FRANCIS C. HAMMOND WATER SAMPLING JUNE 2023

FRANCIS C. HAMMOND MIDDLE SCHOOL

4646 SEMINARY ROAD ALEXANDRIA, VIRGINIA 22301

ECS PROJECT NO. 47:11652-E

FOR: ALEXANDRIA CITY PUBLIC SCHOOLS

OCTOBER 2, 2023

Geotechnical • Construction Materials • Environmental • Facilities

October 2, 2023

Mr. John Contreras
Alexandria City Public Schools
1340 Braddock Place
Alexandria, Virginia 22314
john.contreras@acps.k12.va.us

ECS Project No. 47:11652-E

Reference: Francis C. Hammond Water Sampling June 2023, Francis C. Hammond Middle School, 4646 Seminary Road, Alexandria, Virginia

Dear Mr. Contreras:

ECS Mid-Atlantic, LLC (ECS) is pleased to provide Alexandria City Public Schools with the results of the water sampling performed at Francis C. Hammond Middle School located at 4646 Seminary Road in Alexandria, Virginia. This report summarizes our observations, analytical results, findings, and recommendations related to the work performed. The work described in this report was performed by ECS in general accordance with the Scope of Services described in ECS Proposal Number 47:16189-EP and the terms and conditions of the agreement authorizing those services.

ECS appreciates this opportunity to provide Alexandria City Public Schools with our services. If we can be of further assistance to you, please do not hesitate to contact us.

Sincerely,

ECS Mid-Atlantic, LLC

Lauren E. Kesslak, CIH, CSP Senior Project Manager LKesslak@ecslimited.com 703-471-8400 Christopher J. Chapman, CIH Director of Industrial Hygiene cchapman@ecslimited.com

Ohn Chyn

703-471-8400

October 2, 2023

TABI	LE OF C	CONTENTS	PAGE
1.0	PROJI	ECT DESCRIPTION	1
2.0	PURP	POSE	1
3.0	METH	HODOLOGY	1
	3.1	Lead and Copper in Drinking Water	1
4.0	RESU	LTS	2
	4.1	Lead in Drinking Water	2
	4.2	Copper in Drinking Water	2
5.0	RECO	MMENDATIONS AND REGULATORY REQUIREMENTS	2
	5.1	Lead in Drinking Water	3
	5.2	Copper in Drinking Water	4
6.0	LIMIT	TATIONS	5

TABLE OF APPENDICES

Appendix I: Sample Table

Appendix II: Laboratory Report(s)

1.0 PROJECT DESCRIPTION

The Francis C. Hammond Middle School is a three-story school building located at 4646 Seminary Road in Alexandria, Virginia. The building is currently occupied, and is used by the Alexandria County Public Schools (ACPS) as a school and office facility. The site is located within the City of Alexandria and is under the jurisdiction of the Environmental Protection Agency (EPA) and Commonwealth of Virginia Code of Regulations for drinking water in schools.

The site receives water from Virginia American Water, which is classified as a public drinking water system by the EPA under the Safe Drinking Water Act (SDWA). Because the site is connected to a public water system, the site is not independently regulated as a water supplier by the EPA.

2.0 PURPOSE

The purpose of this water sampling event was perform periodic re-testing of select drinking water sources within the school. This was not a comprehensive retesting of all drinking water sources in the school.

The EPA created the Lead and Copper Rule under the EPA Safe Drinking Water Act (SDWA). US EPA established a lead action level of 15 ppb (parts per billion) or 15 micrograms per liter (μ g/L) and an action level of 1300 μ g/L for copper.

The Code of Virginia § 22.1-135.1 currently requires Virginia school boards to develop and implement a plan to test, and if necessary, remediate potable water sources identified by the US EPA as a high priority. Each local school board shall submit testing plans and laboratory results to the Department of Health. If potable water sources are detected at or above 10 parts per billion (10 μ g/L), the school board shall notify parents of such results.

The US EPA's 3Ts for Reducing Lead in Drinking Water in Schools: Revised Technical Guidance (EPA 815-B-18-007) was created to provide recommendations on how to address lead in drinking water in schools and child care facilities. The procedures and response actions outlined in the EPA's 3Ts document are recommendations not requirements. The EPA's 3Ts guidance document does not set action levels for lead in drinking water but it does reference the action levels created for public water systems in the EPA's Lead and Copper Rule (LCR). The results of this water sampling event will be compared to the action levels set in the EPA's LCR.

3.0 METHODOLOGY

ECS performed the authorized Scope of Services in general accordance with our proposal, standard industry practice(s) and methods specified by regulation(s) for sampling drinking water.

3.1 Lead and Copper in Drinking Water

Sample protocols were performed following the guidance of the US EPA document, 3Ts for Reducing Lead in Drinking Water in Schools: Revised Technical Guidance (EPA 815-B-18-007). For each facility, water samples were collected from priority drinking water sources that were previously sampled and shown to have elevated levels of lead within the water.

ECS coordinated the water sampling with ACPS officials, and it is ECS's understanding that all of the water sources sampled were not in use at least eight hours prior to sampling and were flushed by APS at the time they were taken out of service. For this sampling event, ECS attempted to sample 20% of the accessible potable water sources within the building, with a minimum of five samples per building and a minimum of two samples per floor. During sampling, initial draw samples were collected. The samples were collected in 250 mL bottles with a nitric acid preservative. These water bottles were provided to ECS by Maryland Spectral Services, Inc. The water samples were provided with unique identification labels which include the school initials, a sequential number identifier, and sample location identifier.

The collected samples were sealed and transported by courier to Maryland Spectral Services located in Baltimore, Maryland under chain of custody protocol for analysis per EPA Methodology for lead in drinking water.

Please note that efforts were made to collect samples from selected outlets in accordance with the methodology described above. Some areas within the building were locked. ECS was not able to sample outlets in the locked areas.

4.0 RESULTS

The following is a summary of laboratory results, findings and observations.

4.1 Lead in Drinking Water

All of the samples collected were below both the US EPA and Commonwealth of Virginia action levels with the exception of one sample. The sample collected from the faucet of the sink in the principals office exceeded the Virginia action level of $10 \,\mu g/L$. In total, twenty four (24) water samples were collected from the building. A table of the collected samples and the associated analytical results can be found in the appendices. Please note that the analytical results displayed in the table have been converted to $\mu g/L$ (PPB) for easy reference. A copy of the laboratory analytical results and chain of custody are attached to this report. A sketch identifying the approximate location of each water sample can also be found in the appendices.

4.2 Copper in Drinking Water

None of the water samples collected were reported to have concentrations above the EPA and VA action level of 1300 μ g/L. In total, twenty four (24) water samples were collected from the building. A table of the collected samples and the associated analytical results can be found in the appendices. Please note that the analytical results displayed in the table have been converted to μ g/L (PPB) for easy reference. A copy of the laboratory analytical results and chain of custody are attached to this report. A sketch identifying the approximate location of each water sample can also be found in the appendices.

5.0 RECOMMENDATIONS AND REGULATORY REQUIREMENTS

Based on our understanding of the purpose of the Francis C. Hammond Water Sampling June 2023, the results of laboratory analysis, and our findings and observations, ECS presents the following recommendations.

5.1 Lead in Drinking Water

The water sample collected from the sink in the principal's was reported to be above the lead action level. The other water samples collected were reported below the Virginia's action level. The EPA's 3Ts document recommends choosing one of several short-term or permanent control measures. The following are the recommended short-term and permanent control measure options:

Short-Term Control Options:

- Mark the sink as hand wash only
- Provide Filters at Problem Taps Point-of-use (POU) units are commercial available, can be relatively inexpensive, and quickly installed. The effectiveness of POUs can vary. POUs should be tested and certified against the NSF/ANSI Standard 53 (for lead removal) prior to installation. If POUs are installed, they should be incorporated into a routine maintenance plan;
- Flush Taps Prior to Use Flushing individual outlets or all outlets may be used as a short term option; and,
- Provide Bottled Water This control option is expensive and ECS does not recommend its use because of the relatively small number of elevated outlets.

Permanent Control Measures:

- Replacement of Problem Outlets This option is recommended as a cost effective permanent control measure if there are only a few elevated outlets;
- Pipe Replacement;
- · Provide Filters at Problem Taps: and,
- Reconfigure Plumbing.

After the implementation of a control option, ECS recommends follow-up sampling of the elevated outlets to evaluate effectiveness of the control option.

In addition to the remediation efforts for the elevated outlets, ECS recommends period follow-up screening be performed for the building. The EPA does not specify a specific time frame for which follow-up testing for schools needs to be performed. The EPA suggest that schools and child care facilities make testing a part of their routine building operations and states that annual monitoring provides information on changing concentrations and the effectiveness of remediation or treatment options.

No specific time frame is given in which follow-up testing for the schools needs to be performed. As good practice, ECS recommends performing follow-up periodic testing every three years. If additional guidelines or regulations are enacted at a state or federal level, the frequency of testing should be modified to reflect these changes.

In the US EPA 3Ts document, routine control measures are recommended as general good practice for over-all drinking water safety. The routine control measures that should be conducted to prevent exposure to elevated levels of lead, include the following:

- Clean debris from all accessible screens frequently. If you discovered sediments in faucet screens, have the sediments tested for lead and continue to clean your screens frequently, even if the analysis finds no lead.
- Use only cold water for food and beverage preparation. Hot water will dissolve lead more quickly than cold water and is likely to contain increased lead levels. If hot water is needed, it should be taken from the cold water tap and heated on a stove or in a microwave oven.
- Instruct the users (students and staff) to run the water before drinking or staff could run the water before students arrive, so they are drinking water that has not been in contact with the faucet interior since faucets are often a major source of lead in drinking water.
- Placard bathroom sinks with notices that water should not be consumed. You should use pictures if there are small children using bathrooms.
- US EPA recommends public notification of the findings of this sample event to the public and school staff. EPA has described different procedures for dissemination of this information which are described in Section III.6 of the 3 Ts document. The school should review the different methods described and choose the most appropriate method for the school.

5.2 Copper in Drinking Water

The sample results were below the action level, and no further testing or remediation is indicated at this time.

No specific time frame is given in which follow-up testing for the schools needs to be performed. As good practice, ECS recommends performing follow-up periodic testing every three years. If additional guidelines or regulations are enacted at a state or federal level, the frequency of testing should be modified to reflect these changes.

In the US EPA 3Ts document, routine control measures are recommended as general good practice for over-all drinking water safety. The routine control measures that should be conducted to prevent exposure to elevated levels of lead, include the following:

- Clean debris from all accessible screens frequently. If you discovered sediments in faucet screens, have the sediments tested for lead and continue to clean your screens frequently, even if the analysis finds no lead.
- Use only cold water for food and beverage preparation. Hot water will dissolve lead more quickly than cold water and is likely to contain increased lead levels. If hot water is needed, it should be taken from the cold water tap and heated on a stove or in a microwave oven.
- Instruct the users (students and staff) to run the water before drinking or staff could run the
 water before students arrive, so they are drinking water that has not been in contact with
 the faucet interior since faucets are often a major source of lead in drinking water.
- Placard bathroom sinks with notices that water should not be consumed. You should use
 pictures if there are small children using bathrooms.
- US EPA recommends public notification of the findings of this sample event to the public and school staff. EPA has described different procedures for dissemination of this information which are described in Section III.6 of the 3 Ts document. The school should review the different methods described and choose the most appropriate method for the school.

6.0 LIMITATIONS

The conclusions and recommendations presented within this report are based upon a reasonable level of assessment within normal bounds and standards of professional practice for a site in this particular geographic setting. ECS is not responsible or liable for the discovery and elimination of hazards that may potentially cause damage, accidents, or injuries.

The observations, conclusions, and recommendations pertaining to environmental conditions at the subject site are necessarily limited to conditions observed, and/or materials reviewed at the time this study was undertaken. No warranty, expressed or implied, is made with regard to the conclusions and recommendations presented within this report. This report is provided for the exclusive use of the client. This report is not intended to be used or relied upon in connection with other projects or by other unidentified third parties without the written consent of ECS and the client.

Our recommendations are in part based on federal, state, and local regulations and guidelines. ECS does not assume the responsibility of the person(s) in charge of the site, or otherwise undertake responsibility for reporting to any local, state, or federal public agencies, any conditions at the site that may present a potential danger to public health, safety, or the environment. Under this scope of services, ECS assumes no responsibility regarding any response actions initiated as a result of these findings. General compliance with regulations and response actions are the sole responsibility of the Client and should be conducted in accordance with local, state, and/or federal requirements.

Appendix I: Sample Table

Copper and Lead Drinking Water Results Table Sample Number Copper Result (µg/L) Lead Result (µg/L) 221 3.59 3072832-01 467 38.3 3072832-02 136 1.05 3072832-03 336 1.27 3072832-04 242 6.04 3072832-05 282 ND 3072832-06 112 1.11 3072832-07 78 ND3072832-08 259 ND 3072832-09 554 2.01 3072832-10 913 1.74 3072832-11 527 ND 3072832-12 224 ND 3072832-13 134 1.98 3072832-14 223 ND 3072832-15 204 2.06 3072832-16 155 ND 3072832-17 294 ND 3072832-18

Sample Number	Copper Result (μg/L)	Lead Result (μg/L)
3072832-19	469	2.10
3072832-20	383	ND
3072832-21	119	5.35
3072832-22	268	ND
3072832-23	226	ND
3072832-24	338	ND
The EPA's Lead and Copper Rule set an	action level of 15 μg/L for lead and a	n action level of 1300 μg/L for

copper. Note these levels are related to public water systems (PWSs). The Code of Virginia requires school boards notify parents if testing results exceed 10 μ g/L of Lead (Pb).

Appendix II: Laboratory Report(s)

04 August 2023

Lauren Kesslak ECS-Chantilly 14026 Thunderbolt Place, Suite 100 Chantilly, VA 20151

RE: ACPS-FH

Enclosed are the results of analyses for samples received by the laboratory on 07/28/23 15:50.

Please visit our website at www.mdspectral.com for a complete listing of our accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

Willesten

President

Reported:

08/04/23 17:07

Project:	ACPS-FH
Project Number:	47:11652-E
Project Manager:	Lauren Kesslak

Client Sample ID	Alternate Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
01		3072832-01	Drinking Water	06/21/23 05:03	07/28/23 15:50
02		3072832-02	Drinking Water	06/21/23 05:04	07/28/23 15:50
03		3072832-03	Drinking Water	06/21/23 05:08	07/28/23 15:50
04		3072832-04	Drinking Water	06/21/23 05:12	07/28/23 15:50
05		3072832-05	Drinking Water	06/21/23 05:13	07/28/23 15:50
06		3072832-06	Drinking Water	06/21/23 05:16	07/28/23 15:50
07		3072832-07	Drinking Water	06/21/23 05:21	07/28/23 15:50
08		3072832-08	Drinking Water	06/21/23 05:22	07/28/23 15:50
09		3072832-09	Drinking Water	06/21/23 05:23	07/28/23 15:50
10		3072832-10	Drinking Water	06/21/23 05:30	07/28/23 15:50
11		3072832-11	Drinking Water	06/21/23 05:31	07/28/23 15:50
12		3072832-12	Drinking Water	06/21/23 05:36	07/28/23 15:50
13		3072832-13	Drinking Water	06/21/23 05:38	07/28/23 15:50
14		3072832-14	Drinking Water	06/21/23 05:39	07/28/23 15:50
15		3072832-15	Drinking Water	06/21/23 05:45	07/28/23 15:50
16		3072832-16	Drinking Water	06/21/23 05:46	07/28/23 15:50
17		3072832-17	Drinking Water	06/21/23 05:47	07/28/23 15:50
18		3072832-18	Drinking Water	06/21/23 05:52	07/28/23 15:50
19		3072832-19	Drinking Water	06/21/23 05:54	07/28/23 15:50
20		3072832-20	Drinking Water	06/21/23 05:57	07/28/23 15:50
21		3072832-21	Drinking Water	06/21/23 06:00	07/28/23 15:50
22		3072832-22	Drinking Water	06/21/23 06:05	07/28/23 15:50
23		3072832-23	Drinking Water	06/21/23 06:06	07/28/23 15:50
24		3072832-24	Drinking Water	06/21/23 06:13	07/28/23 15:50

Milleburgher

Reported:

08/04/23 17:07

Project: ACPS-FHProject Number: 47:11652-E
Project Manager: Lauren Kesslak

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

01

3072832-01 (Drinking Water) Sampled on: 06/21/23 05:03

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	221		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:37	VVD			
Lead	3.59		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:37	VVD			

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

02

3072832-02 (Drinking Water) Sampled on: 06/21/23 05:04

				Reporting	Detection							
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	467		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:39	VVD			
Lead	38.3		ug/L	(1.00)	1.00	1	08/03/23	08/03/23 22:39	VVD			

Millestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

03

3072832-03 (Drinking Water) Sampled on: 06/21/23 05:08

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	136		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:41	VVD			
Lead	1.05		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:41	VVD			

Will Buyle

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

04

3072832-04 (Drinking Water) Sampled on: 06/21/23 05:12

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst		
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals											
Copper	366		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:42	VVD		
Lead	1.27		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:42	VVD		

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

05

3072832-05 (Drinking Water) Sampled on: 06/21/23 05:13

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	242		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:44	VVD			
Lead	6.04		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:44	VVD			

Millestende

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E

Project Manager: Lauren Kesslak

06

3072832-06 (Drinking Water) Sampled on: 06/21/23 05:16

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	282		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:46	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:46	VVD			

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

07

3072832-07 (Drinking Water) Sampled on: 06/21/23 05:21

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	112		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:50	VVD			
Lead	1.11		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:50	VVD			

Willistensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

08

3072832-08 (Drinking Water) Sampled on: 06/21/23 05:22

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	78.3		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:52	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 22:52	VVD			

Millestende

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

09

3072832-09 (Drinking Water) Sampled on: 06/21/23 05:23

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	259		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:00	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:00	VVD			

Millestende

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

10

3072832-10 (Drinking Water) Sampled on: 06/21/23 05:30

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	554		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:02	VVD			
Lead	2.01		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:02	VVD			

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

11

3072832-11 (Drinking Water) Sampled on: 06/21/23 05:31

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	913		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:03	VVD			
Lead	1.74		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:03	VVD			

Millestende

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

12

3072832-12 (Drinking Water) Sampled on: 06/21/23 05:36

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 200.8 D	W Prepared	by 200.8-	No Digestio	n Metals					
Copper	527		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:05	VVD
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:05	VVD

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

13

3072832-13 (Drinking Water) Sampled on: 06/21/23 05:38

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	224		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:10	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:10	VVD			

Millestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

14

3072832-14 (Drinking Water) Sampled on: 06/21/23 05:39

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	134		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:12	VVD			
Lead	1.98		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:12	VVD			

Millestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

15

3072832-15 (Drinking Water) Sampled on: 06/21/23 05:45

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 200.8I	OW Prepared	by 200.8-	No Digestio	n Metals					
Copper	223		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:13	VVD
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:13	VVD

Millestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

16

3072832-16 (Drinking Water) Sampled on: 06/21/23 05:46

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	204	•	ug/L	1.00	1.00	1	08/03/23	08/03/23 23:15	VVD			
Lead	2.06		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:15	VVD			

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

17

3072832-17 (Drinking Water) Sampled on: 06/21/23 05:47

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	155		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:16	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:16	VVD			

Millestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

18

3072832-18 (Drinking Water) Sampled on: 06/21/23 05:52

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	294		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:18	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:18	VVD			

Will Buyle

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E

Project Manager: Lauren Kesslak

19

3072832-19 (Drinking Water) Sampled on: 06/21/23 05:54

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	469		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:29	VVD			
Lead	2.10		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:29	VVD			

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

20

3072832-20 (Drinking Water) Sampled on: 06/21/23 05:57

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst			
Total Metals Analysis by EPA 200.8DW Prepared by 200.8-No Digestion Metals												
Copper	383		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:31	VVD			
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:31	VVD			

Millestensten

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

21

3072832-21 (Drinking Water) Sampled on: 06/21/23 06:00

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 200.8D	W Prepared	by 200.8-	No Digestio	n Metals					
Copper	119		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:33	VVD
Lead	5.35		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:33	VVD

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

22

3072832-22 (Drinking Water) Sampled on: 06/21/23 06:05

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 200.8D	W Prepared	by 200.8-	No Digestio	n Metals					
Copper	268		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:34	VVD
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:34	VVD

Millestende

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

23

3072832-23 (Drinking Water) Sampled on: 06/21/23 06:06

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 200.8D	W Prepared	by 200.8-	No Digestio	n Metals					
Copper	226		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:36	VVD
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:36	VVD

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

24

3072832-24 (Drinking Water) Sampled on: 06/21/23 06:13

Analyte	Result	Notes	Units	Reporting Limit (MRL)	Detection Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 200.8DV	V Prepared	by 200.8-	No Digestion	n Metals					
Copper	388		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:37	VVD
Lead	ND		ug/L	1.00	1.00	1	08/03/23	08/03/23 23:37	VVD

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Notes Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B308091 - 200.8-No Digest	ion Metals									
Blank (B308091-BLK1)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK2)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK3)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK4)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK5)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK6)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK7)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLK8)				Prepared &	& Analyzed	: 08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							

Willestenden

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E

Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result Notes	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B308091 - 200.8-No Digest	ion Metals									
Blank (B308091-BLK9)			I	Prepared &	k Analyzed:	08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLKA)			I	Prepared &	k Analyzed:	08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLKB)			I	Prepared &	k Analyzed:	08/03/23				
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLKC)			I	Prepared: (08/03/23 Aı	nalyzed: 08/	/04/23			
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLKD)			I	Prepared: (08/03/23 Aı	nalyzed: 08/	/04/23			
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLKE)			I	Prepared: (08/03/23 Aı	nalyzed: 08/	/04/23			
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
Blank (B308091-BLKF)			I	Prepared: (08/03/23 At	nalyzed: 08/	/04/23			
Copper	ND	1.00	ug/L							
Lead	ND	1.00	ug/L							
LCS (B308091-BS1)			I	Prepared &	k Analyzed:	08/03/23				
Copper	10.4	1.00	ug/L	10.00		104	85-115			
Lead	9.73	1.00	ug/L	10.00		97	85-115			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willestenden

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Notes	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B308091 - 200.8-No Digestion Me	tals									
LCS (B308091-BS2)				I	Prepared &	Analyzed:	08/03/23			
Copper	10.5		1.00	ug/L	10.00		105	85-115		
Lead	10.1		1.00	ug/L	10.00		101	85-115		
LCS (B308091-BS3)				I	Prepared &	Analyzed:	08/03/23			
Copper	11.2		1.00	ug/L	10.00		112	85-115		
Lead	10.6		1.00	ug/L	10.00		106	85-115		
LCS (B308091-BS4)				I	Prepared &	Analyzed:	08/03/23			
Copper	10.5		1.00	ug/L	10.00		105	85-115		
Lead	9.93		1.00	ug/L	10.00		99	85-115		
LCS (B308091-BS5)				I	Prepared &	: Analyzed:	08/03/23			
Copper	10.6		1.00	ug/L	10.00		106	85-115		
Lead	10.8		1.00	ug/L	10.00		108	85-115		
LCS (B308091-BS6)				I	Prepared &	: Analyzed:	08/03/23			
Copper	10.5		1.00	ug/L	10.00		105	85-115		
Lead	9.90		1.00	ug/L	10.00		99	85-115		
LCS (B308091-BS7)				I	Prepared &	Analyzed:	08/03/23			
Copper	10.7		1.00	ug/L	10.00	-	107	85-115		
Lead	10.0		1.00	ug/L	10.00		100	85-115		
LCS (B308091-BS8)				I	Prepared &	: Analyzed:	08/03/23			
Copper	10.4		1.00	ug/L	10.00		104	85-115		
Lead	9.76		1.00	ug/L	10.00		98	85-115		
LCS (B308091-BS9)				I	Prepared &	Analyzed:	08/03/23			
Copper	10.7		1.00	ug/L	10.00		107	85-115		
Lead	10.1		1.00	ug/L	10.00		101	85-115		

Will Buile

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result No	tes Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B308091 - 200.8-No Digestic	on Metals									
LCS (B308091-BSA)				Prepared &	Analyzed:	08/03/23				
Copper	10.7	1.00	ug/L	10.00		107	85-115			
Lead	9.90	1.00	ug/L	10.00		99	85-115			
LCS (B308091-BSB)				Prepared &	: Analyzed:	08/03/23				
Copper	11.0	1.00	ug/L	10.00		110	85-115			
Lead	10.2	1.00	ug/L	10.00		102	85-115			
LCS (B308091-BSC)				Prepared: (08/03/23 Ar	nalyzed: 08	3/04/23			
Copper	10.5	1.00	ug/L	10.00		105	85-115			
Lead	9.85	1.00	ug/L	10.00		98	85-115			
LCS (B308091-BSD)				Prepared: (08/03/23 Ar	nalyzed: 08	3/04/23			
Copper	10.6	1.00	ug/L	10.00		106	85-115			
Lead	9.95	1.00	ug/L	10.00		100	85-115			
LCS (B308091-BSE)				Prepared: (08/03/23 Ar	nalyzed: 08	3/04/23			
Copper	10.6	1.00	ug/L	10.00		106	85-115			
Lead	9.93	1.00	ug/L	10.00		99	85-115			
LCS (B308091-BSF)				Prepared: (08/03/23 Ar	nalyzed: 08	3/04/23			
Copper	10.9	1.00	ug/L	10.00		109	85-115			
Lead	10.1	1.00	ug/L	10.00		101	85-115			
Duplicate (B308091-DUP1)	1	Source: 3072617-01		Prepared &	Analyzed:	08/03/23				
Copper	35.5	1.00	ug/L		35.7			0.4	20	
Lead	ND	1.00	ug/L		ND				20	
Duplicate (B308091-DUP2)		Source: 3072831-11		Prepared &	: Analyzed:	08/03/23				
Copper	104	1.00	ug/L		104			0.2	20	
Lead	ND	1.00	ug/L		ND				20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millestende

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

Analisa	n .	Reporting	115	Spike	Source	0/DEC	%REC	DDD	RPD	
Analyte	Result	Notes Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B308091 - 200.8-No Digestion	n Metals									
Duplicate (B308091-DUP3)		Source: 3072831-20		Prepared &	Analyzed:	08/03/23				
Copper	179	1.00	ug/L		181			0.9	20	
Lead	ND	1.00	ug/L		ND				20	
Duplicate (B308091-DUP4)		Source: 3072832-10		Prepared &	Analyzed:	08/03/23				
Copper	554	1.00	ug/L		554			0.0001	20	
Lead	2.23	1.00	ug/L		2.01			10	20	
Duplicate (B308091-DUP5)		Source: 3072832-20		Prepared &	Analyzed:	08/03/23				
Copper	379	1.00	ug/L		383			0.9	20	
Lead	ND	1.00	ug/L		ND				20	
Duplicate (B308091-DUP6)		Source: 3072833-10		Prepared &	z Analyzed:	08/03/23				
Copper	190	1.00	ug/L		193			2	20	
Lead	19.8	1.00	ug/L		19.8			0.4	20	
Duplicate (B308091-DUP7)		Source: 3072833-20		Prepared &	Analyzed:	08/03/23				
Copper	214	1.00	ug/L		212			1	20	
Lead	ND	1.00	ug/L		ND				20	
Duplicate (B308091-DUP8)		Source: 3072834-10		Prepared &	Analyzed:	08/03/23				
Copper	235	1.00	ug/L		233			1	20	
Lead	ND	1.00	ug/L		ND				20	
Duplicate (B308091-DUP9)		Source: 3072834-20		Prepared &	z Analyzed:	08/03/23				
Copper	242	1.00	ug/L		240			0.9	20	
Lead	3.04	1.00	ug/L		3.01			1	20	
Duplicate (B308091-DUPA)		Source: 3072835-10		Prepared &	z Analyzed:	08/03/23				
Copper	157	1.00	ug/L	-	156			0.4	20	
Lead	ND	1.00	ug/L		ND				20	

cus

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Will Brewington, President

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Notes	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B308091 - 200.8-No Digestion	Metals										
Duplicate (B308091-DUPB)		Source:	3072835-20]	Prepared &	Analyzed:	08/03/23				
Copper	366		1.00	ug/L		370			0.9	20	
Lead	ND		1.00	ug/L		ND				20	
Duplicate (B308091-DUPC)		Source:	3072836-10]	Prepared: (08/03/23 Ar	nalyzed: 08	/04/23			
Copper	323		1.00	ug/L		319			1	20	
Lead	ND		1.00	ug/L		ND				20	
Duplicate (B308091-DUPD)		Source:	3072836-20]	Prepared: (08/03/23 Ar	nalyzed: 08	/04/23			
Copper	247		1.00	ug/L		246			0.6	20	
Lead	ND		1.00	ug/L		ND				20	
Duplicate (B308091-DUPE)		Source:	3080108-01]	Prepared: (08/03/23 Ar	nalyzed: 08	/04/23			
Copper	451		1.00	ug/L		451			0.05	20	
Lead	ND		1.00	ug/L		ND				20	
Duplicate (B308091-DUPF)		Source:	3080108-05]	Prepared: (08/03/23 Ar	nalyzed: 08	/04/23			
Copper	5.50		1.00	ug/L		5.52			0.4	20	
Lead	ND		1.00	ug/L		ND				20	
Matrix Spike (B308091-MS1)		Source:	3072617-01]	Prepared &	Analyzed:	08/03/23				
Copper	44.7		1.00	ug/L	10.00	35.7	90	70-130			
Lead	11.3		1.00	ug/L	10.00	ND	113	70-130			
Matrix Spike (B308091-MS2)		Source:	3072831-11]	Prepared &	Analyzed:	08/03/23				
Copper	113		1.00	ug/L	10.00	104	87	70-130			
Lead	10.4		1.00	ug/L	10.00	ND	104	70-130			
Matrix Spike (B308091-MS3)		Source:	3072831-20]	Prepared &	: Analyzed:	08/03/23				
Copper	200	QM-4X	1.00	ug/L	10.00	181	189	70-130			
Lead	10.4		1.00	ug/L	10.00	ND	104	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Willesseyle

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

		R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Notes	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B308091 - 200.8-No Digestion	Metals										
Matrix Spike (B308091-MS4)		Source: 3	3072832-10]	Prepared &	Analyzed:	08/03/23				
Copper	545	QM-4X	1.00	ug/L	10.00	554	NR	70-130			
Lead	12.1		1.00	ug/L	10.00	2.01	101	70-130			
Matrix Spike (B308091-MS5)		Source: 3	3072832-20]	Prepared &	: Analyzed:	08/03/23				
Copper	382	QM-4X	1.00	ug/L	10.00	383	NR	70-130			
Lead	10.3		1.00	ug/L	10.00	ND	103	70-130			
Matrix Spike (B308091-MS6)		Source: 3	3072833-10]	Prepared &	: Analyzed:	08/03/23				
Copper	195	QM-4X	1.00	ug/L	10.00	193	23	70-130			
Lead	29.9		1.00	ug/L	10.00	19.8	101	70-130			
Matrix Spike (B308091-MS7)		Source: 3	3072833-20]	Prepared &	Analyzed:	08/03/23				
Copper	219	QM-4X	1.00	ug/L	10.00	212	67	70-130			
Lead	10.5		1.00	ug/L	10.00	ND	105	70-130			
Matrix Spike (B308091-MS8)		Source: 3	3072834-10]	Prepared &	Analyzed:	08/03/23				
Copper	240		1.00	ug/L	10.00	233	74	70-130			
Lead	10.1		1.00	ug/L	10.00	ND	101	70-130			
Matrix Spike (B308091-MS9)		Source: 3	3072834-20]	Prepared &	Analyzed:	08/03/23				
Copper	247		1.00	ug/L	10.00	240	78	70-130			
Lead	13.9		1.00	ug/L	10.00	3.01	109	70-130			
Matrix Spike (B308091-MSA)		Source: 3	3072835-10]	Prepared &	: Analyzed:	08/03/23				
Copper	164		1.00	ug/L	10.00	156	74	70-130			
Lead	11.2		1.00	ug/L	10.00	ND	112	70-130			
Matrix Spike (B308091-MSB)		Source: 3	3072835-20]	Prepared &	: Analyzed:	08/03/23				
Copper	370	QM-4X	1.00	ug/L	10.00	370	5	70-130			
Lead	10.9		1.00	ug/L	10.00	ND	109	70-130			

Heyles

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Total Metals Analysis by EPA 200.8DW - Quality Control

		1	Reporting		Spike	Source		%REC		RPD
Analyte	Result	Notes	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B308091 - 200.8-No Digestion Meta	ls									
Matrix Spike (B308091-MSC)		Source:	3072836-10	I	Prepared: 0	08/03/23 Ar	nalyzed: 08	/04/23		
Copper	324	QM-4X	1.00	ug/L	10.00	319	51	70-130		
Lead	11.0		1.00	ug/L	10.00	ND	110	70-130		
Matrix Spike (B308091-MSD)		Source:	3072836-20	I	Prepared: 0	08/03/23 Ar	nalyzed: 08	/04/23		
Copper	252	QM-4X	1.00	ug/L	10.00	246	64	70-130		
Lead	10.7		1.00	ug/L	10.00	ND	107	70-130		
Matrix Spike (B308091-MSE)		Source:	3080108-01	I	Prepared: 0	08/03/23 At	nalyzed: 08	/04/23		
Copper	453	QM-4X	1.00	ug/L	10.00	451	25	70-130		
Lead	12.2		1.00	ug/L	10.00	ND	122	70-130		
Matrix Spike (B308091-MSF)		Source:	3080108-05	I	Prepared: 0	08/03/23 Ar	nalyzed: 08	/04/23		
Copper	15.6		1.00	ug/L	10.00	5.52	101	70-130		
Lead	10.5		1.00	ug/L	10.00	ND	105	70-130		

Reported:

08/04/23 17:07

Project: ACPS-FH

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Notes and Definitions

QM-4X The spike recovery was outside of QC acceptance limits for the MS and/or MSD due to analyte concentration at 4 times or greater the

spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

RE Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified

with a sample qualifier.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accredidation

Willebrusten

Company Name AHWic	LLC.	Project	Man	age	r:							An	alysis	Requ	este	d	 CHAI	N-OF	-CUST	ODY RECORD	
Project Name: ACPS Drinking Unto Periodic M Sampler(s): Zach Hurro		Project			/Fra	ac uncl	PJ Non	J							THE WASTER SALES TO THE THE THE PROPERTY OF THE		150 410-	0 Cator Baltir 247-760 eportin	n Center more, M 00 * Fa g@mds	I Services, Inc. r Drive, Suite G 1D 21227 ax 410-247-7602 spectral.com	
State of Origin:				,	, ,												iviatrix Codes:		lrinking		
Field Sample ID:	Date	Time	DW	NPW	Soil	Other	Grab	Composite	# of containers	Lond	Caster	- 42					Preservative	Field	Notes	MSS Lab I	
01	6-21-23	5:03	\ 							1	1							Mairo	K	30728	332-01
62		1:04																5/2			-02
OZ		:08																Clini S. N	د د		÷03
64		1:12																F 512	(el-)*		-04
DS		:13																E SIV	ESIA		-0.5
<u>0</u> 6		1:16																Hest K	B. 16/10		-06
07		1,71								\sqcap								KIFELIN	دله		-07
08		1,22									П							Kitche Sink	^ رَّر		-08
69		(1,2)									17							43,42	4- ·		-1)9
10	4	30								4	A		1					D-109	- US		-10
Relinquisped by: (Signature)	Date	/Time	Relin	quish	ned b	y: <i>(Si</i>	gnatu	re)			P	leas	e indi	icate i	f any	of	Virginia VELA			MD Drinking W	
Jane Hall 9	_										the	e foll	lowin	g cert	ificat	ions	Pennsylvania	NELAP		VA Drinking Wa	ter
(A) inted)			(Prin	ted)							L			equire			West Virginia	***************************************		Other	
Relinquished by: (Signature)	Date	/Time	Rece	havi	hy lak	n: /Si/	natu	rel			-{			l Time (7 da			Delivery Met	hod:	1	np: <u>3</u> %	
Kennquished by, Joighbiture/	7.	/Time 3-23	nece	لح		بردا . الا سرس	711020	,	_	_	1		day		y <i>)</i>		☐ Client		1	Received on Ice	2
(Printed)	1 7 2		(Prin	ted)							-1	4 0	-				□ UPS		1	Received Same	
┪	[15]	50		ھ	<i>y</i> ~	<u> </u>	ع ح	25	le	سرا	1	3 0	-				□ Fed Ex				
နာ Special Instructions / QC Requir	ements &	k Comme	ents:								1		sh (2				□ USPS			nple Disposal:	
မှ (၂)													xt Da	-			□ Other_			Return to Client	
37 01													_						- 1	Disposal by lab	
of 39							··					Sp	ecitic	Due	Jate:					Archive for c	ays

Name: Project	Project Manager:					Ang	Analysis Requested	luested		CHAIN	-OF-CUST	CHAIN-OF-CUSTODY RECORD
Project 47: II	Project ID: 47:11:62/	Section of the sectio	7%					hadden to the second se		Mary 1500 (rland Spectral Services Caton Center Drive, St Baltimore, MD 21227	Maryland Spectral Services, Inc. 1500 Caton Center Drive, Suite G Baltimore, MD 21227
P.O. Number:	ımber:						······			4710-24 rep	7-7600 re oorting@mds	-247-7600 rax 410-247-7002 reporting@mdspectral.com
								***		Matrix Codes: NPW - non-potable water DW - drinking water	NPW - non-potable DW - drinking water	otable water water
Date Time	WqN lio2	Other	Grab Composite	# of containers	وحاطر	AMB -				Preservative F	<u>p</u>	MSS Lab ID
6-24-35-31										Q	27	3072832-4
1.16										20	記言	7)-
.33										750	Son Shirt	70
δ ξ:	<u>*</u>									7	Z. J.	
3.										344	SOUTH THE SECOND	-15
3. 7.										7.90	0200-104 84 SIN	2
74.										0.00	לאלי לאלי באלי האלי	<u> </u>
.57										E- J	10++4-10-10-10-10-10-10-10-10-10-10-10-10-10-	•
2						7				<i>J</i>	746 5111K	1
1.07					4	7				**	15/4 CV9	1.20
Date /Time	Relinquished by: (Si	y: (Sign	ignature)			Pleas	e indicat	Please indicate if any of		Virginia VELAP		
						he fol	owing ce	the following certifications	S	Pennsylvania NELAP		
	(Printed)						are required:	ired:		West Virginia DEP		Other
					_	urn A	Turn Around Time:	ne:		Delivery Method:		
Date /Time	Received by lab: (Signoture)	b: (Sign	ature)				Normal (7 day)	day)			Te	Temp:C
							5 day					☐ Keceived on Ice
	(Printed)						4 day					□ Received Same Day
							3 day	•		□ Fed EX	[3	Cample Disposal:
Special Instructions / QC Requirements & Comments:	nents:					z ž	kusn (z uay <i>)</i> Next Dav	í,		Other) }	☐ Return to Client
							Other:				<u></u>	☐ Disposal by lab
						S	Specific Due Date:	e Date:				□ Archive for days

Sour mothers	Project Manager:	lanage	Ľ			I		Ana	lysis R	Analysis Requested	sted		3	CHAIN-OF-CUSTODY RECORD	STODY F	
Harrell Harrell	roject II										}					ECORD
Hamell	グイニアグ		17/	ACP Same				V-1111111		***************************************			< H	Maryland Spectral Services, Inc. 1500 Caton Center Drive, Suite G	ctral Service inter Drīve, !	is, inc. Suite G
Harrell	0 % / 1		14,	MANOS	Ž							····		Baltimor	Baltimore, MD 21227	
Havel	P.O. Number:	iber:											41(410-247-7600 * Fax 410-247-7602	* Fax 410-2	17-7602
\$														reporting@	reporting@mdspectral.com	mo:
													Matrix Codes:	s: NPW - no DW - drin	NPW - non-potable water DW - drinking water	ater
Field Sample ID: Date	Time	MbW NPW	lio2	Other Grab	Composite	areniatnos to #	Cheld .	val.h					Preservative		1	MSS Lab ID
9 229 17	99:9			-							-			BUDGBINK	200	17837-7
7	: 05					 					<u> </u>	_		7410 1000		7-7
72	90:						8 C	<u> </u>		\vdash	 	\vdash		Cyper Grant	(E)	1
2	۲) کا ز					/ Y	\ \				+-	\vdash		A106 SINK		j ~
				+			7			\dagger		ļ —)
				-		1		-		-	+	\bot				
				-			-				-	\vdash				
							`									
										<u> </u>						
Balinguished by: Sanature Date /Time		Relinquished by: (Signature)	ed by:	(Signat	ure)		1 4	lease	indica	Please indicate if any of	ny of	l	Virginia VELAP	AP	1	MD Drinking Water
(plated)	<u> </u>	(Printed)					<u> </u>	2 7) S S	uie ioliowing ceruifications	במנוסב במנוסב		Most Wasinia DED	a NELAP		VA Drinking water
They Have	-						ΙĒ	n Aro	Turn Around Time:	ime:		□┃	Delivery Method:	thod:	Lab Use:	- Thirty - Thirty
Relinquished by: (Signature) Date /Time		Received by lab: (Signature)	oy lab: ('Signatı	ure)		Π	Nor	Normal (7 day)	'day)			Courier	·	Temp:	ပ
								5 day	>				□ Client		☐ Received on Ice	ed on Ice
(Printed)	<i>d)</i>	(Printed)						4 day	>				uPS		☐ Receiv	Received Same Day
			ļ					3 day	>				□ Fed Ex			
Uspecial Instructions / QC Requirements & Comments:	ommen	ts:							Rush (2 day)	3 y)			□ USPS		Sample Disposal:	posal:
0.0									Next Day				□ Other		☐ Return to Client	to Client
30 /								Other:	:::						□ Disposal by lab	al by lab
of 3									ific D	Specific Due Date	te:	1			☐ Archive for	fordays

22 September 2023

Lauren Kesslak ECS-Chantilly 14026 Thunderbolt Place, Suite 100 Chantilly, VA 20151

RE: ACPS LEAD WATER SAMPLING FRANCIS HAMMOND

Enclosed are the results of analyses for samples received by the laboratory on 09/15/23 14:40.

Maryland Spectral Services, Inc. is a TNI 2009 Standard accredited laboratory and as such, all analyses performed at Maryland Spectral Services included in this report are 2009 TNI certified except as indicated at the end of this report. Please visit our website at www.mdspectral.com for a complete listing of our TNI 2009 Standard accreditations.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Will Brewington

Ulliburghe

President

09/15/23 14:40

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 09/22/23 11:04

Project: ACPS LEAD WATER SAMPLING FRANCIS HAMMON

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Client Sample ID Alternate Sample ID Laboratory ID Matrix Date Sampled Date Received

Drinking Water

01-P 3091519-01

09/14/23 05:06

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Milleburgher

e nelac =

Analytical Results

1500 Caton Center Dr Suite G Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 09/22/23 11:04

Project: ACPS LEAD WATER SAMPLING FRANCIS HAMMON

Project Number: 47:11652-E Project Manager: Lauren Kesslak

01-P

3091519-01 (Drinking Water) Sampled on: 09/14/23 05:06

				Reporting	Detection				
Analyte	Result	Notes	Units	Limit (MRL)	Limit (LOD)	Dilution	Prepared	Analyzed	Analyst
Total Metals Analysis by EPA 2	00.8DW Prep	ared by	200.8-No E	Digestion Metals					
Lead	12.8		ug/L	1.00	1.00	1	09/20/23	09/20/23 13:59	AWH

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Milleburgher

1500 Caton Center Dr Suite G

Analytical Results

Baltimore MD 21227 410-247-7600 www.mdspectral.com

Reported: 09/22/23 11:04

Project: ACPS LEAD WATER SAMPLING FRANCIS HAMMON

Project Number: 47:11652-E Project Manager: Lauren Kesslak

Notes and Definitions

RE Sample reanalyses are done at the laboratory's discretion as a mechanism to improve data quality. Any client requested reanalysis will be identified

with a sample qualifier.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

%-Solids Percent Solids is a supportive test and as such does not require accredidation

If this report contains any samples analyzed for gasoline range organics (GRO) by EPA Method 8015C and no trip blank was shipped, stored, and received with the sample(s) as required by Section 3.1 of the EPA Method, the sample analysis contained in this report cannot exclude the possibility that any reportable GRO measurement was due to environmental contamination of the sample during shipping or storage.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Millestagles

Company Name:		Manage		٠					An	nalys	is Re	eque	sted	*****				CHAIN-	OF-CL	JSTODY	RECO	RD	
Project Name; Later Sampling ACPS Lend Later Sampling Francis Hammond Sampler(s):		52			_													1500 (E 410–24	Caton Ce Baltimor 7–7600	ectral Servicenter Drive, e, MD 2122 • Fax 410–2	Suite G 27 :47–760		
Willian Sorgent	F.O. INC	mber.				of Containers												x Codes: NW potable wate	(nonpo	table water			
Field Sample ID	Date	Time (A)M	Water PW	Soil	Other	No. of Con	Lead										H(ervative: 1+1 CL, H ₂ SO ₄ , /lethanol, ₂ O ₃ , NaHCO ₃	Chlo Requ	rine, QC ıest, Trip	MS	S Lab ID	
01-P	9/14	5:06	X			1	X										H	N03			30	9151	1-01
					(6)						D. I'		1 2	. (6)				Date/Tin		Received hy	(Signatur	- i	
Relinquished by: (Signature)	Date/T		Receiv	ved by	y: (Sig	natur	·e)				Relind	quish	ea by	: (81)	gnatu	ire)		Date/IIII	16	Received by: (Signature)			
Relinquished by: (Signature) WOLLANG. (Printed) William Sargent	12:00	PM	(Prin.	ted)							(Prin	ted)								(Printed)			
Relinquished by: (Signature)	Date/1		Recei	red by	y Lab;	Sign	ature				Turn	Arc	und	Tim	ne:			Lab Use:		2 3	ر)	
	7-15 14:	-23 40	(Prin	ted)	<u>, </u>	F	0	5	Je	, ,		Norn 5 day 4 day 3 day	nal (' ' '	7 da	у)			Temp: Received Received Preserva	d on Ice d same	day	·)		
Delivery Method: Courier Client UPS FedEx USPS Other:											□ F	Rush lext l Othe	(2 c Day r:		Date	e:		Sample Disposal	oosal: o Client by lab			Page 5	of E