Union County Educational Services Commission High School Course Syllabus

Title: Algebra I Advanced

Timeline: Full Year; 5 Credits

Course Description: Students taking Algebra I Advanced will focus on learning the basics of Algebra while expressing that knowledge both verbally and through written expressions. They will learn the basic operations working with expressions, as well as how to write algebraic expressions with verbal descriptions. Students will also become familiar with linear equations, learning how to create them, graph them and interpret them. Students will graph and solve both equalities and inequalities. Students will be exposed to different classifications of polynomial expressions and basic computation with polynomials.

Scope and Sequence:

- I. Basic Algebraic Concepts
- II. Solving Equations
- III. Linear Equations
- IV. Solving Inequalities and Absolute Value
- V. Systems of Linear Equations and Inequalities
- VI. Laws of Exponents

Refer to the attached curriculum map for a detailed outline of course objectives.

Curriculum Alignment:

New Jersey Student Learning Standards - Algebra I Standards for Mathematical Content Standards for Mathematical Practice PARCC Evidence Tables - Algebra I

Grading Procedures:

Do Now	10%
Participation	20%
Class Assignments	50%
Assessments	20%

Union County Educational Services Commission Curriculum Mapping Format: Algebra I Advanced

	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Number of	6 Weeks	6 Weeks	6 Weeks	6 Weeks	6 Weeks	6 Weeks
Weeks						
Topics	Basic Algebraic Concepts	Solving Equations	Linear Equations	Solving Inequalities and Absolute Value	Systems of Linear Equations and Inequalities	Laws of Exponents

Standards for	A.ARP.A.1 -	A.CED.A.1 -	A.CED.A.2- Create	A.REI.D.10 -	A.CED.A.3 -	A.SSE.A.2 - Use the
Mathematical	Understand that	Create	equations in two	Understand	Represent	structure of an
Content	polynomials form a	equations and	or more variables	that the graph	constraints by	expression to
	system analogous to	inequalities in	to represent	of an equation	equations or	identify ways to
	the integers	one variable and	relationships	in two variables	inequalities, and by	rewrite it For
	namely they are	use them to	between	is the set of all	systems of	
	namely, they are	solve problems.	quantities; graph	its solutions	equations and/or	example, see $x_4 =$
	closed under the	Include	equations on	plotted in the	inequalities, and	y4 as (x2) 2 – (y2)
	operations of	equations	coordinate axes	coordinate	interpret solutions	2, thus recognizing
	addition,	arising from	with labels and	plane, often	as viable or	it as a difference of
	subtraction, and	linear and	scales.	forming a curve	nonviable options in	squares that can be
	multiplication; add,	quadratic	A.REI.D.10 -	(which could be	a modeling context.	factored as (x2 – y2
	subtract, and	functions, and	Understand that	a line).	For example,)(x2 + y2).
	multiply	simple rational	the graph of an		represent	
	nolynomials	and exponential	equation in two		inequalities	
	porynomiais.	functions.	variables is the set		describing	
		A.CED.A.4 -	of all its solutions		nutritional and cost	
		Rearrange	plotted in the		constraints on	
		formulas to	coordinate plane,		combinations of	
		highlight a	often forming a		different foods.	
		quantity of	curve (which could		A.REI.C.5 - Prove	
		interest, using	be a line).		that, given a system	
		the same	A.REI.D.12 - Graph		of two equations in	
		reasoning as in	the solutions to a		two variables,	
		solving	linear inequality in		replacing one	
		equations. For	two variables as a		equation by the	
		example,	half plane		sum of that	
		rearrange Ohm's	(excluding the		equation and a	
		law V = IR to	boundary in the		multiple of the	
		highlight	case of a strict		other produces a	
		resistance R.	inequality), and		system with the	
		A.REI.A.1 -	graph the solution		same solutions.	
		Explain each	set to a system of		A.REI.C.6 - Solve	
		step in solving a	linear inequalities		systems of linear	

N.RN.A.1 - Explain	simple equation	in two variables as	equations exactly	N.RN.A.1 - Explain
how the definition	as following	the intersection of	and approximately	how the definition
of the meaning of	from the	the corresponding	(e.g., with graphs),	of the meaning of
rational exponents	equality of	half-planes.	focusing on pairs of	rational exponents
follows from	numbers	S.ID.C.7 -	linear equations in	follows from
extending the	asserted at the	Interpret the slope	two variables.	extending the
properties of integ	previous step,	(rate of change)	A.REI.C.7 - Solve a	nronerties of
exponents to those	starting from the	and the intercept	simple system	integer exponents
values allowing for	assumption that	(constant term) of	consisting of a	to those values
values, allowing for	the original	a linear model in	linear equation and	to those values,
a notation for	equation has a	the context of the	a quadratic	allowing for a
radicals in terms of	Solution.	Udld.	equation in two	notation for radicals
rational exponents	viable argument		algebraically and	in terms of rational
For example, we	to justify a		graphically For	exponents. For
define 51/3 to be	solution		example, find the	example, we define
the cube root of 5	method.		points of	51/3 to be the cube
because we want	A.REI.A.2 - Solve		intersection	root of 5 because
(51/3) 3 = 5(1/3) 3	simple rational		between the line y =	we want (51/3) 3 =
to hold, so (51/3) 3	and radical		–3x and the circle x2	5(1/3) 3 to hold, so
must equal 5.	equations in one		+ y2 = 3.	(51/3) 3 must equal
N.RN.A.2 - Rewrite	variable, and		A.REI.D.10 -	5.
expressions	give examples		Understand that the	N.RN.A.2 - Rewrite
involving radicals	showing how		graph of an	expressions
and rational	extraneous		equation in two	involving radicals
exponents using th	solutions may		variables is the set	and rational
properties of	arise.		of all its solutions	and rational
properties of	A.REI.B.3 - Solve		plotted in the	exponents using the
exponents.	inear equations		coordinate plane,	properties of
N.RN.B.3 - Explain	in one variable		orten forming a	exponents.
why the sum or	including		he a line)	
product of two	equations with			
rational numbers is	coefficients			
rational; that the	coefficients			

	sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational	represented by letters.					
	irrational number is irrational.						
Standards for		MP.1 Ma	ke sense of problems	and persevere in sc	olving them.		
Mathematical			MP.2 Reason abstrac	tly and quantitative	ly.		
Practice		MP.3 Constr	uct viable arguments	& critique the reaso	oning of others.		
			MP.4 Model wit	th mathematics.			
	MP.5 Use appropriate tools strategically.						
		MP.6 Attend to precision.					
			NIP.7 LOOK for and m	lake use of structur	e.		
Contont	Pool Numbers:	IVIP.0 LU	Unterconte		One colution	Dowor Pulo	
Content	Rational irrational	Variables	Slope	Inequalities	No solution	Monomials	
	integers whole and	Formulas	Fountion	Absolute Value	Infinite Solutions	Properties	
	natural numbers	Distributive	Parallel and		Coordinate Plane	roperties	
	Imaginary Numbers	Property	Perpendicular		Elimination method		
	Inequalities	Linear	Lines		Substitution		
	Absolute Value	Properties	Point-Slope Format		-Method		
	Order of Operations		Slope-Intercept		Graphing Method		
	Exponent		Form				
	Expressions		Standard Format				
Skills	Adding and	Solving	Using Intercepts to	Graphing and	Solving a System of	Integer Exponents	
	Subtracting Real	Equations by	Graph Linear	Writing	Linear Equations	Multiplying	
	Numbers	Adding and	Equations	Inequalities	(graphically)	Monomials	
	Multiplying and	Subtracting	(standard form)	Solving	Solving a System of	Multiplication	
	Dividing Real	(One-Step)		One-Step	Linear Equations	Property (Product	
	Numbers			Inequalities	(substitution)	of Powers Property)	

Order of Operations	Solving	Rate of Change	Solving	Solving a System of	Multiplication
(PEMDAS)	Equations by	and Definition of	Two-Step	Linear Equations	Property (Power of
Simplifying	Multiplying and	Slope	Inequalities	(Elimination	a Power Property)
Algebraic	Dividing	Forms of Linear	Solving	Method)	Multiplication
Expressions with	(One-Step)	Equations	Multi-Step	Consistent and	Property (Power of
Real Numbers	Solving Two Step	(Standard)	Inequalities	Inconsistent	a Product Property)
	Equations	Forms of Linear	Solving	Systems	Dividing Monomials
	Solving	Equations	Inequalities with	Independent and	Division Property
	Multi-Step	(Slope-Intercept)	Variables on	Dependent Systems	(Quotient of Powers
	Equations	Form of Linear	Both Sides	Solving and	Properties
	Solving	Equations	Solving	Graphing a Linear	Division Property
	Equations	(Point-Slope)	Compound	Inequalities with	(Positive Power of a
	Involving the	Parallel Lines	Inequalities	Two Variables	Quotient Property)
	Distributive	Perpendicular	Absolute Value	Solving a System of	Division Property
	Property	Lines	Equations	Linear Inequalities	(Negative Power of
	Solving	Writing Linear	Absolute Value		a Quotient
	Equations with	Equations (given	Inequalities		Property)
	Variables on	various pieces of			
	Both Sides	information)			
	Solving for a				
	Variable				
	Solving Word				
	Problems				
	Involving Linear				
	Equations				
	Solving				
	Problems Using				
	Formulas				
	Solving				
	Problems Using				
	Literal Equations				

Assessment	Algebra 1 Advanced	<u>Algebra 1</u>		
	Unit 1 Open-Ended	Advanced Unit 3		
	<u>Assessment</u>	Open-Ended		
		Assessment		