ANN ARBOR PUBLIC SCHOOLS

LEAD. CARE. INSPIRE.

Environmental Sustainability Preview

Presented to the Board of Education

June 13, 2018

Presented by:

Emile Lauzzana, Executive Director – Physical Properties

Presentation Overview

- Climate Change is Real Now and for Future Generations
- Responses and Approaches to Climate Change
- Community Input Advisory Committee
- Classroom Environment Optimization for Learning
- Next Steps

Michigan "The Great Lakes State"

- 3,315 miles of Coastline
 - longest in contiguous 48 (2x FL; 4x CA)
- **Abundant Fresh Water**
- Largest Auto GDP in US
- More **Engineers** in Michigan than any other state
- **300** Agricultural Crops
 - second most diverse in US

ANN ARBOR PUBLIC SCHOOLS

Environmental Sustainability Preview

Exceptionatl **49**

Climate Change Responses

- **Mitigation** *Reducing Emissions*
- Adaptation Adapting Practices to Change
- **Resilience** Bouncing Back from Challenges

Degenerative vs Regenerative Cycles

Degenerative

Regenerative

Biomimetic Design

What would Nature do?

Environmental Sustainability Advisory Committee

TOPIC TEAM AREAS

- Student, Staff, and Community Engagement
- Building Energy and Water Usage
- Waste Reduction
- Indoor Environment
- Site and Grounds

Environmental Sustainability Advisory Committee

Name	Name
Adam Simon	John Beeson
Andrew Fillmore	Katie Stoffel-Duffy
Andrew J Horning	Kevin Morgan
Carlene Colvin-Garcia	Malini Ratan
Chris Curtis	Molly Bachelor
Dan Ezekiel	Nicole Berg
Jan Culbertson	Richard Garcia
Janette Lutz	Seth Penchansky
Jason Bing	Stacy Dieve
Jennifer Chapman	Tara D'Andrea
Jenny York	Theresa Tanin
Jo Ann Teller	

Student, Staff, and Community Engagement

Action	Student Outcomes	Environmental Impact	Budget and Staff Time
Implement a district-wide Sustainable Schools Program	7.21	9.36	6.93
Use school campus and building as a living/learning lab with curriculum integration	9.71	7.86	6.73
Leverage students to educate the community	8.21	6.86	4.13
Create more opportunities for volunteerism and service learning	8.21	6.14	4.21
Focus on Climate Change	5.79	8.07	4.87
Study how environmental factors impact student health, wellness, and performance	5.79	6.57	5.27
Document current school-based initiatives	7.21	9.36	6.93

Advisory Committee Members rated action items with 10 having the most impact and 1 having the least

Exceptional 4 🏼 🖊

ANN ARBOR PUBLIC SCHOOLS

Building Energy and Water Usage

Action	Student Outcomes	Environmental Impact	Budget and Staff Time
Reduce utility consumption - Electric, Natural Gas, Water and Stormwater	4.57	9.57	6.2
Install solar photovoltaics	4.71	7.07	7.13
Monitor and Benchmark Performance	5.07	8.00	5.80
Building Envelope Improvements	5.50	7.71	6.80
Develop comprehensive energy plan	4.00	8.43	6.33
Implement a robust property management software	3.71	7.57	5.87
Focus on low-hanging fruit (lighting, controls, etc.)	4.93	7.50	4.87
Conduct energy audits	4.43	7.07	5.67
Develop proactive HVAC upgrade program	5.43	7.57	6.07
Conduct energy audits Develop proactive HVAC upgrade program	4.43 5.43	7.07 7.57	5.67 6.07

Advisory Committee Members rated action items with 10 having the most impact and 1 having the least

ANN ARBOR PUBLIC SCHOOLS

ine 13. 2018	Enviror	mental Sustainability Preview	Ē٦	ventional XOV	1
Hig	h Priority	Medium Priority		Low Priority	

Waste Reduction

Action	Student Outcomes	Environmental Impact	Budget and Staff Time
Enhance/Repair current recycling system	6.79	9.00	6.40
Develop district-level composting program	6.57	8.79	6.93
Promote reusable water bottles	6.64	7.79	4.20
Reduce Styrofoam use	5.21	8.21	5.67
Develop event standards for waste	6.07	7.93	4.87
Reduce food waste	5.71	8.79	4.40
Reduce use of single use items	6.29	8.71	4.73

Advisory Committee Members rated action items with 10 having the most impact and 1 having the least

High Priority

Medium Priority

Low Priority

Indoor Environments

Action	Student Outcomes	Environmental Impact	Budget and Staff Time
Manage environmental factors for impact on student health, wellness and performance	9.50	7.21	6.93
Develop formal green cleaning policy	6.71	8.00	5.07
Reduce chemical use	6.79	8.21	5.60
Measure and improve indoor air quality	7.86	6.86	6.07
Reduce exposure to Wi-Fi/cellular radiation	4.14	4.36	5.86

Advisory Committee Members rated action items with 10 having the most impact and 1 having the least

Medium Priority

Low Priority

Site and Grounds

Action	Student Outcomes	Environmental Impact	Budget and Staff Time
Improve erosion control	3.77	7.57	6.40
Increase native landscaping	8.31	6.93	5.07
Install more rain gardens	5.08	7.43	5.40
Reduce invasive species	5.46	8.36	5.67
Plant trees for shade	4.46	7.29	5.33
Aerate and fertilize grounds	7.08	7.86	5.13
Conduct a storm water impact assessment	4.15	5.57	5.57
Reduce outdoor water usage	3.23	6.43	5.00
Reduce use of salt for snow removal	2.85	6.64	4.00
Enhance School Gardens	3.38	8.43	4.50

Advisory Committee Members rated action items with 10 having the most impact and 1 having the least

	High Priority		Medium Priority		Low Priority	
une 13, 2018		Environm	ental Sustainability Preview	Ez	cceptional 4 🏼 🖊	14

Linking Academic Performance

with

Building Performance

From Anecdote to Evidence

- Quantitative research today: good sense of how to build and maintain healthy school buildings
- Emerging research across the United States and Europe attempting to demonstrate, connect and quantify the relationship between building improvements and student performance
- Universities, research laboratories, nonprofit organizations, trade associations/industry participating in the process

"Schools for Health: Foundations for Success"

Harvard School of Public Health 2016 report on

How School Buildings Influence Student Health, Thinking, and Performance

Forhealth.org

<u>Research Overview – How Students:</u>

Source: "The Impact of School Buildings on Student Health and Performance: A Call for Research" http://www.usgbc.org/Docs/Archive/General/Docs18534.pdf

<u>HEAR</u>

- Clear connection between quality acoustical environments and enhanced performance
- Research: As <u>reverberation time</u> increased (above 0.5 to 0.6 seconds), researchers found significant negative impact on shortterm memory and speech perception (Klatte et al, 2011)
- Studies identify importance of <u>low</u>
 <u>background noise</u> for speech intelligibility

Short-term memory + Speech perception

Exceptionat **40**

BREATHE

- There are a number of known pollutants that impact indoor air quality:
 - Particulate matter
 - Volatile Organic Compounds (VOCs)
 - Mold/Moisture
 - Other toxins and irritants
- According to the EPA, <u>air quality is often 2-5 times worse indoors</u>, and sometimes much greater (Kats, 2006)
- Research to date has focused primarily around <u>ventilation rates</u>
- Emerging research targeting <u>effective filtration</u>
- Ventilation research studies show <u>impact on task speed, average daily</u> <u>attendance, and proficiency</u>

Ventilation Rates and Performance

Experiment conducted in Denmark:

As ventilation rates increase, students' performance increases (related to task speed)

Source: Lawrence Berkeley National Laboratory. 2017. Temperature and School Work Performance

Ventilation Rates and Performance cont.

U.S. study of fifth-grade classrooms in 100 schools studied student performance in standard academic tests as the measure of performance and estimated that there was <u>nearly a 3 percent increase in the proportion of students passing</u> <u>standardized math and reading tests for each 2 cfm/person increase</u> in the ventilation rate across the range of 2 to 15 cfm/person

Source: Wargocki, P. and Wyon, D.: Research report on effects of HVAC on student performance. October 2006. ASHRAE Journal, 48: p. 22-28

PIELINE B. Health Gains from Improved Indoor Air Quality

Source: http://www.usgbc.org/sites/default/files/Greening_Americas_Schools.pdf

June 13, 2018

17 separate

studies all found

improved indoor

13.5% up to 87%

positive health

impacts from

air quality,

ranging from

Environmental Sustainability Preview

₩♡!

ANN ARBOR PUBLIC SCHOOLS

<u>SEE</u>

- The visual qualities of a learning environment are some of the most crucial building aspects to design properly <u>since children depend</u> <u>heavily on sight in the learning process</u>
- Recognized relationship between higher student performance and presence of <u>daylight and views</u> (Boyce et al., 2003)
- Optimized lighting environments led to as much as <u>21% increase in student learning rates</u> (Gordon, 2010)
- Emerging research is targeting <u>circadian systems</u> and the potential for visual environments to influence overall academic performance

Color Temperature and Standard LED Retrofits

10-15% Increase in Visual Acuity and Reading Comprehension

Environmental Sustainability Preview

Exceptional **49**

Circadian Rhythm

Lighting levels and color temperatures that vary throughout the day and year regulate our bodies and impact hormone production

200 years ago we lived most of our lives outside

We now spend 90% of our time indoors

Dynamic Lighting

Modulates color temperatures and light levels throughout the day to increase performance

Up To **33% increase** in student performance

- Phillips SchoolVision Research

June 13, 2018

Environmental Sustainability Preview

Exceptional **4**97

<u>FEEL</u>

- A reasonable and constant temperature and humidity has been shown to positively impact student health and learning and teacher wellbeing
- Research continues to emphasize linkages between <u>thermal</u> <u>comfort and performance</u>

TEMPERATURE

June 13, 2018

Environmental Sustainability Preview

Exceptional **#9**/

Temperature and Performance

Experiment conducted at Kansas State

 The average speed of eight simulated school work tasks decreased by approximately 1.1% per each 1° F as temperatures increased from 68° F to 77° F

Source: Lawrence Berkeley National Laboratory. 2017. Temperature and School Work Performance.

AAPS Next Steps for Optimized Learning Environments:

More Information

U.S. GREEN BUILDING COUNCIL CENTER FOR GREEN SCHOOLS: <u>https://www.centerforgreenschools.org/</u>

HARVARD STUDY, SCHOOLS FOR HEALTH: https://schools.forhealth.org/

U.S. DEPARTMENT OF ENERGY, ZERO ENERGY SCOOLS: https://betterbuildingsinitiative.energy.gov/accelerators/zero-energy-schools

KENDEDA REGENERATIVE ROADMAP, ZERO ENERGY SCHOOLS: https://livingbuilding.kendedafund.org/2017/04/11/net-zero-energy-schools-roadmap/

SCHOOL PLANNING AND MANAGEMENT, REGENERATIVE SCHOOLS https://webspm.com/Articles/2014/05/01/Regenerative-Education.aspx

ZERO ENERGY SCHOOL CASE STUDY VIDEO: Building Brighter Futures Through Zero Energy: Discovery Elementary School

THANK YOU

People

Systems

Ecology

Environmental Sustainability Preview

Exceptionatl