit Breakers: Include manufacturer/model, type (e.g. thermal magnetic, electronic trip), frame size, trip rating, voltage rating, interrupting rating, available field-adjustable trip response settings, and features (e.g. zone selective interlocking).
 2) Fuses: Include manufacturer/model, type/class (e.g. Class J), size/rating, and speed (e.g. time delay, fast acting).
 f. Protective Relays: Include manufacturer/model, type, settings, current/potential transformer ratio, and associated protective device.
 g. Conductors: Include feeder size, material (e.g. copper, aluminum), insulation type, voltage rating, number per phase, raceway type, and actual length.
D. Short-Circuit Study:
2. For purposes of determining equipment short circuit current ratings, consider conditions that may result in maximum available fault current, including but not limited to:
 a. Maximum utility fault currents.
 b. Maximum motor contribution.
 c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).

3. For each bus location, calculate the maximum available three-phase bolted symmetrical and asymmetrical fault currents. For grounded systems, also calculate the maximum available line-to-ground bolted fault currents.

E. Arc Flash and Shock Risk Assessment:
 1. Comply with NFPA 70E.
 2. Perform incident energy and arc flash boundary calculations in accordance with IEEE 1584 (as referenced in NFPA 70E Annex D), where applicable.
 3. Analyze alternate scenarios considering conditions that may result in maximum incident energy, including but not limited to:
 a. Maximum and minimum utility fault currents.
 b. Maximum and minimum motor contribution.
 c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).

F. Study Reports:
 1. General Requirements:
 a. Identify date of study and study preparer.
 b. Identify study methodology and software product(s) used.
 c. Identify scope of studies, assumptions made, implications of possible alternate scenarios, and any exclusions from studies.
 d. Identify base used for per unit values.
 e. Include single-line diagram and associated input data used for studies; identify buses on single-line diagram as referenced in reports, and indicate bus voltage.
 f. Include conclusions and recommendations.
 2. Short-Circuit Study:
 a. For each scenario, identify at each bus location:
 1) Calculated maximum available symmetrical and asymmetrical fault currents (both three-phase and line-to-ground where applicable).
 2) Fault point X/R ratio.
 3) Associated equipment short circuit current ratings.
 b. Identify locations where the available fault current exceeds the equipment short circuit current rating, along with recommendations.
 3. Arc Flash and Shock Risk Assessment:
 a. For the worst case for each scenario, identify at each bus location:
 1) Calculated incident energy and associated working distance.
 2) Calculated arc flash boundary.
 3) Bolted fault current.
 4) Arcing fault current.
 5) Clearing time.
 6) Arc gap distance.
 b. For purposes of producing arc flash hazard warning labels, summarize the maximum incident energy and associated data reflecting the worst case condition of all scenarios at each bus location.

1.07 QUALITY ASSURANCE

A. Study Preparer Qualifications: Professional electrical engineer licensed in the State in which the Project is located and with minimum five years experience in the preparation of studies of similar type and complexity using specified computer software.
B. Computer Software for Study Preparation: Use the latest edition of commercially available software utilizing specified methodologies.

PART 2 PRODUCTS

2.01 ARC FLASH HAZARD WARNING LABELS

A. Provide warning labels complying with ANSI Z535.4 to identify arc flash hazards for each work location analyzed by the arc flash and shock risk assessment.
 1. Materials: Comply with Section 26 0553.
 2. Legend: Provide custom legend in accordance with NFPA 70E based on equipment-specific data as determined by arc flash and shock risk assessment.
 a. Include the following information:
 1) Arc flash boundary.
 2) Available incident energy and corresponding working distance.
 3) Nominal system voltage.
 4) Equipment identification.
 5) Date calculations were performed.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install arc flash warning labels in accordance with Section 26 0553.

3.02 FIELD QUALITY CONTROL

A. Provide the services of field testing agency or equipment manufacturer’s representative to perform inspection, testing, and adjusting.
B. Inspect and test in accordance with NETA ATS, except Section 4.
C. Adjust equipment and protective devices for compliance with studies and recommended settings.
D. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from studies. Obtain direction before proceeding.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Low-voltage (600 V and less) switchboards and associated accessories for service and distribution applications.
B. Overcurrent protective devices for switchboards.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 03 - Concrete: Concrete equipment pads.
C. Section 03 3000 - Cast-in-Place Concrete: Concrete equipment pads.
D. Section 26 0005 - Basic Electrical Requirements.
E. Section 26 0526 - Grounding and Bonding for Electrical Systems.
F. Section 26 0529 - Hangers and Supports for Electrical Systems.
G. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
H. Section 26 0573 - Power System Studies: Additional criteria for the selection and adjustment of equipment and associated protective devices specified in this section.
I. Section 26 2300 - Low-Voltage Switchgear.
J. Section 26 2813 - Fuses: Fuses for fusible switches.

1.03 REFERENCE STANDARDS
A. FS W-C-375 - Circuit Breakers, Molded Case; Branch Circuit and Service 2013e (Amended 2017).
F. NEMA PB 2 - Deadfront Distribution Switchboards 2011.
I. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working
clearances required by NFPA 70.
2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
3. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.
4. Coordinate with manufacturer to provide shipping splits suitable for the dimensional constraints of the installation.
5. Notify Architect of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

B. Service Entrance Switchboards:
1. Coordinate with Utility Company to provide switchboards with suitable provisions for electrical service and utility metering, where applicable.
2. Coordinate with Owner to arrange for Utility Company required access to equipment for installation and maintenance.
3. Obtain Utility Company approval of switchboard prior to fabrication.
4. Arrange for inspections necessary to obtain Utility Company approval of installation.

1.05 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.

B. Shop Drawings: Indicate dimensions, voltage, bus ampacities, overcurrent protective device arrangement and sizes, short circuit current ratings, conduit entry locations, conductor terminal information, and installed features and accessories.
1. Include dimensioned plan and elevation views of switchboards and adjacent equipment with all required clearances indicated.
2. Clearly indicate whether proposed short circuit current ratings are fully rated or, where acceptable, series rated systems.
3. Include documentation of listed series ratings as indicated in Section 26 0573.

D. Project Record Documents: Record actual installed locations of switchboards and final equipment settings.

1.06 QUALITY ASSURANCE
A. Comply with requirements of NFPA 70.

1.07 DELIVERY, STORAGE, AND HANDLING
A. Receive, inspect, handle, and store switchboards in accordance with manufacturer's instructions, NECA 400, and NEMA PB 2.1.
B. Store in a clean, dry space having a uniform temperature to prevent condensation (including outdoor switchboards, which are not weatherproof until completely and properly installed). Where necessary, provide temporary enclosure space heaters or temporary power for permanent factory-installed space heaters.
C. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.
D. Handle carefully to avoid damage to switchboard internal components, enclosure, and finish.

PART 2 PRODUCTS
2.01 MANUFACTURERS
A. Switchboards:
1. Eaton Corporation: www.eaton.com - For Pricing contact Mike Dalimonte - 734-552-0905, mdalimonte@servelectric.com

2.02 SWITCHBOARDS
A. Provide switchboards consisting of all required components, control power transformers, instrumentation and control wiring, accessories, etc. as necessary for a complete operating system.

B. Provide products listed, classified, and labeled as suitable for the purpose intended.

C. Description: Dead-front switchboard assemblies complying with NEMA PB 2, and listed and labeled as complying with UL 891; ratings, configurations and features as indicated on the drawings.

D. Service Entrance Switchboards:
1. Listed and labeled as suitable for use as service equipment according to UL 869A.
2. For solidly-grounded wye systems, provide factory-installed main bonding jumper between neutral and ground busses, and removable neutral disconnecting link for testing purposes.
4. Utility Metering Provisions: Provide separate barriered compartment complying with Utility Company requirements where indicated or where required by Utility Company. Include hinged sealable door and provisions for Utility Company current transformers (CTs), potential transformers (PTs), or potential taps as required.

E. Switchboards With Fire Pump Taps: Provide separate bussed vertical section with suitable lugs for fire pump connection to line side of main service disconnect device(s).

F. Service Conditions:
1. Provide switchboards and associated components suitable for operation under the following service conditions without derating:
 a. Altitude: Less than 6,600 feet.
 b. Ambient Temperature:
 1) Switchboards Containing Molded Case or Insulated Case Circuit Breakers: Between 23 degrees F and 104 degrees F.

2. Provide switchboards and associated components suitable for operation at indicated ratings under the service conditions at the installed location.

G. Short Circuit Current Rating:
1. Provide switchboards with listed short circuit current rating not less than the available fault current at the installed location as indicated on the drawings.

H. Main Devices: Configure for top or bottom incoming feed as indicated or as required for the installation. Provide separate pull section and/or top-mounted pullbox as indicated or as required to facilitate installation of incoming feed.

I. Bussing: Sized in accordance with UL 891 temperature rise requirements.
1. Through bus (horizontal cross bus) to be fully rated through full length of switchboard (non-tapered). Tapered bus is not permitted.
2. Provide fully rated neutral bus unless otherwise indicated, with a suitable lug for each feeder or branch circuit requiring a neutral connection.
3. Provide solidly bonded equipment ground bus through full length of switchboard, with a suitable lug for each feeder and branch circuit equipment grounding conductor.
5. Ground Bus Material: Aluminum.

J. Conductor Terminations: Suitable for use with the conductors to be installed.
1. Line Conductor Terminations:
 a. Main and Neutral Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
 b. Main and Neutral Lug Type: Mechanical.
2. Load Conductor Terminations:
 a. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
 b. Lug Type:
 1) Provide mechanical lugs unless otherwise indicated.

K. Enclosures:
1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1 or Type 2 (drip-proof).
 b. Outdoor Locations: Type 3R.
2. Finish: Manufacturer's standard unless otherwise indicated.

L. Future Provisions:
 1. Prepare designated spaces for future installation of devices including bussing, connectors, mounting hardware and all other required provisions.

M. Ground Fault Protection: Where ground-fault protection is indicated, provide system listed and labeled as complying with UL 1053.

N. Arc Flash Energy-Reducing Maintenance Switching: For circuit breakers rated 1200 A or higher, provide a local accessory switch with status indicator light that permits selection of a maintenance mode with alternate electronic trip unit settings for reduced fault clearing time.

O. Owner Metering:
 1. Provide microprocessor-based digital electrical metering system including all instrument transformers, wiring, and connections necessary for measurements specified.
 2. Measured Parameters:
 a. Voltage (Volts AC): Line-to-line, line-to-neutral for each phase.
 b. Current (Amps): For each phase and neutral.
 c. Frequency (Hz).
 d. Real power (kW): For each phase, 3-phase total.
 e. Reactive power (kVAR): For each phase, 3-phase total.
 f. Apparent power (kVA): For each phase, 3-phase total.
 g. Power factor.
 3. Meter Accuracy: Plus/minus 1.0 percent.

P. Instrument Transformers:
 2. Select suitable ratio, burden, and accuracy as required for connected devices.

2.03 OVERCURRENT PROTECTIVE DEVICES

A. Circuit Breakers:
 1. Interrupting Capacity:
 a. Provide circuit breakers with interrupting capacity as required to provide the short circuit current rating indicated, but not less than specified minimum requirements.
 b. Fully Rated Systems: Provide circuit breakers with interrupting capacity not less than the short circuit current rating indicated.
 2. Molded Case Circuit Breakers:
 a. Description: Quick-make, quick-break, over center toggle, trip-free, trip-indicating circuit breakers; listed and labeled as complying with UL 489, and complying with FS W-C-375 where applicable; ratings, configurations, and features as indicated on the drawings.
 1) Provide thermal magnetic circuit breakers unless otherwise indicated.
 2) Provide electronic trip circuit breakers where indicated.
 b. Thermal Magnetic Circuit Breakers: For each pole, furnish thermal inverse time tripping element for overload protection and magnetic instantaneous tripping element for short circuit protection.
 c. Electronic Trip Circuit Breakers: Furnish solid state, microprocessor-based, true rms sensing trip units.
 1) Provide the following field-adjustable trip response settings:
 a) Long time pickup, adjustable by replacing interchangeable trip unit or by setting dial.
 b) Long time delay.
(c) Short time pickup and delay.
(d) Instantaneous pickup.
(e) Ground fault pickup and delay where ground fault protection is indicated.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.
B. Install switchboards in accordance with NECA 1 (general workmanship), NECA 400, and NEMA PB 2.1.
C. Arrange equipment to provide required clearances and maintenance access, including accommodations for any drawout devices.
D. Where switchboard is indicated to be mounted with inaccessible side against wall, provide minimum clearance of 1/2 inch between switchboard and wall.
E. Provide required support and attachment in accordance with Section 26 0529.
F. Install switchboards plumb and level.
G. Unless otherwise indicated, mount switchboards on properly sized 4 inch high concrete pad constructed in accordance with Section 03 3000.
H. Install switchboards plumb and level.
I. Install all field-installed devices, components, and accessories.
J. Where accessories are not self-powered, provide control power source as indicated or as required to complete installation.
K. Set field-adjustable circuit breaker tripping function settings as indicated.
L. Set field-adjustable ground fault protection pickup and time delay settings as indicated.
M. Provide filler plates to cover unused spaces in switchboards.

3.02 FIELD QUALITY CONTROL

A. Before energizing switchboard, perform insulation resistance testing in accordance with NECA 400 and NEMA PB 2.1.
B. Inspect and test in accordance with NETA ATS, except Section 4.
C. Perform inspections and tests listed in NETA ATS, Section 7.1.
D. Molded Case and Insulated Case Circuit Breakers: Perform inspections and tests listed in NETA ATS, Section 7.6.1.1 for all main circuit breakers and circuit breakers larger than ______ amperes. Tests listed as optional are not required.
E. Ground Fault Protection Systems: Test in accordance with manufacturer's instructions as required by NFPA 70.
 1. Perform inspections and tests listed in NETA ATS, Section 7.14. The insulation-resistance test on control wiring listed as optional is not required.
F. Meters: Perform inspections and tests listed in NETA ATS, Section 7.11.2.
G. Instrument Transformers: Perform inspections and tests listed in NETA ATS, Section 7.10. The dielectric withstand tests on primary windings with secondary windings connected to ground listed as optional are not required.
H. Correct deficiencies and replace damaged or defective switchboards or associated components.

3.03 ADJUSTING

A. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.
B. Adjust alignment of switchboard covers and doors.

END OF SECTION
SECTION 26 2813
FUSES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Fuses.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Section 26 0005 - Basic Electrical Requirements.
C. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
D. Section 26 0573 - Power System Studies: Additional criteria for the selection of protective devices specified in this section.
E. Section 26 2416 - Panelboards: Fusible switches.
F. Section 26 2816.16 - Enclosed Switches: Fusible switches.

1.03 REFERENCE STANDARDS
A. NEMA FU 1 - Low Voltage Cartridge Fuses 2012.

PART 2 PRODUCTS

2.01 MANUFACTURERS
A. Bussmann, a division of Eaton Corporation: www.cooperindustries.com
B. Littelfuse, Inc: www.littelfuse.com
C. Mersen: ep-us.mersen.com

2.02 APPLICATIONS
A. Service Entrance:
 1. Fusible Switches up to 600 Amperes: Class RK1, time-delay.
 2. Fusible Switches Larger Than 600 Amperes: Class L, time-delay.
B. Feeders:
 1. Fusible Switches up to 600 Amperes: Class RK1, time-delay.
 2. Fusible Switches Larger Than 600 Amperes: Class L, time-delay.

2.03 FUSES
A. Provide products listed, classified, and labeled as suitable for the purpose intended.
B. Unless specifically indicated to be excluded, provide fuses for all fusible equipment as required for a complete operating system.
C. Provide fuses of the same type, rating, and manufacturer within the same switch.
D. Comply with UL 248-1.
E. Unless otherwise indicated, provide cartridge type fuses complying with NEMA FU 1, Class and ratings as indicated.
F. Voltage Rating: Suitable for circuit voltage.
G. Class R Fuses: Comply with UL 248-12.
H. Class L Fuses: Comply with UL 248-10.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that fuse ratings are consistent with circuit voltage and manufacturer’s recommendations and nameplate data for equipment.

B. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION

A. Do not install fuses until circuits are ready to be energized.

B. Install fuses with label oriented such that manufacturer, type, and size are easily read.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Enclosed safety switches.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Section 26 0005 - Basic Electrical Requirements.
C. Section 26 0526 - Grounding and Bonding for Electrical Systems.
D. Section 26 0529 - Hangers and Supports for Electrical Systems.
E. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
F. Section 26 0573 - Power System Studies: Additional criteria for the selection of equipment and associated protective devices specified in this section.
G. Section 26 2813 - Fuses.
H. Section 26 3600 - Transfer Switches: Automatic and non-automatic switches listed for use as transfer switch equipment.

1.03 REFERENCE STANDARDS
A. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
C. NEMA KS 1 - Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum) 2013.
E. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
 1. Coordinate the work with other trades. Avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and within working clearances for electrical equipment required by NFPA 70.
 2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
 3. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.

PART 2 PRODUCTS

2.01 MANUFACTURERS
A. ABB/GE: www.geindustrial.com
B. Eaton Corporation: www.eaton.com
C. Schneider Electric; Square D Products: www.schneider-electric.us
D. Siemens Industry, Inc: www.usa.siemens.com

2.02 ENCLOSED SAFETY SWITCHES

A. Description: Quick-make, quick-break enclosed safety switches listed and labeled as complying with UL 98; heavy duty; ratings, configurations, and features as indicated on the drawings.

B. Provide products listed, classified, and labeled as suitable for the purpose intended.

C. Unless otherwise indicated, provide products suitable for continuous operation under the following service conditions:
 1. Altitude: Less than 6,600 feet.
 2. Ambient Temperature: Between -22 degrees F and 104 degrees F.

D. Horsepower Rating: Suitable for connected load.

E. Voltage Rating: Suitable for circuit voltage.

F. Short Circuit Current Rating:
 1. Provide enclosed safety switches, when protected by the fuses or supply side overcurrent protective devices to be installed, with listed short circuit current rating not less than the available fault current at the installed location as indicated on the drawings.

G. Enclosed Safety Switches Used for Service Entrance: Listed and labeled as suitable for use as service equipment according to UL 869A.

H. Provide with switch blade contact position that is visible when the cover is open.

I. Conductor Terminations: Suitable for use with the conductors to be installed.

J. Provide solidly bonded equipment ground bus in each enclosed safety switch, with a suitable lug for terminating each equipment grounding conductor.

K. Enclosures: Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E.
 1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1.
 b. Outdoor Locations: Type 3R.

L. Provide safety interlock to prevent opening the cover with the switch in the ON position with capability of overriding interlock for testing purposes.

M. Heavy Duty Switches:
 2. Conductor Terminations:
 a. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
 3. Provide externally operable handle with means for locking in the OFF position, capable of accepting three padlocks.
 a. Provide means for locking handle in the ON position where indicated.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Perform work in accordance with NECA 1 (general workmanship).

C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

D. Provide required support and attachment in accordance with Section 26 0529.

E. Install enclosed switches plumb.

F. Except where indicated to be mounted adjacent to the equipment they supply, mount enclosed switches such that the highest position of the operating handle does not exceed 79 inches above the floor or working platform.
G. Provide grounding and bonding in accordance with Section 26 0526.
H. Identify enclosed switches in accordance with Section 26 0553.

3.02 ADJUSTING
A. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

END OF SECTION