Unified Building Systems Engineering, LLC
75 N. Main St. Suite 221
Mt. Clemens, MI 48043
586-500-7055

LPS Emerson & Holmes Woodshop/Art Room
AC Upgrades
15125 Farmington Rd. Livonia, MI 48154

MEP TECHNICAL SPECIFICATIONS
PROJECT MANUAL

FOR

001.23.04 LIVONIA EMERSON & HOLMES WOOD SHOP AC

UBS PROJECT NUMBER: 001.23.04

LIVONIA PUBLIC SCHOOLS
15125 FARMINGTON RD.
LIVONIA, MI 48154

DATE: 10/16/2023

PREPARED BY:
UNIFIED BUILDING SYSTEMS ENGINEERING, LLC
# TABLE OF CONTENTS

**DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS**
- 00 0101  PROJECT TITLE PAGE

**DIVISION 22 - PLUMBING**
- 22 0005  BASIC PLUMBING REQUIREMENTS
- 22 0505  SELECTIVE DEMOLITION FOR PLUMBING
- 22 0517  SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
- 22 0523  DUTY VALVES FOR PLUMBING PIPING
- 22 0553  IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
- 22 1005  PLUMBING PIPING

**DIVISION 23 - HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)**
- 23 0005  BASIC HVAC REQUIREMENTS
- 23 0505  SELECTIVE DEMOLITION FOR HVAC
- 23 0593  TESTING, ADJUSTING, AND BALANCING FOR HVAC
- 23 0713  DUCT INSULATION
- 23 0913  INSTRUMENTATION AND CONTROL DEVICES FOR HVAC
- 23 0925  DIGITAL CONTROL (DDC) SYSTEMS FOR HVAC
- 23 3100  HVAC DUCTS AND CASINGS
- 23 3300  AIR DUCT ACCESSORIES
- 23 7413  PACKAGED OUTDOOR CENTRAL-STATION AIR-HANDLING UNITS

**DIVISION 26 - ELECTRICAL**
- 26 0005  BASIC ELECTRICAL REQUIREMENTS
- 26 0505  SELECTIVE DEMOLITION FOR ELECTRICAL
- 26 0519  VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 26 0526  GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 26 0529  HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 26 0533.13  CONDUIT FOR ELECTRICAL SYSTEMS
- 26 0533.16  BOXES FOR ELECTRICAL SYSTEMS
- 26 0553  IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 26 0573  POWER SYSTEM STUDIES
- 26 2813  FUSES
- 26 2816.16  ENCLOSED SWITCHES

**DIVISION 28 - ELECTRONIC SAFETY AND SECURITY**
- 28 4600  FIRE DETECTION AND ALARM
PART 1 GENERAL

1.01 RELATED DOCUMENTS
   A. This section applies to all sections of Division 22.
   B. Drawings and general provisions of the contract, including Division 00 and Division 01 specification sections, apply to work of this section.
   C. Provide all items, articles, materials, operations or methods listed, mentioned or scheduled on drawings and/or herein, including all labor, materials, equipment and incidentals necessary and required for their completion.
   D. The items in this section are supplementary to the requirements set forth in other portions of the specifications as indicated under item "A" above.

1.02 APPLICATION
   A. This section applies to all plumbing work. The contractors involved shall check all sections of the specifications in addition to the particular section covering their specific trade. Each distinct section of the specifications aimed for one trade may have detailed information with regards to other trades, therefore, it is imperative that all sections be reviewed to get a complete picture of all other trades' functions and work required.
   B. The plumbing contractor is responsible for the installation and operation of the plumbing systems.
   C. The plumbing contractor is responsible for receiving, unloading and placement of all of the owner provided equipment.

1.03 INSPECTION OF SITE
   A. Each Contractor shall visit the site prior to bid submission to determine all existing conditions that may affect his work and shall make appropriate allowances for such conditions in his bid. Failure to visit the site shall not be cause for a request for additional compensation later in the project during construction.
   B. The submitting of a proposal implies that the contractor has visited the site and understands the conditions under which the work must be conducted.
   C. Install Work in locations shown on Drawings, unless prevented by Project conditions.
   D. Prepare drawings showing proposed rearrangement of Work to meet Project conditions, including changes to Work specified in other Sections. Obtain permission of Owner before proceeding.

1.04 ALTERNATES AND SUBSTITUTIONS
   A. Refer to Division 01 - General Requirements for procedures to submit products by a Manufacturer that is not listed as approved equal in the Specifications.

1.05 DEVIATIONS FROM BASIS OF DESIGN MANUFACTURER
   A. Products identified within the schedules and details are used as the basis of design for laying out and coordinating with other trades such as structural, architectural, and electrical. Should Division 22 Contractor submit products by a manufacturer other than that indicated as Basis of Design in the Drawings, Contractor shall then be responsible for evaluating the impacts of the proposed Manufacturer's equipment, even if the Manufacturer is listed in the specifications as an approved equal. This includes the proposed Manufacturer's electrical, architectural and structural requirements and their subsequent impacts on the current design and coordination of any differing dimensions and clearances with all other trades. This evaluation shall be included as part of the proposed product submittal.

1.06 MATERIALS
   A. Plumbing equipment is to be furnished with motors, electrical controls and protective devices, and integral operating devices which are normally included by the manufacturer or required by
the Contract Documents.

B. The Plumbing trades shall provide all control wiring, 120 volts and less, for the equipment and devices furnished under Division 22 of these specifications, including all wiring devices, transformers, conduit, etc. Any conduits used for control wiring shall meet the specifications as indicated in Division 26.

C. Power wiring 120 volts and greater shall be by the Electrical Trades.

1.07 CODES, PERMITS AND FEES

A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for plumbing work shall be secured and paid for by the contractor. All work shall conform to all applicable codes, rules and regulations. Applicable publications listed in all sections of Division 22 shall be the latest issue, unless otherwise noted.

B. Rules of local utility companies and municipalities shall be complied with. Check with the utility company and/or municipality supplying service to the installation and determine all devices including, but not limited to: meters, regulators, valves which will be required and include the cost of all such items in the proposal.

C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed drawings or diagrams which may be required by the governing authorities. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern.

1.08 MAINTENANCE

A. Provide 8 hours of instruction to the owner's designated personnel in the maintenance and operation of equipment and systems.

B. Provide complete maintenance and operating instructional manuals covering all mechanical equipment herein specified, together with parts lists. Maintenance and operating instructional manuals shall be job specific to this project. Generic manuals are not acceptable. Manuals shall be submitted in electronic format for review. When approved, four (4) bound hard copies and an indexed electronic PDF shall be provided to the owner. Maintenance and operating instructional manuals shall be provided when construction is approximately 75% complete.

1.09 WARRANTY AND GUARANTEE

A. Contractor shall guarantee all work installed by him or his subcontractors to be free from defect in material and workmanship for a period of one year from date of final acceptance of the work, unless a longer period is stipulated under specific headings. Contractor shall repair or replace at no additional cost to the owner, any material or equipment developing defects and shall also make good any damage caused by such defects or the correction of defects. Repairs or replacements shall bear additional guarantee, as originally called for, dated from the final acceptance of the repair or replacement. This requirement shall be binding even though it will exceed product guarantees normally furnished by some manufacturers. Contractor shall submit his own and each equipment manufacturer's written certificates, warranting that each item of equipment furnished complies with all requirements of the drawings and specifications. Note that guarantee shall run from date of final acceptance of the work, not from date of installation of a device or piece of equipment.

1.10 SUBMITTALS

A. Shop drawings and samples shall be submitted in compliance with the Conditions of the Contract and Division 1 General Requirements.

B. Contractor shall provide submittals where items are referred to by symbolic designation on the drawings. All submittals shall bear the same designation (plumbing piping, plumbing fixtures, etc.). Refer to other sections of the electrical specifications for additional requirements.

C. Shop Drawings: Each piece of equipment shall be identified by the number shown in the schedules and by specification article number pertaining to the item. Shop drawings shall as a minimum be ¼” equals 1’ 0” scale, and shall be newly prepared by the Contractor and not reproduced from the Architect's drawings. Layouts shall be made for all floor plans including all
ductwork, piping, electrical distribution and other mechanical equipment. Layouts shall show clearances of piping, ducts, etc., above floor.

D. Contractor shall obtain Engineer’s approval on all the work before any equipment is purchased, or any work installed. Contractor shall also secure approval of the Governmental Authorities having jurisdiction on all equipment and on the layout of the complete system.

E. The Engineer’s review and approval of shop drawings is a gratuitous assistance and in no way does it relieve the Contractor from responsibility for errors or omissions which may exist on the shop drawings. Where such errors or omissions are discovered later, they must be made good by the Contractor, without any additional cost to the Owner, irrespective of any approval by the Engineer.

1. The Contractor shall incorporate with his shop drawings, a letter indicating all deviations from the plans and/or specifications. If in the opinion of the Architect, the deviations are not equal, the Contractor will be required to furnish the item as specified and as indicated on the drawings.

2. Record documents shall be submitted in compliance with the requirements of the Specifications.

F. Engineer WILL NOT REVIEW:

1. Submittals not specified.
2. Submittals not reviewed by Contractor; including Contractor stamp with signature comments.
3. Submittals made after work is delivered to site and/or installed.
4. Submittal resubmissions unless resubmission is required by Architect/Engineer.

G. Installation of any item that requires submittal approval by the engineer shall be installed at the contractors risk. The contractor, at his cost, shall remove all work installed prior to approval of the submittal.

H. The engineer will not be responsible for errors in quantities, or dimensions required to fit the job condition, details of fabrication to insure proper assembly at the job, or for errors resulting from errors in submittals.

I. For underground piping, record dimensions and invert elevations of all piping, including all offsets, fittings, cathodic protection and accessories. Locate dimensions from benchmarks that will be preserved after construction is complete.

1.11 RECORD DRAWINGS

A. Refer to Division 01 - General Requirements for procedures. All literature shall be furnished in accordance with requirements listed in Division 01.

B. Contractor shall provide the following record drawings as part of the Project closeout document process:

1. Contract Documents, specifications and submittals, indicating "As-Built" conditions and actual products selected for use.

2. Product and Maintenance manuals for all equipment listed within this specification manual and in Contract Documents. Provide with parts lists as applicable.

1.12 QUALITY ASSURANCE

A. Other referenced standards:

1. Comply with referenced standards, guidelines, data sheets from various associations, including NFPA, ANSI, ASTM, ASME, ASHRAE.

PART 2 PRODUCTS

2.01 SLEEVES AND ESCUTCHEONS

A. Provide sleeves wherever pipes pass through exterior wall and floors. Sleeves shall be schedule 40 steel pipe cut to length. Sleeves shall terminate flush with walls, partitions and ceilings in finished areas. All sleeves through floor shall extend 2” above floor. Provide cast brass nickel-plated escutcheons with positive catches on each visible sleeve penetration. Sleeves are to be sealed at each installation with a 3M approved sealant. The space between
the inside of the sleeve and the outside of the pipe or conduit with in the sleeve shall be sealed at each installation with a 3M approved sealant.

2.02 DIELECTRIC UNIONS
A. Dielectric unions shall be used to connect dissimilar metals (such as steel and copper) to prevent electrolytic action.
B. Dielectric waterway fittings shall be a copper-silicon casting conforming to UNS C87850, and UL classified in accordance with ANSI / NSF-61 for potable water service.

2.03 BUILDING ATTACHMENTS FOR PLUMBING WORK SUPPORTS
A. General Requirements:
   1. Provide building attachments required for supporting plumbing work, suitably selected and installed for the loads applied with a minimum additional safety factor of 3.
   2. Where specified attachments are not suitable for conditions, submit to Engineer for approval, proposal for alternate building attachments.
   3. If specially designed building attachments are required, retain the services of a licensed structural engineer to design such building attachments.
   4. Approved Manufacturers: Grinnell, or equivalent products by Michigan Hanger and B-Line.
   5. Provide supplemental trapeze supports where necessary. Design trapeze to support all trades. Coordinate loads, and supports with all trades. Size trapeze for maximum deflection of 1/64 of the span.
B. Attachments to Structural Steel:
   1. Support plumbing work from building structural steel where possible and approved. No welding or bolting to structural steel is permitted unless authorized by Architect. C-clamps are not permitted.
      a. Center beam clamp - for loads over 120 lb.: Malleable center hung Grinnell Fig. 228.
      b. Side beam clamp with retaining clips - for loads up to 120 lb.
C. Cast in Place Concrete Inserts:
   1. Provide inserts selected for applied load of present load plus 100% for future, and coordinated with concrete work. Except as detailed on drawings, inserts shall be Unistrut or Grinnell. Plan, lay out and coordinate setting of inserts prior to concrete pour. Use Grinnell Fig. 285 lightweight concrete insert for loads up to 400# or Grinnell Fig. 281 Wedge Type concrete insert for loads up to 1200#
D. Drilled Insert Anchors:
   1. Where plumbing work cannot be supported from structural steel, or cast in place concrete inserts, provide drilled concrete insert anchors. Submit for approval, project specific installation drawings for all loads over 100 lbs. Install inserts in web of beam if possible and approved. Insert depth shall not exceed two thirds the thickness of the concrete.
   Where existing concrete appears to be deteriorating, or where applied load at insert exceeds 1000 lbs., conduct test of concrete to determine derated capacity of insert. Anchors may be adhesive or expansion type up to 1000 lbs., and shall be adhesive type for loads over 1000 lbs.

PART 3 EXECUTION
3.01 GENERAL
A. Existing piping: when encountered during the course of work, protect, brace and support existing piping where required for proper execution of the work.
B. Interruption of existing active piping: when the course of work makes shut-down of services unavoidable, the plumbing contractor shall schedule the shut-down at such time as approved by the owners representative, which will cause least interference with established operating routine.
C. Arrange work accordingly, providing such fittings as duct transitions traps, valves and accessories necessary to complete all construction in an orderly fashion.
D. Install all equipment in strict accordance all directions and recommendations furnished by the manufacturer.

3.02 INTERPRETATION OF CONTRACT DOCUMENTS

A. Should there be discrepancy or a question of intent, refer matter to Architect/Engineer for decision before ordering any equipment or materials or before starting any related work.

B. Drawings and Specifications are to be taken together. Work specified and not shown or work shown and not specified shall be performed or furnished as though mentioned in both Specifications and Drawings. If there is discrepancy between Drawings and Specifications as to quantity or quality to be provided, the greater quantity or better quality shall be provided.

C. Minor items and accessories or devices reasonably inferable as necessary to complete and proper installation and operation of any system shall be provided by Contractor for such system whether or not specifically called for by Specifications or Drawings.

D. Architect/Engineer may change location of any equipment 5’ and any piping, ductwork, conduit, etc. 10’ in any direction without extra charge, provided such changes are made before installation.

E. Locations of items not definitely fixed by dimensions are approximate only and exact locations necessary to secure the best conditions and results shall be determined at the site and shall be subject to review and approval by Architect/Engineer.

F. Follow drawings in laying out work, check drawings of other trades to verify spaces in which work will be installed, and maintain maximum headroom and space conditions at all points.
   1. Where headroom or space conditions appear inadequate, notify Architect or Owner’s field representative before proceeding with installation.
   2. Pipe/duct rerouting and size changes shall be made at no additional cost to the Owner.

G. Furnish advance information on locations and sizes of frames, boxes, sleeves and openings needed for the work, and also furnish information and shop drawings necessary to permit installation of other work without delay.

H. Where there is evidence that parts of the Work specified in Divisions 21, 22, and 23 will interfere with other work, assist in working out space conditions to make satisfactory adjustments, revise and submit coordinated shop drawings.

I. After review and without additional cost to the Owner, make minor modifications in the work as required by structural interferences, by interferences with work of other sections or for proper execution of the work.

J. Work installed before coordinating with other work so as to cause interference with other work shall be changed and corrected without additional cost to the Owner.

K. Drawings are diagrammatic in nature and are a graphic representation of requirements and shall be followed as closely as actual building construction will permit. All changes from the plans necessary to make the work conform to the building as constructed and to fit the work of other trades or to conform to rules of the Governmental Authorities having jurisdiction, NFPA, OSHA and the Owner’s Insurance Underwriters, shall be made by the Contractor without extra cost to the Owner.

L. The layout of the piping, ductwork, equipment, etc., as shown on the drawings shall be checked and exact locations shall be determined by the dimensions of the equipment approved and the Contractor shall obtain approval for the revised layout before the apparatus is installed. The Contractor shall field measure or consult existing record Architectural and Structural Drawings if available for all dimensions, locations of partitions, locations and sizes of structural supports, foundations, etc.

M. Omission in the Drawings and/or Specifications of any items necessary for the proper completion or operation of the work outlined in this specification shall not relieve the Contractor from furnishing same without additional cost to the Owner.

N. The Equipment Shop Drawings should be furnished to the installing Contractor by the purchasing Contractor before roughing in. Contractor shall not install any piping or ductwork for
said equipment until he has received approved shop drawings for same.

3.03 ALTERATIONS IN PRESENT BUILDING AND SYSTEMS
A. Contractor shall take particular note of the revisions and alterations to the existing systems, facilities and equipment due to the new construction as indicated on the Drawings and/or in Specification. Contractor shall remove, reroute or alter all services, ductwork, etc., as required or as indicated on the drawings.
B. The Contractor shall maintain all services in the existing building. In case, where new service connections are to be made to existing services and service interruptions can in no way be avoided, the service interruptions shall be with the minimum of inconvenience to the Owner and the work shall be done at such time of any day, Saturday and Sunday included, and only as directed by the Owner or the Architect.

3.04 ACCESSIBILITY
A. Do not locate traps, valves, controls, unions, cleanouts, etc. in any system at a location that will be inaccessible after construction is completed. Maintain accessibility for all components in plumbing systems.

3.05 ACCESS PANELS:
A. Refer to Division 08 - Openings; Provide access doors in locations as required by applicable codes and as indicated below. Coordinate locations with architectural trades.
B. Submit shop drawings for review before ordering panels. Where fire rating is required, furnish label doors compatible with fire rating of assembly.
C. Contractor shall confer with other trades with respect to access panel locations, and shall wherever practical group valves, traps, dampers, etc. in such way as to be accessible from single panel and eliminate as many access panels as possible.
D. Furnish access panels to access valves, traps, control valves or devices, dampers, damper motors, etc. Access panels shall be sized as necessary for ample access, or as indicated on drawings, but no smaller than 12” x 12” where devices are within easy reach of operator, and at least 24”x24” when operator must pass through opening in order to reach the devices. Architectural Trades shall install access panels coordinated with Mechanical Trades.
E. Access panels in fire rated walls or ceiling must be U.L. labeled for intended use. Unless otherwise indicated on plans, access doors shall be hinged flush type steel framed panel, 14 gauge minimum for frame, and with anchor straps. Only narrow border shall be exposed. Hinges shall be concealed type. Locking device shall be flush type and screw driver operated. Metal surfaces shall be prime coated with rust-inhibitive paint. Panels shall be compatible with architectural adjacent materials.

3.06 PROTECTION OF ELECTRICAL EQUIPMENT
A. Contractor shall furnish and install sheet metal drain pans beneath piping that is routed above electrical equipment and/or above the 3’ access space in front of such equipment. Electrical equipment, for the purpose of addressing drain pan requirements, shall be defined as free-standing or wall-mounted switchgear, transformers, distribution boards or motor control centers.
   1. Drain pans shall be 20 gauge galvanized sheet metal with a minimum 4” high turned up edge. Bottom of drain pan shall slope to a single drainage point at ½” per foot. A 1” diameter clear plastic tube shall allow collected fluid to drain to the nearest open site floor drain. Secure plastic tubing to building structure only.
   2. Drain pan shall be hung from building structure with angle iron trapeze hangers (no hanger shall penetrate the drain pan). Consider drain pan to be full of water for hanger load calculations.
   3. Drain pans shall include liquid detectors with alarms only if noted on the drawings. Liquid detectors shall be specified in Section 22 10 06 Plumbing Piping Specialties.
B. Contractor shall include provisions to adjust the local lighting layout, at no extra cost to Owner, in order to accommodate any detrimental effect the drain pan has on the illumination of the electrical equipment and access space.
3.07 CUTTING, PATCHING AND DAMAGE TO OTHER WORK
   A. Refer to Division 01 - General Requirements.
   B. All cutting required shall be done by the contractor whose work is involved, without extra cost
      to the owner. All patching and restoration including the furnishing and installation of access
      panels in ceiling, walls; etc. Within the building lines shall be done by the respective,
      responsible contractor. No cutting of structural steel, concrete, or wood shall be done without
      prior approval and explicit directions of the architect patched by the respective, responsible
      contractor.
   C. The contractor, under whose jurisdiction the work may fall, shall provide labor, material, and
      tools required to cut, repair, protect, cap, or relocate existing pipes, conduits, or utilities
      interfering with or uncovered during work, per regulations of the authorities having jurisdiction.

3.08 EXCAVATION AND BACKFILLING
   A. Provide all excavation, trenching, tunneling, removal of materials, de-watering and backfilling
      required for the proper laying of pipes and plumbing work. Coordinate the work with other
      excavating and backfilling in same area.

3.09 ROUGH-IN FOR CONNECTION TO EQUIPMENT
   A. It shall be the responsibility of each contractor to study the architectural, structural, electrical,
      and mechanical drawings, conferring with the various trades involved and checking with the
      supplier of equipment in order to properly rough-in for all equipment.

3.10 MATERIAL AND EQUIPMENT
   A. All material and equipment shall be new and of the best quality used for the purpose in good
      commercial practice, and shall be the standard product of reputable manufacturers. The
      material and equipment must meet approval of state and local codes in the area it is being
      used. Roof decks shall not be used to support piping, conduit, equipment, devices, etc.

3.11 SEAL PENETRATIONS
   A. Seal the space around pipes in sleeves and around duct openings through walls, floors and
      ceilings. Provide adequate clearance to allow for proper sealing.

3.12 SOUND CONTROL
   A. Penetrations shall be maintained airtight to prevent sound transfer.
   B. Piping shall pass through sleeves. Pack sleeves tight with glass fiber or oakum and caulked on
      both sides with non-hardening acoustical sealant.

3.13 FIRESTOPPING
   A. Refer to Division 07 - Thermal and Moisture Protection for more information.
   B. Provide UL classified firestopping system for plumbing penetrations through rated walls and
      floors to maintain the fire rating.

3.14 CONTROL WIRING
   A. All control wiring for plumbing and electrical equipment, including motor starters, shall be 120
      volt maximum and wired with one side of the coil grounded and the operating contacts in the
      north side of the circuit. All control wiring shall be installed in conduit.

3.15 CLEANING, FLUSHING, AND INSPECTING
   A. Refer to Division 01 - General Requirements; all plumbing equipment and components shall be
      cleaned as frequently as necessary through the construction process and again prior to project
      completion.
   B. Clean exterior surfaces of installed piping systems of superfluous materials and prepare for
      application of specified coatings (if any). Flush out piping systems with clean water before
      proceeding with required tests. Inspect each run of each system for completion of joints,
      supports and accessory items.
C. Sufficient flushing water shall be introduced into the mains to produce a velocity of not less than 4’ per second and this flow rate shall be continued until the discharge is clean and clear and does not show evidences of silt or foreign matter when a sample is visually inspected.

D. Inspect pressure piping in accordance with procedures of ASME B31.

3.16 DELIVERY, STORAGE AND PROTECTION OF EQUIPMENT AND MATERIALS

A. Refer to Division 01 - General Requirements; all equipment and materials shall be delivered, stored and secured per manufacturer’s recommendations.

B. On-site storage shall be coordinated with Construction Manager/General Contractor and be performed in a manner as to avoid damage, deterioration and loss.

C. Contractor shall provide temporary protection for installed equipment prior to project completion.

D. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.

E. All equipment shall be inspected prior to installation to assure that equipment is free from defect and damage.

F. Protect plumbing fixtures and piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.

3.17 PIPING TESTS

A. Test pressure piping in accordance with ASME B31.

B. General: Provide temporary equipment for testing, including pump and gauges. Test piping systems before insulation is installed wherever feasible and remove control devices before testing. Test each natural section of each piping system independently, but do not use piping system valves to isolate sections where test pressure exceeds valve pressure rating. Fill each section with water and pressurize for indicated pressure and time.

1. Test each piping system at 150% of operating pressure, or other pressure as required by Authority Having Jurisdiction, whichever is greater.
   a. Domestic water systems and equipment vents shall be tested hydrostatically for minimum of four hours at 1½ times design pressure for that system, or 100 psig minimum, whichever is greater, unless otherwise specified.
   b. Storm, soil, waste and vent piping shall be tested with water for minimum of 24 hours at 10 feet head.
   c. Acid resistant waste and vent systems shall be tested as per manufacturer’s recommendations.

2. Observe each test section for leakage at end of test period. Test fails if leakage is observed or if pressure drop exceeds 5% of test pressure.

C. Repair piping systems sections which fail required piping test, by disassembly and re-installation, using new materials to extent required to overcome leakage. Do not use chemicals, stop-leak compounds, mastics or other temporary repair methods.

D. Drain test water from piping systems after testing and repair work has been completed.

END OF SECTION
SECTION 22 0505
SELECTIVE DEMOLITION FOR PLUMBING

PART 1  GENERAL

1.01  SECTION INCLUDES
A. Demolition and extension of existing plumbing work.

1.02  RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, repairs.

1.03  SUMMARY
A. The work covered under this section consists of the furnishing of all necessary labor, supervision, materials, equipment, and services to completely execute the system of minor electrical demolition as described in this specification.
B. The demolition documents plans and specification have been prepared from existing non-as built documents and cursory non-invasive field investigation.
C. It is the contractors obligation to become familiar with the extent of demolition and the existing condition before submitting their bid.
D. During demolition if the contractor discovers unforeseen significant non-code compliance conditions of the existing installation they shall notify the Architect and Engineer immediately in writing.
E. The contractor shall become familiar with the drawings and scope of work of other trades as the work scope of those trades relates to mechanical equipment and connection requirements.
F. During demolition the contractor shall record on site as-builts all plumbing sanitary, waste and domestic hot, cold and hot water recirculation capped branches for reuse in renovated project space.

PART 2  PRODUCTS

2.01  MATERIALS
A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3  EXECUTION

3.01  EXAMINATION
A. Verify that piping to be demolished serve only equipment and facilities within the demolition areas.
B. Demolition drawings are based on casual field observation and existing record documents.
C. Report discrepancies to Owner before disturbing existing installation.
D. Beginning of demolition means installer accepts existing conditions.

3.02  PREPARATION
A. Identify locations for capping plumbing piping before any demolition work commences.
B. Coordinate utility service shut-downs with Utility Companies.
C. Provide temporary connections to maintain existing systems in service during construction.
D. Confirm isolation valve locations for domestic water piping. Repair leaking isolation valves or replace inoperable valves before commencing piping demolition.

3.03  DEMOLITION AND EXTENSION OF EXISTING PLUMBING WORK
A. In general plumbing remodeling work is shown on Drawings but carefully study all drawings for all contracts for “demolition” and “remodeling” work in existing building and field check to verify locations where such work is being done to determine exact extent of work required. No extra
will be allowed for additional work required because of demolition or remodeling whether or not work is specifically noted, itemized or shown on Drawings.

B. Remove existing equipment and materials pertaining to contract as specified or as required, whether shown on Drawings or not, to prepare for new work of all contracts.

C. Where necessary, reroute piping, ducts, etc. from within walls, floors, ceilings, etc. being removed. Contractor involved with interrupted service shall be responsible for accomplishing required work whether shown on Drawings or not.

D. Remove, relocate, and extend existing plumbing piping to accommodate new construction.

E. Remove domestic water piping back to main and provide isolation valve and cap. DEAD LEGS ARE NOT ALLOWED.

F. Remove sanitary and waste piping to branch connection fitting to negate any dead legs.

3.04 CLEANING AND REPAIR

A. Refer to Division 01 - General Requirements for procedures.

B. Clean and repair existing materials and equipment that remain or that are to be reused.

END OF SECTION
SECTION 22 0517
SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 GENERAL

1.01 SECTION INCLUDES
   A. Pipe sleeves.
   B. Manufactured sleeve-seal systems.

1.02 RELATED REQUIREMENTS
   A. Section 07 8400 - Firestopping.

1.03 REFERENCE STANDARDS

PART 2 PRODUCTS

2.01 PIPE SLEEVES
   A. Sheet Metal: Pipe passing through interior walls, partitions, and floors, unless steel or brass sleeves are specified below.
   B. Clearances:
      1. Provide allowance for insulated piping.
      2. All Rated Openings: Caulked tight with fire stopping material complying with ASTM E814 in accordance with Section 07 8400 to prevent the spread of fire, smoke, and gases.

2.02 MANUFACTURED SLEEVE-SEAL SYSTEMS
   A. Modular/Mechanical Seal:
      1. Synthetic rubber interlocking links continuously fill annular space between pipe and wall/casing opening.
      2. Provide watertight seal between pipe and wall/casing opening.

PART 3 EXECUTION

3.01 INSTALLATION
   A. Route piping in orderly manner, plumb and parallel to building structure. Maintain gradient.
   B. Install piping to conserve building space, to not interfere with use of space and other work.
   C. Install piping and pipe sleeves to allow for expansion and contraction without stressing pipe, joints, or connected equipment.
   D. When installing more than one piping system material, ensure system components are compatible and joined to ensure the integrity of the system. Provide necessary joining fittings. Ensure flanges, union, and couplings for servicing are consistently provided.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
   A. Applications.
   B. General requirements.
   C. Ball valves.
   D. Butterfly valves.
   E. Check valves.
   F. Gate valves.
   G. Manual balancing valves.
   H. Automatic balancing valves.
   I. Pressure reducing valves.
   J. Plug valves.
   K. Drain valves.
   L. Relief valves.

1.02 RELATED REQUIREMENTS
   A. Section 08 3100 - Access Doors and Panels.
   B. Section 22 0553 - Identification for Plumbing Piping and Equipment.
   C. Section 22 0719 - Plumbing Piping Insulation.
   D. Section 22 1005 - Plumbing Piping.

1.03 ABBREVIATIONS AND ACRONYMS
   A. CWP: Cold working pressure.
   B. EPDM: Ethylene propylene copolymer rubber.
   C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
   D. PTFE: Polytetrafluoroethylene.
   E. TFE: Tetrafluoroethylene.

1.04 REFERENCE STANDARDS
   A. ASME B1.20.1 - Pipe Threads, General Purpose (Inch) 2013 (Reaffirmed 2018).
   E. ASME B16.18 - Cast Copper Alloy Solder Joint Pressure Fittings 2018.
M. AWWA C606 - Grooved and Shouldered Joints 2015.
O. MSS SP-70 - Cast Iron Gate Valves, Flanged and Threaded Ends 2011.
Q. MSS SP-72 - Ball Valves with Flanged or Butt-Welding Ends for General Service 2010a.
S. MSS SP-80 - Bronze Gate, Globe, Angle and Check Valves 2013.
T. MSS SP-110 - Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends 2010.

1.05 SUBMITTALS
A. See Section 01 3000 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide data on valves including manufacturers catalog information. Submit performance ratings, rough-in details, weights, support requirements, and piping connections.
C. Grooved joint valves shall be referred to on drawings and product submittals, and be identified by the manufacturer’s listed model or series designation.

1.06 QUALITY ASSURANCE
A. Manufacturer:
   1. Obtain valves for each valve type from single manufacturer.
B. Welding Materials and Procedures: Comply with ASME BPVC-IX.
C. Grooved end valves shall be of the same manufacturer as the adjoining couplings.
D. All castings used for valve bodies shall be date stamped for quality assurance and traceability.

1.07 DELIVERY, STORAGE, AND HANDLING
A. Use the following precautions during storage:
   1. Maintain valve end protection and protect flanges and specialties from dirt.
      a. Provide temporary inlet and outlet caps.
      b. Maintain caps in place until installation.

PART 2 PRODUCTS

2.01 APPLICATIONS
A. Provide the following valves for the applications if not indicated on drawings:
   1. Shutoff: Ball or butterfly.
      a. Gate valves shall only be used on shut off for pumped sanitary/storm piping only.
      b. Plug valves or ball valves can be used for natural gas shutoff.
   2. Dead-End: Single-flange butterfly (lug) type.
   3. Swing Check:
      a. 2 NPS and Smaller: Bronze swing check valves with bronze or nonmetallic disc.
      b. 2-1/2 NPS and Larger for Domestic Water: Iron swing check valves with closure control, metal or resilient seat check valves.
      c. 2-1/2 NPS and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.
   4. Spring Loaded Check: At pump discharge.
   5. Automatic Balancing Valves: At all domestic hot water connections to hot water return piping.

B. Substitutions of valves with higher CWP classes or SWP ratings for same valve types are permitted when specified CWP ratings or SWP classes are not available.

C. Required Valve End Connections for Non-Wafer Types:
   1. Steel Pipe:
      a. 2 NPS and Smaller: Threaded ends.
      b. 2-1/2 NPS to 4 NPS: Grooved or flanged ends except where threaded valve-end option is indicated in valve schedules below.
      c. 5 NPS and Larger: Grooved or flanged ends.
      d. Grooved-End Copper Tubing and Steel Piping: Grooved.
   2. Copper Tube:
      a. 2 NPS and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
      b. 2-1/2 NPS to 4 NPS: Grooved or flanged ends except where threaded valve-end option is indicated in valve schedules below.
      c. 5 NPS and Larger: Grooved or flanged ends.

D. Domestic, Hot and Cold Water Valves:
   1. 2 NPS and Smaller:
      a. Bronze: Provide with solder-joint or threaded ends.
      b. Ball: Two piece, full port, bronze with bronze or stainless steel trim.
         1) Heat treated DZR brass valves by Jomar are allowed as specified below.
      c. Bronze Swing Check: Class 125, bronze disc.
   2. 2-1/2 NPS and Larger:
      a. Iron, 2-1/2 NPS to 4 NPS: Provide with threaded or flanged ends.
      b. Iron Ball: Class 150.

E. Sanitary Waste and Storm Drainage Water Valves:
   1. 2 NPS and Smaller:
      a. Bronze: Provide with solder-joint or threaded ends.
      b. Ball: Two piece, full port, bronze with bronze or stainless steel trim.
      c. Bronze Spring Loaded Check: Class 125, nonmetallic disc.
      d. Bronze Gate: Class 125, NRS.
   2. 2-1/2 NPS and Larger:
      a. Iron, 2-1/2 NPS to 4 NPS: Provide with threaded or flanged ends.
      b. Iron Ball: Class 150.
      c. Iron Swing Check with Closure Control: Class 125, lever and spring.
      d. Iron Gate: Class 125, NRS.

F. Natural Gas Valves:
   1. Ball Valve: 4 NPS and Smaller:
      a. Bronze: Provide with solder-joint or threaded ends with union.
      b. Ball: Class 150, regular port, teflon seats.
   2. Plug: 2-1/2 NPS and Larger:
      a. Lubricated Plug: Class 125, regular gland.

2.02 GENERAL REQUIREMENTS

A. Valve Pressure and Temperature Ratings: No less than rating indicated; as required for system pressures and temperatures.

B. Valve Sizes: Match upstream piping unless otherwise indicated.

C. Valve Actuator Types:
   1. Gear Actuator: Quarter-turn valves 8 NPS and larger.
2. Handwheel: Valves other than quarter-turn types.

D. Valves in Insulated Piping: With 2 NPS stem extensions and the following features:
1. Ball Valves: Extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
3. Memory Stops: Fully adjustable after insulation is installed.

E. Valve-End Connections:
5. Grooved End Connections: Copper-tube dimensions, similar to AWWA C606.

F. General ASME Compliance:


H. Bronze Valves:
1. Fabricate from dezincification resistant material.
2. Copper alloys containing more than 15 percent zinc are not permitted.

I. Source Limitations: Obtain each valve type from a single manufacturer.

### 2.03 BRONZE BALL VALVES

A. Two Piece, Full Port with Bronze or Stainless Steel Trim:
1. Comply with MSS SP-110.
2. SWP Rating: 150 psig.
3. CWP Rating: 600-1000 psig.
5. Ends: Threaded.
6. Seats: PTFE or TFE.
7. Manufacturers:
   b. Nibco: www.nibco.com
8. Jomar Valves with heat trated DZR brass - CW511 alloy body and end connection and CW510L brass alloy ball and stem and TEA coated ball are allowed.
   a. Substitutions: See Section 01 6000 - Product Requirements.

B. For Natural Gas Service: Two Piece, Regular Port with Bronze, Chrome Plated Brass or Stainless Steel Trim:
1. Comply with MSS-SP110.
2. SWP Rating: 150 psig.
3. CWP Rating: 400 psig.
4. Body: Bronze
5. Ends: Threaded or Solder with union.
6. Stem: Blow-out proof
7. Manufacturers:
   a. Apollo Valves: www.apollovalves.com
   b. Jomar Valves: www.jomarvalve.com
   c. Viega: www.viega.us
   d. Substitutions: See Section01 6000-Product Requirements.

### 2.04 IRON BALL VALVES - NOT FOR DOMESTIC
A. Class 125, Full Port, Stainless Steel Trim:
   1. Comply with MSS SP-72.
   2. CWP Rating: 200 psig.
   5. Seats: PTFE, TFE, or Teflon.
   6. Operator: Lever, with locking handle.
   7. Manufacturers:
      c. Substitutions: See Section 01 6000 - Product Requirements.

2.05 IRON, SINGLE FLANGE BUTTERFLY VALVES
A. Lug type: Bi-directional dead-end service without use of downstream flange.
   1. Comply with MSS SP-67, Type I.
   2. CWP Rating: 200 psig.
   3. Body: ASTM A126, cast iron or ASTM A536, ductile iron.
   4. Stem: One or two-piece stainless steel.
   5. Seat: EPDM.
   6. Disc: Bronze or Stainless Steel.
   7. Manufacturers:
      d. Substitutions: See Section 01 6000 - Product Requirements.

2.06 BRASS, GROOVED-END BUTTERFLY VALVES
A. Grooved Ends: Bi-directional dead-end service.
   1. CWP Rating: 300 psig.
   2. Body: Cast brass, UNS C87850.
   3. Stem: Stainless steel, offset from the disc centerline to provide complete 360-degree circumferential seating.
   6. UL classified in accordance with NSF-61 for potable water service, and meets the lead requirements of NSF-372.
   7. Manufacturer: Victaulic

2.07 BRONZE SWING CHECK VALVES
A. Class 125: CWP Rating: 200 psig (1380 kPa).
   1. Comply with MSS SP-139, Type 3.
   2. Design: Horizontal flow.
   4. Ends: Threaded or soldered as indicated.
   6. Manufacturers:
      d. Nobco: www.nibco.com
      e. Substitutions: See Section 01 6000 - Product Requirements.

2.08 BRONZE SPRING LOADED CHECK VALVES
A. Class 125: CWP Rating 200 psig (1380 kPa).
   1. Design: Vertical flow.
2. Body: Bronze, ASTM B61 or ASTM B62
3. Spring: Bronze
4. Ends: Threaded or soldered as indicated.
5. Disc: Nonmetallic
6. Manufacturers:
   a. Milwaukee: www.milwaukeevalve.com
   c. Substitutions: See Section01 6000-Product Requirements.

2.09 IRON SWING CHECK VALVES WITH CLOSURE CONTROL
A. Class 125 with Lever and Spring-Closure Control.
   1. Comply with MSS SP-71, Type I.
   2. Description:
      a. CWP Rating: 200 psig.
      b. Design: Clear or full waterway.
      c. Body: ASTM A126, gray iron or ductile iron with bolted bonnet.
      d. Ends: Flanged or threaded as indicated.
      e. Spring: Stainless steel.
      f. Trim: Bronze or stainless steel.
      g. Gasket: Asbestos free.
      h. Closer Control: Factory installed, exterior lever, and spring.
   3. Manufacturers:
      c. Nibco: www.nibcoc.com
      d. Substitutions: See Section 01 6000 - Product Requirements.

2.10 BRONZE GATE VALVES - PUMPED SANITARY/STORM ONLY
A. Non-Rising Stem (NRS) or Rising Stem (RS):
   1. Comply with MSS SP-80, Type I.
   4. Ends: Threaded or solder joint.
   5. Stem: Bronze.
   7. Packing: Asbestos free.
   8. Handwheel: Malleable iron, bronze, or aluminum.
   9. Manufacturers:
      c. Jomar Valve: www.jomarvalve.com
      d. Nibco: www.nibco.com
      e. Substitutions: See Section 01 6000 - Product Requirements.

2.11 IRON GATE VALVES - PUMPED SANITARY/STORM ONLY
A. NRS or OS & Y:
   1. Comply with MSS SP-70, Type I.
   3. Body: ASTM A126, gray iron or ductile iron with bolted bonnet.
   5. Trim: Bronze or stainless steel.
   7. Packing and Gasket: Asbestos free.
   8. Manufacturers:
2.12 PVC COMBINATION CHECK AND BALL VALVE - PUMPED SANITARY/STORM ONLY

A. Rated for 25 psi (58 ft of head)
   1. Full flow PVC check valve, ball valve, union combination
   2. Gasket & Flapper: Neoprene, replaceable flapper
   3. Backing plates & rivet: Stainless steel
   4. Screws: Stainless steel
   5. Manufacturers:
      a. Zoeller: www.zoellerpumps.com
      b. Manufacturer of sanitary/storm pump
      c. Substitutions: See Section 01 6000 - Product Requirements.

2.13 LUBRICATED PLUG VALVES

A. Regular Gland with Threaded or Flanged Ends:
   1. Comply with MSS SP-78, Type II.
   3. Body: ASTM A48/A48M or ASTM A126, cast iron with lubrication sealing system.
   4. Pattern: Regular or short.
   5. Plug: Cast iron or bronze with sealant groove.
   6. Manufacturers:
      a. Homestead: www.homesteadvalve.com
      b. Norgas Controls: www.norgascontrols.com
      c. Flowserve Corporation: www.flowserve.com
      d. Substitutions: See Section 01 6000 - Product Requirements.

2.14 MANUAL BALANCING VALVES

A. Construction: Class 125, Lead free brass or bronze body with union on inlet and outlet, temperature and pressure test plug on inlet and outlet, blowdown/backflush drain, calibrated nameplate with memory stop.
B. Calibration: Control flow within 5 percent of selected rating, over operating pressure range of 10 times minimum pressure required for control, maximum minimum pressure 3.5 psi.
C. Manufacturers:
   1. ITT Bell & Gossett: www.bellgossett.com/#sle.
   2. Jomar Valve: www.jomarvalve.com
   3. Caleffi: www.caleffi.com
   4. Nibco: www.nibco.com
   5. Substitutions: See Section 01 6000 - Product Requirements.

2.15 AUTOMATIC BALANCING VALVES

A. Thermostatic balancing valves:
   1. Manufacturers:
      a. ITT Bell & Gossett; Temp Setter: www.bellgossett.com
      b. Caleffi; Thermosetter: www.caleffi.com
      c. Substitutions: See Section 01 6000 - Product Requirements.
   2. The valve shall be certified lead free according to NSF/ANSI 61 standards.
   3. The valve body shall be constructed out of 316 stainless steel or DZR low-lead brass
   4. The valve shall be rated for 145 PSIG working pressure.
   5. The valve shall have a temperature adjustment dial in degrees F. The dial shall have an adjustment range of 98°F (37°C) to 140°F (60°C).
   6. The valve shall include a pre-formed thermal insulation block/shell.

2.16 WATER PRESSURE REDUCING VALVES
A. Valves over 2 inches: ASSE 1003, cast iron body with interior lining complying with AWWA C550, bronze fitted, elastomeric diaphragm and seat disc, flanged.
   1. Manufacturers:
      a. Amtrol: www.amtrol.com
      b. Apollo valves: www.apollovalves.com
      c. Watts Regulator Company: www.wattsregulator.com
      d. Substitutions: See Section 01 6000 - Product Requirements.

2.17 DRAIN VALVES
A. Drain Valve with hose thread and chain and dust cap; chrome plated ball, blow-out-proof stem, and adjustable packing gland.

B. Manufacturers:
   1. Hammond: www.hammondvalve.com
   2. Apollo valves: www.apollovalves.com
   4. Milwaukee: www.milwaukeevalve.com
   5. Substitutions: See Section 01 6000 - Product Requirements.

2.18 RELIEF VALVES
A. Pressure Relief Valves: Bronze body, teflon seat, steel stem and springs, automatic, direct pressure actuated, capacities ASME certified and labeled.

B. Manufacturers:
   1. CASH (A.W.) Valve Manufacturing Corp: www.cashvalve.net
   2. Zurn Industries; Wilkins-Regulator Division: www.zurn.com
   3. Watts Regulator Company: www.wattsregulator.com
   4. Substitutions: See Section 01 6000 - Product Requirements.

PART 3 EXECUTION
3.01 INSTALLATION
A. Provide unions or flanges with valves to facilitate equipment removal and maintenance while maintaining system operation and full accessibility for servicing.

B. Provide separate valve support as required and locate valve with stem at or above center of piping, maintaining unimpeded stem movement.

C. Provide non-conducting dielectric connections wherever jointing dissimilar metals.

D. Provide access where valves and fittings are not exposed.

E. Install check valves where necessary to maintain direction of flow as follows:
   1. Spring Loaded Check: Install with stem plumb and vertical.
   2. Swing Check: Install horizontal maintaining hinge pin level.

F. Provide chainwheels on operators for valves 4 NPS and larger where located 96 NPS or more above finished floor, terminating 60 NPS above finished floor.

G. Install valves with stems upright or horizontal, not inverted.

END OF SECTION
SECTION 22 0553
IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 GENERAL

1.01 SECTION INCLUDES
   A. Nameplates.
   B. Pipe markers.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS
   A. See Section 01 3000 - Administrative Requirements, for submittal procedures.
   B. Product Data: Provide manufacturers catalog literature for each product required.

PART 2 PRODUCTS

2.01 IDENTIFICATION APPLICATIONS
   A. Piping: Pipe markers.
   B. Equipment and Tanks: Nameplates.

2.02 NAMEPLATES
   A. Manufacturers:
      4. Substitutions: See Section 01 6000 - Product Requirements.
   B. Description: Laminated three-layer plastic with engraved letters.

2.03 TAGS
   A. Manufacturers:
      4. Substitutions: See Section 01 6000 - Product Requirements.
   B. Metal Tags: Brass with stamped letters; tag size minimum 1-1/2 inch diameter with smooth edges.

2.04 PIPE MARKERS
   A. Manufacturers:
      4. Substitutions: See Section 01 6000 - Product Requirements.
   B. Comply with ASME A13.1.
   C. Plastic Pipe Markers: Factory fabricated, flexible, semi-rigid plastic, preformed to fit around pipe or pipe covering; minimum information indicating flow direction arrow and identification of fluid being conveyed.
   D. Underground Plastic Pipe Markers: Bright colored continuously printed plastic ribbon tape, minimum 6 inches wide by 4 mil thick, manufactured for direct burial service.

PART 3 EXECUTION

3.01 PREPARATION
   A. Degrease and clean surfaces to receive adhesive for identification materials.
3.02 INSTALLATION

A. Install plastic nameplates with corrosive-resistant mechanical fasteners, or adhesive. Apply with sufficient adhesive to ensure permanent adhesion and seal with clear lacquer.

B. Install tags with corrosion resistant chain.

C. Install plastic pipe markers in accordance with manufacturer's instructions.
   1. Install in clear view and align with axis of piping.
   2. Locate identification not to exceed 20 feet on straight runs including risers and drops, adjacent to each valve and Tee, at each side of penetration of structure or enclosure, and at each obstruction.

D. Install underground plastic pipe markers 6 to 8 inches below finished grade, directly above buried pipe.

END OF SECTION
SECTION 22 1005
PLUMBING PIPING

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Pipe, pipe fittings, specialties, and connections for piping systems.
   1. Natural Gas
   2. Flanges, unions, and couplings.
   3. Pipe hangers and supports.
   4. Valves.

1.02 RELATED REQUIREMENTS
A. Section 22 0553 - Identification for Plumbing Piping and Equipment.
B. Section 22 0719 - Plumbing Piping Insulation.

1.03 REFERENCE STANDARDS
G. ASME BPVC-IX - Boiler and Pressure Vessel Code, Section IX - Qualification Standard for Welding, Brazing, and Fusing Procedures; Welders; Brazers; and Welding, Brazing, and Fusing Operators 2023.
Q. MSS SP-110 - Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends 2010, with Errata.

1.04 SUBMITTALS
A. Product Data: Provide data on pipe materials, pipe fittings, valves, and accessories. Provide manufacturers catalog information. Indicate valve data and ratings.
B. Welder Certificate: Include welders certification of compliance with ASME BPVC-IX.
C. Sustainable Design Documentation: For soldered copper joints, submit installer’s certification that the specified installation method and materials were used.
D. Project Record Documents: Record actual locations of valves.

1.05 QUALITY ASSURANCE
A. Perform work in accordance with applicable codes.
B. Welding Materials and Procedures: Comply with ASME BPVC-IX and applicable state labor regulations.
C. Welder Qualifications: Certified in accordance with ASME BPVC-IX.

1.06 FIELD CONDITIONS
A. Do not install underground piping when bedding is wet or frozen.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS

2.02 NATURAL GAS PIPING, ABOVE GRADE
A. Steel Pipe: ASTM A53/A53M Schedule 40 black.
   2. Joints: Threaded or welded to ASME B31.1.

2.03 FLANGES, UNIONS, AND COUPLINGS
A. Unions for Pipe Sizes 3 Inches (80 mm) and Under:
   1. Ferrous pipe: Class 150 malleable iron threaded unions.

2.04 PIPE HANGERS AND SUPPORTS
A. Provide hangers and supports that comply with MSS SP-58.
   1. If type of hanger or support for a particular situation is not indicated, select appropriate type using MSS SP-58 recommendations.
   2. Overhead Supports: Individual steel rod hangers attached to structure or to trapeze hangers.
   3. Trapeze Hangers: Welded steel channel frames attached to structure.

2.05 BALL VALVES
A. Manufacturers:
   1. Tyco flow control: www.tycoflowcontrol.com
   2. Nibco, Inc: www.nibco.com
   3. Milwaukee Valve Company: www.milwaukeevalve.com
B. Construction, 4 Inches (100 mm) and Smaller: MSS SP-110, Class 150, 400 psi (2760 kPa) CWP, bronze body, chrome plated brass ball, regular port, teflon seats and stuffing box ring, blow-out proof stem, lever handle with balancing stops, solder ends with union.

2.06 PIPING SPECIALTIES
A. Flow Controls:
   1. Manufacturers:
      a. ITT Bell & Gossett: www.bellgossett.com/#sle.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that excavations are to required grade, dry, and not over-excavated.

3.02 PREPARATION
A. Ream pipe and tube ends. Remove burrs. Bevel plain end ferrous pipe.
B. Remove scale and dirt, on inside and outside, before assembly.
C. Prepare piping connections to equipment with flanges or unions.
3.03 INSTALLATION

A. Install in accordance with manufacturer's instructions.
B. Provide non-conducting dielectric connections wherever jointing dissimilar metals.
C. Route piping in orderly manner and maintain gradient. Route parallel and perpendicular to walls.
D. Install piping to maintain headroom, conserve space, and not interfere with use of space.
E. Group piping whenever practical at common elevations.
F. Establish elevations of buried piping outside the building to ensure not less than 4 ft (____ m) of cover.
G. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welding.
H. Install valves with stems upright or horizontal, not inverted. Refer to Section 22 0523.
I. Sleeve pipes passing through partitions, walls and floors.
J. Inserts:
   1. Provide inserts for placement in concrete formwork.
   2. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
   3. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches (100 mm).
   4. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.
   5. Where inserts are omitted, drill through concrete slab from below and provide through-bolt with recessed square steel plate and nut above slab.
K. Pipe Hangers and Supports:
   1. Install in accordance with ASME B31.9.
   2. Support horizontal piping as indicated.
   3. Install hangers to provide minimum 1/2 inch (15 mm) space between finished covering and adjacent work.
   4. Place hangers within 12 inches (300 mm) of each horizontal elbow.
   5. Use hangers with 1-1/2 inch (40 mm) minimum vertical adjustment. Design hangers for pipe movement without disengagement of supported pipe.
   7. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.
   8. Provide copper plated hangers and supports for copper piping.
   9. Prime coat exposed steel hangers and supports. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.
   10. Support cast iron drainage piping at every joint.

3.04 APPLICATION

A. Install unions downstream of valves and at equipment or apparatus connections.
B. Install brass male adapters each side of valves in copper piped system. Solder adapters to pipe.
C. Install ball valves for shut-off and to isolate equipment, part of systems, or vertical risers.
D. Install globe valves for throttling, bypass, or manual flow control services.

3.05 TOLERANCES

A. Drainage Piping: Establish invert elevations within 1/2 inch (10 mm) vertically of location indicated and slope to drain at minimum of 1/8 inch per foot (1:100) slope.
B. Water Piping: Slope at minimum of 1/32 inch per foot (1:400) and arrange to drain at low points.

3.06 SCHEDULES

A. Pipe Hanger Spacing:

1. Metal Piping:
   a. Pipe Size: 1/2 inches (15 mm) to 1-1/4 inches (32 mm):
      1) Maximum Hanger Spacing: 6.5 ft (2 m).
      2) Hanger Rod Diameter: 3/8 inches (9 mm).

END OF SECTION
SECTION 23 0005
BASIC HVAC REQUIREMENTS

PART 1 GENERAL

1.01 RELATED DOCUMENTS
A. This section applies to all sections of Division 23.
B. Drawings and general provisions of the contract, including Division 00 and Division 01 specification sections, apply to work of this section.
C. Provide all items, articles, materials, operations or methods listed, mentioned or scheduled on drawings and/or herein, including all labor, materials, equipment and incidentals necessary and required for their completion.
D. The items in this section are supplementary to the requirements set forth in other portions of the specifications as indicated under item "A" above.

1.02 APPLICATION
A. This section applies to all mechanical work. The contractors involved shall check all sections of the specifications in addition to the particular section covering their specific trade. Each distinct section of the specifications aimed for one trade may have detailed information with regards to other trades, therefore, it is imperative that all sections be reviewed to get a complete picture of all other trades' functions and work required.
B. The mechanical contractor is responsible for the installation and operation of the hvac systems and temperature control systems.
C. The mechanical contractor is responsible for receiving, unloading and placement of all of the owner provided equipment.

1.03 INSPECTION OF SITE
A. Visit the site, examine and verify the conditions under which the work must be conducted before submitting proposal.
B. The submitting of a proposal implies that the contractor has visited the site and understands the conditions under which the work must be conducted.

1.04 ALTERNATES AND SUBSTITUTIONS
A. Refer to Division 01 - General Requirements for procedures.

1.05 DEVIATION FROM BASIS OF DESIGN MANUFACTURER
A. Products identified within the schedules and details are used as the basis of design for laying out and coordinating with other trades such as structural, architectural, and electrical. Should the Division 23 Contractors submit equipment by a Manufacturer other than that indicated as the Basis of Design in the Drawings, Contractor shall then be responsible for evaluating the impacts of the proposed Manufacturer's equipment, even if the Manufacturer is listed in the specifications as an approved equal. This includes the proposed Manufacturer's electrical, architectural and structural requirements and their subsequent impacts on the current design (roof openings, curbs, structural support, etc.) and coordination of any differing dimensions and clearances with all other trades.

1.06 MATERIALS
A. Mechanical equipment is to be furnished with motors, electrical controls and protective devices, and integral operating devices which are normally included by the manufacturer or required by the Contract Documents.
B. The Mechanical Trades shall provide all control wiring, 120 volts and less, for the equipment and devices furnished under Division 22, and 23 of these specifications, including all wiring devices, conduit, etc.
C. Power wiring 120 volts and greater shall be by the Electrical Trades.

1.07 DRAWINGS
A. The drawings are diagrammatic and show the general location and arrangement of all equipment, piping and related items. They shall be followed as closely as elements of the construction will permit.

B. Examine the drawings of other trades and verify the conditions governing the work on the job site. The mechanical and electrical contractor shall check all documents including architectural, structural, plumbing, HVAC and electrical to avert possible installation conflicts. Arrange work accordingly, providing such fittings, traps, valves and accessories as may be required to meet such conditions.

C. Deviations from the drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.

D. The architectural and structural drawings take precedence in all matters pertaining to the building structure, mechanical drawings in all matters pertaining to mechanical trades and electrical drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.

E. Do not scale drawings for measurements.

F. Field verifications of actual existing conditions are required by the contractor since actual locations, distances, and levels will be governed by actual field conditions. All measurements shall be verified at the site.

G. If during field verification, the contractor identifies that there may require substantial changes from the original plans, the contractor shall notify the architect for agreement on necessary adjustment before the installation is started.

H. Discrepancies shown between plans, or between plans and actual field conditions, or between plans and specifications shall promptly be brought to the attention of the Architect/Engineer for a decision.

I. Drawings and specifications are intended to cover the completed installation of systems to function as described. The omission of the expressed reference to any item of labor and material necessary to comply with practice codes, ordinances, etc., shall not relieve the contractor from providing such additional labor and material at no cost to Owner.

1.08 CODES, PERMITS AND FEES

A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for mechanical work shall be secured and paid for by the contractor. All work shall conform to all applicable codes, rules and regulations. Applicable publications listed in all sections of Division 23 shall be the latest issue, unless otherwise noted.

B. Rules of local utility companies and municipalities shall be complied with. Check with the utility company and/or municipality supplying service to the installation and determine all devices including, but not limited to: meters, regulators, valves which will be required and include the cost of all such items in the proposal.

C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed drawings or diagrams which may be required by the governing authorities. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern.

1.09 MAINTENANCE

A. Provide 40 hours of instruction to the owner's designated personnel in the maintenance and operation of equipment and systems.

B. Provide complete maintenance and operating instructional manuals covering all mechanical equipment herein specified, together with parts lists. Maintenance and operating instructional manuals shall be job specific to this project. Generic manuals are not acceptable. Four (4) copies of all literature shall be furnished for owner and shall be bound in book or ring binder form. Maintenance and operating instructional manuals shall be provided when construction is
approximately 75% complete.

1.10 WARRANTY AND GUARANTEE
A. Contractor shall guarantee all work installed by themselves or their subcontractors to be free from defect in material and workmanship for a period of one year from date of final acceptance of the work, unless a longer period is stipulated under specific headings. Contractor shall repair or replace at no additional cost to the owner, any material or equipment developing defects and shall also make good any damage caused by such defects or the correction of defects. Repairs or replacements shall bear additional guarantee, as originally called for, dated from the final acceptance of the repair or replacement. This requirement shall be binding even though it will exceed product guarantees normally furnished by some manufacturers. Contractor shall submit his own and each equipment manufacturers written certificates, warranting that each item of equipment furnished complies with all requirements of the drawings and specifications. Note that guarantee shall run from date of final acceptance of the work, not from date of installation of a device or piece of equipment.

1.11 SUBMITTALS
A. Refer to Division 01 - General Requirements for procedures.
B. Contractor shall provide submittals where items are referred to by symbolic designation on the drawings. All submittals shall bear the same designation (hvac equipment, piping equipment, etc.). Refer to other sections of the mechanical specifications for additional requirements.
C. Engineer WILL NOT REVIEW:
   1. Submittals not specified.
   2. Submittals not reviewed by Contractor, including Contractor stamp with signature comments.
   3. Submittals made after work is delivered to site and/or installed.
   4. Submittal resubmissions unless resubmission is required by Architect/Engineer.
D. Types of submittals include the following:
   1. Shop Drawings
   2. Product Data Sheets
   3. Samples
   4. Manufacturers Instructions
   5. Maintenance Data
   6. Warranty
E. Installation of any item that requires submittal approval by the engineer shall be installed at the contractors risk. The contractor, at his cost, shall remove all work installed prior to approval of the submittal.
F. The engineer will not be responsible for errors in quantities, or dimensions required to fit the job condition, details of fabrication to insure proper assembly at the job, or for errors resulting from mistakes in submittals.

1.12 RECORD DRAWINGS
A. Refer to Division 01 - General Requirements for procedures.
B. Contractor shall provide the following record drawings as part of the Project closeout document process:
   1. Contract Documents, specifications and submittals, indicating "As-Built" conditions and actual products selected for use.
   2. Product and Maintenance manuals for all equipment listed within this specification manual and in Contract Documents. Provide with parts lists as applicable.
C. Record drawings shall be maintained by the contractor up to date as the project progresses.
D. Recording all deviations from the contract documents, indicate exact locations of all buried services both inside and outside of the building; include concealed piping and equipment in the entire contract. Final record drawings shall reflect the as-built conditions.
1.13 QUALITY ASSURANCE

A. Other referenced standards:
1. Comply with referenced standards, guidelines, data sheets from various associations, including NFPA, ANSI, ASTM, ASME, ASHRAE

PART 2 PRODUCTS

2.01 SLEEVES AND ESCUTCHEONS

A. Provide sleeves wherever pipes pass through exterior wall, and floors. Sleeves shall be schedule 40 steel pipe cut to length. Sleeves shall terminate flush with walls, partitions and ceilings in finished areas. All sleeves through floor shall extend 2" above floor. Provide cast brass nickel-plated escutcheons with positive catches on each visible sleeve penetration. Sleeves are to be sealed at each installation with a 3M approved sealant. The space between the inside of the sleeve and the outside of the pipe or conduit in the sleeve shall be sealed at each installation with a 3M approved sealant.

2.02 DIELECTRIC UNIONS

A. Dielectric unions shall be used to connect dissimilar metals (such as steel and copper) to prevent electrolytic action.

2.03 FILTERS

A. Provide and maintain filters in air handling systems throughout the construction period and prior to final acceptance of the building. Do not run air handling equipment without all prefilters and final filters as specified. Immediately prior to final building acceptance by the owner, contractor shall replace all disposable type air filters with new.

2.04 BUILDING ATTACHMENTS FOR MECHANICAL WORK SUPPORTS

A. General Requirements:
1. Provide building attachments required for supporting mechanical work, suitably selected and installed for the loads applied with a minimum additional safety factor of 3.
2. Where specified attachments are not suitable for conditions, submit to Engineer for approval, proposal for alternate building attachments.
3. If specially designed building attachments are required, retain the services of a licenced structural engineer to design such building attachments.
4. Approved Manufacturers: Grinnell, or equivalent products by Michigan Hanger and B-Line.
5. Provide supplemental trapeze supports where necessary. Design trapeze to support all trades. Coordinate loads, and supports with all trades. Size trapeze for maximum deflection of 1/64 of the span.

B. Attachments to Structural Steel:
1. Support mechanical work from building structural steel where possible and approved. No welding or bolting to structural steel is permitted unless authorized by Architect. C-clamps are not permitted.
   a. Center beam clamp - for loads over 120 lb.: Malleable center hung Grinnell Fig. 228.
   b. Side beam clamp with retaining clips - for loads up to 120 lb.

C. Cast in Place Concrete Inserts:
1. Provide inserts selected for applied load of present load plus 100% for future, and coordinated with concrete work. Except as detailed on drawings, inserts shall be Unistrut or Grinnell. Plan, lay out and coordinate setting of inserts prior to concrete pour. Use Grinnell Fig. 285 lightweight concrete insert for loads up to 400# or Grinnell Fig. 281 Wedge Type concrete insert for loads up to 1200#

D. Drilled Insert Anchors:
1. Where mechanical work cannot be supported from structural steel, or cast in place concrete inserts, provide drilled concrete insert anchors. Submit for approval, project specific installation drawings for all loads over 100 lbs. Install inserts in web of beam if possible and approved. Insert depth shall not exceed two thirds the thickness of the concrete. Where existing concrete appears to be deteriorating, or where applied load at
insert exceeds 1000 lbs., conduct test of concrete to determine derated capacity of insert. Anchors may be adhesive or expansion type up to 1000 lbs., and shall be adhesive type for loads over 1000 lbs.

2. Manufacturers: Hilti

PART 3 EXECUTION

3.01 GENERAL

A. Existing piping and ductwork: when encountered during the course of work, protect, brace and support existing piping and ductwork where required for proper execution of the work.

B. Interruption of existing active piping and ductwork: when the course of work makes shut-down of services unavoidable, the mechanical contractor shall schedule the shut-down at such time as approved by the owners representative, which will cause least interference with established operating routine.

C. Arrange work accordingly, providing such fittings as duct transitions traps, valves and accessories necessary to complete all construction in an orderly fashion.

D. Install all equipment in strict accordance all directions and recommendations furnished by the manufacturer.

3.02 ACCESSIBILITY

A. Do not locate valves, traps, controls, unions, dampers, etc. in any system at a location that will be inaccessible after construction is completed. Maintain accessibility for all components in mechanical, electrical, and plumbing systems.

3.03 ACCESS DOORS AND PANELS

A. Refer to Division 08 - Openings; Provide access doors in locations as required by applicable codes and as indicated below. Coordinate locations with architectural trades.

B. Furnish access panels to access valves, traps, control valves or devices, dampers, damper motors, etc. Access panels shall be sized as necessary for ample access, or as indicated on drawings, but no smaller than 12” x 12” where devices are within easy reach of operator, and at least 24”x24” when operator must pass through opening in order to reach the devices. Architectural Trades shall install access panels coordinated with Mechanical Trades.

C. Access panels in fire rated walls or ceiling must be U.L. labeled for intended use. Unless otherwise indicated on plans, access doors shall be hinged flush type steel framed panel, 14 gauge minimum for frame, and with anchor straps. Only narrow border shall be exposed. Hinges shall be concealed type. Locking device shall be flush type and screw driver operated. Metal surfaces shall be prime coated with rust-inhibitive paint. Panels shall be compatible with architectural adjacent materials Manufacturer: Milcor, Bilco.

3.04 CUTTING AND PATCHING

A. Refer to Division 01 - General Requirements and Division 02 - Existing Conditions.

B. All cutting required shall be done by the contractor whose work is involved, without extra cost to the owner. All patching and restoration including the furnishing and installation of access panels in ceiling, walls; etc. Within the building lines shall be done by the respective, responsible contractor. No cutting of structural steel, concrete, or wood shall be done without prior approval and explicit directions of the architect patched by the respective, responsible contractor.

C. The contractor, under whose jurisdiction the work may fall, shall provide labor, material, and tools required to cut, repair, protect, cap, or relocate existing pipes, conduits, or utilities interfering with or uncovered during work, per regulations of the authorities having jurisdiction.

3.05 ROUGH-IN FOR CONNECTION TO EQUIPMENT

A. It shall be the responsibility of each contractor to study the architectural, structural, electrical, and mechanical drawings, conferring with the various trades involved and checking with the supplier of equipment in order to properly rough-in for all equipment.

3.06 MATERIAL AND EQUIPMENT
A. All material and equipment shall be new and of the best quality used for the purpose in good commercial practice, and shall be the standard product of reputable manufacturers. The material and equipment must meet approval of state and local codes in the area it is being used. Roof decks shall not be used to support piping, conduit, equipment, devices, etc.

3.07 SEAL PENETRATIONS
A. Seal the space around pipes in sleeves and around duct openings through walls, floors and ceilings. Provide adequate clearance to allow for proper sealing.

3.08 SOUND CONTROL
A. Penetrations shall be maintained airtight to prevent sound transfer.
B. Piping, ductwork, etc. shall pass through sleeves. Pack sleeves tight with glass fiber or oakum and caulked on both sides with non-hardening acoustical sealant.

3.09 FIRESTOPPING
A. Refer to Division 07 - Thermal and Moisture Protection for more information.
B. Provide UL classified firestopping system for mechanical penetrations through rated walls and floors to maintain the fire rating.

3.10 DELIVERY, STORAGE AND HANDLING OF EQUIPMENT AND MATERIALS
A. Refer to Division 01 - General Requirements; All equipment and materials shall be delivered, stored and secured per manufacturer’s recommendations.
B. On-site storage shall be coordinated with Construction Manager and be performed in a manner as to avoid damage, deterioration and loss.
C. Contractor shall provide temporary protection for installed equipment prior to project completion.
D. Provide temporary end caps and closures on piping and fittings. Maintain in place until installation.
E. All equipment shall be inspected prior to installation to assure that equipment is free from defect and damage.
F. Protect piping systems from entry of foreign materials by temporary covers, completing sections of the work, and isolating parts of completed system.
G. Protect dampers, grilles, louvers from damage to operating linkages and blades.

3.11 CLEANING
A. Refer to Division 01 - General Requirements; all mechanical equipment and components shall be cleaned as frequently as necessary through the construction process and again prior to project completion.

3.12 CONTROL WIRING
A. All control wiring for mechanical and electrical equipment, including motor starters, shall be 120 volt maximum and wired with one side of the coil grounded and the operating contacts in the north side of the circuit. All control wiring shall be installed in conduit.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Demolition and extension of existing mechanical work.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, repairs.

1.03 SUMMARY
A. The work covered under this section consists of the furnishing of all necessary labor, supervision, materials, equipment, and services to completely execute the system of minor electrical demolition as described in this specification.
B. The demolition documents plans and specification have been prepared from existing non-as built documents and cursory non-invasive field investigation.
C. It is the contractors obligation to become familiar with the extent of demolition and the existing condition before submitting their bid.
D. During demolition if the contractor discovers unforeseen significant non-code compliance conditions of the existing installation they shall notify the Architect and Engineer immediately in writing.
E. The contractor shall become familiar with the drawings and scope of work of other trades as the work scope of those trades relates to mechanical equipment and connection requirements.
F. During demolition the contractor shall record on site as-builts all hydronic system piping capped branches, capped supply air, return air and exhaust ducts for reuse in renovated project space.

PART 2 PRODUCTS

2.01 MATERIALS
A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that piping and ductwork to be demolished serve only equipment and facilities within the demolition areas.
B. Demolition drawings are based on casual field observation and existing record documents.
C. Report discrepancies to Owner before disturbing existing installation.
D. Beginning of demolition means installer accepts existing conditions.

3.02 PREPARATION
A. Identify locations for capping piping and ductwork before any demolition work commences.
B. Confirm isolation valve locations for hydronic piping. Repair leaking isolation valves or replace inoperable valves before commencing piping demolition.
C. Cap and seal air-tight supply, return and exhaust air ductwork at shaft walls before commencing sheet metal demolition

3.03 DEMOLITION AND EXTENSION OF EXISTING MECHANICAL WORK
A. Remove, relocate, and extend existing mechanical piping or sheet metal work to accommodate new construction.
B. Remove hydronic water piping back to isolation valve.
C. Remove all supply, return and exhaust air ductwork back to main connection.
3.04 CLEANING AND REPAIR
   A. Refer to Division 01 - General Requirements for procedures.
   B. Clean and repair existing materials and equipment that remain or that are to be reused.

END OF SECTION
SECTION 23 0593
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Testing, adjustment, and balancing of air systems.
B. Measurement of final operating condition of HVAC systems.

1.02 RELATED REQUIREMENTS
A. Section 23 0005 - Basic HVAC Requirements.

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS
A. See Section 01 3000 - Administrative Requirements, for submittal procedures.
B. Installer Qualifications: Submit name of adjusting and balancing agency and TAB supervisor for approval within 30 days after award of Contract.
C. TAB Plan: Submit a written plan indicating the testing, adjusting, and balancing standard to be followed and the specific approach for each system and component.
   1. Submit six weeks prior to starting the testing, adjusting, and balancing work.
   2. Include at least the following in the plan:
      a. List of all air flow, water flow, sound level, system capacity and efficiency measurements to be performed and a description of specific test procedures, parameters, formulas to be used.
      b. Copy of field checkout sheets and logs to be used, listing each piece of equipment to be tested, adjusted and balanced with the data cells to be gathered for each.
      c. Discussion of what notations and markings will be made on the duct and piping drawings during the process.
      d. Final test report forms to be used.
      e. Details of how TOTAL flow will be determined; for example:
         1) Air: Sum of terminal flows via control system calibrated readings or via hood readings of all terminals, supply (SA) and return air (RA) pitot traverse, SA or RA flow stations.
         2) Water: Pump curves, circuit setter, flow station, ultrasonic, etc.
      f. Exhaust fan balancing and capacity verifications, including any required room pressure differentials.
      g. Procedures for formal deficiency reports, including scope, frequency and distribution.
D. Final Report: Indicate deficiencies in systems that would prevent proper testing, adjusting, and balancing of systems and equipment to achieve specified performance.
   1. Revise TAB plan to reflect actual procedures and submit as part of final report.
   2. Submit draft copies of report for review prior to final acceptance of Project. Provide final copies for Owner and Engineer and for inclusion in operating and maintenance manuals.
   3. Include actual instrument list, with manufacturer name, serial number, and date of calibration.
   4. Form of Test Reports: Where the TAB standard being followed recommends a report format use that; otherwise, follow ASHRAE Std 111.
   5. Units of Measure: Report data in both I-P (inch-pound) and SI (metric) units.
6. Include the following on the title page of each report:
   a. Name of Testing, Adjusting, and Balancing Agency.
   b. Address of Testing, Adjusting, and Balancing Agency.
   c. Telephone number of Testing, Adjusting, and Balancing Agency.
   d. Project name.
   e. Project location.
   f. Report date.

   E. Project Record Documents: Record actual locations of flow measuring stations and balancing valves and rough setting.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 GENERAL REQUIREMENTS

   A. Perform total system balance in accordance with one of the following:
      1. AABC (NSTSB), AABC National Standards for Total System Balance.
      3. SMACNA (TAB).

   B. Begin work after completion of systems to be tested, adjusted, or balanced and complete work prior to Substantial Completion of the project.

   C. Where HVAC systems and/or components interface with life safety systems, including fire and smoke detection, alarm, and control, coordinate scheduling and testing and inspection procedures with the authorities having jurisdiction.

   D. TAB Agency Qualifications:
      1. Company specializing in the testing, adjusting, and balancing of systems specified in this section.
      2. Certified by one of the following:
         b. NEBB, National Environmental Balancing Bureau: www.nebb.org/#sle.

   E. TAB Supervisor and Technician Qualifications: Certified by same organization as TAB agency.

   F. Approved TAB Agencies:
      1. Baromatic.
      2. Enviroaire.
      3. Controls Solutions Inc. (CSI).
      5. Substitutions must be approved by Engineer during Bid Phase.

3.02 EXAMINATION

   A. Verify that systems are complete and operable before commencing work. Ensure the following conditions:
      1. Systems are started and operating in a safe and normal condition.
      2. Temperature control systems are installed complete and operable.
      3. Proper thermal overload protection is in place for electrical equipment.
      4. Final filters are clean and in place. If required, install temporary media in addition to final filters.
      5. Duct systems are clean of debris.
      6. Fans are rotating correctly.
      7. Fire and volume dampers are in place and open.
      8. Air coil fins are cleaned and combed.
9. Access doors are closed and duct end caps are in place.
10. Air outlets are installed and connected.
11. Duct system leakage is minimized.

B. Beginning of work means acceptance of existing conditions.

3.03 ADJUSTMENT TOLERANCES
A. Air Handling Systems: Adjust to within plus or minus 5 percent of design for supply systems and plus or minus 10 percent of design for return and exhaust systems.
B. Air Outlets and Inlets: Adjust total to within plus 10 percent and minus 5 percent of design to space. Adjust outlets and inlets in space to within plus or minus 10 percent of design.
C. Hydronic Systems: Adjust to within plus or minus 10 percent of design.

3.04 RECORDING AND ADJUSTING
A. Ensure recorded data represents actual measured or observed conditions.
B. Permanently mark settings of valves, dampers, and other adjustment devices allowing settings to be restored. Set and lock memory stops.
C. Mark on drawings the locations where traverse and other critical measurements were taken and cross reference the location in the final report.
D. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
E. Leave systems in proper working order, replacing belt guards, closing access doors, closing doors to electrical switch boxes, and restoring thermostats to specified settings.

3.05 AIR SYSTEM PROCEDURE
A. Adjust air handling and distribution systems to provide required or design supply, return, and exhaust air quantities at site altitude.
B. Make air quantity measurements in ducts by Pitot tube traverse of entire cross sectional area of duct.
C. Measure air quantities at air inlets and outlets.
D. Adjust distribution system to obtain uniform space temperatures free from objectionable drafts and noise.
E. Use volume control devices to regulate air quantities only to extend that adjustments do not create objectionable air motion or sound levels. Effect volume control by duct internal devices such as dampers and splitters.
F. Vary total system air quantities by adjustment of fan speeds. Provide drive changes required. Vary branch air quantities by damper regulation.
G. Provide system schematic with required and actual air quantities recorded at each outlet or inlet.
H. Measure static air pressure conditions on air supply units, including filter and coil pressure drops, and total pressure across the fan. Make allowances for 50 percent loading of filters.
I. Adjust outside air automatic dampers, outside air, return air, and exhaust dampers for design conditions.
J. Measure temperature conditions across outside air, return air, and exhaust dampers to check leakage.
K. Where modulating dampers are provided, take measurements and balance at extreme conditions. Balance variable volume systems at maximum air flow rate, full cooling, and at minimum air flow rate, full heating.
L. Measure building static pressure and adjust supply, return, and exhaust air systems to provide required relationship between each to maintain approximately 0.05 inches positive static pressure near the building entries.
M. For variable air volume system powered units set volume controller to air flow setting indicated. Confirm connections properly made and confirm proper operation for automatic variable air volume temperature control.

N. On fan powered VAV boxes, adjust air flow switches for proper operation.

O. For fans with variable pitch sheaves: Sheaves in equipment provided by manufacturer are for final belt and sheave sizing ONLY. TAB contractor shall be responsible for providing and installing final sheave and belt for fan.

3.06 SCOPE

A. Test, adjust, and balance the following:
   1. Packaged Roof Top Heating/Cooling Units.
   2. Air Terminal Units.
   3. Air Inlets and Outlets.

3.07 MINIMUM DATA TO BE REPORTED

A. Electric Motors:
   1. Manufacturer.
   2. Model/Frame.
   3. HP/BHP.
   4. Phase, voltage, amperage; nameplate, actual, no load.
   5. Service factor.
   6. Starter size, rating, heater elements.
   7. Sheave Make/Size/Bore.

B. V-Belt Drives:
   1. Identification/location.
   2. Required driven RPM.
   3. Driven sheave, diameter and RPM.
   4. Belt, size and quantity.
   5. Motor sheave diameter and RPM.
   6. Center to center distance, maximum, minimum, and actual.

C. Air Moving Equipment:
   1. Location.
   2. Manufacturer.
   3. Model number.
   4. Serial number.
   5. Arrangement/Class/Discharge.
   6. Air flow, specified and actual.
   7. Return air flow, specified and actual.
   8. Outside air flow, specified and actual.
   9. Total static pressure (total external), specified and actual.
   10. Inlet pressure.
   11. Discharge pressure.
   13. Number of Belts/Make/Size.
   14. Fan RPM.

D. Duct Traverses:
   1. System zone/branch.
   2. Duct size.
   3. Design velocity.
   4. Design air flow.
   5. Test velocity.
   6. Test air flow.
   7. Duct static pressure.
8. Air temperature.

E. Air Distribution Tests:
   1. Air terminal number.
   2. Room number/location.
   3. Terminal type.
   4. Terminal size.
   5. Area factor.
   6. Design velocity.
   7. Design airflow.
   8. Test (final) velocity.
   9. Test (final) airflow.
  10. Percent of design airflow.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Duct insulation.
B. Duct liner.

1.02 RELATED REQUIREMENTS
A. Section 23 0005 - Basic HVAC Requirements.
B. Section 23 3100 - HVAC Ducts and Casings: Glass fiber ducts.

1.03 REFERENCE STANDARDS
J. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible 2005 (Revised 2009).

1.04 SUBMITTALS
A. See Section 01 3000 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide product description, thermal characteristics, list of materials and thickness for each service, and locations.
C. Manufacturer's Instructions: Indicate installation procedures necessary to ensure acceptable workmanship and that installation standards will be achieved.

1.05 QUALITY ASSURANCE
A. Applicator Qualifications: Company specializing in performing the type of work specified in this section and approved by manufacturer.

PART 2 PRODUCTS

2.01 REGULATORY REQUIREMENTS
A. Surface Burning Characteristics: Flame spread index/Smoke developed index of 25/50, maximum, when tested in accordance with ASTM E84 or UL 723.

2.02 GLASS FIBER, FLEXIBLE
A. Manufacturer:
5. Substitutions: See Section 01 6000 - Product Requirements.

B. Insulation: ASTM C553; flexible, noncombustible blanket.
   1. K value: 0.36 at 75 degrees F, when tested in accordance with ASTM C518.
   2. Maximum Water Vapor Absorption: 5.0 percent by weight.

C. Vapor Barrier Jacket:
   1. Kraft paper with glass fiber yarn and bonded to aluminized film.
   2. Secure with pressure sensitive tape.

D. Vapor Barrier Tape:
   1. Kraft paper reinforced with glass fiber yarn and bonded to aluminized film, with pressure sensitive rubber based adhesive.

E. Tie Wire: Annealed steel, 16 gage, 0.0508 inch diameter.

2.03 GLASS FIBER, RIGID

A. Manufacturer:
   5. Substitutions: See Section 01 6000 - Product Requirements.

B. Insulation: ASTM C612; rigid, noncombustible blanket.
   1. K Value: 0.24 at 75 degrees F, when tested in accordance with ASTM C518.
   2. Maximum Service Temperature: 450 degrees F.
   3. Maximum Water Vapor Absorption: 5.0 percent.

C. Vapor Barrier Jacket:
   1. Kraft paper with glass fiber yarn and bonded to aluminized film.
   2. Moisture Vapor Permeability: 0.02 perm inch, when tested in accordance with ASTM E96/E96M.
   3. Secure with two coats of vapor barrier mastic and glass tape.

D. Vapor Barrier Tape:
   1. Kraft paper reinforced with glass fiber yarn and bonded to aluminized film, with pressure sensitive rubber based adhesive.

2.04 FLEXIBLE ELASTOMERIC CELLULAR INSULATION

A. Manufacturers:
   1. Aeroflex USA, Inc: www.aeroflexusa.com/#sle.
   4. Substitutions: See Section 01 6000 - Product Requirements

B. Insulation: Preformed flexible elastomeric cellular rubber insulation complying with ASTM C534/C534M Grade 1, in sheet form.
   1. Minimum Service Temperature: Minus 40 degrees F.
   2. Maximum Service Temperature: 180 degrees F.

C. Elastomeric Foam Adhesive: Air dried, contact adhesive, compatible with insulation.

D. Weather Barrier Coating: Air dried, contact adhesive, compatible with insulation and ASTM E84 compliant.

2.05 DUCT LINER

A. Manufacturers:
5. Substitutions: See Section 01 6000 - Product Requirements.

B. Note: Choose the liner type - Elastomeric Foam or Glass Fiber.

C. Elastomeric Foam Insulation: Preformed flexible elastomeric cellular rubber insulation complying with ASTM C534/C534M Grade 1, in sheet form.
   1. Minimum Service Temperature: Minus 40 degrees F.
   2. Maximum Service Temperature: 180 degrees F.

D. Glass Fiber Insulation: Non-corrosive, incombustible glass fiber complying with ASTM C1071; rigid board and preformed round liner board; impregnated surface and edges coated with polyvinyl acetate polymer.
   1. Fungal Resistance: No growth when tested according to ASTM G21.
   2. Apparent Thermal Conductivity: Maximum of 0.31 at 75 degrees F.
   3. Service Temperature: Up to 250 degrees F.
   4. Rated Velocity on Coated Air Side for Air Erosion: 5,000 fpm, minimum.
   5. Minimum Noise Reduction Coefficients:
      a. 1 inch Thickness: 0.45.

E. Adhesive: Waterproof, fire-retardant type, ASTM C916.

F. Liner Fasteners: Galvanized steel, self-adhesive pad with integral head.

PART 3 EXECUTION

3.01 EXAMINATION

A. Test ductwork for design pressure prior to applying insulation materials.

B. Verify that surfaces are clean, foreign material removed, and dry.

3.02 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install in accordance with NAIMA National Insulation Standards.

C. Insulated Ducts Conveying Air Below Ambient Temperature:
   1. Provide insulation with vapor barrier jackets.
   2. Finish with tape and vapor barrier jacket.
   3. Insulate entire system, including fittings, joints, flanges, fire dampers, flexible connections, and expansion joints.

D. Exterior Applications: Provide insulation with vapor barrier jacket. Cover with with calked aluminum jacket with seams located on bottom side of horizontal duct section.

E. Slope exterior ductwork to shed water.

F. External Duct Insulation Application:
   1. Secure insulation with vapor barrier with wires and seal jacket joints with vapor barrier adhesive or tape to match jacket.
   2. Secure insulation without vapor barrier with staples, tape, or wires.
   3. Install without sag on underside of duct. Use adhesive or mechanical fasteners where necessary to prevent sagging. Lift duct off trapeze hangers and insert spacers.
   4. Seal vapor barrier penetrations by mechanical fasteners with vapor barrier adhesive.
   5. Stop and point insulation around access doors and damper operators to allow operation without disturbing wrapping.

G. Duct and Plenum Liner Application:
   1. Adhere insulation with adhesive for 90 percent coverage.
   2. Secure insulation with mechanical liner fasteners. Refer to SMACNA (DCS) for spacing.
4. Seal liner surface penetrations with adhesive.
5. Duct dimensions indicated are net inside dimensions required for air-flow. Increase duct size to allow for insulation thickness.

3.03 SCHEDULES

A. Exhaust and Relief Ducts Within 10 ft of Exterior Openings:
   1. Flexible Glass Fiber Duct Insulation: 1-1/2 inches thick.

B. Outside Air Intake Ducts:
   1. Flexible Glass Fiber Duct Insulation: 1-1/2 inches thick.

C. Plenums:
   1. Flexible Glass Fiber Duct Insulation: 1-1/2 inches thick.
   2. Rigid Glass Fiber Duct Insulation: 1-1/2 inches thick.

D. Return Air Ducts:
   1. Duct Liner: 1 inch thick. First 10 feet from equipment only.

E. Supply Ducts:
   1. Duct Liner: 1 inch thick. First 10 feet from equipment only.
   2. Located in plenum or unconditioned space:
   3. Located exposed in conditioned space:
      a. No insulation required.

F. Transfer Ducts:
   1. Duct Liner: 1 inch thick. First 10 feet from equipment only.

G. Ducts Exposed to Outdoors:
   1. Flexible Elastomeric Duct Insulation: 2 inches thick
   2. Cover finished insulation with field applied a glass cloth jacket embedded in Foster No. 60-60 fire resistive mastic.

END OF SECTION
SECTION 23 0913
INSTRUMENTATION AND CONTROL DEVICES FOR HVAC

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Control panels.
B. Control Valves:
   1. Ball valves and actuators.
   2. Butterfly pattern.
   3. Electronic operators.
C. Dampers.
D. Damper Operators:
   1. Electric operators.
E. Input/Output Sensors:
   1. Temperature sensors.
   2. Humidity sensors.
   3. Static pressure (air pressure) sensors.
   4. Equipment operation (current) sensors.
   5. Carbon monoxide sensors.
   6. Carbon dioxide sensors.
F. Thermostats:
   1. Low-limit temperature cutout switch (freeze stat)
   2. Line voltage thermostats.
   3. Room thermostat accessories.
   4. Outdoor reset thermostats.
   5. Airstream thermostats.
   7. Electric high limit duct thermostats.
G. Transmitters:
   1. Pressure transmitters.
   2. Air pressure transmitters.
   4. Temperature transmitters.
   5. Humidity transmitters.

1.02 RELATED REQUIREMENTS

A. Section 23 0519 - Meters and Gauges for HVAC Piping: Thermometer sockets and gauge taps.
B. Section 23 0923 - Direct-Digital Control System for HVAC.
C. Section 23 2113 - Hydronic Piping: Installation of control valves, flow switches, temperature sensor sockets, and gauge taps.
D. Section 23 2114 - Hydronic Specialties.
E. Section 26 0583 - Wiring Connections: Electrical characteristics and wiring connections.
F. Section 26 2726 - Wiring Devices: Elevation of exposed components.

1.03 REFERENCE STANDARDS


1.04 SUBMITTALS
A. See Section 01 3000 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide description and engineering data for each control system component. Include sizing as requested. Provide data for each system component and software module.

C. Shop Drawings: Indicate complete operating data, system drawings, wiring diagrams, and written detailed operational description of sequences. Submit schedule of valves indicating size, flow, and pressure drop for each valve. For automatic dampers indicate arrangement, velocities, and static pressure drops for each system.

D. Manufacturer's Instructions: Provide for all manufactured components.

E. Operation and Maintenance Data: Include inspection period, cleaning methods, recommended cleaning materials, and calibration tolerances.

F. Project Record Documents: Record actual locations of control components, including panels, thermostats, and sensors. Accurately record actual location of control components, including panels, thermostats, and sensors.
   1. Revise shop drawings to reflect actual installation and operating sequences.

1.05 QUALITY ASSURANCE
A. Manufacturer Qualifications: Company specializing in manufacturing the Products specified in this section with minimum three years documented experience.

1.06 WARRANTY
A. See Section 01 7800 - Closeout Submittals, for additional warranty requirements.
B. Correct defective work within a five year period after Substantial Completion.

PART 2 PRODUCTS
2.01 EQUIPMENT - GENERAL
A. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc., as suitable for the purpose specified and indicated.

2.02 CONTROL PANELS
A. Unitized cabinet type for each system under automatic control with relays and controls mounted in cabinet and temperature indicators, pressure gauges, pilot lights, push buttons and switches flush on cabinet panel face.
B. NEMA 250, general purpose utility enclosures with enameled finished face panel.
C. Provide common keying for all panels.

2.03 CONTROL VALVES
A. Performance Requirements:
   1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
   2. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
   3. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements" to size products where indicated as delegated design.
   4. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.
   5. Backup Power Source: Systems and equipment served by a backup power source shall have associated control valve actuators served from a backup power source.
   6. Environmental Conditions:
      a. Provide electric control valve actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Electric control valve actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.
   7. Determine control valve sizes and flow coefficients by ISA 75.01.01.
   8. Control valve characteristics and rangeability shall comply with ISA 75.11.01.
   9. Selection Criteria:
a. Control valves shall be suitable for operation at following conditions:
   1) Chilled Water: 150 PSI.
   2) Condenser Water: 150 PSI.
   3) Heating Hot Water: 150 PSI.

b. Control valve shutoff classifications shall be FCI 70-2, Class IV or better unless otherwise indicated.

c. Valve pattern, three-way or straight through, shall be as indicated on Drawings.

d. Modulating straight-through pattern control valves shall have equal percentage flow-throttling characteristics unless otherwise indicated.

e. Modulating three-way pattern water valves shall have linear flow-throttling characteristics. The total flow through the valve shall remain constant regardless of the valve's position.

f. Modulating butterfly valves shall have linear or equal percentage flow-throttling characteristics.

g. Fail positions unless otherwise indicated:
   1) Chilled Water: Open.
   2) Condenser Water: Open.
   3) Heating Hot Water: Open.

h. Globe-type control valves shall pass the design flow required with not more than 95 percent of stem lift unless otherwise indicated.

i. Rotary-type control valves, such as ball and butterfly valves, shall have Cv falling between 65 and 75 degrees of valve full open position and minimum valve Cv between 15 and 25 percent of open position.

j. Selection shall consider viscosity, flashing, and cavitation corrections.

k. Minimum Cv shall be calculated at 10 percent of design flow, with a coincident pressure differential equal to the system design pump head.

l. In water systems, select modulating control valves at terminal equipment for a design Cv based on a pressure drop of 5 psig at design flow unless otherwise indicated.

m. Two-position control valves shall be line size unless otherwise indicated.

n. In water systems, use ball- or globe-style control valves for two-position control for valves NPS 2 and smaller and butterfly style for valves larger than NPS 2.

B. Ball Valves and Actuators:

1. Manufacturers:
   a. Belimo Aircontrols (USA), Inc: www.belimo.com/#sle.
   b. Flow Tech.

2. Service: Use for brine (30 percent glycol), chilled water, or hot water.

3. Flow Characteristic: Equal percentage. Include 2-way and 3-way diverting operation configured to fail normally open (NO). Refer to Drawings.

4. Replacements in Kind: Provide pressure-independent type.

5. Rangeability: 500 to 1.

6. ANSI Rating: Class 300.

7. Leakage: Class IV (0.1 percent of rated capacity) per ANSI/FCI 70-2.

8. Body Size:
   a. Under 2-1/2 inches:
      1) Connection: NPT.
      2) Materials:
         (a) Body: Brass.
         (b) Flanges: Ductile iron.
         (c) Ball: Chrome-plated brass.
         (d) Stem: Nickel-plated brass.
         (e) Stem sleeve or other approved means to allow valve to be opened and closed without damaging field-applied insulation and insulation vapor barrier seal.
(f) Seat: Graphite-reinforced PTFE with EPDM O-Ring backing.
(g) Stem Seal: EPDM O-Rings.
(h) Flow Control Disk: Thermoplastic synthetic-resin.

b. Service Temperature:
   1) Fluid Side: 0 to 284 degrees F liquid or 25 psig steam.
   2) Ambient Side: From minus 4 to 122 degrees F.

9. Actuator Requirements:
   b. Input: 0 to 5 VDC configured for proportional control.
   c. Accessories: Provide with valve position indicator and manual override.

C. Butterfly Pattern:
   1. Manufacturers:
      a. Flow Tech.
      b. Belimo Aircontrols (USA), Inc.
      c. Substitutions: See Section 01 6000 - Product Requirements.
   2. Iron body, stainless steel disc, resilient replaceable seat for service to 180 degrees F wafer or lug ends, extended neck.
   3. Hydronic Systems:
      a. Rate for service pressure of 125 psig at 250 degrees F.

D. Electronic Operators:
   1. Valves shall spring return to normal position as indicated on freeze, fire, or temperature protection.
   2. Select operator for full shut off at maximum pump differential pressure.
   3. Position indicator and graduated scale on each actuator.
   4. Type: Motor operated, with or without gears, electric and electronic.
   5. Voltage: Voltage selection delegated to professional designing control system.
   6. Deliver torque required for continuous uniform movement of controlled device from limit to limit when operated at rated voltage.
   7. Function properly within a range of 85 to 120 percent of nameplate voltage.
   8. Construction:
      a. For Actuators Less Than 100 W: Fiber or reinforced nylon gears with steel shaft, copper alloy or nylon bearings, and pressed steel enclosures.
      b. For Actuators from 100 to 400 W: Gears ground steel, oil immersed, shaft hardened steel running in bronze, copper alloy or ball bearings. Operator and gear trains shall be totally enclosed in dustproof cast-iron, cast-steel or cast-aluminum housing.
      c. For Actuators Larger Than 400 W: Totally enclosed reversible induction motors with auxiliary hand crank and permanently lubricated bearings.
   9. Field Adjustment:
      a. Spring Return Actuators: Easily switchable from fail open to fail closed in the field without replacement.
      b. Gear Type Actuators: External manual adjustment mechanism to allow manual positioning when the actuator is not powered.
10. Two-Position Actuators: Single direction, spring return or reversing type.
11. Modulating Actuators:
   a. Operation: Capable of stopping at all points across full range, and starting in either direction from any point in range.
   b. Control Input Signal:
      1) Three Point, Tristate, or Floating Point: Clockwise and counter-clockwise inputs.
      2) One input drives actuator to open position and other input drives actuator to close position. No signal of either input remains in last position.
      3) Proportional: Actuator drives proportional to input signal and modulates throughout its angle of rotation. Suitable for zero- to 10 and 4- to 20-mA signals.
      4) Pulse Width Modulation (PWM): Actuator drives to a specified position according to pulse duration (length) of signal from a dry contact closure, triac sink, or
source controller.

5) Programmable Multi-Function:

6) Control Input, Position Feedback, and Running Time: Factory or field programmable.

7) Diagnostic: Feedback of hunting or oscillation, mechanical overload, mechanical travel, and mechanical load limit.

8) Service Data: Include, at a minimum, number of hours powered and number of hours in motion.

12. Position Feedback:
   a. Equip two-position actuators with limits switches or other positive means of a position indication signal for remote monitoring of open and close position.
   b. Equip modulating actuators with a position feedback through voltage signal for remote monitoring.
   c. Provide a position indicator and graduated scale on each actuator indicating open and closed travel limits.

13. Fail-Safe:
   a. Where indicated, provide actuator to fail to an end position.
   b. Internal spring return mechanism to drive controlled device to an end position (open or close) on loss of power.
   c. Batteries, capacitors, and other non-mechanical forms of fail-safe operation are acceptable only where uniquely indicated.

14. Integral Overload Protection:
   a. Provide against overload throughout the entire operating range in both directions.
   b. Electronic overload, digital rotation sensing circuitry, mechanical end switches, or magnetic clutches are acceptable methods of protection.

15. Valve Attachment:
   a. Unless otherwise required for valve interface, provide an actuator designed to be directly coupled to valve shaft without the need for connecting linkages.
   b. Attach actuator to valve drive shaft in a way that ensures maximum transfer of power and torque without slippage.
   c. Bolt and set screw method of attachment is acceptable only if provided with at least two points of attachment.

16. Temperature and Humidity:
   a. Temperature: Suitable for operating temperature range encountered by application with minimum operating temperature range of minus 20 to plus 120 deg F.
   b. Humidity: Suitable for humidity range encountered by application; minimum operating range shall be from 5 to 95 percent relative humidity, non-condensing.

17. Enclosure:
   a. Suitable for ambient conditions encountered by application.
   b. NEMA 250, Type 2 for indoor and protected applications.
   c. NEMA 250, Type 4 or Type 4X for outdoor and unprotected applications.
   d. Provide actuator enclosure with heater and control where required by application.

18. Stroke Time:
   a. Operate valve from fully closed to fully open within 60 seconds.
   b. Operate valve from fully open to fully closed within 60 seconds.
   c. Move valve to failed position within 15 seconds.
   d. Select operating speed to be compatible with equipment and system operation.

19. Sound:
   a. Spring Return: 62 dBA.
   b. Non-Spring Return: 45 dBA.

2.04 DAMPERS

A. Performance Requirements:

   1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. ASME Compliance: Fabricate and label products to comply with ASME Boiler and Pressure Vessel Code where required by authorities having jurisdiction.
3. Delegated Design: Engage a qualified professional, as defined in Section 014000 "Quality Requirements," to size products where indicated as delegated design.
4. Ground Fault: Products shall not fail due to ground fault condition when suitably grounded.
5. Backup Power Source: Systems and equipment served by a backup power source shall have associated control damper actuators served from a backup power source.
6. Environmental Conditions:
7. Provide electric control-damper actuators, with protective enclosures satisfying the following minimum requirements unless more stringent requirements are indicated.
8. Electric control-damper actuators not available with integral enclosures, complying with requirements indicated, shall be housed in protective secondary enclosures.
10. Selection Criteria:
   a. Fail positions unless otherwise indicated:
      1) Supply Air: Last position.
      2) Return Air: Last position.
      3) Outdoor Air: Last position.
      4) Mixed Air: Last position.
      5) Exhaust Air: Last position.
   b. Dampers shall have stable operation throughout full range of operation, from design to minimum airflow over varying pressures and temperatures encountered.
   c. Select modulating dampers for a pressure drop of 2 percent of fan total static pressure unless otherwise indicated.
   d. Two-position dampers shall be full size of duct or equipment connection unless otherwise indicated.
   e. Pneumatic, two-position control dampers shall provide a smooth opening and closing characteristic slow enough to avoid excessive pressure. Dampers with pneumatic actuators shall have an adjustable opening time (valve full closed to full open) and an adjustable closing time (valve full open to full closed) ranging from zero to 10 seconds. Opening and closing times shall be independently adjustable.
   f. Control-damper, pneumatic-control signal shall not exceed 200 feet. For longer distances, provide an electric/electronic control signal to the damper and an electric solenoid valve or electro-pneumatic transducer at the damper to convert the control signal to pneumatic.
11. Unless otherwise indicated, use parallel blade configuration for two-position control, equipment isolation service, and when mixing two airstreams. For other applications, use opposed blade configuration.
12. Factory assemble multiple damper sections to provide a single damper assembly of size required by the application.
13. Damper actuator shall be factory installed by damper manufacturer as integral part of damper assembly. Coordinate actuator location and mounting requirements with damper manufacturer.

B. Manufacturers:
   1. Ruskin.
   2. Greenheck.
   3. Substitutions: See Section 01 6000 - Product Requirements.

C. Performance: Test in accordance with AMCA 500-D.

D. Frames: Extruded aluminum, welded or riveted with corner reinforcement, minimum 12 gauge, 0.1046 inch.

E. Blade Seals: Synthetic elastomeric, mechanically attached, field replaceable.

F. Jamb Seals: Spring stainless steel.

G. Shaft Bearings: Molded synthetic or stainless-steel sleeve mounted in frame..
H. Leakage: Less than one percent based on approach velocity of 2000 ft per min and 4 inches wg.

I. Pressure Drop: 0.05-in. wg at 1500 fpm across a 24-by-24-inch damper when tested according to AMCA 500-D, figure 5.3.

J. Pressure Rating: Damper close-off pressure equal to fan shutoff pressure with a maximum blade deflection of 1/200 of blade length.

2.05 DAMPER OPERATORS

A. General: Provide smooth proportional control with sufficient power for air velocities 20 percent greater than maximum design velocity and to provide tight seal against maximum system pressures. Provide spring return for two position control and for fail safe operation.

1. Provide sufficient number of operators to achieve unrestricted movement throughout damper range.

2. Provide one operator for maximum 36 sq ft damper section.

B. Electric Operators:

1. Spring return, adjustable stroke motor having oil immersed gear train, with auxiliary end switch.

2.06 INPUT/OUTPUT SENSORS

A. Temperature Sensors:

1. Use thermistor or RTD type temperature sensing elements with characteristics resistant to moisture, vibration, and other conditions consistent with the application without affecting accuracy and life expectancy.

2. Construct RTD of nickel or platinum with base resistance of 1000 ohms at 70 degrees F.

3. 100 ohm platinum RTD is acceptable if used with project DDC controllers.

4. Temperature Sensing Device: Compatible with project DDC controllers.

5. Performance Characteristics:

a. RTD:

1) Room Sensor Accuracy: Plus/minus 0.50 degrees F minimum.

2) Duct Averaging Accuracy: Plus/minus 0.50 degrees F minimum.

3) All Other Accuracy: Plus/minus 0.75 degrees F minimum.

b. Thermistor:

1) Accuracy (All): Plus/minus 0.36 degrees F minimum.

2) Range: Minus 25 degrees F through 122 degrees F minimum.

c. Sensing Range:

1) Provide limited range sensors if required to sense the range expected for a respective point.

2) Use RTD type sensors for extended ranges beyond minus 30 degrees F to 230 degrees F.

3) Use temperature transmitters in conjunction with RTD's when RTD's are incompatible with DDC controller direct temperature input.

d. Wire Resistance:

1) Use appropriate wire size to limit temperature offset due to wire resistance to 1.0 degree F or use temperature transmitter when offset is greater than 1.0 degree F due to wire resistance.

2) Compensate for wire resistance in software input definition when feature is available in the DDC controller.

e. Outside Air Sensors: Watertight inlet fitting shielded from direct rays of the sun.

f. Immersion Temperature Sensors: A sensor encased in a corrosion-resistant probe with an indoor junction box service entry body.

g. Ceiling and Recessed Mount Temperature Sensors: Ceiling-mounted sensor in a low-profile housing.

h. Room Temperature Sensors:

1) Construct for surface or wall box mounting.
2) Provide the following:
   (a) Setpoint reset slide switch with an adjustable temperature range.
   (b) Individual heating/cooling setpoint slide switches.
   (c) Momentary override request push button for activation of after-hours operation.

i. Room Temperature Sensors with Integral Digital Display:
   1) Construct for surface or wall box.
   2) Provide a four button keypad with the following capabilities:
      (a) Indication of space and outdoor temperatures.
      (b) Setpoint adjustment to accommodate room setpoint and Sequence of Operation.
      (c) Display and control fan operation status.
      (d) Manual occupancy override and indication of occupancy status.
      (e) Controller mode status.
      (f) Password enabled setpoint and override modes.

B. Humidity Sensors:
1. Duct Mounted Sensor: Voltage type encased in a die-cast metal, weather-proof housing.
   a. Humidity:
      1) HS Element: Digitally profiled thin-film capacitive.
      2) Accuracy 1 percent at 10 to 80 percent relative humidity at 77 degrees F, multi-point calibration, NIST traceable.
         (a) Plus/minus 1 percent at 20 to 40 percent RH in mA output mode; (multi-point calibration, NIST traceable).
      3) Scaling: 0 to 100 percent RH.
   b. Temperature Effect:
      1) Duct Mounted: Plus/minus 0.18 percent per degree F.
      2) Outdoor Mounted: 4 to 20mA version: (0.0013x%RHx(TdegreeC-25)).
   c. Hysteresis: 1.5 percent typical.
   d. Linearity: Included in accuracy specification.
   e. Reset Rate: 24 hours.
   f. Stability: Plus/minus 1 percent at 68 degrees F (20 degrees C) annually, for two years.

C. Static Pressure (Air Pressure) Sensors:
1. Unidirectional with ranges not exceeding 150 percent of maximum expected input.
2. Temperature compensate with typical thermal error or 0.06 percent of full scale in temperature range of 40 to 100 degrees F.
3. Accuracy: One percent of full scale with repeatability 0.3 percent.
4. Output: 0 to 5 vdc with power at 12 to 28 vdc.

D. Equipment Operation (Current) Sensors:
1. Status Inputs for Fans: Differential pressure switch with adjustable range of 0 to 5 inches wg.
2. Status Inputs for Pumps: Differential pressure switch piped across pump with adjustable pressure differential range of 8 to 60 psi.

E. Carbon Monoxide Sensors, for Single-Gang Electrical Box Mounting:
1. General:
   a. Provide gas platform, wired to the building controller, with replaceable sensor.
   b. Input Power: Class 2; 15 to 30 VDC/24 VAC plus/minus 20 percent, 50/60 Hz.

F. Carbon Dioxide Sensors, Duct and Wall:
1. General: Provide non-dispersive infrared (NDIR), diffusion sampling CO2 sensors with integral transducers and linear output.
2.07 THERMOSTATS

A. Low-Limit Temperature Cutout Switch (low-limit thermostat or freezeestat):
   2. Sensing Length: 4 feet.
   5. Mounting: Locate on cooling coil intake side.
   6. Field Interface: Connect load line-voltage to stater.
   7. Electrical Rating: Pilot duty, 125 VA at 125 to 600 VAC.

B. Line Voltage Thermostats:
   1. Integral manual On/Off/Auto selector switch, single or two pole as required.
   2. Dead Band: Maximum 2 degrees F.
   3. Cover: Locking with set point adjustment, with thermometer.

C. Room Thermostat Accessories:
   1. Thermostat Covers: Vandal proof clear plastic.
   2. Insulating Bases: For thermostats located on exterior walls.

D. Outdoor Reset Thermostats:
   1. Remote bulb or bimetal rod and tube type, proportioning action with adjustable throttling
      range, adjustable setpoint.
   2. Scale range: Minus 10 to 70 degrees F.

E. Airstream Thermostats:
   1. Remote bulb or bimetallic rod and tube type, proportional action with adjustable setpoint in
      middle of range and adjustable throttling range.
   2. Averaging service remote bulb element: 7.5 feet.

F. Electric Low Limit Duct Thermostats:
   1. Snap acting, single pole, single throw, manual reset switch that trips if temperature sensed
      across any 12 inches of bulb length is equal to or below setpoint,
   2. Bulb length: Minimum 20 feet.
   3. Provide one thermostat for every 20 sq ft of coil surface.

G. Electric High Limit Duct Thermostats:
   1. Snap acting, single pole, single throw, manual reset switch that trips if temperature sensed
      across any 12 inches of bulb length is equal to or above setpoint,
   2. Bulb length: Minimum 20 feet.
   3. Provide one thermostat for every 20 sq ft of coil surface.

2.08 TRANSMITTERS

A. Pressure Transmitters:
   1. One pipe direct acting indicating type for gas, liquid, or steam service, range suitable for
      system, proportional electronic output.

B. Air Pressure Transmitters:
   1. General: Provide dry media differential pressure transducers to monitor duct and room
      pressure.
      a. Response Time:
         1) Fast: T95 in 2 seconds.
         2) Switch selectable.
      b. Mode: Switch selectable, unidirectional.

C. Water Pressure Transmitters (Liquid Differential Pressure Transmitters):
   1. General: Provide wet media differential pressure transducers with 6 ft (1.83 m) armored
      cable, to allow remote pressure sensing capability using existing plumbing runs.
      a. Operating Conditions:
1) Temperature Compensated Range:
   (a) TC Zero less than 1.5 percent of product F.S. (full scale) per sensor.

D. Temperature Transmitters:
   1. One pipe, directly proportional output signal to measured variable, linearity within plus or
      minus 1/2 percent of range for 200 degrees F span and plus or minus 1 percent for 50
      degrees F span, with 50 degrees F temperature range, compensated bulb, averaging
      capillary, or rod and tube operation on 20 psig input pressure and 3 to 15 psig output.

E. Humidity Transmitters:
   1. One pipe, directly proportioned output signal to measured variable, linearity within plus or
      minus 1 percent for 70 percent relative humidity span, capable of withstanding 95 percent
      relative humidity without loss of calibration.

PART 3 EXECUTION

3.01 EXAMINATION

   A. Verify existing conditions before starting work.
   B. Verify that systems are ready to receive work.
   C. Beginning of installation means installer accepts existing conditions.
   D. Sequence work to ensure installation of components is complementary to installation of similar
      components in other systems.
   E. Coordinate installation of system components with installation of mechanical systems
      equipment such as air handling units and air terminal units.
   F. Ensure installation of components is complementary to installation of similar components.
   G. Coordinate installation of system components with installation of mechanical systems
      equipment such as air handling units and air terminal units.

3.02 INSTALLATION

   A. Furnish and install products required to satisfy most stringent requirements indicated.
   B. Install products level, plumb, parallel, and perpendicular with building construction.
   C. Install in accordance with manufacturer's instructions.
   D. Check and verify location of thermostats with plans and room details before installation. Locate
      60 inches above floor. Align with lighting switches and humidistats. Refer to Section 26 2726.
   E. Mount outdoor reset thermostats and outdoor sensors indoors, with sensing elements outdoors
      with sun shield.
   F. Provide guards on thermostats in public areas and where indicated.
   G. Provide valves with position indicators and with pilot positioners where sequenced with other
      controls.
   H. Provide separate steam valves for each bank of coils. Provide two valves in parallel where
      steam load exceeds 1500 lb per hr with 1/3 to 2/3 load capacities sequenced with smaller valve
      opening first.
   I. Provide isolation (two position) dampers of parallel blade construction.
   J. Install damper motors on outside of duct in warm areas. Do not install motors in locations at
      outdoor temperatures.
   K. Mount control panels adjacent to associated equipment on vibration free walls or free standing
      angle iron supports. One cabinet may accommodate more than one system in same
      equipment room. Provide engraved plastic nameplates for instruments and controls inside
      cabinet and engraved plastic nameplates on cabinet face.
   L. Install "hand/off/auto" selector switches to override automatic interlock controls when switch is
      in "hand" position.
M. Provide conduit and electrical wiring in accordance with Section 26 0583. Electrical material and installation shall be in accordance with appropriate requirements of Division 26.

END OF SECTION
SECTION 23 0925
DIGITAL CONTROL (DDC) SYSTEMS FOR HVAC

PART 1 GENERAL

1.01 SECTION INCLUDES
   A. Control Equipment
   B. Software

1.02 RELATED REQUIREMENTS
   A. Division 01 - General Requirements: Project administrative and procedural requirements.
   B. Division 02 - Existing Conditions.
   C. Section 23 0005 - Basic HVAC Requirements.
   D. Section 23 0553 - Identification for HVAC Piping and Equipment.
   E. Section 23 0800 - Commissioning of HVAC.
   F. Section 23 0913 - Instrumentation and Control Devices for HVAC.
   G. Section 23 0915 - Variable Frequency Drives.
   H. Section 23 2123 - Hydronic Pumps.
   I. Section 23 3300 - Air Duct Accessories.
   J. Section 23 3423 - HVAC Power Ventilators.
   K. Section 23 5233.13 - Finned Water-Tube Boilers.
   L. Section 23 7223 - Packaged Air-to-Air Energy Recovery Units.
   M. Section 23 7413 - Packaged Outdoor Central-Station Air-Handling Units.
   N. Section 23 8148 - Water Source Heat Pumps.
   O. Division 26 - Electrical.

1.03 REFERENCE STANDARDS
   A. NFPA 70 - National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 PRODUCT INSTALLED BUT NOT FURNISHED UNDER THIS SECTION
   A. Section 23 0913 - Instrumentation and Control Devices for HVAC:
      1. Duct static pressure sensors
      2. H2O Pressure Differential/Flow Switches
   B. Section 28 4600 - Fire Detection and Alarm:
      1. Smoke Detectors/Fire Stats

1.05 PRODUCTS NOT FURNISHED OR INSTALLED BUT INTEGRATED WITH THE WORK OF THIS SECTION
   A. General:
      1. Coordination Meeting: The Installer furnishing the DDC network shall meet with the Installer(s) furnishing each of the following products to coordinate details of the interface between these products and the DDC network. The Owner or his designated representative shall be present at this meeting. Each Installer shall provide the Owner and all other Installers with details of the proposed interface, hardware and software identifiers for the interface points, network identifiers, wiring requirements, communication speeds, and required network accessories. The purpose of this meeting shall be to insure there are no unresolved issues regarding the integration of these products into the DDC network. Submittals for these products shall not be approved prior to the completion of this meeting.
   B. Section 23 3600 - Air Terminal Units:
1. VAV boxes: VAV Terminal Units shall be furnished configured to accept control inputs from an external building automation system controller as specified in Section 23 09 93. Factory mounted safeties and other controls shall not interfere with this controller.

C. Section 23 8000 - Decentralized HVAC Equipment:
   1. Unit ventilators, unit heaters, fan coils, etc.: Unit ventilators, unit heaters, fan coils, cabinet heaters, convective or fin tube heaters, zone reheat, and similar terminal units: These units shall be furnished configured to accept control inputs from an external building automation system controller. Factory mounted safeties and other controls shall not interfere with this controller.

D. Communications with Third Party Equipment:
   1. Any additional integral control systems included with the products integrated with the work of this section shall be furnished with a open protocol network interface for integration into the Direct Digital Control System described in this section.

1.06 DESCRIPTION
A. General: The control system shall consist of a high-speed, peer-to-peer network of DDC controllers and a web-based operator interface. Depict each mechanical system and building floor plan by a point-and-click graphic. A web server with a network interface card shall gather data from this system and generate web pages accessible through a conventional web browser on each PC connected to the network. Operators shall be able to perform all normal operator functions through the web browser interface.

B. The system shall directly control HVAC equipment as detailed on the drawings. Each zone controller shall provide occupied and unoccupied modes of operation by individual zone. Furnish energy conservation features such as optimal start and stop, night setback, request-based logic, and demand level adjustment of setpoints as specified in the sequence.

C. System shall use open protocol communications to the operator workstation or web server and for communication between control modules.

1.07 APPROVED CONTROL SYSTEMS INSTALLERS
A. Automated Logic Great Lakes
B. Metro Environmental.
C. Inclusion on this list does not guarantee acceptance of products or installation. Control systems shall comply with the terms of this specification.
   1. The Contractor shall use only operator workstation software, controller software, custom application programming language, and controllers from the corresponding manufacturer and product line unless the Owner approves use of multiple manufacturers.

1.08 QUALITY ASSURANCE
A. Installer and Manufacturer Qualifications
   1. Installer shall have an established working relationship with the Control System Manufacturer.
   2. Installer shall have successfully completed Control System Manufacturer's control system training. Upon request, Installer shall present record of completed training including course outlines.

B. Perform work in accordance with NFPA 70.

C. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories, Inc., as suitable for purpose specified and indicated.

1.09 CODES AND STANDARDS
A. Work, materials, and equipment shall comply with the most restrictive of local, state, and federal authorities' codes and ordinances or these plans and specifications. As a minimum, the installation shall comply with current editions in effect 30 days prior to receipt of bids of the following codes:
   1. National Electric Code (NEC)
2. International Building Code (IBC)
   a. Section 719 Ducts and Air Transfer Openings
   b. Section 907 Fire Alarm and Detection Systems
   c. Section 909 Smoke Control Systems
   d. Chapter 28 Mechanical
3. International Mechanical Code (IMC)

1.10 SYSTEM PERFORMANCE

A. Performance Standards. System shall conform to the following minimum standards over network connections. Systems shall be tested using manufacturer's recommended hardware and software for operator workstation (server and browser for web-based systems).
1. Graphic Display. A graphic with 20 dynamic points shall display with current data within 10 sec.
2. Graphic Refresh. A graphic with 20 dynamic points shall update with current data within 8 sec. and shall automatically refresh every 15 sec.
3. Configuration and Tuning Screens. Screens used for configuring, calibrating, or tuning points, PID loops, and similar control logic shall automatically refresh within 6 sec.
4. Object Command. Devices shall react to command of a binary object within 2 sec. Devices shall begin reacting to command of an analog object within 2 sec.
5. Alarm Response Time. An object that goes into alarm shall be annunciated at the workstation within 15 sec.
6. Program Execution Frequency. Custom and standard applications shall be capable of running as often as once every 5 sec. Select execution times consistent with the mechanical process under control.
7. Performance. Programmable controllers shall be able to completely execute DDC PID control loops at a frequency adjustable down to once per sec. Select execution times consistent with the mechanical process under control.
8. Multiple Alarm Annunciation. Each workstation on the network shall receive alarms within 5 sec of other workstations.
9. Reporting Accuracy. System shall report values with minimum end-to-end accuracy as listed below:
   a. Space Temperature: +/- 1 degrees F
   b. Ducted Air: +/- 1 degrees F
   c. Outside Air: +/- 2 degrees F
   d. Dew Point: +/- 3 degrees F
   e. Water Temperature: +/- 1 degrees F
   f. Delta-T: +/- 0.25 degrees F
   g. Relative Humidity: +/- 5% RH
   h. Water Flow: +/- 2% of full scale
   i. Airflow (terminal): +/- 10% of full scale
      1) Accuracy applies to 10% - 100% of scale
   j. Airflow (measuring stations): +/- 5% of full scale
   k. Air Pressure (ducts): +/- 0.1 in. w.g.
   l. Air Pressure (space): +/- 0.01 in. w.g.
   m. Water Pressure: +/- 2% of full scale
      1) For both absolute and differential pressure
   n. Electrical (A, V, W, Power Factor): +/- 1% of reading
      1) Not including utility supplied meters
   o. Carbon Monoxide (CO): +/- 5% of reading
   p. Carbon Dioxide (CO2): +/- 50 ppm
10. Control Stability and Accuracy. Control loops shall maintain measured variable at setpoint within tolerances as listed below:
   a. Air Pressure (0 to 6 in. w.g.): +/- 0.2 in. w.g.
b. Air Pressure (-0.1 to 0.1 in. w.g.): +/- 0.01 in. w.g.
c. Airflow: +/-10% of full scale
d. Space Temperature: +/- 2.0 degrees F
e. Duct Temperature: +/- 3 degrees F
f. Humidity: +/- 5% RH
g. Fluid Pressure (1 to 150 psi): +/- 1.5 psi
h. Fluid Pressure (0 to 50 in. w.g. differential): +/- 1.0 in. w.g.

1.11 SUBMITTALS
A. Direct Digital Control System Hardware
   1. Complete bill of materials indicating quantity, manufacturer, model number, and relevant technical data of equipment to be used.
   2. Manufacturer's description and technical data such as performance curves, product specifications, and installation and maintenance instructions for items listed below and for relevant items not listed below:
      a. Direct digital controllers (controller panels)
      b. Transducers and transmitters
      c. Sensors (include accuracy data)
      d. Actuators
      e. Valves
      f. Relays and switches
      g. Control panels
      h. Power supplies
      i. Batteries
      j. Operator interface equipment
      k. Wiring
   3. Wiring diagrams and layouts for each control panel. Show termination numbers.
   4. Floor plan schematic diagrams indicating field sensor and controller locations.
   5. Riser diagrams showing control network layout, communication protocol, and wire types.

B. Central System Hardware and Software
   1. Complete bill of material indicating quantity, manufacturer, model number, and relevant technical data of equipment used.
   2. Manufacturer's description and technical data such as product specifications and installation and maintenance instructions for items listed below and for relevant items furnished under this contract not listed below:
      a. Central Processing Unit (CPU) or web server
      b. Monitors
      c. Keyboards
      d. Power supplies
      e. Battery backups
      f. Interface equipment between CPU or server and control panels
      g. Operating System software
      h. Operator interface software
      i. Color graphic software
      j. Third-party software
   3. Schematic diagrams of control, communication, and power wiring for central system installation. Show interface wiring to control system.
   4. Network riser diagrams of wiring between central control unit and control panels.

C. Controlled Systems
   1. Riser diagrams showing control network layout, communication protocol, and wire types.
   2. Schematic diagram of each controlled system. Label control points with point names. Graphically show locations of control elements.
   3. Schematic wiring diagram of each controlled system. Label control elements and terminals. Where a control element is also shown on control system schematic, use the
same name.
4. Instrumentation list (Bill of Materials) for each controlled system. List each control system element in a table. Show element name, type of device, manufacturer, model number, and product data sheet number.
5. Complete description of control system operation including sequences of operation. Include and reference schematic diagram of controlled system. List I/O points and software points specified in Section 23 09 93. Indicate alarmed and trended points.

D. Training Materials: Provide course outline and materials for each class at least six weeks before first class. Training shall be furnished via instructor-led sessions, computer-based training, or web-based training. Engineer will modify course outlines and materials if necessary to meet Owner's needs. Engineer will review and approve course outlines and materials at least three weeks before first class.

1.12 WARRANTY
A. Warrant work as follows:
1. Warrant labor and materials for specified control system free from defects for a period of 12 months after final acceptance. Control system failures during warranty period shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner. Respond during normal business hours within 24 hours of Owner's warranty service request.
2. Work shall have a single warranty date, even if Owner receives beneficial use due to early system start-up. If specified work is split into multiple contracts or a multi-phase contract, each contract or phase shall have a separate warranty start date and period.
3. Provide updates to operator workstation or web server software, project-specific software, graphic software, database software, and firmware that resolve Contractor-identified software deficiencies at no charge during warranty period. If available, Owner can purchase in-warranty service agreement to receive upgrades for functional enhancements associated with above-mentioned items. Do not install updates or upgrades without Owner's written authorization.
4. Exception: Contractor shall not be required to warrant reused devices except those that have been rebuilt or repaired. Installation labor and materials shall be warranted. Demonstrate operable condition of reused devices at time of Engineer's acceptance.

1.13 OWNERSHIP OF PROPRIETARY MATERIAL
A. Project-specific software and documentation shall become Owner's property. This includes, but is not limited to:
1. Graphics
2. Record drawings
3. Database
4. Application programming code
5. Documentation

PART 2 PRODUCTS
2.01 MATERIALS
A. Use new products the manufacturer is currently manufacturing and selling for use in new installations. Do not use this installation as a product test site unless explicitly approved in writing by Owner. Spare parts shall be available for at least five years after completion of this contract.

2.02 COMMUNICATION
A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise an open protocol internetwork.
B. Install new wiring and network devices as required to provide a complete and workable control network.
C. Each controller shall have a communication port for temporary connection to a laptop computer or other operator interface. Connection shall support memory downloads and other
commissioning and troubleshooting operations.

D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
   1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, and control algorithms shall be viewable and editable from each internetwork controller.
   2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all cross-controller links required to execute control strategies. An authorized operator shall be able to edit cross-controller links by typing a standard object address or by using a point-and-click interface.

E. Controllers with real-time clocks shall synchronize with the building management system. System shall automatically synchronize system clocks daily from an operator-designated controller via the internetwork. If applicable, system shall automatically adjust for daylight saving and standard time.

F. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring.

G. System shall support Web services data exchange with any other system that complies with XML (extensible markup language) and SOAP (simple object access protocol) standards specified by the Web Services Interoperability Organization (WS-I) Basic Profile 1.0 or higher. Web services support shall as a minimum be provided at the workstation or web server level and shall enable data to be read from or written to the system.
   1. System shall support Web services read data requests by retrieving requested trend data or point values (I/O hardware points, analog value software points, or binary value software points) from any system controller or from the trend history database.
   2. System shall support Web services write data request to each analog and binary object that can be edited through the system operator interface by downloading a numeric value to the specified object.
   3. For read or write requests, the system shall require user name and password authentication and shall support SSL (Secure Socket Layer) or equivalent data encryption.
   4. System shall support discovery through a Web services connection or shall provide a tool available through the Operator Interface that will reveal the path/identifier needed to allow a third party Web services device to read data from or write data to any object in the system which supports this service.

2.03 OPERATOR INTERFACE

A. Operator Interface. Web server shall reside on high-speed network with building controllers. Each standard browser connected to server shall be able to access all system information. In addition to the primary operator interface, the system shall include a secondary interface compatible with a locally available commercial wireless network and viewable on a commercially available wireless device such as a Wireless Access Protocol (WAP) enabled cellular telephone or personal digital assistant (PDA). This secondary interface may be text-based and shall provide a summary of the most important data. As a minimum, the following capabilities shall be provided through this interface:
   1. An operator authentication system that requires an operator to log in before viewing or editing any data, and which can be configured to limit the privileges of an individual operator.
   2. The ability to view and acknowledge any alarm in the system. Alarms or links to alarms shall be provided on a contiguous list so the operator can quickly view all alarms.
   3. A summary page or pages for each piece of equipment in the system. This page shall include the current values of all critical I/O points and shall allow the operator to lock binary points on or off and to lock analog points to any value within their range.
   4. Navigation links that allow the operator to quickly navigate from the home screen to any piece of equipment in the system, and then return to the home screen. These links may be
arranged in a hierarchical fashion, such as navigating from the home screen to a particular building, then to a specific floor in the building, and then to a specific room or piece of equipment.

B. Communication. Web server or workstation and controllers shall communicate using an open protocol communications language. Web server or workstation and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol.

C. Hardware. Each workstation or web server shall consist of the following:

1. Hardware Base. Industry-standard hardware shall meet or exceed DDC system manufacturer's recommended specifications and shall meet response times as specified. Hard disk shall have sufficient memory to store system software, one year of data for trended points, and a system database at least twice the size of the existing database at system acceptance. Configure computers and network connections if multiple computers are required to meet specified memory and performance. Web server or workstations shall be IBM-compatible PCs with a minimum of:
   a. Intel Pentium 2.66 GHz processor
   b. 1 GB RAM
   c. 40 GB hard disk providing data at 100 MB/sec
   d. 48x CD-ROM drive
   e. Serial, parallel, and network communication ports and cables required for proper system operation

2. Modem. Auto-dial modem and associated cables shall transmit over voice-grade telephone lines at a nominal 56,000 baud and shall provide communication between workstation or web server and remote buildings and workstations.

D. Operator Functions. Operator interface shall allow each authorized operator to execute the following functions as a minimum:

1. Log In and Log Out. System shall require user name and password to log in to operator interface.

2. Point-and-click Navigation. Operator interface shall be graphically based and shall allow operators to access graphics for equipment and geographic areas using point-and-click navigation.

3. View and Adjust Equipment Properties. Operators shall be able to view controlled equipment status and to adjust operating parameters such as setpoints, PID gains, on and off controls, and sensor calibration.

4. View and Adjust Operating Schedules. Operators shall be able to view scheduled operating hours of each schedulable piece of equipment on a weekly or monthly calendar-based graphical schedule display, to select and adjust each schedule and time period, and to simultaneously schedule related equipment. System shall clearly show exception schedules and holidays on the schedule display.

5. View and Respond to Alarms. Operators shall be able to view a list of currently active system alarms, to acknowledge each alarm, and to clear (delete) unneeded alarms.

6. View and Configure Trends. Operators shall be able to view a trend graph of each trended point and to edit graph configuration to display a specific time period or data range. Operator shall be able to create custom trend graphs to display on the same page data from multiple trended points.

7. View and Configure Reports. Operators shall be able to run preconfigured reports, to view report results, and to customize report configuration to show data of interest.

8. Manage Control System Hardware. Operators shall be able to view controller status, to restart (reboot) each controller, and to download new control software to each controller.

9. Manage Operator Access. Typically, only a few operators are authorized to manage operator access. Authorized operators shall be able to view a list of operators with system access and of functions they can perform while logged in. Operators shall be able to add operators, to delete operators, and to edit operator function authorization. Operator shall be able to authorize each operator function separately.

E. System Software.
1. Operating System. Web server shall have an industry-standard professional-grade operating system. Acceptable systems include Microsoft Windows XP Pro, Red Hat Linux, or Sun Solaris. Coordinate operating system type with the Owner.

2. System Graphics. Operator interface shall be graphically based and shall include at least one graphic per piece of equipment or occupied zone, graphics for each chilled water and hot water system, and graphics that summarize conditions on each floor of each building included in this contract. Indicate thermal comfort on floor plan summary graphics using dynamic colors to represent zone temperature relative to zone setpoint.
   a. Functionality. Graphics shall allow operator to monitor system status, to view a summary of the most important data for each controlled zone or piece of equipment, to use point-and-click navigation between zones or equipment, and to edit setpoints and other specified parameters.
   b. Animation. Graphics shall be able to animate by displaying different image files for changed object status.
   c. Alarm Indication. Indicate areas or equipment in an alarm condition using color or other visual indicator.
   d. Format. Graphics shall be saved in an industry-standard format such as BMP, JPEG, PNG, or GIF. Web-based system graphics shall be viewable on browsers compatible with World Wide Web Consortium browser standards. Web graphic format shall require no plug-in (such as HTML and JavaScript) or shall only require widely available no-cost plug-ins (such as Active-X and Macromedia Flash).

F. System Tools. System shall provide the following functionality to authorized operators as an integral part of the operator interface or as stand-alone software programs. If furnished as part of the interface, the tool shall be available from each workstation or web browser interface. If furnished as a stand-alone program, software shall be installable on standard IBM-compatible PCs with no limit on the number of copies that can be installed under the system license.
   1. Automatic System Database Configuration. Each workstation or web server shall store on its hard disk a copy of the current system database, including controller firmware and software. Stored database shall be automatically updated with each system configuration or controller firmware or software change.
   2. Controller Memory Download. Operators shall be able to download memory from the system database to each controller.
   3. System Configuration. Operators shall be able to configure the system.
   4. Online Help. Context-sensitive online help for each tool shall assist operators in operating and editing the system.
   5. Security. System shall require a user name and password to view, edit, add, or delete data.
      a. Operator Access. Each user name and password combination shall define accessible viewing, editing, adding, and deleting functions in each system application, editor, and object. Authorized operators shall be able to vary and deny each operator’s accessible functions based on equipment or geographic location.
      b. Automatic Log Out. Automatically log out each operator if no keyboard or mouse activity is detected. Operators shall be able to adjust automatic log out delay.
   6. System Diagnostics. System shall automatically monitor controller and I/O point operation. System shall annunciate controller failure and I/O point locking (manual overriding to a fixed value).
   7. Alarm Processing. System input and status objects shall be configurable to alarm on departing from and on returning to normal state. Operator shall be able to enable or disable each alarm and to configure alarm limits, alarm limit differentials, alarm states, and alarm reactions for each system object. Configure and enable alarm points as detailed on the drawings.
   8. Alarm Messages. Alarm messages shall use an English language descriptor without acronyms or mnemonics to describe alarm source, location, and nature.
9. Alarm Reactions. Operator shall be able to configure (by object) actions workstation or web server shall initiate on receipt of each alarm. As a minimum, workstation or web server shall be able to log, print, start programs, display messages, send e-mail, send page, and audibly annunciate.

10. Alarm Maintenance. Operators shall be able to view system alarms and changes of state chronologically, to acknowledge and delete alarms, and to archive closed alarms to the workstation or web server hard disk from each workstation or web browser interface.

11. Trend Configuration. Operator shall be able to configure trend sample or change of value (COV) interval, start time, and stop time for each system data object and shall be able to retrieve data for use in spreadsheets and standard database programs. Controller shall sample and store trend data and shall be able to archive data to the hard disk.

12. Object and Property Status and Control. Operator shall be able to view, and to edit if applicable, the status of each system object and property by menu, on graphics, or through custom programs.

13. Reports and Logs. Operator shall be able to select, to modify, to create, and to print reports and logs. Operator shall be able to store report data in a format accessible by standard spreadsheet and word processing programs.

14. Standard Reports. Furnish the following standard system reports:
   a. Objects. System objects and current values filtered by object type, by status (in alarm, locked, normal), by equipment, by geographic location, or by combination of filter criteria.
   c. System shall log the following to a database or text file and shall retain data for an adjustable period:
      1) Alarm History.
      2) Trend Data. Operator shall be able to select trends to be logged.
      3) Operator Activity. At a minimum, system shall log operator log in and log out, control parameter changes, schedule changes, and alarm acknowledgment and deletion. System shall date and time stamp logged activity.

15. Custom Reports. Operator shall be able to create custom reports that retrieve data, including archived trend data, from the system, that analyze data using common algebraic calculations, and that present results in tabular or graphical format. Reports shall be launched from the operator interface.

16. Graphics Generation. Graphically based tools and documentation shall allow Operator to edit system graphics, to create graphics, and to integrate graphics into the system. Operator shall be able to add analog and binary values, dynamic text, static text, and animation files to a background graphic using a mouse.

17. Graphics Library. Complete library of standard HVAC equipment graphics shall include equipment such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. Library shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. Library graphic file format shall be compatible with graphics generation tools.

18. Custom Application Programming. Operator shall be able to create, edit, debug, and download custom programs. System shall be fully operable while custom programs are edited, compiled, and downloaded. Programming language shall have the following features:
   a. Language. Language shall be graphically based and shall use function blocks arranged in a logic diagram that clearly shows control logic flow. Function blocks shall directly provide functions listed below, and operators shall be able to create custom or compound function blocks.
   b. Programming Environment. Tool shall provide a full-screen, cursor-and-mouse-driven programming environment that incorporates word processing features such as cut and paste. Operators shall be able to insert, add, modify, and delete custom programming code, and to copy blocks of code to a file library for reuse in other control programs.
c. Independent Program Modules. Operator shall be able to develop independently executing program modules that can disable, enable and exchange data with other program modules.
d. Debugging and Simulation. Operator shall be able to step through the program observing intermediate values and results. Operator shall be able to adjust input variables to simulate actual operating conditions. Operator shall be able to adjust each step’s time increment to observe operation of delays, integrators, and other time-sensitive control logic. Debugger shall provide error messages for syntax and for execution errors.
e. Conditional Statements. Operator shall be able to program conditional logic using compound Boolean (AND, OR, and NOT) and relational (EQUAL, LESS THAN, GREATER THAN, NOT EQUAL) comparisons.
f. Mathematical Functions. Language shall support floating-point addition, subtraction, multiplication, division, and square root operations, as well as absolute value calculation and programmatic selection of minimum and maximum values from a list of values.
g. Variables: Operator shall be able to use variable values in program conditional statements and mathematical functions.
   1) Time Variables. Operator shall be able to use predefined variables to represent time of day, day of the week, month of the year, and date. Other predefined variables or simple control logic shall provide elapsed time in seconds, minutes, hours, and days. Operator shall be able to start, stop, and reset elapsed time variables using the program language.
   2) System Variables. Operator shall be able to use predefined variables to represent status and results of Controller Software and shall be able to enable, disable, and change setpoints of Controller Software as described in Controller Software section.

G. Portable Operator's Terminal. Provide all necessary software to configure an IBM-compatible laptop computer for use as a Portable Operator's Terminal. Operator shall be able to connect configured Terminal to the system network or directly to each controller for programming, setting up, and troubleshooting.

2.04 CONTROLLER SOFTWARE
A. Building and energy management application software shall reside and operate in system controllers. Applications shall be editable through operator workstation, web browser interface, or engineering workstation.
B. Scheduling. System shall provide the following schedule options as a minimum:
   1. Weekly. Provide separate schedules for each day of the week. Each schedule shall be able to include up to 5 occupied periods (5 start-stop pairs or 10 events).
   2. Exception. Operator shall be able to designate an exception schedule for each of the next 365 days. After an exception schedule has executed, system shall discard and replace exception schedule with standard schedule for that day of the week.
   3. Holiday. Operator shall be able to define 24 special or holiday schedules of varying length on a scheduling calendar that repeats each year.
C. System Coordination. Operator shall be able to group related equipment based on function and location and to use these groups for scheduling and other applications.
D. Binary and Analog Alarms. See Paragraph 2.3.F.7 (Alarm Processing).
E. Alarm Reporting. See Paragraph 2.3.F.9 (Alarm Reactions).
F. Remote Communication. System shall automatically contact operator workstation or server on receipt of critical alarms. If no network connection is available, system shall use a modem connection.
G. Maintenance Management. System shall generate maintenance alarms when equipment exceeds adjustable runtime, equipment starts, or performance limits.
H. Sequencing. Application software shall sequence chillers, boilers, and pumps as detailed on the drawings.

I. PID Control. System shall provide direct- and reverse-acting PID (proportional-integral-derivative) algorithms. Each algorithm shall have anti-windup and selectable controlled variable, setpoint, and PID gains. Each algorithm shall calculate a time-varying analog value that can be used to position an output or to stage a series of outputs.

J. Staggered Start. System shall stagger controlled equipment restart after power outage. Operator shall be able to adjust equipment restart order and time delay between equipment restarts.

K. Energy Calculations.
   1. System shall accumulate and convert instantaneous power (kW) or flow rates (L/s [gpm]) to energy usage data.
   2. System shall calculate a sliding-window average (rolling average). Operator shall be able to adjust window interval to 15 minutes, 30 minutes, or 60 minutes.

L. Anti-Short Cycling. Binary output objects shall be protected from short cycling by means of adjustable minimum on-time and off-time settings.

M. On and Off Control with Differential. System shall provide direct- and reverse-acting on and off algorithms with adjustable differential to cycle a binary output based on a controlled variable and setpoint.

N. Runtime Totalization. System shall provide an algorithm that can totalize runtime for each binary input and output. Operator shall be able to enable runtime alarm based on exceeded adjustable runtime limit.

2.05 CONTROLLERS

A. General. Provide Building Controllers (BC), Advanced Application Controllers (AAC), Application Specific Controllers (ASC), Smart Actuators (SA), and Smart Sensors (SS) as required to achieve performance specified.

B. Communication.
   1. Service Port. Each controller shall provide a service communication port for connection to a Portable Operator's Terminal. Connection shall be extended to space temperature sensor ports where shown on drawings.
   2. Signal Management. BC and ASC operating systems shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and to allow for central monitoring and alarms.
   3. Data Sharing. Each BC and AAC shall share data as required with each networked BC and AAC.
   4. Stand-Alone Operation. Each piece of equipment specified shall be controlled by a single controller to provide stand-alone control in the event of communication failure. All I/O points specified for a piece of equipment shall be integral to its controller. Provide stable and reliable stand-alone control using default values or other method for values normally read over the network.

C. Environment. Controller hardware shall be suitable for anticipated ambient conditions.
   1. Controllers used outdoors or in wet ambient conditions shall be mounted in waterproof enclosures and shall be rated for operation at -29°C to 60°C (-20°F to 140°F).
   2. Controllers used in conditioned space shall be mounted in dust-protective enclosures and shall be rated for operation at 0°C to 50°C (32°F to 120°F).

D. Keypad. Provide a local keypad and display for each BC and AAC. Operator shall be able to use keypad to view and edit data. Keypad and display shall require password to prevent unauthorized use. If the manufacturer does not normally provide a keypad and display for each BC and AAC, provide the software and any interface cabling needed to use a laptop computer as a Portable Operator's Terminal for the system.

E. Real-Time Clock. Controllers that perform scheduling shall have a real-time clock.
F. Serviceability.
1. Controllers shall have diagnostic LEDs for power, communication, and processor.
2. Wires shall be connected to a field-removable modular terminal strip or to a termination card connected by a ribbon cable.
3. Each BC and AAC shall continually check its processor and memory circuit status and shall generate an alarm on abnormal operation. System shall continuously check controller network and generate alarm for each controller that fails to respond.

G. Memory.
1. Controller memory shall support operating system, database, and programming requirements.
2. Each BC and AAC shall retain BIOS and application programming for at least 72 hours in the event of power loss.
3. Each ASC and SA shall use nonvolatile memory and shall retain BIOS and application programming in the event of power loss. System shall automatically download dynamic control parameters following power loss.

H. Immunity to Power and Noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

I. Transformer. ASC power supply shall be fused or current limiting and shall be rated at a minimum of 125% of ASC power consumption.

2.06 INPUT AND OUTPUT INTERFACE

A. General. Hard-wire input and output points to BCs, AACs, ASCs, or SAs.

B. Protection. Shorting an input or output point to itself, to another point, or to ground shall cause no controller damage. Input or output point contact with up to 24 V for any duration shall cause no controller damage.

C. Binary Inputs. Binary inputs shall monitor the on and off signal from a remote device. Binary inputs shall provide a wetting current of at least 12 mA and shall be protected against contact bounce and noise. Binary inputs shall sense dry contact closure without application of power external to the controller.

D. Pulse Accumulation Inputs. Pulse accumulation inputs shall conform to binary input requirements and shall accumulate up to 10 pulses per second.

E. Analog Inputs. Analog inputs shall monitor low-voltage (0-10 Vdc), current (4-20 mA), or resistance (thermistor or RTD) signals. Analog inputs shall be compatible with and field configurable to commonly available sensing devices.

F. Binary Outputs. Binary outputs shall send an on-or-off signal for on and off control. Building Controller binary outputs shall have three-position (on-off-auto) override switches and status lights. Outputs shall be selectable for normally open or normally closed operation.

G. Analog Outputs. Analog outputs shall send a modulating 0-10 Vdc or 4-20 mA signal as required to properly control output devices. Each Building Controller analog output shall have a two-position (auto-manual) switch, a manually adjustable potentiometer, and status lights. Analog outputs shall not drift more than 0.4% of range annually.

H. Tri-State Outputs. Control three-point floating electronic actuators without feedback with tri-state outputs (two coordinated binary outputs). Tri-State outputs may be used to provide analog output control in zone control and terminal unit control applications such as VAV terminal units, duct-mounted heating coils, and zone dampers.

I. Universal Inputs and Outputs. Inputs and outputs that can be designated as either binary or analog in software shall conform to the provisions of this section that are appropriate for their designated use.

2.07 POWER SUPPLIES AND LINE FILTERING
A. Power Supplies. Control transformers shall be UL listed. Furnish Class 2 current-limiting type or furnish over-current protection in primary and secondary circuits for Class 2 service in accordance with NEC requirements. Limit connected loads to 80% of rated capacity.

1. DC power supply output shall match output current and voltage requirements. Unit shall be full-wave rectifier type with output ripple of 5.0 mV maximum peak-to-peak. Regulation shall be 1.0% line and load combined, with 100-microsecond response time for 50% load changes. Unit shall have built-in over-voltage and over-current protection and shall be able to withstand 150% current overload for at least three seconds without trip-out or failure.
   a. Unit shall operate between 0°C and 50°C (32°F and 120°F). EM/RF shall meet FCC Class B and VDE 0871 for Class B and MILSTD 810C for shock and vibration.
   b. Line voltage units shall be UL recognized and CSA listed.

B. Power Line Filtering.

1. Provide internal or external transient voltage and surge suppression for workstations and controllers. Surge protection shall have:
   2. Dielectric strength of 1000 V minimum
   3. Response time of 10 nanoseconds or less
   4. Transverse mode noise attenuation of 65 dB or greater
   5. Common mode noise attenuation of 150 dB or greater at 40-100 Hz

2.08 AUXILIARY CONTROL DEVICES

A. Local Control Panels.

1. Indoor control panels shall be fully enclosed NEMA 1 construction with hinged door key-lock latch and removable sub-panels. A common key shall open each control panel and sub-panel.

2. Prewire internal and face-mounted device connections with color-coded stranded conductors tie-wrapped or neatly installed in plastic troughs. Field connection terminals shall be UL listed for 600 V service, individually identified per control and interlock drawings, with adequate clearance for field wiring.

3. Each local panel shall have a control power source power switch (on-off) with overcurrent protection.

2.09 WIRING AND RACEWAYS

A. General. Provide copper wiring, plenum cable, and raceways as specified in applicable sections of Division 26.

B. Insulated wire shall use copper conductors and shall be UL listed for 90°C (200°F) minimum service.

2.10 FIBER OPTIC CABLE SYSTEM

A. Optical Cable. Optical cables shall be duplex 900 mm tight-buffer construction designed for intra-building environments. Sheath shall be UL listed OFNP in accordance with NEC Article 770. Optical fiber shall meet the requirements of FDDI, ANSI X3T9.5 PMD for 62.5/125mm.

B. Connectors. Field terminate optical fibers with ST type connectors. Connectors shall have ceramic ferrules and metal bayonet latching bodies.

PART 3 EXECUTION

3.01 EXAMINATION

A. Thoroughly examine project plans for control device and equipment locations. Report discrepancies, conflicts, or omissions to Architect or Engineer for resolution before starting rough-in work.

B. Inspect site to verify that equipment can be installed as shown. Report discrepancies, conflicts, or omissions to Engineer for resolution before starting rough-in work.

C. Examine drawings and specifications for work of others. Report inadequate headroom or space conditions or other discrepancies to Engineer and obtain written instructions for changes necessary to accommodate Section 23 0923 work with work of others. Controls Contractor shall
perform at his expense necessary changes in specified work caused by failure or neglect to report discrepancies.

### 3.02 PROTECTION

A. Controls Contractor shall protect against and be liable for damage to work and to material caused by Contractor's work or employees.

B. Controls Contractor shall be responsible for work and equipment until inspected, tested, and accepted. Protect material not immediately installed. Close open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.

### 3.03 COORDINATION

1. Assist in coordinating space conditions to accommodate the work of each trade where work will be installed near or will interfere with work of other trades. If installation without coordination causes interference with work of other trades, Contractor shall correct conditions without extra charge.

2. Coordinate and schedule work with other work in the same area and with work dependent upon other work to facilitate mutual progress.

### 3.04 GENERAL WORKMANSHIP

A. Install equipment, piping, and wiring or raceway horizontally, vertically, and parallel to walls wherever possible.

B. Provide sufficient slack and flexible connections to allow for piping and equipment vibration isolation.

C. Install equipment in readily accessible locations as defined by National Electrical Code (NEC) Chapter 1 Article 100 Part A.

D. Verify wiring integrity to ensure continuity and freedom from shorts and ground faults.

E. Equipment, installation, and wiring shall comply with industry specifications and standards and local codes for performance, reliability, and compatibility.
3.05 FILED QUALITY CONTROL
   A. Work, materials, and equipment shall comply with rules and regulations of applicable local, state, and federal codes and ordinances.
   B. Continually monitor field installation for code compliance and workmanship quality.
   C. Contractor shall arrange for work inspection by local or state authorities having jurisdiction over the work.

3.06 WIRING
   A. Control and interlock wiring and installation shall comply with national and local electrical codes, Division 26, and manufacturer's recommendations. Where the requirements of Section 23 09 23 differ from Division 26, Section 23 09 23 shall take precedence.
   B. NEC Class 1 (line voltage) wiring shall be UL listed in approved raceway as specified by NEC and Division 26.
   C. Low-voltage wiring shall meet NEC Class 2 requirements. Subfuse low-voltage power circuits as required to meet Class 2 current limit.
   D. NEC Class 2 (current-limited) wires not in raceway but in concealed and accessible locations such as return air plenums shall be UL listed for the intended application.
   E. Install wiring in raceway where subject to mechanical damage and at levels below 3 m (10 ft) in mechanical, electrical, or service rooms.
   F. Install Class 1 and Class 2 wiring in separate raceways. Boxes and panels containing high-voltage wiring and equipment shall not be used for low-voltage wiring except for the purpose of interfacing the two through relays and transformers.
   G. Do not install wiring in raceway containing tubing.
   H. Run exposed Class 2 wiring parallel to a surface or perpendicular to it and tie neatly at 3 m (10 ft) intervals.
   I. Use structural members to support or anchor plenum cables without raceway. Do not use ductwork, electrical raceways, piping, or ceiling suspension systems to support or anchor cables.
   J. Secure raceways with raceway clamps fastened to structure and spaced according to code requirements. Raceways and pull boxes shall not be hung on or attached to ductwork, electrical raceways, piping, or ceiling suspension systems.
   K. Size raceway and select wire size and type in accordance with manufacturer's recommendations and NEC requirements.
   L. Include one pull string in each raceway 2.5 cm (1 in.) or larger.
   M. Use color-coded conductors throughout.
   N. Locate control and status relays in designated enclosures only. Do not install control and status relays in packaged equipment control panel enclosures containing Class 1 starters.
   O. Conceal raceways except within mechanical, electrical, or service rooms. Maintain minimum clearance of 15 cm (6 in.) between raceway and high-temperature equipment such as steam pipes or flues.
   P. Adhere to requirements in Division 26 where raceway crosses building expansion joints.
   Q. Install insulated bushings on raceway ends and enclosure openings. Seal top ends of vertical raceways.
   R. Terminate control and interlock wiring related to the work of this section. Maintain at the job site updated (as-built) wiring diagrams that identify terminations.
   S. Flexible metal raceways and liquid-tight flexible metal raceways shall not exceed 1 m (3 ft) in length and shall be supported at each end. Do not use flexible metal raceway less than ½ in. electrical trade size. Use liquid-tight flexible metal raceways in areas exposed to moisture including chiller and boiler rooms.
T. Install raceway rigidly, support adequately, ream at both ends, and leave clean and free of obstructions. Join raceway sections with couplings and according to code. Make terminations in boxes with fittings. Make terminations not in boxes with bushings.

### 3.07 COMMUNICATION WIRING

A. Communication wiring shall be low-voltage Class 2 wiring.
B. Install communication wiring in separate raceways and enclosures from other Class 2 wiring.
C. During installation do not exceed maximum cable pulling, tension, or bend radius specified by the cable manufacturer.
D. Verify entire network's integrity following cable installation using appropriate tests for each cable.
E. Install lightning arrestor according to manufacturer's recommendations between cable and ground where a cable enters or exits a building.
F. Each run of communication wiring shall be a continuous length without splices when that length is commercially available. Runs longer than commercially available lengths shall have as few splices as possible using commercially available lengths.
G. Label communication wiring to indicate origination and destination.
H. Ground coaxial cable according to NEC regulations article on "Communications Circuits, Cable, and Protector Grounding."

### 3.08 FIBER OPTIC CABLE

A. During installation do not exceed maximum pulling tensions specified by cable manufacturer. Post-installation residual cable tension shall be within cable manufacturer's specifications.
B. Install cabling and associated components according to manufacturers' instructions. Do not exceed minimum cable and unjacketed fiber bend radii specified by cable manufacturer.

### 3.09 INSTALLATION OF SENSORS

A. Install sensors according to manufacturer's recommendations.
B. Mount sensors rigidly and adequately for operating environment.
C. Install room temperature sensors on concealed junction boxes properly supported by wall framing.
D. Air seal wires attached to sensors in their raceways or in the wall to prevent sensor readings from being affected by air transmitted from other areas.
E. Use averaging sensors in mixing plenums and hot and cold decks. Install averaging sensors in a serpentine manner vertically across duct. Support each bend with a capillary clip.
F. Install mixing plenum low-limit sensors in a serpentine manner horizontally across duct. Support each bend with a capillary clip. Provide 3 m (1 ft) of sensing element for each 1 m² (1 ft²) of coil area.
G. Install pipe-mounted temperature sensors in wells. Install liquid temperature sensors with heat-conducting fluid in thermal wells.
H. Install outdoor air temperature sensors on north wall at designated location with sun shield.
I. Differential Air Static Pressure.
   1. Supply Duct Static Pressure. Pipe high-pressure tap to duct using a pitot tube. Make pressure tap connections according to manufacturer's recommendations.
   2. Return Duct Static Pressure. Pipe high-pressure tap to duct using a pitot tube. Make pressure tap connections according to manufacturer's recommendations.
   3. Building Static Pressure. Pipe pressure sensor's low-pressure port to the static pressure port located on the outside of the building through a high-volume accumulator. Pipe high-pressure port to a location behind a thermostat cover.
   4. Piping to pressure transducer pressure ports shall contain a capped test port adjacent to transducer.
5. Pressure transducers, except those controlling VAV boxes, shall be located in control panels, not on monitored equipment or on ductwork. Mount transducers in a vibration-free location accessible for service without use of ladders or special equipment.


J. Smoke detectors, freezestats, high-pressure cut-offs, and other safety switches shall be hard-wired to de-energize equipment as described in the sequence of operation. Switches shall require manual reset. Provide contacts that allow DDC software to monitor safety switch status.

3.10 WARNING LABELS

A. Affix permanent warning labels to equipment that can be automatically started by the control system.
   1. Labels shall use white lettering (12-point type or larger) on a red background.
   2. Warning labels shall read as follows.
      a. **CAUTION**: This equipment is operating under automatic control and may start or stop at any time without warning. Switch disconnect to "Off" position before servicing

B. Affix permanent warning labels to motor starters and control panels that are connected to multiple power sources utilizing separate disconnects.
   1. Labels shall use white lettering (12-point type or larger) on a red background.
   2. Warning labels shall read as follows.
      a. **CAUTION**: This equipment is fed from more than one power source with separate disconnects. Disconnect all power sources before servicing.

3.11 IDENTIFICATION OF HARDWARE AND WIRING

A. Label wiring and cabling, including that within factory-fabricated panels, with control system address or termination number at each end within 5 cm (2 in.) of termination.

B. Permanently label or code each point of field terminal strips to show instrument or item served.

C. Label control panels with minimum 1 cm (½ in.) letters on laminated plastic nameplates.

D. Label each control component with a permanent label. Label plug-in components such that label remains stationary during component replacement.

E. Label room sensors related to terminal boxes or valves with nameplates.

F. Manufacturers' nameplates and UL or CSA labels shall be visible and legible after equipment is installed.

G. Label identifiers shall match record documents.

3.12 PROGRAMMING

A. Software Programming. Programming shall provide actions for each possible situation. Graphic- or parameter-based programs shall be documented. Text-based programs shall be modular, structured, and commented to clearly describe each section of the program.
   1. Application Programming. Provide application programming that adheres to the sequences of operation. Program documentation or comment statements shall reflect language used in sequences of operation.
   2. System Programming. Provide system programming necessary for system operation.

B. Operator Interface.
   1. Standard Graphics. Provide graphics as specified in Section 23 09 23 Article 2.3 Paragraph E.2 (System Graphics). Show on each equipment graphic input and output points and relevant calculated points. Point information on graphics shall dynamically update.
   2. Install, initialize, start up, and troubleshoot operator interface software and functions (including operating system software, operator interface database, and third-party software installation and integration required for successful operator interface operation).

3.13 CONTROL SYSTEM CHECKOUT AND TESTING
A. **Startup Testing.** Complete startup testing to verify operational control system before notifying Owner of system demonstration. Provide Owner with schedule for startup testing. Owner may have representative present during any or all startup testing.

1. Calibrate and prepare for service each instrument, control, and accessory equipment furnished under Section 23 09 23.
2. Verify that control wiring is properly connected and free of shorts and ground faults. Verify that terminations are tight.
3. Enable control systems and verify each input device's calibration. Calibrate each device according to manufacturer's recommendations.
4. Verify that binary output devices such as relays, solenoid valves, two-position actuators and control valves, and magnetic starters, operate properly and that normal positions are correct.
5. Verify that analog output devices such as I/Ps and actuators are functional, that start and span are correct, and that direction and normal positions are correct. Check control valves and automatic dampers to ensure proper action and closure. Make necessary adjustments to valve stem and damper blade travel.
6. Prepare a log documenting startup testing of each input and output device, with technician's initials certifying each device has been tested and calibrated.
7. Verify that system operates according to sequences of operation. Simulate and observe each operational mode by overriding and varying inputs and schedules. Tune PID loops and each control routine that requires tuning.
8. Alarms and Interlocks.
   a. Check each alarm with an appropriate signal at a value that will trip the alarm.
   b. Trip interlocks using field contacts to check logic and to ensure that actuators fail in the proper direction.
   c. Test interlock actions by simulating alarm conditions to check initiating value of variable and interlock action.

3.14 **CLEANING**

A. On completion of work, check equipment furnished under this section for paint damage. Repair damaged factory-finished paint to match adjacent areas. Replace deformed cabinets and enclosures with new material and repaint to match adjacent areas.

3.15 **TRAINING**

A. Provide training for a designated staff of Owner's representatives. Training shall be provided via self-paced training, web-based or computer-based training, classroom training, or a combination of training methods.

B. Training shall enable students to accomplish the following objectives.

1. Proficiently operate system
2. Understand control system architecture and configuration
3. Understand DDC system components
4. Understand system operation, including DDC system control and optimizing routines (algorithms)
5. Operate workstation and peripherals
6. Log on and off system
7. Access graphics, point reports, and logs
8. Adjust and change system setpoints, time schedules, and holiday schedules
9. Recognize common HVAC system malfunctions by observing system graphics, trend graphs, and other system tools
10. Understand system drawings and Operation and Maintenance manual
11. Understand job layout and location of control components
12. Access data from DDC controllers
13. Operate portable operator's terminals
14. Create and change system graphics
15. Create, delete, and modify alarms, including configuring alarm reactions
16. Create, delete, and modify point trend logs (graphs) and multi-point trend graphs
17. Configure and run reports
18. Add, remove, and modify system's physical points
19. Create, modify, and delete application programming
20. Add operator interface stations
21. Add a new controller to system
22. Download firmware and advanced applications programming to a controller
23. Configure and calibrate I/O points
24. Maintain software and prepare backups
25. Interface with job-specific, third-party operator software
26. Add new users and understand password security procedures

C. Divide presentation of objectives into three sessions (1-13, 14-23, and 24-26). Participants will attend one or more of sessions, depending on knowledge level required.
   1. Day-to-day Operators (objectives 1-13)
   2. Advanced Operators (objectives 1-13 and 14-23)
   3. System Managers and Administrators (objectives 1-13 and 24-26)

D. Provide course outline and materials according to Section 23 09 23 Article 1.10 (Submittals). Provide one copy of training material per student.

E. Instructors shall be factory-trained and experienced in presenting this material.

F. Perform classroom training using a network of working controllers representative of installed hardware.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Single-wall rectangular ducts and fittings.
B. Single-wall round ducts and fittings.
C. Sheet metal materials.
D. Sealants and gaskets.
E. Hangers and supports.

1.02 RELATED REQUIREMENTS
A. Division 03 - Concrete
B. Division 07 - Thermal Moisture Protection: Firestopping
C. Section 23 0005 - Basic HVAC Requirements
D. Section 23 0593 - Testing, Adjusting, and Balancing for HVAC.
E. Section 23 0713 - Duct Insulation: External insulation and duct liner.
F. Section 23 3300 - Air Duct Accessories.
G. Section 23 3700 - Air Outlets and Inlets.

1.03 REFERENCE STANDARDS
I. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible 2005 (Revised 2009).
J. UL 181 - Standard for Factory-Made Air Ducts and Air Connectors current edition, including all revisions.

1.04 PERFORMANCE REQUIREMENTS
A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7.
C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.05 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 - General Requirements for submittal procedures.
B. Product Data: Provide data for duct materials, duct liner, duct connections, and factory fabricated fittings.
C. Shop Drawings: Submit 1/4 scale, double line shop drawings that indicate duct fittings, duct size, bottom of duct elevations, necessary offsets to accommodate building structure, particulars such as gages, sizes, welds, elevations, all fittings, and configuration prior to start of work for all systems.

1.06 REGULATORY REQUIREMENTS
A. Construct ductwork to SMACNA (DCS) - HVAC Duct Construction Standards - Metal and Flexible; Sheet Metal and Air Conditioning Contractors' National Association; 1995, Second Edition with Addendum No. 1.

PART 2 PRODUCTS

2.01 SINGLE-WALL RECTANGULAR DUCT AND FITTING ASSEMBLIES
A. Regulatory Requirements: Construct ductwork to comply with NFPA 90A standards.
B. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
E. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.02 SINGLE-WALL ROUND DUCT AND FITTING ASSEMBLIES
A. Regulatory Requirements: Construct ductwork to comply with NFPA 90A standards.
B. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
   a. McGill AirFlow LLC.
   b. Spiral Manufacturing Co., Inc.
C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.03 MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Steel for Ducts: Hot-dipped galvanized steel sheet, ASTM A653/A653M FS Type B, with G60/Z180 coating.

C. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.


2. Finishes for Surfaces Exposed to View: Mill phosphatized.

D. Galvannealed Sheet Steel (FOR EXPOSED, PAINTED DUCTWORK): Comply with ASTM A653-09; hot dipped zinc iron coated steel, annealed, coating designation "A" (A60, A40)

E. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

F. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

G. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

H. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.


2.04 SEALANTS AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.

2. Tape Width: 3 inches.


5. Mold and mildew resistant

6. Maximum Static-Pressure Class: 10-ing wg, positive and negative
7. Service: Indoor and outdoor
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
11. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Water-Based Joint and Seam Sealant:
1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.
2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:
1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg pressure class, positive or negative.

2.05 HANGERS AND SUPPORTS
A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
C. Strap and Rod Sizes: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible, "Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
H. Trapeze and Riser Supports:
3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.06 DUCTWORK FABRICATION

A. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.
B. Provide turning vanes in all mitered elbows.
C. Construct T’s, bends, and elbows with radius of not less than 1-1/2 times width of duct on centerline. Where not possible and where rectangular elbows must be used, provide air foil turning vanes of perforated metal with glass fiber insulation.
D. T’s, bends, and elbows: construct according to SMACNA (DCS).
E. Increase duct sizes gradually, not exceeding 15 degrees divergence wherever possible; maximum 30 degrees divergence upstream of equipment and 45 degrees convergence downstream.
F. Fabricate continuously welded round and oval duct fittings in accordance with SMACNA (DCS).
G. Fabricate continuously welded round and oval duct fittings two gages heavier than duct gages indicated in SMACNA Standard. Joints shall be minimum 4 inch cemented slip joint, brazed or electric welded. Prime coat welded joints.
H. Provide standard 45 degree lateral wye takeoffs unless otherwise indicated where 90 degree conical tee connections may be used.
I. Where ducts are connected to exterior wall louvers and duct outlet is smaller than louver frame, provide blank-out panels sealing louver area around duct. Use same material as duct, painted black on exterior side; seal to louver frame and duct.

2.07 MANUFACTURED DUCTWORK AND FITTINGS

A. Manufacture in accordance with SMACNA HVAC Duct Construction Standards - Metal and Flexible, and as indicated. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.
B. Flat Oval Ducts: Machine made from round spiral lockseam duct.
   1. Manufacture in accordance with SMACNA (DCS).
   2. Fittings: Manufacture at least two gages heavier metal than duct.
   3. Provide duct material, gages, reinforcing, and sealing for operating pressures indicated.
C. Flexible Ducts: Black polymer film supported by helically wound spring steel wire.
   1. UL labeled.
   2. Insulation: Fiberglass insulation with polyethylene vapor barrier film.
   3. Pressure Rating: 4 inches WG positive and 0.5 inches WG negative.
   5. Temperature Range: Minus 20 degrees F to 175 degrees F.
D. Kitchen Cooking Hood and Grease Exhaust: Nominal 3 inches thick ceramic fiber insulation between 20 gage, 0.0375 inch, Type 304 stainless steel liner and 24 gage, 0.0239 inch aluminized steel sheet outer jacket.
   1. Tested and UL listed for use with commercial cooking equipment in accordance with NFPA 96.
   2. Certified for zero clearance to combustible material in accordance with:
      a. UL 2221 with a 2 hour rating.
   3. Materials and construction of the modular sections and accessories to be in accordance with the terms of the following listings:
      a. UL 1978.
      b. UL 2221.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install, support, and seal ducts in accordance with SMACNA (DCS).
B. Install in accordance with manufacturer's instructions.

C. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

D. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

E. Install round ducts in maximum practical lengths.

F. Install ducts with fewest possible joints.

G. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

H. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

I. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

J. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

K. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

L. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

M. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.


O. During construction provide temporary closures of metal or taped polyethylene on open ductwork to prevent construction dust from entering ductwork system.

P. Kitchen Hood Exhaust: Provide residue traps at base of vertical risers with provisions for clean out.

Q. Duct sizes indicated are inside clear dimensions. For lined ducts, maintain sizes inside lining.

R. Use crimp joints with or without bead for joining round duct sizes 8 inch and smaller with crimp in direction of air flow.

S. Use double nuts and lock washers on threaded rod supports.

3.02 HANGERS AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
   1. Where practical, install concrete inserts before placing concrete.
   2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
   3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
   4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
   5. Do not use powder-actuated concrete fasteners for seismic restraints.
3.03 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.04 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.
13. All locations, Laboratory Exhaust Ducts: Seal Class A.

3.05 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch
insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:
1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:
1. Air outlets and inlets (registers, grilles, and diffusers).
2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
6. Provide drainage and cleanup for wash-down procedures.
7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.06 FIELD QUALITY CONTROLS
A. Perform tests and inspections.
B. Leakage Tests:
2. Test the following systems:
   a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
5. Test for leaks before applying external insulation.
6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
7. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:
1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCAACR, "Assessment, Cleaning and Restoration of HVAC Systems."
   a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

3.07 SCHEDULES
A. Supply Ducts:
   1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
      a. Pressure Class: Positive 1-inch wg.
      b. Minimum SMACNA Seal Class: C.
      c. SMACNA Leakage Class for Rectangular: 12
      d. SMACNA Leakage Class for Round and Flat Oval: 6.
   2. Ducts Connected to Constant-Volume Air-Handling Units:
      a. Pressure Class: Positive 4-inch wg.
      b. Minimum SMACNA Seal Class: A.
      c. SMACNA Leakage Class for Rectangular: 6.
      d. SMACNA Leakage Class for Round and Flat Oval: 3.
   3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
      a. Pressure Class: Positive 4-inch wg.
      b. Minimum SMACNA Seal Class: A.
      c. SMACNA Leakage Class for Rectangular: 6.
      d. SMACNA Leakage Class for Round and Flat Oval: 3.

B. Return Ducts:
   1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
      a. Pressure Class: Positive or negative 1-inch wg.
      b. Minimum SMACNA Seal Class: B.
      c. SMACNA Leakage Class for Rectangular: 12.
      d. SMACNA Leakage Class for Round and Flat Oval: 6.
   2. Ducts Connected to Air-Handling Units:
      a. Pressure Class: Positive or negative 4-inch wg.
      b. Minimum SMACNA Seal Class: A.
      c. SMACNA Leakage Class for Rectangular: 6.
      d. SMACNA Leakage Class for Round and Flat Oval: 3.

C. Exhaust Ducts:
   1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
      a. Pressure Class: Negative 2-inch wg.
      b. Minimum SMACNA Seal Class: C if negative pressure, and A if positive pressure.
      c. SMACNA Leakage Class for Rectangular: 24.
      d. SMACNA Leakage Class for Round and Flat Oval: 12.
   2. Ducts Connected to Fans Exhausting Laboratory and Process (ASHRAE 62.1, Class 3 and 4) Air:
      a. Type 316, stainless-steel sheet.
         1) Exposed to View: No. 4 finish.
2) Concealed: No. 2D finish.
   b. Pressure Class: Positive or negative 6-inch wg.
   c. Minimum SMACNA Seal Class: A.
   d. SMACNA Leakage Class: 3.

D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:
   1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
      a. Pressure Class: Positive or negative 2-inch wg.
      b. Minimum SMACNA Seal Class: B.
      c. SMACNA Leakage Class for Rectangular: 12.
      d. SMACNA Leakage Class for Round and Flat Oval: 6.
   2. Ducts Connected to Air-Handling Units:
      a. Pressure Class: Positive or negative 2-inch wg.
      b. Minimum SMACNA Seal Class: B.
      c. SMACNA Leakage Class for Rectangular: 12.
      d. SMACNA Leakage Class for Round and Flat Oval: 6.

E. Intermediate Reinforcement:
   1. Stainless-Steel Ducts:
      a. Exposed to Airstream: Match duct material.
      b. Not Exposed to Airstream: Match duct material.

F. Elbow Configuration:
   1. Rectangular Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
      a. Velocity 1000 fpm or Lower:
         1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
         2) Mitered Type RE 4 without vanes.
      b. Velocity 1000 to 1500 fpm:
         1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
         2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
         3) Mitered Type RE 2 with vanes complying with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
      c. Velocity 1500 fpm or Higher:
         1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
         2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
         3) Mitered Type RE 2 with vanes complying with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
   2. Rectangular Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
      a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
      b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
      c. Mitered Type RE 2 with vanes complying with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
   3. Round Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
      a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
         1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90 degree elbow.
         2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90 degree elbow.
3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90 degree elbow.

4) Radius-to-Diameter Ratio: 1.5.

b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
c. Round Elbows, 14 Inches and Larger in Diameter: Welded.

G. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
   a. Rectangular Main to Rectangular Branch: 45-degree entry.
   b. Rectangular Main to Round Branch: Spin in.
      1) Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
   c. Velocity 1000 fpm or Lower: 90-degree tap.
   d. Velocity 1000 to 1500 fpm: Conical tap.
   e. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION
SECTION 23 3300
AIR DUCT ACCESSORIES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Air turning devices/extractors.
B. Backdraft dampers - metal.
C. Duct access doors.
D. Duct test holes.
E. Fire dampers.
F. Flexible duct connectors.
G. Volume control dampers.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project procedural and administrative requirements.
B. Division 07 - Thermal and Moisture Protection: Firestopping
C. Section 23 0005 - Basic HVAC Requirements
D. Section 23 3100 - HVAC Ducts and Casings.
E. Section 23 3600 - Air Terminal Units: Pressure regulating damper assemblies.

1.03 REFERENCE STANDARDS
D. SMACNA (DCS) - HVAC Duct Construction Standards Metal and Flexible 2005 (Revised 2009).

1.04 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 - General Requirements for submittal procedures.
B. Product Data: Provide for shop fabricated assemblies including volume control dampers. Include electrical characteristics and connection requirements.

1.05 QUALITY ASSURANCE
A. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.

PART 2 PRODUCTS

2.01 AIR TURNING DEVICES/EXTRACTORS
A. Multi-blade device with blades aligned in short dimension; steel construction; with individually adjustable blades, mounting straps.

2.02 BACKDRAFT DAMPERS - METAL
A. Multi-Blade, Parallel Action Gravity Balanced Backdraft Dampers: Galvanized steel, with center pivoted blades of maximum 6 inch width, with felt or flexible vinyl sealed edges, linked together in rattle-free manner with 90 degree stop, steel ball bearings, and plated steel pivot pin; adjustment device to permit setting for varying differential static pressure.
2.03 DUCT ACCESS DOORS
   A. Fabricate in accordance with SMACNA (DCS) and as indicated.

2.04 DUCT TEST HOLES
   A. Temporary Test Holes: Cut or drill in ducts as required. Cap with neat patches, neoprene
      plugs, threaded plugs, or threaded or twist-on metal caps.
   B. Permanent Test Holes: Factory fabricated, air tight flanged fittings with screw cap. Provide
      extended neck fittings to clear insulation.

2.05 FIRE DAMPERS
   A. Manufacturers:
      5. Substitutions: See Section 01 6000 - Product Requirements.
   B. Fabricate in accordance with NFPA 90A and UL 555, and as indicated.
   C. Curtain Type Dampers: Galvanized steel with interlocking blades. Provide stainless steel
      closure springs and latches for horizontal installations. Configure with blades out of air stream
      except for 1.0 inch pressure class ducts up to 12 inches in height.
   D. Fusible Links: UL 33, separate at 165 degrees F with adjustable link straps for combination
      fire/balancing dampers.

2.06 FLEXIBLE DUCT CONNECTORS
   A. Fabricate in accordance with SMACNA (DCS) and as indicated.
   B. Flexible Duct Connections: Fabric crimped into metal edging strip.

2.07 VOLUME CONTROL DAMPERS
   A. Fabricate in accordance with SMACNA (DCS) and as indicated.
   B. Single Blade Dampers:
      1. Blade: 24 gage, 0.0239 inch, minimum.
   C. Multi-Blade Damper: Fabricate of opposed blade pattern with maximum blade sizes 8 by 72
      inch. Assemble center and edge crimped blades in prime coated or galvanized channel frame
      with suitable hardware.
      1. Blade: 18 gage, 0.0478 inch, minimum.
   D. End Bearings: Except in round ducts 12 inches and smaller, provide end bearings. On multiple
      blade dampers, provide oil-impregnated nylon, thermoplastic elastomer, or sintered bronze
      bearings.
   E. Quadrants:
      1. Provide locking, indicating quadrant regulators on single and multi-blade dampers.
      2. On insulated ducts mount quadrant regulators on stand-off mounting brackets, bases, or
         adapters.
      3. Where rod lengths exceed 30 inches provide regulator at both ends.

PART 3 EXECUTION
3.01 INSTALLATION
   A. Install accessories in accordance with manufacturer's instructions, NFPA 90A, and follow
      SMACNA (DCS). Refer to Section 23 3100 for duct construction and pressure class.
   B. Provide backdraft dampers on exhaust fans or exhaust ducts nearest to outside and where
      indicated.
   C. Provide duct access doors for inspection and cleaning before and after filters, coils, fans,
      automatic dampers, at fire dampers, combination fire and smoke dampers, and elsewhere as
indicated. Provide for cleaning kitchen exhaust ducts in accordance with NFPA 96. Provide minimum 8 by 8 inch size for hand access, size for shoulder access, and as indicated. Provide 4 by 4 inch for balancing dampers only. Review locations prior to fabrication.

D. Provide duct test holes where indicated and required for testing and balancing purposes.

E. Provide fire dampers, combination fire and smoke dampers, and smoke dampers at locations indicated, where ducts and outlets pass through fire rated components, and where required by Authorities Having Jurisdiction. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges.

F. Install smoke dampers and combination smoke and fire dampers in accordance with NFPA 92.

G. Demonstrate re-setting of fire dampers to Owner's representative.

H. At fans and motorized equipment associated with ducts, provide flexible duct connections immediately adjacent to the equipment.

I. Provide balancing dampers at points on supply, return, and exhaust systems where branches are taken from larger ducts as required for air balancing. Install minimum 2 duct widths from duct take-off.

J. Provide balancing dampers on duct take-off to diffusers, grilles, and registers, regardless of whether dampers are specified as part of the diffuser, grille, or register assembly.

END OF SECTION
SECTION 23 7413
PACKAGED OUTDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Packaged roof top unit.
B. Unit controls.
C. Remote panel.
D. Roof mounting curb and base.

1.02 RELATED REQUIREMENTS
A. Section 23 0548 - Vibration and Seismic Controls for HVAC.

1.03 REFERENCE STANDARDS
B. AHRI 270 - Sound Performance Rating of Outdoor Unitary Equipment 2015, with Addendum (2016).

1.04 SUBMITTALS
A. Product Data: Provide capacity and dimensions of manufactured products and assemblies required for this project. Indicate electrical service with electrical characteristics and connection requirements, and duct connections.
B. Shop Drawings: Indicate capacity and dimensions of manufactured products and assemblies required for this project. Indicate electrical service with electrical characteristics and connection requirements, and duct connections.
C. Operation and Maintenance Data: Include manufacturer's descriptive literature, operating instructions, installation instructions, maintenance and repair data, and parts listing.
D. Warranty: Submit manufacturer's warranty and ensure forms have been filled out in Owner's name and registered with manufacturer.

1.05 QUALITY ASSURANCE
A. Products Requiring Electrical Connection: Listed and classified by Underwriters Laboratories Inc. as suitable for the purpose specified and indicated.
B. Roof curb shall be designed to conform to NRCA Standards.

1.06 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact. Ship, handle, and unload units according to manufacturer's instructions.
B. Store materials protected from exposure to harmful weather conditions. Factory shipping covers to remain in place until installation.

1.07 WARRANTY
A. Provide a five year warranty to include coverage for refrigeration compressors.

1.08 MAINTENANCE SERVICE
A. Furnish service and maintenance of packaged roof top units for one year from date of substantial completion.

1.09 EXTRA MATERIALS
A. Provide two sets of MERV 14 filters and one Merv 8 construction filter.

PART 2 PRODUCTS
2.01 MANUFACTURERS
   A. Trane, a brand of Ingersoll Rand
   B. Aaon Inc.
   C. Daikin
   D. Substitutions by voluntary alternate.

2.02 ROOFTOP AIR CONDITIONING UNITS
   A. Description: Self-contained, packaged, factory assembled and prewired, consisting of cabinet and frame, supply fan, return fan, heat exchanger and burner, heat recovery coil, controls, air filters, refrigerant cooling coil and compressor, condenser coil and condenser fan.
   B. Refrigerant: Use only refrigerants that have ozone depletion potential (ODP) of zero and global warming potential (GWP) of less than 50.

2.03 FABRICATION
   A. Cabinet: Steel with baked enamel finish, including access panels with screwdriver operated flush cam type fasteners. Structural members shall be minimum 18 gage, 0.0478 inch (1.21 mm), with access doors or panels of minimum 20 gage, 0.0359 inch (0.91 mm).
   B. Supply and Return Fan: Forward curved centrifugal type, resiliently mounted, and rubber isolated hinge mounted ECM high efficiency motor with direct drive. Isolate complete fan assembly.

2.04 BURNER
   A. Gas Burner: Atmospheric type burner with adjustable combustion air supply, pressure regulator, gas valves, manual shut-off, intermittent spark or glow coil ignition, flame sensing device, and automatic 100 percent shut-off pilot.
   B. Gas Burner Safety Controls: Energize ignition, limit time for establishment of flame, prevent opening of gas valve until pilot flame is proven, stop gas flow on ignition failure, energize blower motor, and after air flow proven and slight delay, allow gas valve to open.

2.05 EVAPORATOR COIL
   A. Provide copper tube aluminum fin coil assembly with galvanized drain pan and connection.
   B. Provide capillary tubes or thermostatic expansion valves for units of 6 tons (21 kw) capacity and less, and thermostatic expansion valves and alternate row circuiting for units 7.5 tons (26 kw) cooling capacity and larger.

2.06 COMPRESSOR
   A. Provide inverter scroll compressors, 3600 rpm maximum, resiliently mounted with positive lubrication, crankcase heater, high and low pressure safety controls, motor overload protection, suction and discharge service valves and gauge ports, and filter drier.

2.07 CONDENSER COIL
   A. Provide copper tube aluminum fin coil assembly with subcooling rows and coil guard.
   B. Provide direct drive propeller fans, resiliently mounted with fan guard, motor overload protection, wired to operate with compressor. Provide high efficiency fan motors.

2.08 OPERATING CONTROLS
   A. Provide refrigeration controls with packaged controller. Fan, dampers, actuators and components to be prepped for wire and connection by others.

2.09 HEAT RECOVERY COIL

PART 3 EXECUTION

3.01 EXAMINATION
   A. Verify that roof is ready to receive work and opening dimensions are as indicated on shop drawings.
B. Verify that proper power supply is available.

3.02 INSTALLATION
A. Install in accordance with manufacturer's instructions.
B. Install in accordance with NFPA 90A.

3.03 SYSTEM STARTUP
A. Prepare and start equipment. Adjust for proper operation.

3.04 CLOSEOUT ACTIVITIES
A. See Section 01 7800 - Closeout Submittals, for closeout submittals.
B. See Section 01 7900 - Demonstration and Training, for additional requirements.

END OF SECTION
SECTION 26 0005
BASIC ELECTRICAL REQUIREMENTS

PART 1 GENERAL

1.01  RELATED DOCUMENTS

A. This section applies to all sections of Division 26 and Division 28.

B. Drawings and general provisions of the contract, including Division 00 and Division 01 specification sections, apply to work of this section.

C. Provide all items, articles, materials, operations or methods listed, mentioned or scheduled on drawings and/or herein, including all labor, materials, equipment and incidentals necessary and required for their completion.

D. The items in this section are supplementary to the requirements set forth in other portions of the specifications as indicated under Item "A" above.

1.02  DRAWINGS

A. The drawings show the location and general arrangement of equipment, electrical systems and related items. They shall be followed as closely as elements of the construction will permit.

B. Examine the drawings of other trades and verify the conditions governing the work on the job site. Arrange work accordingly, providing such fittings, conduit, junction boxes and accessories as may be required to meet such conditions.

C. Deviations from the drawings, with the exception of minor changes in routing and other such incidental changes that do not affect the functioning or serviceability of the systems, shall not be made without the written approval of the Architect/Engineer.

D. The architectural and structural drawings take precedence in all matters pertaining to the building structure, mechanical drawings in all matters pertaining to mechanical trades and electrical drawings in all matters pertaining to electrical trades. Where there are conflicts or differences between the drawings for the various trades, report such conflicts or differences to the Architect/Engineer for resolution.

1.03  INSPECTION OF SITE

A. Visit the site, examine and verify the conditions under which the work must be conducted before submitting proposal.

B. The submitting of a proposal implies that the contractor has visited the site and understands the conditions under which the work must be conducted.

1.04  TEMPORARY FACILITIES

A. Provide and remove upon completion of the project, in accordance with the general conditions, a complete temporary electrical and telephone service during construction.

1.05  ALTERNATES

A. Refer to Division 01 - General Requirements for procedures.

1.06  GUARANTEE

A. Contractor guarantees that the installation is free from defects and agrees to replace or repair, any part of this installation which becomes defective within a period of one year following final acceptance, unless noted otherwise, provided that such failure is due to defects in the equipment, material or installation or to follow the specifications and drawings. File with the Owner any and all guarantees from the equipment manufacturers.

1.07  CODES, PERMITS AND FEES

A. Unless otherwise indicated, all required permits, licenses, inspections, approvals and fees for electrical work shall be secured and paid for by the contractor. All work shall conform to all applicable codes, rules and regulations. Applicable publications listed in all sections of Division 26 shall be the latest issue, unless otherwise noted.
B. Rules of local utility companies shall be complied with. Check with the utility company supplying service to the installation and determine all devices including, but not limited to, all current and potential transformers, meter boxes, C.T. cabinets and meters which will be required and include the cost of all such items in proposal.

C. All work shall be executed in accordance with the rules and regulations set forth in local and state codes. Prepare any detailed drawings or diagrams which may be required by the governing authorities. Where the drawings and/or specifications indicate materials or construction in excess of code requirements, the drawings and/or specifications shall govern.

1.08 STANDARDS OF MATERIAL AND WORKMANSHIP:
A. All materials shall be new, unless noted otherwise. The electrical and physical properties of all materials, and the design, performance characteristics, and methods of construction of all items of equipment, shall be in accordance with the latest issue of the various, applicable standard specifications of the following recognized authorities:
   1. N.S.I. - American National Standards Institute
   2. S.T.M. - American Society for Testing Materials
   3. C.E.A. - Insulated Cable Engineers Association
   4. E.E.E. - Institute of Electrical and Electronics Engineers
   5. E.C. - National Electrical Code (NFPA 70)
   6. E.C.A. - National Electrical Contractors Association
   7. E.M.A. - National Electrical Manufacturer's Association
   8. F.P.A. - National Fire Protection Association
   9. L. - Underwriters Laboratories, Inc.

B. Perform all work in a first class and workmanlike manner, in accordance with the latest accepted standards and practices for the Trades involved.

C. All equipment of the same or similar systems shall be by the same manufacturer.

1.09 RECORD DRAWINGS
A. Refer to Division 01 - General Requirements for procedures. All literature shall be furnished in accordance with requirements listed in Division 01.

B. Contractor shall provide the following record drawings as part of the Project closeout document process:
   1. Contract Documents, specifications and submittals, indicating "As-Built" conditions and actual products selected for use.
   2. Product and Maintenance manuals for all equipment listed within this specification manual and in Contract Documents. Provide with parts lists as applicable.

1.10 SUBMITTALS
A. Refer to Division 01 - General Requirements for procedures.

B. Contractor shall provide submittals where items are referred to by symbolic designation on the drawings. All submittals shall bear the same designation (light fixtures, wiring devices, etc.). Refer to other sections of the electrical specifications for additional requirements.

C. Engineer WILL NOT REVIEW:
   1. Submittals not specified.
   2. Submittals which do not indicate optional equipment being provided.
   3. Submittals not reviewed by Contractor; including Contractor stamp with signature comments.
   4. Submittals made after work is delivered to site and/or installed.
   5. Submittal resubmissions unless resubmission is required by Architect/Engineer.

1.11 MANUFACTURERS LISTED
A. The listing of specific manufacturers does not imply acceptance of their products that do not meet the specified ratings, features and functions. Manufacturers listed are not relieved from meeting these specifications in their entirety.
B. Products in compliance with the specification and manufactured by others not named will be considered only if pre-approved by the Engineer five (5) days prior to bid date.

1.12 USE OF EQUIPMENT
   A. The use of any equipment, or any part thereof for purposes other than testing even with the Owner's consent, shall not be construed to be an acceptance of the work on the part of the Owner, nor be construed to obligate the Owner in any way to accept improper work or defective materials.
   B. Do not use Owner's light fixtures for temporary lighting except as allowed and directed by the Owner.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

3.01 INSTALLATION OF EQUIPMENT
   A. Install all equipment in strict accordance with all directions and recommendations furnished by the manufacturer. Where such directions are in conflict with the drawings and specifications, report such conflicts to the Architect/Engineer for resolution.
   B. Equipment location shall be as close as practical to locations shown on the drawings.
   C. Working clearances shall not be less than specified in NFPA 70 (National Electric Code).

3.02 COORDINATION
   A. Install work to avoid interference with work of other trades including, but not limited to, architectural and mechanical trades. Remove and relocate any work that causes an interference at Contractor's expense. Disputes regarding the cause of an interference will be resolved by the Construction Manager or Architect/Engineer.

3.03 CUTTING, PATCHING AND DAMAGE TO OTHER WORK
   A. Refer to Division 01 - General Requirements and Division 02 - Existing Conditions.
   B. All cutting, patching and repair work shall be performed by the contractor through approved, qualified subcontractors. Contractor shall include full cost of same in bid.

3.04 EXCAVATION AND BACKFILLING
   A. Provide all excavation, trenching, tunneling, dewatering and backfilling required for the electrical work. Coordinate the work with other excavating and backfilling in the same area.
   B. Where conduit is installed less than 30" below the surface of pavement, provide concrete encasement, 4" minimum coverage, all around or as shown on the electrical drawings.
   C. Backfill all excavations inside building, under drives and parking areas with well-tamped granular material. Backfill all excavations under wall footings with lean mix concrete up to underside of footings and extend concrete within excavation a minimum of four (4) feet each side of footing. Granular backfill shall be placed in layers not more than 8 inches in thickness, 95 percent compaction throughout with approved compaction equipment. Tamp, roll as required. Excavated material shall not be used.
   D. Backfill outside building with granular material to a height 12 inches over top of pipe compacted to 95 percent compaction as specified above. Backfill remainder of excavation with unfrozen, excavated material in such a way to prevent settling. Tamp, roll as required.

3.05 EQUIPMENT FOUNDATION AND SUPPORTS
   A. Shall be as required or as shown on plans or specified.
   B. Provide concrete house keeping bases 4" above finished floor, with leveling channels, where noted, for floor-mounted equipment. Coordinate requirements with Division 03 - Concrete.
   C. For equipment suspended from ceilings or walls, furnish and install all inserts, rods, structural steel frames, brackets and platforms required.

3.06 EQUIPMENT CONNECTIONS
A. Make connections to equipment, motors, lighting fixtures, and other items included in the work in accordance with the approved shop drawings and rough-in measurements furnished by the manufacturers of the particular equipment furnished. All additional connections not shown on the drawings, but called out by the equipment manufacturer's shop drawings shall be provided.

3.07 ACCESS DOORS AND PANELS
A. Refer to Division 08 - Openings; Provide access doors in locations as required per N.E.C. Coordinate locations with architectural trades.

3.08 CLEANING
A. Refer to Division 01 - General Requirements; All equipment shall be cleaned as frequently as necessary through the construction process and again prior to project completion.
B. Final cleanup shall include, but not be limited to, washing of fixture lenses or louvers, switchboards, substations, motor control centers, panels, etc. Fixture reflectors and lenses or louvers shall be left with no water marks or cleaning streaks.

3.09 DELIVERY, STORAGE AND PROTECTION OF EQUIPMENT AND MATERIALS
A. Refer to Division 01 - General Requirements; All equipment and materials shall be delivered, stored and secured per manufacturer's recommendations.
B. On-site storage shall be coordinated with Construction Manager and be performed in a manner as to avoid damage, deterioration and loss.

3.10 DRAWINGS AND MEASUREMENTS
A. Electrical drawings are not intended to be scaled for rough-in measurements nor to serve as submittals. Field measurements necessary for ordering materials and fitting the installation to the building construction and arrangement shall be taken by the Contractor.

END OF SECTION
SECTION 26 0505
SELECTIVE DEMOLITION FOR ELECTRICAL

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Electrical demolition and extension of existing electrical work.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements.
C. Section 26 0005 - Basic Electrical Requirements.

PART 2 PRODUCTS

2.01 MATERIALS AND EQUIPMENT
A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that abandoned wiring and equipment serve only abandoned facilities.
B. Demolition drawings are based on casual field observation and existing record documents.
C. Beginning of demolition means installer accepts existing conditions.

3.02 PREPARATION
A. Disconnect electrical systems in walls, floors, and ceilings to be removed.
B. Coordinate utility service outages with utility company.
C. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations.
D. Existing Electrical Service: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Minimize outage duration.
   1. Obtain permission from Owner at least 24 hours before partially or completely disabling system.
   2. Make temporary connections to maintain service in areas adjacent to work area.
E. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Minimize outage duration.
   1. Notify Owner before partially or completely disabling system.
   2. Notify local fire service.
   3. Make notifications at least 24 hours in advance.
   4. Make temporary connections to maintain service in areas adjacent to work area.

3.03 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK
A. Perform work for removal and disposal of equipment and materials containing toxic substances regulated under the Federal Toxic Substances Control Act (TSCA) in accordance with applicable federal, state, and local regulations. Applicable equipment and materials include, but are not limited to:
   1. PCB-containing electrical equipment, including transformers, capacitors, and switches.
   2. PCB- and DEHP-containing lighting ballasts.
   3. Mercury-containing lamps and tubes, including fluorescent lamps, high intensity discharge (HID), arc lamps, ultra-violet, high pressure sodium, mercury vapor, ignitron tubes, neon, and incandescent.
B. Remove, relocate, and extend existing installations to accommodate new construction.
C. Remove abandoned wiring to source of supply.
D. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.
E. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets that are not removed.
F. Disconnect and remove abandoned panelboards and distribution equipment.
G. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.
H. Repair adjacent construction and finishes damaged during demolition and extension work.
I. Maintain access to existing electrical installations that remain active. Modify installation or provide access panel as appropriate.

3.04 CLEANING AND REPAIR
A. See Division 01 - General Requirements.
B. Clean and repair existing materials and equipment that remain or that are to be reused.
C. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.
D. Luminaires: Remove existing luminaires for cleaning. Use mild detergent to clean all exterior and interior surfaces; rinse with clean water and wipe dry. Replace lamps, ballasts and broken electrical parts.

END OF SECTION
SECTION 26 0519
VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Single conductor building wire.
B. Metal-clad cable.
C. Wiring connectors.
D. Electrical tape.
E. Heat shrink tubing.
F. Oxide inhibiting compound.
G. Wire pulling lubricant.
H. Cable ties.
I. Firestop sleeves.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, and repairs.
C. Section 07 8400 - Firestopping.
D. Section 26 0005 - Basic Electrical Requirements.
E. Section 26 0505 - Selective Demolition for Electrical: Disconnection, removal, and/or extension of existing electrical conductors and cables.
F. Section 26 0526 - Grounding and Bonding for Electrical Systems: Additional requirements for grounding conductors and grounding connectors.
G. Section 26 0536 - Cable Trays for Electrical Systems: Additional installation requirements for cables installed in cable tray systems.
H. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
I. Section 28 4600 - Fire Detection and Alarm: Fire alarm system conductors and cables.
J. Division 31 - Earthwork: Excavating, bedding, and backfilling.

1.03 REFERENCE STANDARDS
E. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
F. NECA 120 - Standard for Installing Armored Cable (AC) and Metal-Clad Cable (MC) 2012.
I. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.


1.04 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
   1. Coordinate sizes of raceways, boxes, and equipment enclosures installed under other sections with the actual conductors to be installed, including adjustments for conductor sizes increased for voltage drop.
   2. Coordinate with electrical equipment installed under other sections to provide terminations suitable for use with the conductors to be installed.

1.05 SUBMITTALS

A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.

1.06 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.

C. Product Listing Organization Qualifications: An organization recognized by OSHA as a Nationally Recognized Testing Laboratory (NRTL) and acceptable to authorities having jurisdiction.

1.07 FIELD CONDITIONS

A. Do not install or otherwise handle thermoplastic-insulated conductors at temperatures lower than 14 degrees F, unless otherwise permitted by manufacturer's instructions. When installation below this temperature is unavoidable, notify Architect and obtain direction before proceeding with work.

PART 2 PRODUCTS

2.01 CONDUCTOR AND CABLE APPLICATIONS

A. Do not use conductors and cables for applications other than as permitted by NFPA 70 and product listing.

B. Provide single conductor building wire installed in suitable raceway unless otherwise indicated, permitted, or required.

C. Nonmetallic-sheathed cable is not permitted.

D. Underground feeder and branch-circuit cable is not permitted.

E. Service entrance cable is not permitted.

F. Armored cable is not permitted.

G. Metal-clad cable is permitted only as follows:
   1. Where not otherwise restricted, may be used:
      a. Where concealed above accessible ceilings for final connections from junction boxes to luminaires.
         1) Maximum Length: 6 feet.
b. Where concealed in hollow stud walls, above accessible ceilings, and under raised floors for branch circuits up to 20 A.

H. Manufactured wiring systems are not permitted.

2.02 CONDUCTOR AND CABLE GENERAL REQUIREMENTS

A. Provide products that comply with requirements of NFPA 70.
B. Provide products listed, classified, and labeled as suitable for the purpose intended.
C. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, etc. as required for a complete operating system.
D. Comply with NEMA WC 70.
E. Thermoplastic-Insulated Conductors and Cables: Listed and labeled as complying with UL 83.
F. Thermoset-Insulated Conductors and Cables: Listed and labeled as complying with UL 44.

G. Conductor Material:
   1. Provide copper conductors only. Aluminum conductors are not acceptable for this project. Conductor sizes indicated are based on copper.
   2. Copper Conductors: Soft drawn annealed, 98 percent conductivity, uncoated copper conductors complying with ASTM B3, ASTM B8, or ASTM B787/B787M unless otherwise indicated.
   3. Tinned Copper Conductors: Comply with ASTM B33.

H. Minimum Conductor Size:
   1. Branch Circuits: 12 AWG.
      a. Exceptions:
         1) 20 A, 120 V circuits longer than 75 feet: 10 AWG, for voltage drop.
         2) 20 A, 120 V circuits longer than 150 feet: 8 AWG, for voltage drop.
         3) 20 A, 277 V circuits longer than 150 feet: 10 AWG, for voltage drop.
   I. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

J. Conductor Color Coding:
   1. Color code conductors as indicated unless otherwise required by the authority having jurisdiction. Maintain consistent color coding throughout project.
   2. Color Coding Method: Integrally colored insulation.
   3. Color Code:
      a. 480Y/277 V, 3 Phase, 4 Wire System:
         1) Phase A: Brown.
         2) Phase B: Orange.
         3) Phase C: Yellow.
         4) Neutral/Grounded: Gray.
      b. 208Y/120 V, 3 Phase, 4 Wire System:
         1) Phase A: Black.
         2) Phase B: Red.
         3) Phase C: Blue.
         4) Neutral/Grounded: White.
      c. Equipment Ground, All Systems: Green.
      d. For modifications or additions to existing wiring systems, comply with existing color code when existing code complies with NFPA 70 and is approved by the authority having jurisdiction.

2.03 SINGLE CONDUCTOR BUILDING WIRE

A. Manufacturers:
   1. Copper Building Wire:

B. Description: Single conductor insulated wire.

C. Conductor Stranding:
   1. Feeders and Branch Circuits:
      a. Size 10 AWG and Smaller: Stranded.
      b. Size 8 AWG and Larger: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation:
   1. Copper Building Wire: Type THHN/THWN or THHN/THWN-2, except as indicated below.

2.04 METAL-CLAD CABLE

A. Manufacturers:
   1. AFC Cable Systems Inc: www.afcweb.com/#sle.

B. Description: NFPA 70, Type MC cable listed and labeled as complying with UL 1569, and listed
   for use in classified firestop systems to be used.

C. Conductor Stranding:
   1. Size 10 AWG and Smaller: Stranded.
   2. Size 8 AWG and Larger: Stranded.

D. Insulation Voltage Rating: 600 V.

E. Insulation: Type THHN, THHN/THWN, or THHN/THWN-2.

F. Provide oversized neutral conductors where indicated or required.

G. Grounding: Full-size integral equipment grounding conductor.

H. Armor: Steel, interlocked tape.

2.05 WIRING CONNECTORS

A. Description: Wiring connectors appropriate for the application, suitable for use with the
   conductors to be connected, and listed as complying with UL 486A-486B or UL 486C as
   applicable.

B. Connectors for Grounding and Bonding: Comply with Section 26 0526.

C. Wiring Connectors for Splices and Taps:
   1. Copper Conductors Size 8 AWG and Smaller: Use twist-on insulated spring connectors.
   2. Copper Conductors Size 6 AWG and Larger: Use mechanical connectors or compression
      connectors.

D. Wiring Connectors for Terminations:
   1. Provide terminal lugs for connecting conductors to equipment furnished with terminations
      designed for terminal lugs.
   2. Provide compression adapters for connecting conductors to equipment furnished with
      mechanical lugs when only compression connectors are specified.
   3. Where over-sized conductors are larger than the equipment terminations can
      accommodate, provide connectors suitable for reducing to appropriate size, but not less
      than required for the rating of the overcurrent protective device.
   4. Copper Conductors Size 8 AWG and Larger: Use mechanical connectors or compression
      connectors where connectors are required.

E. Do not use insulation-piercing or insulation-displacement connectors designed for use with
   conductors without stripping insulation.

F. Do not use push-in wire connectors as a substitute for twist-on insulated spring connectors.
G. Twist-on Insulated Spring Connectors: Rated 600 V, 221 degrees F for standard applications and 302 degrees F for high temperature applications; pre-filled with sealant and listed as complying with UL 486D for damp and wet locations.

H. Mechanical Connectors: Provide bolted type or set-screw type.

I. Compression Connectors: Provide circumferential type or hex type crimp configuration.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that interior of building has been protected from weather.

B. Verify that work likely to damage wire and cable has been completed.

C. Verify that raceways, boxes, and equipment enclosures are installed and are properly sized to accommodate conductors and cables in accordance with NFPA 70.

D. Verify that field measurements are as indicated.

E. Verify that conditions are satisfactory for installation prior to starting work.

3.02 PREPARATION

A. Clean raceways thoroughly to remove foreign materials before installing conductors and cables.

3.03 INSTALLATION

A. Circuiting Requirements:
   1. Unless dimensioned, circuit routing indicated is diagrammatic.
   2. When circuit destination is indicated without specific routing, determine exact routing required.
   3. Arrange circuiting to minimize splices.
   4. Include circuit lengths required to install connected devices within 10 ft of location indicated.
   5. Maintain separation of Class 1, Class 2, and Class 3 remote-control, signaling, and power-limited circuits in accordance with NFPA 70.
   6. Maintain separation of wiring for emergency systems in accordance with NFPA 70.
   7. Circuiting Adjustments: Unless otherwise indicated, when branch circuits are indicated as separate, combining them together in a single raceway is not permitted.
   8. Common Neutrals: Unless otherwise indicated, sharing of neutral/grounded conductors among up to three single phase branch circuits of different phases installed in the same raceway is not permitted. Provide dedicated neutral/grounded conductor for each individual branch circuit.
   9. Provide oversized neutral/grounded conductors where indicated and as specified below.
      a. Provide 200 percent rated neutral for feeders fed from K-rated transformers.
      b. Provide 200 percent rated neutral for feeders serving panelboards with 200 percent rated neutral bus.

B. Install products in accordance with manufacturer's instructions.

C. Perform work in accordance with NECA 1 (general workmanship).

D. Install metal-clad cable (Type MC) in accordance with NECA 120.

E. Installation in Raceway:
   1. Tape ends of conductors and cables to prevent infiltration of moisture and other contaminants.
   2. Pull all conductors and cables together into raceway at same time.
   3. Do not damage conductors and cables or exceed manufacturer's recommended maximum pulling tension and sidewall pressure.
   4. Use suitable wire pulling lubricant where necessary, except when lubricant is not recommended by the manufacturer.
F. Paralleled Conductors: Install conductors of the same length and terminate in the same manner.

G. Secure and support conductors and cables in accordance with NFPA 70 using suitable supports and methods approved by the authority having jurisdiction. Provide independent support from building structure. Do not provide support from raceways, piping, ductwork, or other systems.

H. Terminate cables using suitable fittings.
   1. Metal-Clad Cable (Type MC):
      a. Use listed fittings.
      b. Cut cable armor only using specialized tools to prevent damaging conductors or insulation. Do not use hacksaw or wire cutters to cut armor.

I. Install conductors with a minimum of 12 inches of slack at each outlet.

J. Where conductors are installed in enclosures for future termination by others, provide a minimum of 5 feet of slack.

K. Neatly train and bundle conductors inside boxes, wireways, panelboards and other equipment enclosures.

L. Group or otherwise identify neutral/grounded conductors with associated ungrounded conductors inside enclosures in accordance with NFPA 70.

M. Make wiring connections using specified wiring connectors.
   1. Make splices and taps only in accessible boxes. Do not pull splices into raceways or make splices in conduit bodies or wiring gutters.
   2. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors.
   3. Do not remove conductor strands to facilitate insertion into connector.
   4. Clean contact surfaces on conductors and connectors to suitable remove corrosion, oxides, and other contaminates. Do not use wire brush on plated connector surfaces.
   5. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
   6. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.

N. Insulate splices and taps that are made with uninsulated connectors using methods suitable for the application, with insulation and mechanical strength at least equivalent to unspliced conductors.

O. Insulate ends of spare conductors using vinyl insulating electrical tape.

P. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Division 07.

Q. Unless specifically indicated to be excluded, provide final connections to all equipment and devices, including those furnished by others, as required for a complete operating system.

3.04 FIELD QUALITY CONTROL

A. Inspect and test in accordance with NETA ATS, except Section 4.

B. Perform inspections and tests listed in NETA ATS, Section 7.3.2. The insulation resistance test is required for all conductors. The resistance test for parallel conductors listed as optional is not required.
   1. Disconnect surge protective devices (SPDs) prior to performing any high potential testing. Replace SPDs damaged by performing high potential testing with SPDs connected.

C. Correct deficiencies and replace damaged or defective conductors and cables.

END OF SECTION
SECTION 26 0526
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1  GENERAL

1.01 SECTION INCLUDES

A. Grounding and bonding requirements.
B. Conductors for grounding and bonding.
C. Connectors for grounding and bonding.
D. Ground bars.
E. Ground rod electrodes.

1.02 RELATED REQUIREMENTS

A. Division 01 - General Requirements: Project administrative and procedural requirements
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, repairs.
C. Section 26 0005 - Basic Electrical Requirements
D. Section 26 0519 - Low-Voltage Electrical Power Conductors and Cables: Additional requirements for conductors for grounding and bonding, including conductor color coding.
E. Section 26 0536 - Cable Trays for Electrical Systems: Additional grounding and bonding requirements for cable tray systems.
F. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
G. Section 26 5600 - Exterior Lighting: Additional grounding and bonding requirements for pole-mounted luminaires.
H. Division 31 - Earthwork: Excavating, trenching and fill.

1.03 REFERENCE STANDARDS

B. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
E. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS

A. Coordination:
   1. Verify exact locations of underground metal water service pipe entrances to building.
   2. Coordinate the work with other trades to provide steel reinforcement complying with specified requirements for concrete-encased electrode.
   3. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.
B. Sequencing:
   1. Do not install ground rod electrodes until final backfill and compaction is complete.

1.05 SUBMITTALS

A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.
PART 2  PRODUCTS

2.01 GROUNDING AND BONDING REQUIREMENTS

A. Existing Work: Where existing grounding and bonding system components are indicated to be reused, they may be reused only where they are free from corrosion, integrity and continuity are verified, and where acceptable to the authority having jurisdiction.

B. Do not use products for applications other than as permitted by NFPA 70 and product listing.

C. Unless specifically indicated to be excluded, provide all required components, conductors, connectors, conduit, boxes, fittings, supports, accessories, etc. as necessary for a complete grounding and bonding system.

D. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

E. Grounding System Resistance:
   1. Achieve specified grounding system resistance under normally dry conditions unless otherwise approved by Architect. Precipitation within the previous 48 hours does not constitute normally dry conditions.
   2. Grounding Electrode System: Not greater than 5 ohms to ground, when tested according to IEEE 81 using "fall-of-potential" method.
   3. Between Grounding Electrode System and Major Electrical Equipment Frames, System Neutral, and Derived Neutral Points: Not greater than 0.5 ohms, when tested using "point-to-point" methods.

F. Grounding Electrode System:
   1. Provide connection to required and supplemental grounding electrodes indicated to form grounding electrode system.
      a. Provide continuous grounding electrode conductors without splice or joint.
      b. Install grounding electrode conductors in raceway where exposed to physical damage. Bond grounding electrode conductor to metallic raceways at each end with bonding jumper.
   2. Metal Underground Water Pipe(s):
      a. Provide connection to underground metal domestic and fire protection (where present) water service pipe(s) that are in direct contact with earth for at least 10 feet at an accessible location not more than 5 feet from the point of entrance to the building.
      b. Provide bonding jumper(s) around insulating joints/pipes as required to make pipe electrically continuous.
      c. Provide bonding jumper around water meter of sufficient length to permit removal of meter without disconnecting jumper.
   3. Concrete Encased Electrode:
      a. Provide connection to concrete-encased electrode consisting of not less than 20 feet of either steel reinforcing bars or bare copper conductor not smaller than 4 AWG embedded within concrete foundation or footing that is in direct contact with earth in accordance with NFPA 70.
   4. Ground Ring:
      a. Provide a ground ring encircling the building or structure consisting of bare copper conductor not less than 2 AWG in direct contact with earth, installed at a depth of not less than 30 inches.
      b. Where location is not indicated, locate ground ring conductor at least 24 inches outside building perimeter foundation.
      c. Provide ground enhancement material around conductor.
      d. Provide connection from ground ring conductor to:
         1) Perimeter columns of metal building frame.
2) Ground rod electrodes located as indicated.

5. Ground Rod Electrode(s):
   a. Provide three electrodes in an equilateral triangle configuration unless otherwise indicated or required.
   b. Space electrodes not less than 10 feet from each other and any other ground electrode.
   c. Where location is not indicated, locate electrode(s) at least 5 feet outside building perimeter foundation as near as possible to electrical service entrance; where possible, locate in softscape (uncovered) area.

6. Provide additional ground electrode(s) as required to achieve specified grounding electrode system resistance.

7. Ground Bar: Provide ground bar, separate from service equipment enclosure, for common connection point of grounding electrode system bonding jumpers as permitted in NFPA 70. Connect grounding electrode conductor provided for service-supplied system grounding to this ground bar.
   a. Ground Bar Size: 1/4 by 2 by 12 inches unless otherwise indicated or required.
   b. Where ground bar location is not indicated, locate in accessible location as near as possible to service disconnect enclosure.
   c. Ground Bar Mounting Height: 18 inches above finished floor unless otherwise indicated.

G. Bonding and Equipment Grounding:
1. Provide bonding for equipment grounding conductors, equipment ground busses, metallic equipment enclosures, metallic raceways and boxes, device grounding terminals, and other normally non-current-carrying conductive materials enclosing electrical conductors/equipment or likely to become energized as indicated and in accordance with NFPA 70.
2. Provide insulated equipment grounding conductor in each feeder and branch circuit raceway. Do not use raceways as sole equipment grounding conductor.
3. Where circuit conductor sizes are increased for voltage drop, increase size of equipment grounding conductor proportionally in accordance with NFPA 70.
4. Unless otherwise indicated, connect wiring device grounding terminal to branch circuit equipment grounding conductor and to outlet box with bonding jumper.
5. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on neutral (grounded) or isolated/insulated ground bus.
6. Provide bonding jumper across expansion or expansion/deflection fittings provided to accommodate conduit movement.

H. Cable Tray Systems: Also comply with Section 26 0536.

I. Pole-Mounted Luminaires: Also comply with Section 26 5600.

2.02 GROUNDING AND BONDING COMPONENTS

A. General Requirements:
1. Provide products listed, classified, and labeled as suitable for the purpose intended.
2. Provide products listed and labeled as complying with UL 467 where applicable.

B. Conductors for Grounding and Bonding, in Addition to Requirements of Section 26 0526:
1. Use insulated copper conductors unless otherwise indicated.
   a. Exceptions:
      1) Use bare copper conductors where installed underground in direct contact with earth.
      2) Use bare copper conductors where directly encased in concrete (not in raceway).

C. Connectors for Grounding and Bonding:
1. Description: Connectors appropriate for the application and suitable for the conductors and items to be connected; listed and labeled as complying with UL 467.
2. Unless otherwise indicated, use exothermic welded connections for underground, concealed and other inaccessible connections.
3. Unless otherwise indicated, use mechanical connectors, compression connectors, or exothermic welded connections for accessible connections.
4. Manufacturers - Mechanical and Compression Connectors:
   b. Burndy LLC: www.burndy.com
   c. Harger Lightning & Grounding: www.harger.com
   d. Thomas & Betts Corporation: www.tnb.com
5. Manufacturers - Exothermic Welded Connections:
   a. Burndy LLC: www.burndy.com
   b. Cadweld, a brand of Erico International Corporation: www.erico.com
   c. thermOweld, subsidiary of Continental Industries; division of Burndy LLC: www.thermoweld.com

D. Ground Bars:
   1. Description: Copper rectangular ground bars with mounting brackets and insulators.
   2. Size: As indicated.
   3. Holes for Connections: As indicated or as required for connections to be made.
   4. Manufacturers:
      b. Erico International Corporation: www.erico.com
      c. Harger Lightning & Grounding: www.harger.com
      d. thermOweld, subsidiary of Continental Industries; division of Burndy LLC: www.thermoweld.com

E. Ground Rod Electrodes:
   1. Comply with NEMA GR 1.
   3. Size: 3/4 inch diameter by 10 feet length, unless otherwise indicated.
   4. Where rod lengths of greater than 10 feet are indicated or otherwise required, sectionalized ground rods may be used.
   5. Manufacturers:

PART 3 EXECUTION

3.01 EXAMINATION
   A. Verify that work likely to damage grounding and bonding system components has been completed.
   B. Verify that field measurements are as indicated.
   C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION
   A. Install products in accordance with manufacturer's instructions.
   B. Perform work in accordance with NECA 1 (general workmanship).
   C. Ground Rod Electrodes: Unless otherwise indicated, install ground rod electrodes vertically. Where encountered rock prohibits vertical installation, install at 45 degree angle or bury horizontally in trench at least 30 inches (750 mm) deep in accordance with NFPA 70 or provide ground plates.
   D. Make grounding and bonding connections using specified connectors.
      1. Remove appropriate amount of conductor insulation for making connections without cutting, nicking or damaging conductors. Do not remove conductor strands to facilitate
insertion into connector.
2. Remove nonconductive paint, enamel, or similar coating at threads, contact points, and contact surfaces.
3. Exothermic Welds: Make connections using molds and weld material suitable for the items to be connected in accordance with manufacturer's recommendations.
4. Mechanical Connectors: Secure connections according to manufacturer's recommended torque settings.
5. Compression Connectors: Secure connections using manufacturer's recommended tools and dies.

E. Identify grounding and bonding system components in accordance with Section 26 0553.

3.03 FIELD QUALITY CONTROL
A. Inspect and test in accordance with NETA ATS except Section 4.
B. Perform inspections and tests listed in NETA ATS, Section 7.13.
C. Perform ground electrode resistance tests under normally dry conditions. Precipitation within the previous 48 hours does not constitute normally dry conditions.
D. Investigate and correct deficiencies where measured ground resistances do not comply with specified requirements.

END OF SECTION
SECTION 26 0529
HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 GENERAL
1.01 SECTION INCLUDES
A. Support and attachment requirements and components for equipment, conduit, cable, boxes, and other electrical work.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, and cutting and patching requirements.
C. Division 03 - Concrete: Concrete equipment pads.
D. Section 03 3000 - Cast-in-Place Concrete: Concrete equipment pads.
E. Section 26 0005 - Basic Electrical Requirements
F. Section 26 0533.13 - Conduit for Electrical Systems: Additional support and attachment requirements for conduits.
G. Section 26 0536 - Cable Trays for Electrical Systems: Additional support and attachment requirements for cable tray.
H. Section 26 0533.16 - Boxes for Electrical Systems: Additional support and attachment requirements for boxes.
I. Section 26 5100 - Interior Lighting: Additional support and attachment requirements for interior luminaires.
J. Section 26 5600 - Exterior Lighting: Additional support and attachment requirements for exterior luminaires.

1.03 REFERENCE STANDARDS
D. MFMA-4 - Metal Framing Standards Publication 2004.
E. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
F. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
G. UL 5B - Strut-Type Channel Raceways and Fittings Current Edition, Including All Revisions.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
1. Coordinate sizes and arrangement of supports and bases with the actual equipment and components to be installed.
2. Coordinate the work with other trades to provide additional framing and materials required for installation.
3. Coordinate compatibility of support and attachment components with mounting surfaces at the installed locations.
4. Coordinate the arrangement of supports with ductwork, piping, equipment and other potential conflicts installed under other sections or by others.
5. Notify Architect of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.
B. Sequencing:
   1. Do not install products on or provide attachment to concrete surfaces until concrete has fully cured in accordance with Division 03.

1.05 QUALITY ASSURANCE
A. Comply with NFPA 70.
B. Comply with applicable building code.

PART 2 PRODUCTS

2.01 SUPPORT AND ATTACHMENT COMPONENTS
A. General Requirements:
   1. Provide all required hangers, supports, anchors, fasteners, fittings, accessories, and hardware as necessary for the complete installation of electrical work.
   2. Provide products listed, classified, and labeled as suitable for the purpose intended, where applicable.
   3. Where support and attachment component types and sizes are not indicated, select in accordance with manufacturer's application criteria as required for the load to be supported. Include consideration for vibration, equipment operation, and shock loads where applicable.
   4. Do not use products for applications other than as permitted by NFPA 70 and product listing.
   5. Steel Components: Use corrosion resistant materials suitable for the environment where installed.
      a. Zinc-Plated Steel: Electroplated in accordance with ASTM B633.
      b. Galvanized Steel: Hot-dip galvanized after fabrication in accordance with ASTM A123/A123M or ASTM A153/A153M.
B. Conduit and Cable Supports: Straps, clamps, etc. suitable for the conduit or cable to be supported.
   1. Conduit Straps: One-hole or two-hole type; steel or malleable iron.
   2. Conduit Clamps: Bolted type unless otherwise indicated.
   3. Manufacturers:
      a. Cooper Crouse-Hinds, a division of Eaton Corporation: www.cooperindustries.com
      b. Erico International Corporation: www.erico.com
      c. HoldRite, a brand of Reliance Worldwide Corporation: www.holdrite.com
      d. O-Z/Gedney, a brand of Emerson Electric Co: www.emerson.com
      e. Thomas & Betts Corporation: www.tnb.com
C. Outlet Box Supports: Hangers, brackets, etc. suitable for the boxes to be supported.
   1. Manufacturers:
      e. Thomas & Betts Corporation: www.tnb.com/#sle.
D. Metal Channel (Strut) Framing Systems: Factory-fabricated continuous-slot metal channel (strut) and associated fittings, accessories, and hardware required for field-assembly of supports.
   2. Channel (Strut) Used as Raceway (only where specifically indicated): Listed and labeled as complying with UL 5B.
   3. Manufacturers:
      a. Cooper B-Line, a division of Eaton Corporation: www.cooperindustries.com
      b. Thomas & Betts Corporation: www.tnb.com
c. Unistrut, a brand of Atkore International Inc: www.unistrut.com

E. Hanger Rods: Threaded zinc-plated steel unless otherwise indicated.
   1. Minimum Size, Unless Otherwise Indicated or Required:
      a. Equipment Supports: 1/2 inch diameter.
      b. Single Conduit up to 1 inch (27 mm) trade size: 1/4 inch diameter.
      c. Single Conduit larger than 1 inch (27 mm) trade size: 3/8 inch diameter.
      d. Trapeze Support for Multiple Conduits: 3/8 inch diameter.
      e. Outlet Boxes: 1/4 inch diameter.
      f. Luminaires: 1/4 inch diameter.

F. Non-Penetrating Rooftop Supports for Low-Slope Roofs: Steel pedestals with thermoplastic or rubber bases that rest on top of roofing membrane, not requiring any attachment to the roof structure and not penetrating the roofing assembly, with support fixtures as specified.
   1. Base Sizes: As required to distribute load sufficiently to prevent indentation of roofing assembly.
   2. Attachment/Support Fixtures: As recommended by manufacturer, same type as indicated for equivalent indoor hangers and supports.
   3. Mounting Height: Provide minimum clearance of 6 inches under supported component to top of roofing.
   4. Manufacturers:
      a. Cooper B-Line, a division of Eaton Corporation: www.cooperindustries.com
      b. Erico International Corporation: www.erico.com
      c. PHP Systems/Design: www.phpsd.com
      d. Unistrut, a brand of Atkore International Inc: www.unistrut.com

G. Anchors and Fasteners:
   1. Unless otherwise indicated and where not otherwise restricted, use the anchor and fastener types indicated for the specified applications.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.
D. Unless specifically indicated or approved by Architect, do not provide support from suspended ceiling support system or ceiling grid.
E. Unless specifically indicated or approved by Architect, do not provide support from roof deck.
F. Do not penetrate or otherwise notch or cut structural members without approval of Structural Engineer.
G. Equipment Support and Attachment:
   1. Use metal fabricated supports or supports assembled from metal channel (strut) to support equipment as required.
   2. Use metal channel (strut) secured to studs to support equipment surface-mounted on hollow stud walls when wall strength is not sufficient to resist pull-out.
   3. Use metal channel (strut) to support surface-mounted equipment in wet or damp locations to provide space between equipment and mounting surface.
   4. Unless otherwise indicated, mount floor-mounted equipment on properly sized 4 inch high concrete pad constructed in accordance with Division 03.
   5. Securely fasten floor-mounted equipment. Do not install equipment such that it relies on its own weight for support.
H. Conduit Support and Attachment: Also comply with Section 26 0533.13.
I. Cable Tray Support and Attachment: Also comply with Section 26 0536.
J. Box Support and Attachment: Also comply with Section 26 0533.16.
K. Secure fasteners according to manufacturer's recommended torque settings.
L. Remove temporary supports.

3.02 FIELD QUALITY CONTROL
A. See Division 01 - General Requirements for additional requirements.
B. Inspect support and attachment components for damage and defects.
C. Repair cuts and abrasions in galvanized finishes using zinc-rich paint recommended by manufacturer. Replace components that exhibit signs of corrosion.
D. Correct deficiencies and replace damaged or defective support and attachment components.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Galvanized steel rigid metal conduit (RMC).
B. Aluminum rigid metal conduit (RMC).
C. Flexible metal conduit (FMC).
D. Electrical metallic tubing (EMT).
E. Rigid polyvinyl chloride (PVC) conduit.
F. Conduit fittings.
G. Accessories.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, and repairs.
C. Division 07 - Thermal and Moisture Protection: Firestopping.
D. Section 07 8400 - Firestopping.
E. Section 26 0005 - Basic Electrical Requirements
F. Section 26 0519 - Low-Voltage Electrical Power Conductors and Cables.
G. Section 26 0526 - Grounding and Bonding for Electrical Systems.
H. Section 26 0529 - Hangers and Supports for Electrical Systems.
I. Section 26 0533.16 - Boxes for Electrical Systems.
J. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
K. Section 28 4600 - Fire Detection and Alarm: Fire alarm wiring in conduit.
L. Division 31 - Earthwork: Excavating, trenching and fill.
M. Section 31 2316.13 - Trenching: Excavating, bedding, and backfilling.

1.03 REFERENCE STANDARDS
B. ANSI C80.3 - American National Standard for Electrical Metallic Tubing -- Steel (EMT-S) 2015.
G. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable 2014.
H. NEMA RN 1 - Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit 2018.
J. NEMA TC 3 - Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing 2016.
K. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
L. UL 1 - Flexible Metal Conduit Current Edition, Including All Revisions.
M. UL 6 - Electrical Rigid Metal Conduit-Steel Current Edition, Including All Revisions.
N. UL 514B - Conduit, Tubing, and Cable Fittings Current Edition, Including All Revisions.
O. UL 651 - Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings Current Edition, Including All Revisions.

PART 2 PRODUCTS
2.01 CONDUIT APPLICATIONS

A. Do not use conduit and associated fittings for applications other than as permitted by NFPA 70 and product listing.
B. Unless otherwise indicated and where not otherwise restricted, use the conduit types indicated for the specified applications. Where more than one listed application applies, comply with the most restrictive requirements. Where conduit type for a particular application is not specified, use galvanized steel rigid metal conduit.

C. Underground:
1. Under Slab on Grade: Use galvanized steel rigid metal conduit or rigid PVC conduit.
2. Exterior, Direct-Buried: Use galvanized steel rigid metal conduit or rigid PVC conduit.
3. Exterior, Embedded Within Concrete: Use galvanized steel rigid metal conduit or rigid PVC conduit.
4. Where rigid polyvinyl (PVC) conduit is provided, transition to galvanized steel rigid metal conduit where emerging from underground.
5. Where rigid polyvinyl (PVC) conduit larger than 2 inch (53 mm) trade size is provided, use galvanized steel rigid metal conduit elbows for bends.

D. Embedded Within Concrete:
1. Within Slab on Grade (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit or rigid PVC conduit.
2. Within Slab Above Ground (within structural slabs only where approved by Structural Engineer): Use galvanized steel rigid metal conduit, intermediate metal conduit (IMC), PVC-coated galvanized steel rigid metal conduit, or rigid PVC conduit.

E. Concealed Within Masonry Walls: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).
F. Concealed Within Hollow Stud Walls: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).
G. Concealed Above Accessible Ceilings: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).
H. Interior, Damp or Wet Locations: Use galvanized steel rigid metal conduit.
I. Exposed, Interior, Not Subject to Physical Damage: Use galvanized steel rigid metal conduit or electrical metallic tubing (EMT).
J. Exposed, Interior, Subject to Physical Damage: Use galvanized steel rigid metal conduit or intermediate metal conduit (IMC).
K. Exposed, Exterior: Use galvanized steel rigid metal conduit or PVC-coated galvanized steel rigid metal conduit.
L. Concealed, Exterior, Not Embedded in Concrete or in Contact With Earth: Use galvanized steel rigid metal conduit.
M. Connections to Luminaires Above Accessible Ceilings: Use flexible metal conduit.
1. Maximum Length: 6 feet.
N. Connections to Vibrating Equipment:
1. Dry Locations: Use flexible metal conduit.
LIVONIA PUBLIC SCHOOLS  EMERSON & HOLMES WOODSHOP/ART ROOM AC UPGRADES
UBS PROJECT: 001.23.04

2. Damp, Wet, or Corrosive Locations: Use liquidtight flexible metal conduit.
3. Vibrating equipment includes, but is not limited to:
   a. Transformers.
   b. Motors.

O. Fished in Existing Walls, Where Necessary: Use flexible metal conduit.

2.02 CONDUIT REQUIREMENTS
A. Existing Work: Where existing conduits are indicated to be reused, they may be reused only where they comply with specified requirements, are free from corrosion, and integrity is verified by pulling a mandrel through them.
B. Provide all conduit, fittings, supports, and accessories required for a complete raceway system.
C. Provide products listed, classified, and labeled as suitable for the purpose intended.
D. Minimum Conduit Size, Unless Otherwise Indicated:
   1. Branch Circuits: 3/4 inch (21 mm) trade size.
   2. Flexible Connections to Luminaires: 3/8 inch (12 mm) trade size.
   3. Underground, Interior: 1 inch (27 mm) trade size.
   4. Underground, Exterior: 1 inch (27 mm) trade size.
E. Where conduit size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

2.03 GALVANIZED STEEL RIGID METAL CONDUIT (RMC)
A. Manufacturers:
   1. Allied Tube & Conduit: www.alliedeg.com
   2. Republic Conduit: www.republic-conduit.com
   3. Wheatland Tube, a Division of Zekelman Industries: www.wheatland.com
B. Description: NFPA 70, Type RMC galvanized steel rigid metal conduit complying with ANSI C80.1 and listed and labeled as complying with UL 6.
C. Fittings:
   1. Non-Hazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
   2. Material: Use steel or malleable iron.
   3. Connectors and Couplings: Use threaded type fittings only. Threadless set screw and compression (gland) type fittings are not permitted.

2.04 FLEXIBLE METAL CONDUIT (FMC)
A. Manufacturers:
   1. AFC Cable Systems, Inc: www.afcweb.com
   2. Electri-Flex Company: www.electriflex.com
   3. International Metal Hose: www.metalhose.com
B. Description: NFPA 70, Type FMC standard wall steel flexible metal conduit listed and labeled as complying with UL 1, and listed for use in classified firestop systems to be used.
C. Fittings:
   1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
   2. Material: Use steel or malleable iron.

2.05 ELECTRICAL METALLIC TUBING (EMT)
A. Manufacturers:
   1. Allied Tube & Conduit: www.alliedeg.com
   2. Republic Conduit: www.republic-conduit.com
   3. Wheatland Tube, a Division of Zekelman Industries: www.wheatland.com
B. Description: NFPA 70, Type EMT steel electrical metallic tubing complying with ANSI C80.3 and listed and labeled as complying with UL 797.
C. Fittings:
1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.
2. Material: Use steel or malleable iron.
3. Connectors and Couplings: Use compression (gland) or set-screw type.
   a. Do not use indenter type connectors and couplings.
4. Damp or Wet Locations (where permitted): Use fittings listed for use in wet locations.
5. Embedded Within Concrete (where permitted): Use fittings listed as concrete-tight. Fittings that require taping to be concrete-tight are acceptable.

2.06 RIGID POLYVINYL CHLORIDE (PVC) CONDUIT
A. Manufacturers:
   1. Cantex Inc: www.cantexinc.com
   2. Carlon, a brand of Thomas & Betts Corporation: www.carlon.com
   3. JM Eagle: www.jmeagle.com
B. Description: NFPA 70, Type PVC rigid polyvinyl chloride conduit complying with NEMA TC 2 and listed and labeled as complying with UL 651; Schedule 40 unless otherwise indicated, Schedule 80 where subject to physical damage; rated for use with conductors rated 90 degrees C.
C. Fittings:
   1. Manufacturer: Same as manufacturer of conduit to be connected.
   2. Description: Fittings complying with NEMA TC 3 and listed and labeled as complying with UL 651; material to match conduit.

2.07 ACCESSORIES
A. Conduit Joint Compound: Corrosion-resistant, electrically conductive; suitable for use with the conduit to be installed.
B. Solvent Cement for PVC Conduit and Fittings: As recommended by manufacturer of conduit and fittings to be installed.
C. Pull Strings: Use nylon cord with average breaking strength of not less than 200 pound-force.
D. Sealing Compound for Sealing Fittings: Listed for use with the particular fittings to be installed.
E. Modular Seals for Conduit Penetrations: Rated for minimum of 40 psig; Suitable for the conduits to be installed.
F. Sealing Systems for Roof Penetrations: Premanufactured components and accessories as required to preserve integrity of roofing system and maintain roof warranty; suitable for conduits and roofing system to be installed; designed to accommodate existing penetrations where applicable.
G. Firestop Sleeves: Listed; provide as required to preserve fire resistance rating of building elements.

PART 3 EXECUTION
3.01 EXAMINATION
A. Verify that field measurements are as indicated.
B. Verify that mounting surfaces are ready to receive conduits.
C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION
A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Install galvanized steel rigid metal conduit (RMC) in accordance with NECA 101.
D. Install rigid polyvinyl chloride (PVC) conduit in accordance with NECA 111.
E. Conduit Routing:
1. Unless dimensioned, conduit routing indicated is diagrammatic.
2. When conduit destination is indicated without specific routing, determine exact routing required.
3. Conceal all conduits unless specifically indicated to be exposed.
4. Conduits in the following areas may be exposed, unless otherwise indicated:
   a. Electrical rooms.
   b. Mechanical equipment rooms.
5. Unless otherwise approved, do not route conduits exposed:
   a. Across floors.
   b. Across roofs.
   c. Across top of parapet walls.
   d. Across building exterior surfaces.
6. Conduits installed underground or embedded in concrete may be routed in the shortest possible manner unless otherwise indicated. Route all other conduits parallel or perpendicular to building structure and surfaces, following surface contours where practical.
7. Arrange conduit to maintain adequate headroom, clearances, and access.
8. Arrange conduit to provide no more than the equivalent of four 90 degree bends between pull points.
9. Arrange conduit to prevent moisture traps. Provide drain fittings at low points and at sealing fittings where moisture may collect.
10. Group parallel conduits in the same area together on a common rack.

F. Conduit Support:
1. Secure and support conduits in accordance with NFPA 70 and Section 26 0529 using suitable supports and methods approved by the authority having jurisdiction.
2. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.
3. Installation Above Suspended Ceilings: Do not provide support from ceiling support system. Do not provide support from ceiling grid or allow conduits to lay on ceiling tiles.
4. Use conduit strap to support single surface-mounted conduit.
   a. Use clamp back spacer with conduit strap for damp and wet locations to provide space between conduit and mounting surface.
5. Use metal channel (strut) with accessory conduit clamps to support multiple parallel surface-mounted conduits.
6. Use trapeze hangers assembled from threaded rods and metal channel (strut) with accessory conduit clamps to support multiple parallel suspended conduits.
7. Use of wire for support of conduits is not permitted.

G. Connections and Terminations:
1. Use approved zinc-rich paint or conduit joint compound on field-cut threads of galvanized steel conduits prior to making connections.
2. Where two threaded conduits must be joined and neither can be rotated, use three-piece couplings or split couplings. Do not use running threads.
3. Use suitable adapters where required to transition from one type of conduit to another.
4. Terminate threaded conduits in boxes and enclosures using threaded hubs or double lock nuts for dry locations and raintight hubs for wet locations.
5. Provide insulating bushings or insulated throats at all conduit terminations to protect conductors.
6. Secure joints and connections to provide maximum mechanical strength and electrical continuity.

H. Penetrations:
1. Do not penetrate or otherwise notch or cut structural members, including footings and grade beams, without approval of Structural Engineer.
2. Make penetrations perpendicular to surfaces unless otherwise indicated.
3. Provide sleeves for penetrations as indicated or as required to facilitate installation. Set sleeves flush with exposed surfaces unless otherwise indicated or required.
4. Conceal bends for conduit risers emerging above ground.
5. Seal interior of conduits entering the building from underground at first accessible point to prevent entry of moisture and gases.
6. Where conduits penetrate waterproof membrane, seal as required to maintain integrity of membrane.
7. Make penetrations for roof-mounted equipment within associated equipment openings and curbs where possible to minimize roofing system penetrations. Where penetrations are necessary, seal as indicated or as required to preserve integrity of roofing system and maintain roof warranty. Include proposed locations of penetrations and methods for sealing with submittals.
8. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Division 07.

I. Underground Installation:
   1. Provide trenching and backfilling in accordance with Division 31.

J. Embedment Within Structural Concrete Slabs (only where approved by Structural Engineer):
   1. Secure conduits to prevent floating or movement during pouring of concrete.

K. Concrete Encasement: Where conduits not otherwise embedded within concrete are indicated to be concrete-encased, provide concrete in accordance with Division 03 with minimum concrete cover of 2 inches on all sides unless otherwise indicated.

L. Conduit Movement Provisions: Where conduits are subject to movement, provide expansion and expansion/deflection fittings to prevent damage to enclosed conductors or connected equipment. This includes, but is not limited to:
   1. Where conduits cross structural joints intended for expansion, contraction, or deflection.
   2. Where calculated in accordance with NFPA 70 for rigid polyvinyl chloride (PVC) conduit installed above ground to compensate for thermal expansion and contraction.
   3. Where conduits are subject to earth movement by settlement or frost.

M. Condensation Prevention: Where conduits cross barriers between areas of potential substantial temperature differential, provide sealing fitting or approved sealing compound at an accessible point near the penetration to prevent condensation. This includes, but is not limited to:
   1. Where conduits pass from outdoors into conditioned interior spaces.
   2. Where conduits pass from unconditioned interior spaces into conditioned interior spaces.

N. Provide grounding and bonding in accordance with Section 26 0526.
O. Identify conduits in accordance with Section 26 0553.

3.03 PROTECTION
A. Immediately after installation of conduit, use suitable manufactured plugs to provide protection from entry of moisture and foreign material and do not remove until ready for installation of conductors.

END OF SECTION
SECTION 26 0533.16
BOXES FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Outlet and device boxes up to 100 cubic inches, including those used as junction and pull boxes.
B. Cabinets and enclosures, including junction and pull boxes larger than 100 cubic inches.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 03 - Concrete: Concrete.
C. Division 07 - Thermal and Moisture Protection: Firestopping.
D. Division 08 - Openings: Access Doors.
E. Section 08 3100 - Access Doors and Panels: Panels for maintaining access to concealed boxes.
F. Section 26 0005 - Basic Electrical Requirements.
G. Section 26 0526 - Grounding and Bonding for Electrical Systems.
H. Section 26 0529 - Hangers and Supports for Electrical Systems.
I. Section 26 0533.13 - Conduit for Electrical Systems:
   1. Conduit bodies and other fittings.
   2. Additional requirements for locating boxes to limit conduit length and/or number of bends between pulling points.
J. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
K. Section 26 2726 - Wiring Devices:
   1. Wall plates.
L. Section 26 2813 - Fuses: Spare fuse cabinets.

1.03 REFERENCE STANDARDS
A. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
C. NEMA FB 1 - Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable 2014.
D. NEMA OS 1 - Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports 2013.
F. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
1. Coordinate the work with other trades to avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and working clearances for electrical equipment required by NFPA 70.

2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.

3. Coordinate minimum sizes of boxes with the actual installed arrangement of conductors, clamps, support fittings, and devices, calculated according to NFPA 70.

4. Coordinate minimum sizes of pull boxes with the actual installed arrangement of connected conduits, calculated according to NFPA 70.

5. Coordinate the placement of boxes with millwork, furniture, devices, equipment, etc. installed under other sections or by others.

6. Coordinate the work with other trades to preserve insulation integrity.

7. Coordinate the work with other trades to provide walls suitable for installation of flush-mounted boxes where indicated.

8. Notify Architect of any conflicts with or deviations from Contract Documents. Obtain direction before proceeding with work.

1.05 SUBMITTALS

A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.

B. Product Data: Provide manufacturer's standard catalog pages and data sheets for cabinets and enclosures, boxes for hazardous (classified) locations, floor boxes, and underground boxes/enclosures.
   1. Underground Boxes/Enclosures: Include reports for load testing in accordance with SCTE 77 certified by a professional engineer or an independent testing agency upon request.

C. Project Record Documents: Record actual locations for outlet and device boxes, pull boxes, cabinets and enclosures, floor boxes, and underground boxes/enclosures.

D. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
   1. See Section 01 6000 - Product Requirements, for additional provisions.
   2. Keys for Lockable Enclosures: Two of each different key.

PART 2 PRODUCTS

2.01 BOXES

A. General Requirements:
   1. Do not use boxes and associated accessories for applications other than as permitted by NFPA 70 and product listing.
   2. Provide all boxes, fittings, supports, and accessories required for a complete raceway system and to accommodate devices and equipment to be installed.
   3. Provide products listed, classified, and labeled as suitable for the purpose intended.
   4. Where box size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.
   5. Provide grounding terminals within boxes where equipment grounding conductors terminate.

B. Outlet and Device Boxes Up to 100 cubic inches, Including Those Used as Junction and Pull Boxes:
   1. Use sheet-steel boxes for dry locations unless otherwise indicated or required.
   2. Use cast iron boxes or cast aluminum boxes for damp or wet locations unless otherwise indicated or required; furnish with compatible weatherproof gasketed covers.
   3. Use suitable concrete type boxes where flush-mounted in concrete.
   4. Use suitable masonry type boxes where flush-mounted in masonry walls.
   5. Use raised covers suitable for the type of wall construction and device configuration where required.
   6. Use shallow boxes where required by the type of wall construction.
   7. Do not use "through-wall" boxes designed for access from both sides of wall.
8. Sheet-Steel Boxes: Comply with NEMA OS 1, and list and label as complying with UL 514A.
9. Cast Metal Boxes: Comply with NEMA FB 1, and list and label as complying with UL 514A; furnish with threaded hubs.
10. Boxes for Supporting Luminaires and Ceiling Fans: Listed as suitable for the type and weight of load to be supported; furnished with fixture stud to accommodate mounting of luminaire where required.
12. Wall Plates: Comply with Section 26 2726.
13. Manufacturers:
   a. Cooper Crouse-Hinds, a division of Eaton Corporation: www.cooperindustries.com
   b. Hubbell Incorporated; Bell Products: www.hubbell-rtb.com
   c. Hubbell Incorporated; RACO Products: www.hubbell-rtb.com
   d. O-Z/Gedney, a brand of Emerson Electric Co: www.emerson.com
   e. Thomas & Betts Corporation: www.tnb.com

C. Cabinets and Enclosures, Including Junction and Pull Boxes Larger Than 100 cubic inches:
   1. Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E, or UL 508A.
   2. NEMA 250 Environment Type, Unless Otherwise Indicated:
   3. Junction and Pull Boxes Larger Than 100 cubic inches:
      a. Provide screw-cover or hinged-cover enclosures unless otherwise indicated.
      b. Boxes 6 square feet and Larger: Provide sectionalized screw-cover or hinged-cover enclosures.
   4. Cabinets and Hinged-Cover Enclosures, Other Than Junction and Pull Boxes:
      a. Provide lockable hinged covers, all locks keyed alike unless otherwise indicated.
      c. Terminal Blocks: Provide voltage/current ratings and terminal quantity suitable for purpose indicated, with 25 percent spare terminal capacity.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that field measurements are as indicated.
B. Verify that mounting surfaces are ready to receive boxes.
C. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION

A. Install products in accordance with manufacturer's instructions.
B. Install boxes in accordance with NECA 1 (general workmanship) and, where applicable, NECA 130, including mounting heights specified in those standards where mounting heights are not indicated.
C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.
D. Provide separate boxes for emergency power and normal power systems.
E. Unless otherwise indicated, provide separate boxes for line voltage and low voltage systems.
F. Flush-mount boxes in finished areas unless specifically indicated to be surface-mounted.
G. Unless otherwise indicated, boxes may be surface-mounted where exposed conduits are indicated or permitted.
H. Box Locations:
   1. Locate boxes to be accessible. Provide access panels in accordance with Division 08 as required where approved by the Architect.
   2. Unless dimensioned, box locations indicated are approximate.
3. Locate boxes as required for devices installed under other sections or by others.
4. Locate boxes so that wall plates do not span different building finishes.
5. Locate boxes so that wall plates do not cross masonry joints.
6. Do not install flush-mounted boxes on opposite sides of walls back-to-back. Provide minimum 6 inches horizontal separation unless otherwise indicated.
7. Fire Resistance Rated Walls: Install flush-mounted boxes such that the required fire resistance will not be reduced.
   a. Do not install flush-mounted boxes on opposite sides of walls back-to-back; provide minimum 24 inches separation where wall is constructed with individual noncommunicating stud cavities or protect both boxes with listed putty pads.
8. Locate junction and pull boxes as indicated, as required to facilitate installation of conductors, and to limit conduit length and/or number of bends between pulling points in accordance with Section 26 0533.13.

I. Box Supports:
   1. Secure and support boxes in accordance with NFPA 70 and Section 26 0529 using suitable supports and methods approved by the authority having jurisdiction.
   2. Provide independent support from building structure except for cast metal boxes (other than boxes used for fixture support) supported by threaded conduit connections in accordance with NFPA 70. Do not provide support from piping, ductwork, or other systems.

J. Install boxes plumb and level.

K. Flush-Mounted Boxes:
   1. Install boxes in noncombustible materials such as concrete, tile, gypsum, plaster, etc. so that front edge of box or associated raised cover is not set back from finished surface more than 1/4 inch or does not project beyond finished surface.
   2. Install boxes in combustible materials such as wood so that front edge of box or associated raised cover is flush with finished surface.
   3. Repair rough openings around boxes in noncombustible materials such as concrete, tile, gypsum, plaster, etc. so that there are no gaps or open spaces greater than 1/8 inch at the edge of the box.

L. Install boxes as required to preserve insulation integrity.

M. Install permanent barrier between ganged wiring devices when voltage between adjacent devices exceeds 300 V.

N. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Section 07 8400.

O. Close unused box openings.

P. Install blank wall plates on junction boxes and on outlet boxes with no devices or equipment installed or designated for future use.

Q. Provide grounding and bonding in accordance with Section 26 0526.

3.03 PROTECTION
   A. Immediately after installation, protect boxes from entry of moisture and foreign material until ready for installation of conductors.

END OF SECTION
SECTION 26 0553
IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Electrical identification requirements.
B. Identification nameplates and labels.
C. Wire and cable markers.
D. Voltage markers.
E. Underground warning tape.
F. Floor marking tape.
G. Warning signs and labels.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 09 - Finishes: Interior and Exterior Painting.
C. Section 09 9113 - Exterior Painting.
D. Section 09 9123 - Interior Painting.
E. Section 26 0005 - Basic Electrical Requirements
F. Section 26 0519 - Low-Voltage Electrical Power Conductors and Cables: Color coding for power conductors and cables 600 V and less; vinyl color coding electrical tape.
G. Section 26 0536 - Cable Trays for Electrical Systems: Additional identification requirements for cable tray systems.
H. Section 26 0573 - Power System Studies: Arc flash hazard warning labels.
I. Section 26 2726 - Wiring Devices: Device and wallplate finishes; factory pre-marked wallplates.

1.03 REFERENCE STANDARDS
A. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 FIELD CONDITIONS
A. Do not install adhesive products when ambient temperature is lower than recommended by manufacturer.

PART 2 PRODUCTS

2.01 IDENTIFICATION REQUIREMENTS
A. Existing Work: Unless specifically excluded, identify existing elements to remain that are not already identified in accordance with specified requirements.
B. Identification for Equipment:
   1. Use identification nameplate to identify each piece of electrical distribution and control equipment and associated sections, compartments, and components.
      a. Panelboards:
         1) Identify ampere rating.
         2) Identify voltage and phase.
         3) Identify power source and circuit number. Include location when not within sight of equipment.
         4) Use typewritten circuit directory to identify load(s) served for panelboards with a door. Identify spares and spaces using pencil.
5) For power panelboards without a door, use identification nameplate to identify load(s) served for each branch device. Do not identify spares and spaces.

b. Transformers:
   1) Identify kVA rating.
   2) Identify voltage and phase for primary and secondary.
   3) Identify power source and circuit number. Include location when not within sight of equipment.

c. Enclosed switches, circuit breakers, and motor controllers:
   1) Identify voltage and phase.
   2) Identify power source and circuit number. Include location when not within sight of equipment.
   3) Identify load(s) served. Include location when not within sight of equipment.

d. Transfer Switches:
   1) Identify voltage and phase.
   2) Identify short circuit current rating based on the specific overcurrent protective device type and settings protecting the transfer switch.

2. Service Equipment:
   a. Use identification nameplate to identify each service disconnecting means.

3. Emergency System Equipment:
   a. Use identification nameplate or voltage marker to identify emergency system equipment in accordance with NFPA 70.
   b. Use identification nameplate at each piece of service equipment to identify type and location of on-site emergency power sources.

4. Use identification nameplate to identify disconnect location for equipment with remote disconnecting means.

5. Use identification label or handwritten text using indelible marker on inside of door at each fused switch to identify required NEMA fuse class and size.

6. Use field-painted floor markings, floor marking tape, or warning labels to identify required equipment working clearances where indicated or where required by the authority having jurisdiction.
   a. Field-Painted Floor Markings: Alternating black and white stripes, 3 inches wide, painted in accordance with Section 09 9123 and 09 9113.

7. Available Fault Current Documentation: Use identification label to identify the available fault current and date calculations were performed at locations requiring documentation by NFPA 70 including but not limited to the following.
   a. Service equipment.
   b. Industrial control panels.
   c. Motor control centers.
   d. Elevator control panels.
   e. Industrial machinery.

8. Arc Flash Hazard Warning Labels: Comply with Section 26 0573.

C. Identification for Conductors and Cables:
   1. Color Coding for Power Conductors 600 V and Less: Comply with Section 26 0519.
   2. Use identification nameplate or identification label to identify color code for ungrounded and grounded power conductors inside door or enclosure at each piece of feeder or branch-circuit distribution equipment when premises has feeders or branch circuits served by more than one nominal voltage system.

D. Identification for Cable Tray: Comply with Section 26 0536.

E. Identification for Boxes:
   1. Use voltage markers to identify highest voltage present.
   2. Use voltage markers or color coded boxes to identify systems other than normal power system.
      a. Color-Coded Boxes: Field-painted in accordance with Division 09 per the same color code used for raceways.
F. Identification for Devices:
   1. Wiring Device and Wallplate Finishes: Comply with Section 26 2726.
   2. Use identification label to identify fire alarm system devices.
      a. For devices concealed above suspended ceilings, provide additional identification on
         ceiling tile below device location.
   3. Use identification label to identify serving branch circuit for all receptacles.
      a. For receptacles in public areas or in areas as directed by Architect, provide
         identification on inside surface of wallplate.

G. Identification for Luminaires:
   1. Use permanent red dot on luminaire frame to identify luminaires connected to emergency
      power system.

2.02 IDENTIFICATION NAMEPLATES AND LABELS

A. Identification Nameplates:
   1. Materials:
      a. Indoor Clean, Dry Locations: Use plastic nameplates.
      b. Outdoor Locations: Use plastic, stainless steel, or aluminum nameplates suitable for
         exterior use.
   2. Plastic Nameplates: Two-layer or three-layer laminated acrylic or electrically non-
      conductive phenolic with beveled edges; minimum thickness of 1/16 inch; engraved text.
   3. Stainless Steel Nameplates: Minimum thickness of 1/32 inch; engraved or laser-etched
      text.
   4. Aluminum Nameplates: Anodized; minimum thickness of 1/32 inch; engraved or laser-
      etched text.
   5. Mounting Holes for Mechanical Fasteners: Two, centered on sides for sizes up to 1 inch
      high; Four, located at corners for larger sizes.

B. Identification Labels:
   1. Materials: Use self-adhesive laminated plastic labels; UV, chemical, water, heat, and
      abrasion resistant.
   2. Text: Use factory pre-printed or machine-printed text. Do not use handwritten text unless
      otherwise indicated.

C. Format for Caution and Warning Messages:
   1. Minimum Size: 2 inches by 4 inches.
   2. Legend: Include information or instructions indicated or as required for proper and safe
      operation and maintenance.
   3. Text: All capitalized unless otherwise indicated.
   4. Minimum Text Height: 1/2 inch.
   5. Color: Black text on yellow background unless otherwise indicated.

D. Format for Receptacle Identification:
   1. Minimum Size: 3/8 inch by 1.5 inches.
   2. Legend: Power source and circuit number or other designation indicated.
   3. Text: All capitalized unless otherwise indicated.
   5. Color: Black text on clear background.

E. Format for Fire Alarm Device Identification:
   1. Minimum Size: 3/8 inch by 1.5 inches.
   2. Legend: Designation indicated and device zone or address.
   3. Text: All capitalized unless otherwise indicated.
   5. Color: Red text on white background.

2.03 VOLTAGE MARKERS
A. Markers for Boxes and Equipment Enclosures: Use factory pre-printed self-adhesive vinyl or self-adhesive vinyl cloth type markers.

B. Minimum Size:
   1. Markers for Pull Boxes: 1 1/8 by 4 1/2 inches.

C. Legend:
   1. Markers for Voltage Identification: Highest voltage present.
   2. Markers for System Identification:
      a. Emergency Power System: Text "EMERGENCY".

D. Color: Black text on orange background unless otherwise indicated.

2.04 UNDERGROUND WARNING TAPE

A. Materials: Use non-detectable type polyethylene tape suitable for direct burial, unless otherwise indicated.

B. Non-detectable Type Tape: 6 inches wide, with minimum thickness of 4 mil.

C. Legend: Type of service, continuously repeated over full length of tape.

D. Color:
   1. Tape for Buried Power Lines: Black text on red background.

2.05 FLOOR MARKING TAPE

A. Floor Marking Tape for Equipment Working Clearance Identification: Self-adhesive vinyl or polyester tape with overlaminate, 3 inches wide, with alternating black and white stripes.

2.06 WARNING SIGNS AND LABELS

A. Comply with ANSI Z535.2 or ANSI Z535.4 as applicable.

B. Warning Signs:
   1. Materials:
      a. Indoor Dry, Clean Locations: Use factory pre-printed rigid plastic or self-adhesive vinyl signs.
      b. Outdoor Locations: Use factory pre-printed rigid aluminum signs.
   2. Rigid Signs: Provide four mounting holes at corners for mechanical fasteners.
   3. Minimum Size: 7 by 10 inches unless otherwise indicated.

C. Warning Labels:
   1. Materials: Use factory pre-printed or machine-printed self-adhesive polyester or self-adhesive vinyl labels; UV, chemical, water, heat, and abrasion resistant; produced using materials recognized to UL 969.
   3. Minimum Size: 2 by 4 inches unless otherwise indicated.

PART 3 EXECUTION

3.01 PREPARATION

A. Clean surfaces to receive adhesive products according to manufacturer's instructions.

3.02 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install identification products to be plainly visible for examination, adjustment, servicing, and maintenance. Unless otherwise indicated, locate products as follows:
3. Free-Standing Equipment: Enclosure front; also enclosure rear for equipment with rear access.
4. Elevated Equipment: Legible from the floor or working platform.
5. Branch Devices: Adjacent to device.
6. Interior Components: Legible from the point of access.
7. Boxes: Outside face of cover.
8. Conductors and Cables: Legible from the point of access.

C. Install identification products centered, level, and parallel with lines of item being identified.

D. Secure nameplates to exterior surfaces of enclosures using stainless steel screws and to interior surfaces using self-adhesive backing or epoxy cement.

E. Install self-adhesive labels and markers to achieve maximum adhesion, with no bubbles or wrinkles and edges properly sealed.

F. Install underground warning tape above buried lines with one tape per trench at 3 inches below finished grade.

G. Secure rigid signs using stainless steel screws.

H. Mark all handwritten text, where permitted, to be neat and legible.

END OF SECTION
SECTION 26 0573
POWER SYSTEM STUDIES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Short-circuit study.
B. Protective device coordination study.
C. Arc flash and shock risk assessment.
   1. Includes arc flash hazard warning labels.
D. Criteria for the selection and adjustment of equipment and associated protective devices not specified in this section, as determined by studies to be performed.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Section 26 0005 - Basic Electrical Requirements.
C. Section 26 0553 - Identification for Electrical Systems: Additional requirements for arc flash hazard warning labels.
D. Section 26 2416 - Panelboards.
E. Section 26 2813 - Fuses.
F. Section 26 2816.16 - Enclosed Switches.

1.03 REFERENCE STANDARDS
G. NEMA MG 1 - Motors and Generators 2018.
I. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
   1. Existing Installations: Coordinate with equipment manufacturer(s) to obtain data necessary for completion of studies.
   2. Coordinate the work to provide equipment and associated protective devices complying with criteria for selection and adjustment, as determined by studies to be performed.
B. Sequencing:
   1. Submit study reports prior to or concurrent with product submittals.
2. Do not order equipment until matching study reports and product submittals have both been evaluated by Architect.

1.05 SUBMITTALS

A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.

B. Study reports, stamped or sealed and signed by study preparer.

C. Product Data: In addition to submittal requirements specified in other sections, include manufacturer's standard catalog pages and data sheets for equipment and protective devices indicating information relevant to studies.

1. Identify modifications made in accordance with studies that:
   a. Can be made at no additional cost to Owner.
   b. As submitted will involve a change to the contract sum.

1.06 POWER SYSTEM STUDIES

A. Scope of Studies:
   1. Perform analysis of new electrical distribution system as indicated on drawings.
   2. Except where study descriptions below indicate exclusions, analyze system at each bus from primary protective devices of utility source down to each piece of equipment involved, including parts of system affecting calculations being performed (e.g. fault current contribution from motors).
   3. Include in analysis alternate sources and operating modes (including known future configurations) to determine worst case conditions.

B. General Study Requirements:
   1. Comply with NFPA 70.
   2. Perform studies utilizing computer software complying with specified requirements; manual calculations are not permitted.

C. Data Collection:
   1. Compile information on project-specific characteristics of actual installed equipment, protective devices, feeders, etc. as necessary to develop single-line diagram of electrical distribution system and associated input data for use in system modeling.
      a. Utility Source Data: Include primary voltage, maximum and minimum three-phase and line-to-ground fault currents, impedance, X/R ratio, and primary protective device information.
         1) Obtain up-to-date information from Utility Company.
      b. Generators: Include manufacturer/model, kW and voltage ratings, and impedance.
      c. Motors: Include manufacturer/model, type (e.g. induction, synchronous), horsepower rating, voltage rating, full load amps, and locked rotor current or NEMA MG 1 code letter designation.
      d. Transformers: Include primary and secondary voltage ratings, kVA rating, winding configuration, percent impedance, and X/R ratio.
      e. Protective Devices:
         1) Circuit Breakers: Include manufacturer/model, type (e.g. thermal magnetic, electronic trip), frame size, trip rating, voltage rating, interrupting rating, available field-adjustable trip response settings, and features (e.g. zone selective interlocking).
         2) Fuses: Include manufacturer/model, type/class (e.g. Class J), size/rating, and speed (e.g. time delay, fast acting).
      f. Protective Relays: Include manufacturer/model, type, settings, current/potential transformer ratio, and associated protective device.
      g. Conductors: Include feeder size, material (e.g. copper, aluminum), insulation type, voltage rating, number per phase, raceway type, and actual length.

D. Short-Circuit Study:
2. For purposes of determining equipment short circuit current ratings, consider conditions that may result in maximum available fault current, including but not limited to:
   a. Maximum utility fault currents.
   b. Maximum motor contribution.
   c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).
3. For each bus location, calculate the maximum available three-phase bolted symmetrical and asymmetrical fault currents. For grounded systems, also calculate the maximum available line-to-ground bolted fault currents.

E. Arc Flash and Shock Risk Assessment:
1. Comply with NFPA 70E.
2. Perform incident energy and arc flash boundary calculations in accordance with IEEE 1584 (as referenced in NFPA 70E Annex D), where applicable.
3. Analyze alternate scenarios considering conditions that may result in maximum incident energy, including but not limited to:
   a. Maximum and minimum utility fault currents.
   b. Maximum and minimum motor contribution.
   c. Known operating modes (e.g. utility as source, generator as source, utility/generator in parallel, bus tie breaker open/close positions).

F. Study Reports:
1. General Requirements:
   a. Identify date of study and study preparer.
   b. Identify study methodology and software product(s) used.
   c. Identify scope of studies, assumptions made, implications of possible alternate scenarios, and any exclusions from studies.
   d. Identify base used for per unit values.
   e. Include single-line diagram and associated input data used for studies; identify buses on single-line diagram as referenced in reports, and indicate bus voltage.
   f. Include conclusions and recommendations.
2. Short-Circuit Study:
   a. For each scenario, identify at each bus location:
      1) Calculated maximum available symmetrical and asymmetrical fault currents (both three-phase and line-to-ground where applicable).
      2) Fault point X/R ratio.
      3) Associated equipment short circuit current ratings.
   b. Identify locations where the available fault current exceeds the equipment short circuit current rating, along with recommendations.
3. Arc Flash and Shock Risk Assessment:
   a. For the worst case for each scenario, identify at each bus location:
      1) Calculated incident energy and associated working distance.
      2) Calculated arc flash boundary.
      3) Bolted fault current.
      4) Arcing fault current.
      5) Clearing time.
      6) Arc gap distance.
   b. For purposes of producing arc flash hazard warning labels, summarize the maximum incident energy and associated data reflecting the worst case condition of all scenarios at each bus location.

1.07 QUALITY ASSURANCE
A. Study Preparer Qualifications: Professional electrical engineer licensed in the State in which the Project is located and with minimum five years experience in the preparation of studies of similar type and complexity using specified computer software.
B. Computer Software for Study Preparation: Use the latest edition of commercially available software utilizing specified methodologies.

PART 2 PRODUCTS

2.01 ARC FLASH HAZARD WARNING LABELS

A. Provide warning labels complying with ANSI Z535.4 to identify arc flash hazards for each work location analyzed by the arc flash and shock risk assessment.

1. Materials: Comply with Section 26 0553.

2. Legend: Provide custom legend in accordance with NFPA 70E based on equipment-specific data as determined by arc flash and shock risk assessment.
   a. Include the following information:
      1) Arc flash boundary.
      2) Available incident energy and corresponding working distance.
      3) Nominal system voltage.
      4) Equipment identification.
      5) Date calculations were performed.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install arc flash warning labels in accordance with Section 26 0553.

3.02 FIELD QUALITY CONTROL

A. Provide the services of field testing agency or equipment manufacturer's representative to perform inspection, testing, and adjusting.

B. Inspect and test in accordance with NETA ATS, except Section 4.

C. Adjust equipment and protective devices for compliance with studies and recommended settings.

D. Notify Strategic Energy Solutions, Inc. of any conflicts with or deviations from studies. Obtain direction before proceeding.

END OF SECTION
SECTION 26 2813
FUSES

PART 1 GENERAL

1.01 SECTION INCLUDES
   A. Fuses.

1.02 RELATED REQUIREMENTS
   A. Division 01 - General Requirements: Project administrative and procedural requirements.
   B. Section 26 0005 - Basic Electrical Requirements.
   C. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
   D. Section 26 0573 - Power System Studies: Additional criteria for the selection of protective devices specified in this section.
   E. Section 26 2416 - Panelboards: Fusible switches.
   F. Section 26 2816.16 - Enclosed Switches: Fusible switches.

1.03 REFERENCE STANDARDS
   A. NEMA FU 1 - Low Voltage Cartridge Fuses 2012.

PART 2 PRODUCTS

2.01 MANUFACTURERS
   A. Bussmann, a division of Eaton Corporation: www.cooperindustries.com
   B. Littelfuse, Inc: www.littelfuse.com
   C. Mersen: ep-us.mersen.com

2.02 APPLICATIONS
   A. Service Entrance:
      1. Fusible Switches up to 600 Amperes: Class RK1, time-delay.
      2. Fusible Switches Larger Than 600 Amperes: Class L, time-delay.
   B. Feeders:
      1. Fusible Switches up to 600 Amperes: Class RK1, time-delay.
      2. Fusible Switches Larger Than 600 Amperes: Class L, time-delay.

2.03 FUSES
   A. Provide products listed, classified, and labeled as suitable for the purpose intended.
   B. Unless specifically indicated to be excluded, provide fuses for all fusible equipment as required for a complete operating system.
   C. Provide fuses of the same type, rating, and manufacturer within the same switch.
   D. Comply with UL 248-1.
   E. Unless otherwise indicated, provide cartridge type fuses complying with NEMA FU 1, Class and ratings as indicated.
   F. Voltage Rating: Suitable for circuit voltage.
   G. Class R Fuses: Comply with UL 248-12.
PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that fuse ratings are consistent with circuit voltage and manufacturer's recommendations and nameplate data for equipment.

B. Verify that conditions are satisfactory for installation prior to starting work.

3.02 INSTALLATION

A. Do not install fuses until circuits are ready to be energized.

B. Install fuses with label oriented such that manufacturer, type, and size are easily read.

END OF SECTION
SECTION 26 2816.16
ENCLOSED SWITCHES

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Enclosed safety switches.

1.02 RELATED REQUIREMENTS
A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Section 26 0005 - Basic Electrical Requirements.
C. Section 26 0526 - Grounding and Bonding for Electrical Systems.
D. Section 26 0529 - Hangers and Supports for Electrical Systems.
E. Section 26 0553 - Identification for Electrical Systems: Identification products and requirements.
F. Section 26 0573 - Power System Studies: Additional criteria for the selection of equipment and associated protective devices specified in this section.
G. Section 26 2813 - Fuses.
H. Section 26 3600 - Transfer Switches: Automatic and non-automatic switches listed for use as transfer switch equipment.

1.03 REFERENCE STANDARDS
A. NECA 1 - Standard for Good Workmanship in Electrical Construction 2015.
C. NEMA KS 1 - Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum) 2013.
E. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Coordination:
   1. Coordinate the work with other trades. Avoid placement of ductwork, piping, equipment, or other potential obstructions within the dedicated equipment spaces and within working clearances for electrical equipment required by NFPA 70.
   2. Coordinate arrangement of electrical equipment with the dimensions and clearance requirements of the actual equipment to be installed.
   3. Verify with manufacturer that conductor terminations are suitable for use with the conductors to be installed.

PART 2 PRODUCTS

2.01 MANUFACTURERS
A. ABB/GE: www.geindustrial.com
B. Eaton Corporation: www.eaton.com
C. Schneider Electric; Square D Products: www.schneider-electric.us
D. Siemens Industry, Inc: www.usa.siemens.com

2.02 ENCLOSED SAFETY SWITCHES

A. Description: Quick-make, quick-break enclosed safety switches listed and labeled as complying with UL 98; heavy duty; ratings, configurations, and features as indicated on the drawings.
B. Provide products listed, classified, and labeled as suitable for the purpose intended.
C. Unless otherwise indicated, provide products suitable for continuous operation under the following service conditions:
   1. Altitude: Less than 6,600 feet.
   2. Ambient Temperature: Between -22 degrees F and 104 degrees F.
D. Horsepower Rating: Suitable for connected load.
E. Voltage Rating: Suitable for circuit voltage.
F. Short Circuit Current Rating:
   1. Provide enclosed safety switches, when protected by the fuses or supply side overcurrent protective devices to be installed, with listed short circuit current rating not less than the available fault current at the installed location as indicated on the drawings.
G. Enclosed Safety Switches Used for Service Entrance: Listed and labeled as suitable for use as service equipment according to UL 869A.
H. Provide with switch blade contact position that is visible when the cover is open.
I. Conductor Terminations: Suitable for use with the conductors to be installed.
J. Provide solidly bonded equipment ground bus in each enclosed safety switch, with a suitable lug for terminating each equipment grounding conductor.
K. Enclosures: Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E.
   1. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
      a. Indoor Clean, Dry Locations: Type 1.
      b. Outdoor Locations: Type 3R.
L. Provide safety interlock to prevent opening the cover with the switch in the ON position with capability of overriding interlock for testing purposes.
M. Heavy Duty Switches:
   2. Conductor Terminations:
      a. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
   3. Provide externally operable handle with means for locking in the OFF position, capable of accepting three padlocks.
      a. Provide means for locking handle in the ON position where indicated.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.
B. Perform work in accordance with NECA 1 (general workmanship).
C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.
D. Provide required support and attachment in accordance with Section 26 0529.
E. Install enclosed switches plumb.
F. Except where indicated to be mounted adjacent to the equipment they supply, mount enclosed switches such that the highest position of the operating handle does not exceed 79 inches.
above the floor or working platform.

G. Provide grounding and bonding in accordance with Section 26 0526.

H. Identify enclosed switches in accordance with Section 26 0553.

3.02 ADJUSTING

A. Adjust tightness of mechanical and electrical connections to manufacturer's recommended torque settings.

END OF SECTION
SECTION 28 4600
FIRE DETECTION AND ALARM

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Transmitters for communication with supervising station.
B. Circuits from protected premises to supervising station, including conduit.
C. Replacement and removal of existing fire alarm system components, wiring, and conduit indicated.
D. Maintenance of fire alarm system under contract for specified warranty period.

1.02 RELATED REQUIREMENTS

A. Division 01 - General Requirements: Project administrative and procedural requirements.
B. Division 02 - Existing Conditions: Demolition, cleaning and disposal requirements, cutting and patching requirements, and repairs.
C. Division 07 - Thermal and Moisture Protection: Materials and methods for work to be performed by this installer.
D. Division 08 - Openings: Door hardware, coiling fire doors and smoke and/or fire curtains to be released by fire alarm system.
E. Division 14 - Conveying Equipment: Elevator systems monitored and controlled by fire alarm system and sensors and interlocks by fire alarm system.
F. Section 21 1300 - Fire-Suppression Sprinkler Systems: Supervisory, alarm, and actuating devices installed in sprinkler system.
G. Section 21 3000 - Fire Pumps: Supervisory devices.
H. Section 23 3300 - Air Duct Accessories: Smoke dampers monitored and controlled by fire alarm system.
I. Section 26 0005 - Basic Electrical Requirements.
J. Section 26 0505 - Selective Demolition for Electrical
K. Section 26 0533.13 - Conduit for Electrical Systems.
L. Section 26 0533.16 - Boxes for Electrical Systems.
M. Section 26 0553 - Identification for Electrical Systems.

1.03 REFERENCE STANDARDS

D. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 SUBMITTALS
A. Contractor shall provide submittals for equipment listed herein. Refer to Division 01 for submittal procedures.

B. Evidence of designer qualifications.

C. Design Documents: Submit all information required for plan review and permitting by authorities having jurisdiction, including but not limited to floor plans, riser diagrams, and description of operation:
   1. Copy (if any) of list of data required by authority having jurisdiction.
   2. NFPA 72 “Record of Completion”, filled out to the extent known at the time.
   3. Clear and concise description of operation, with input/output matrix similar to that shown in NFPA 72 Appendix A-7-5-2.2(9), and complete listing of software required.
   4. System zone boundaries and interfaces to fire safety systems.
   5. Location of all components, circuits, and raceways; mark components with identifiers used in control unit programming.
   6. Circuit layouts; number, size, and type of raceways and conductors; conduit fill calculations; spare capacity calculations; notification appliance circuit voltage drop calculations.
   7. List of all devices on each signaling line circuit, with spare capacity indicated.
   8. Manufacturer's detailed data sheet for each component, including wiring diagrams, installation instructions, and circuit length limitations.
   9. Description of power supplies; if secondary power is by battery include calculations demonstrating adequate battery power.
  10. Certification by either the manufacturer of the control unit or by the manufacturer of each other component that the components are compatible with the control unit.
  11. Certification by the manufacturer of the control unit that the system design complies with Contract Documents.
  12. Certification by Contractor that the system design complies with Contract Documents.

D. Evidence of installer qualifications.

E. Evidence of instructor qualifications; training lesson plan outline.

F. Evidence of maintenance contractor qualifications, if different from installer.

G. Inspection and Test Reports:
   1. Submit inspection and test plan prior to closeout demonstration.
   2. Submit documentation of satisfactory inspections and tests.
   3. Submit NFPA 72 "Inspection and Test Form," filled out.

H. Operating and Maintenance Data: Revise and resubmit until acceptable; have one set available during closeout demonstration:
   1. Complete set of specified design documents, as approved by authority having jurisdiction.
   2. Additional printed set of project record documents and closeout documents, bound or filed in same manuals.
   3. Contact information for firm that will be providing contract maintenance and trouble call-back service.
   4. List of recommended spare parts, tools, and instruments for testing.
   5. Replacement parts list with current prices, and source of supply.
   6. Detailed troubleshooting guide and large scale input/output matrix.
   7. Preventive maintenance, inspection, and testing schedule complying with NFPA 72; provide printed copy and computer format acceptable to Owner.
   8. Detailed but easy to read explanation of procedures to be taken by non-technical administrative personnel in the event of system trouble, when routine testing is being conducted, for fire drills, and when entering into contracts for remodeling.

I. Project Record Documents: Have one set available during closeout demonstration:
   1. Complete set of floor plans showing actual installed locations of components, conduit, and zones.
   2. "As installed" wiring and schematic diagrams, with final terminal identifications.
3. "As programmed" operating sequences, including control events by device, updated input/output chart, and voice messages by event.

J. Closeout Documents:
   1. Certification by manufacturer that the system has been installed in compliance with manufacturer's installation requirements, is complete, and is in satisfactory operating condition.
   2. NFPA 72 "Record of Completion", filled out completely and signed by installer and authorized representative of authority having jurisdiction.

1.05 QUALITY ASSURANCE
A. Designer Qualifications: NICET Level III or IV (3 or 4) certified fire alarm technician or registered fire protection engineer, employed by fire alarm control panel manufacturer, Contractor, or installer, with experience designing fire alarm systems in the jurisdictional area of the authorities having jurisdiction.

B. Installer Qualifications: Firm with minimum 3 years documented experience installing fire alarm systems of the specified type and providing contract maintenance service as a regular part of their business.
   1. Authorized representative of control unit manufacturer; submit manufacturer’s certification that installer is authorized; include name and title of manufacturer’s representative making certification.
   2. Installer Personnel: At least 2 years of experience installing fire alarm systems.
   3. Supervisor: NICET level III or IV (3 or 4) certified fire alarm technician; furnish name and address.

C. Maintenance Contractor Qualifications: Same entity as installer or different entity with specified qualifications.

D. Instructor Qualifications: Experienced in technical instruction, understanding fire alarm theory, and able to provide the required training; trained by fire alarm control unit manufacturer.

PART 2 PRODUCTS
2.01 MANUFACTURERS
A. Fire Alarm Control Units and Accessories:
   2. Provide control units made by the same manufacturer.

B. Initiating Devices and Notification Appliances:
   1. Same manufacturer as control units.
   2. Provide initiating devices and notification appliances made by the same manufacturer, where possible.

2.02 FIRE ALARM SYSTEM
A. Fire Alarm System: Provide a new automatic fire detection and alarm system:
   1. Provide all components necessary, regardless of whether shown in Contract Documents or not.
   2. Protected Premises: Entire building shown on drawings.
   3. Comply with the following; where requirements conflict, order of precedence of requirements is as listed:
      a. ADA Standards.
      b. The requirements of the local authority having jurisdiction.
      c. Applicable local codes.
      d. Contract Documents (drawings and specifications).
      e. NFPA 72; where the word "should" is used consider that provision mandatory; where conflicts between requirements require deviation from NFPA 72, identify deviations clearly on design documents.
   4. Evacuation Alarm: Multiple smoke zones; allow for evacuation notification of any individual zone or combination of zones, in addition to general evacuation of entire
premises.
6. General Evacuation Zones: Each smoke zone is considered a general evacuation zone unless otherwise indicated, with alarm notification in all zones on the same floor, on the floor above, and the floor below.
7. Program notification zones and voice messages as directed by Owner.
8. Fire Command Center: Location indicated on drawings.

B. Supervising Stations and Fire Department Connections:
1. Public Fire Department Notification: By on-premises supervising station.
2. On-Premises Supervising Station: Existing proprietary station operated by Owner, located at ______.
3. Means of Transmission to On-Premises Supervising Station: Directly connected noncoded system.

C. Circuits:
1. Initiating Device Circuits (IDC): Class B, Style A.
2. Signaling Line Circuits (SLC) Within Single Building: Class B, Style 0.5.
3. Notification Appliance Circuits (NAC): Class B, Style W.

D. Spare Capacity:
1. Fire Alarm Control Units: Capable of handling all circuits utilized to capacity without requiring additional components other than plug-in control modules.

E. Power Sources:
1. Primary: Dedicated branch circuits of the facility power distribution system.
2. Secondary: Storage batteries.
3. Capacity: Sufficient to operate entire system for period specified by NFPA 72.

2.03 FIRE SAFETY SYSTEMS INTERFACES

A. Supervision: Provide supervisory signals in accordance with NFPA 72 for the following:
1. Sprinkler water control valves.
2. Dry-pipe sprinkler system pressure.
3. Dry-pipe sprinkler valve room low temperature.
4. Fire pump(s).
5. Elevator shut-down control circuits.
6. Chute interlocks and controls.

B. Alarm: Provide alarm initiation in accordance with NFPA 72 for the following:
1. Sprinkler water flow.
2. Elevator lobby, elevator hoistway, and elevator machine room smoke detectors.

C. Elevators:
1. Elevator lobby, hoistway, and machine room smoke detectors: Elevator recall for firefighters’ service.
2. Elevator Machine Room Heat Detector: Shut down elevator power prior to hoistway sprinkler activation.
3. Sprinkler pressure or waterflow: Shut down elevator power prior to hoistway sprinkler activation.

D. HVAC:
1. Duct Smoke Detectors: Close dampers indicated; shut down air handlers indicated.

E. Doors:
1. Smoke Barrier Door Magnetic Holders: Release upon activation of smoke detectors in smoke zone on either side of door, upon alarm from manual pull station on same floor, and upon sprinkler activation on same floor. Refer to Section 08 7100.
2. Electromagnetic Door Locks on Egress Doors: Unlock upon activation of any alarm initiating device or suppression system in smoke zone that doors serve as egress from. Refer to Division 08.

2.04 COMPONENTS

A. General:
   1. Provide flush mounted units where installed in finish areas; in unfinished areas, surface mounted unit are acceptable.
   2. Provide legible, permanent labels for each control device, using identification used in operation and maintenance data.

B. Fire Alarm Control Units: Analog, addressable type; listed, classified, and labeled as suitable for the purpose intended.

C. Master Control Unit: As specified for Basis of Design above, or equivalent.

D. Remote Annunciators: locate per plans.

E. Initiating Devices:
   1. Addressable Systems:
      a. Addressable Devices: Individually identifiable by addressable fire alarm control unit.
      b. Provide suitable addressable interface modules as indicated or as required for connection to conventional (non-addressable) devices and other components that provide a dry closure output.

F. Circuit Conductors: Copper or optical fiber; provide 200 feet extra; color code and label.

G. Surge Protection: In accordance with IEEE C62.41.2 category B combination waveform and NFPA 70; except for optical fiber conductors.

H. Locks and Keys: Deliver keys to Owner.

I. Instruction Charts: Printed instruction chart for operators, showing steps to be taken when a signal is received (normal, alarm, supervisory, and trouble); easily readable from normal operator's station.
   1. Frame: Stainless steel or aluminum with polycarbonate or glass cover.
   2. Provide one for each control unit where operations are to be performed.
   3. Obtain approval of Owner prior to mounting; mount in location acceptable to Owner.
   4. Provide extra copy with operation and maintenance data submittal.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install in accordance with applicable codes, NFPA 72, NFPA 70, and Contract Documents.

B. Conceal all wiring, conduit, boxes, and supports where installed in finished areas.

C. Obtain Owner's approval of locations of devices, before installation.

D. Install instruction cards and labels.

3.02 INSPECTION AND TESTING FOR COMPLETION

A. Notify Owner 7 days prior to beginning completion inspections and tests.

B. Notify authorities having jurisdiction and comply with their requirements for scheduling inspections and tests and for observation by their personnel.

C. Provide the services of the installer's supervisor or person with equivalent qualifications to supervise inspection and testing, correction, and adjustments.

D. Prepare for testing by ensuring that all work is complete and correct; perform preliminary tests as required.

E. Provide all tools, software, and supplies required to accomplish inspection and testing.

F. Perform inspection and testing in accordance with NFPA 72 and requirements of local authorities; document each inspection and test.
G. Correct defective work, adjust for proper operation, and retest until entire system complies with Contract Documents.

3.03 OWNER PERSONNEL INSTRUCTION

A. Provide the following instruction to designated Owner personnel:
   2. Classroom Instruction: Owner furnished classroom, on-site or at other local facility.

B. Administrative: One-hour session(s) covering issues necessary for non-technical administrative staff; classroom:
   1. Initial Training: 1 session pre-closeout.

C. Basic Operation: One-hour sessions for attendant personnel, security officers, and engineering staff; combination of classroom and hands-on:
   1. Initial Training: 1 session pre-closeout.

D. Furnish the services of instructors and teaching aids; have copies of operation and maintenance data available during instruction.

3.04 CLOSEOUT

A. Closeout Demonstration: Demonstrate proper operation of all functions to Owner.
   1. Be prepared to conduct any of the required tests.
   2. Have at least one copy of operation and maintenance data, preliminary copy of project record drawings, input/output matrix, and operator instruction chart(s) available during demonstration.
   3. Have authorized technical representative of control unit manufacturer present during demonstration.
   4. Demonstration may be combined with inspection and testing required by authority having jurisdiction; notify authority having jurisdiction in time to schedule demonstration.
   5. Repeat demonstration until successful.

3.05 MAINTENANCE

A. See Division 01 for additional requirements relating to maintenance service.

B. Perform routine inspection, testing, and preventive maintenance required by NFPA 72, including:
   1. Maintenance of fire safety interface and supervisory devices connected to fire alarm system.
   2. Repairs required, unless due to improper use, accidents, or negligence beyond the control of the maintenance contractor.
   3. Record keeping required by NFPA 72 and authorities having jurisdiction.

C. Provide trouble call-back service upon notification by Owner:
   1. Provide on-site response within 2 hours of notification.
   2. Include allowance for call-back service during normal working hours at no extra cost to Owner.
   3. Owner will pay for call-back service outside of normal working hours on an hourly basis, based on actual time spent at site and not including travel time; include hourly rate and definition of normal working hours in maintenance contract.

D. Provide a complete description of preventive maintenance, systematic examination, adjustment, cleaning, inspection, and testing, with a detailed schedule.

E. Maintain a log at each fire alarm control unit, listing the date and time of each inspection and call-back visit, the condition of the system, nature of the trouble, correction performed, and parts replaced. Submit duplicate of each log entry to Owner’s representative upon completion of site visit.

F. Comply with Owner’s requirements for access to facility and security.

END OF SECTION