Revised Geotechnical Evaluation Los Alamitos High School New Gymnasium 3591 West Cerritos Avenue Los Alamitos, California

Los Alamitos Unified School District 10293 Bloomfield Street | Los Alamitos, California 90720

September 30, 2022 | Project No. 211897001

Geotechnical | Environmental | Construction Inspection & Testing | Forensic Engineering & Expert Witness

Geophysics | Engineering Geology | Laboratory Testing | Industrial Hygiene | Occupational Safety | Air Quality | GIS

Revised Geotechnical Evaluation Los Alamitos High School New Gymnasium 3591 West Cerritos Avenue Los Alamitos, California

Mr. CJ Knowland Los Alamitos Unified School District 10293 Bloomfield Street | Los Alamitos, California 90720

September 30, 2022 | Project No. 211897001

lianne Jada **Julianne Padgett,** Project Engineer

Daniel Chu, PhD, PE, GE Chief Geotechnical Engineer

JKP/RDH/DBC/shs

C 84043

Ronald Hallum, PG, CEG Principal Geologist

No. 1484

CONTENTS

1	INTRO	DUCTION	1	
2	SCOP	E OF SERVICES	1	
3	SITE I	DESCRIPTION AND PROPOSED CONSTRUCTION	2	
4	SUBS	URFACE EVALUATION AND LABORATORY TESTING	G 2	
5	GEOL	OGY AND SUBSURFACE CONDITIONS	3	
5.1	Regio	Regional Geology Setting		
5.2	Subsurface Conditions			
	5.2.1	Existing Pavement	3	
	5.2.2	Fill	4	
	5.2.3	Alluvium	4	
5.3	Groun	dwater	4	
6	FLOO	D HAZARDS	4	
7	FAUL	TING, SEISMICITY AND GEOLOGIC HAZARDS	5	
7.1	Surfac	e Fault Rupture	6	
7.2	Site S	pecific Ground Motion	6	
7.3	Liquef	action Potential	7	
7.4	Liquef	action-Induced Settlement of Saturated Soils	8	
7.5	Dynan	Dynamic Settlement of Dry Soils		
7.6	Latera	I Spread	9	
7.7	Liquef	action-Induced Loss of Bearing Capacity	10	
7.8	Lands	liding	10	
7.9	Tsuna	mis and Seiches	10	
8	DISCL	JSSIONS AND CONCLUSIONS	10	
9	RECO	MMENDATIONS	11	
9.1	Earthwork			
	9.1.1	Construction Plan Review and Pre-Construction Conference	12	
	9.1.2	Site Clearing and Preparation	12	
	9.1.3	Excavation Characteristics	12	
	9.1.4	Temporary Excavations	13	
	9.1.5	Treatment of Near Surface Soils	13	

	9.1.6	Excavation Bottom Stability	14
	9.1.7	Fill Material	15
	9.1.8	Fill Placement and Compaction	15
9.2	Site-S	pecific Seismic Design Considerations	15
9.3	Foundations		16
	9.3.1	Spread Footings	16
	9.3.2	Slabs-On-Grade	17
9.4	Underground Utilities		17
	9.4.1	Pipe Bedding	18
	9.4.2	Trench Backfill	18
	9.4.3	Modulus of Soil Reaction	18
9.5	Sidew	valks and Hardscape	19
9.6	Corro	sivity	19
9.7	Concr	rete Placement	19
9.8	Draina	age	20
10	CONS	STRUCTION OBSERVATION	20
11	LIMIT	ATIONS	21
12	REFE	RENCES	23
TABI	LES		
1 – Hi	storical Ea	rthquakes	5
2 – 20)19 Califorr	nia Building Code Seismic Design Criteria	16
FIGU	IRES		
1 – Si	te Location	1	
2 – Bo	oring Locat	ions	

- 3 Regional Geology
- 4 Fault Locations
- 5 Acceleration Response Spectra
- 6 Seismic Hazard Zones

APPENDICES

- A Boring Logs
- B Cone Penetration Test Data

- C Laboratory Testing
- D Site-Specific Ground Motion Analysis
- E Liquefaction Analysis
- F Dynamic Settlement of Shallow Foundations Analysis

1 INTRODUCTION

In accordance with your request, we have performed a geotechnical evaluation for the Los Alamitos High School New Gymnasium Project located at 3591 West Cerritos Avenue in Los Alamitos, California (Figure 1). The purpose of this study was to perform a subsurface evaluation and to provide geotechnical design recommendations for the construction of the new gymnasium in general accordance with the 2019 California Building Code (CBC) and California Geological Survey (CGS) Note 48 (2019). Upon the completion and issuance of our report on May 27, 2022, we received information from Mr. Roy Frey with Westgroup Designs regarding the conflict between the existing electrical conduit and the footings on the west side of the proposed gymnasium. Accordingly, we have revised our recommendations to mitigate the conflict.

2 SCOPE OF SERVICES

Our scope of services for this project included the following:

- Project coordination, planning, and scheduling for the subsurface exploration.
- Review of readily available background information, including in-house published geotechnical literature and geologic maps, fault and seismic hazard maps, topographic maps, and stereoscopic aerial photographs.
- Geotechnical site reconnaissance to observe the general site conditions, mark the boring and cone penetration test sounding (CPT) locations, and coordinate with Underground Service Alert for utility clearance.
- Performance a geophysical survey to clear the boring and CPT locations of underground utilities and obstructions prior to drilling.
- Acquisition of boring permits from Orange County Health Care Agency Environmental Health Division for drilling into groundwater.
- Subsurface exploration consisting of the drilling, logging, and sampling of five hollow-stem auger borings with a truck-mounted drill rig. The borings were excavated to depths ranging from approximately 31¹/₂ to 101¹/₂ feet below the ground surface. The borings were logged by a representative from our firm, and bulk and relatively undisturbed soil samples were collected at selected depth intervals for laboratory testing.
- Subsurface exploration consisting of two CPT soundings to depths of approximately 100 feet below the ground surface.
- Laboratory testing on selected soil samples, including evaluation of in-situ moisture and dry density, percentage of particles finer than the No. 200 sieve, Atterberg limits, consolidation, direct shear strength, and soil corrosivity.
- Compilation and geotechnical analyses of the information obtained from our background review, subsurface evaluation and laboratory testing.
- Preparation of this geotechnical report presenting our findings, conclusions, and recommendations for the design and construction of the proposed improvements.

3 SITE DESCRIPTION AND PROPOSED CONSTRUCTION

Los Alamitos High School is located at 3591 West Cerritos Avenue in the city of Los Alamitos, California (Figure 1). The site of the proposed gymnasium building is located on the north central portion of the campus, bounded by the football field to the east, a parking lot to the south, an existing building and pool to the west, and softball and soccer fields to the north. The site latitude and longitude are approximately 33.813297 degrees north and -118.068715 degrees west, respectively (Google Earth, 2022). Topographically, the site is relatively flat with an elevation of approximately 28 feet above mean sea level (United States Geological Survey [USGS], 2021). The concrete lined Coyote Creek, a tributary of the San Gabriel River, is located approximately 500 feet north of the project site.

The project site is currently occupied by portable classrooms and shipping containers supported on asphalt concrete pavement. We understand that the existing structures at the project site will be removed and a new, approximately 38,000 square-foot gymnasium building will be constructed. The new gymnasium building will include basketball courts, restrooms, concession areas, offices, team rooms, storage, and a weight room. Based on our discussions and review of document provided by the design group, we understand that a 6-foot-wide electrical conduit exists along the west side of the proposed Gymnasium and is inside of the building footprint with a distance of approximately 14 inches between the proposed footing and the conduit.

4 SUBSURFACE EVALUATION AND LABORATORY TESTING

Our subsurface evaluation was conducted on April 6 to 8, 2022 and consisted of the drilling, logging, and sampling of five small-diameter borings to depths ranging from approximately 31½ to 101½ feet and advancing two CPT soundings to depths of approximately 100 feet. The borings were drilled using a truck-mounted drill rig with 8-inch-diameter hollow-stem augers. The borings were drilled to evaluate the subsurface conditions and were logged by a representative from our firm. Bulk and relatively undisturbed soil samples were obtained at selected depths from the borings for laboratory testing. The CPT soundings were performed using a 30-ton truck-mounted CPT rig. Continuous soil profiles, including cone tip resistance and sleeve friction, were recorded during the soundings. Pore pressure dissipation tests were performed in both CPTs at selected depths. In addition, shear wave velocity measurement of the on-site soil was performed using a seismic cone in CPT-1. The borings and CPTs were backfilled with cement-bentonite grout in accordance with the requirements of the boring permit. The approximate locations of the borings and CPTs are presented on Figure 2. The boring and CPT sounding logs are presented in Appendices A and B, respectively.

Laboratory testing of representative soil samples was performed to evaluate in-situ moisture and dry density, percentage of particles finer than the No. 200 sieve, Atterberg limits, consolidation, direct shear strength, and soil corrosivity. The results of in-situ moisture content and dry density tests are presented on the boring logs in Appendix A. The remaining geotechnical laboratory testing results are presented in Appendix C.

5 GEOLOGY AND SUBSURFACE CONDITIONS

5.1 Regional Geology Setting

The subject site is located in the Los Angeles Basin at the southern end of the Transverse Ranges geomorphic provinces of southern California (Norris and Webb, 1990). The Los Angeles Basin has been divided into four structural blocks, which are generally bounded by prominent northwest-trending and west-trending fault systems: the northwestern, southwestern, central, and northeastern blocks. The site is located on the central block that is characterized by uplifted hills between low-lying plains resulting from anticlinal and synclinal structural features including Signal Hill, Huntington Beach Mesa, Central Plain, La Habra Valley, and Coyote Hills. The block is bounded on the west by the onshore segment of the Newport-Inglewood fault zone and on the north by the Santa Monica fault zone that is located near the base of the Santa Monica Mountains. The eastern boundary is the Whittier fault zone. The Whittier fault zone becomes uncertain from north of the city of Whittier to the Santa Monica fault zone. Near the city of Corona, the Whittier fault zone.

Regional geologic mapping indicates that the site is underlain by young alluvial flood-plain deposits (Saucedo, 2016). The alluvial deposits are described as consisting of poorly consolidated, poorly sorted, soft clay, silt and loose to moderately dense sand and silty sand. A regional geologic map is shown on Figure 3.

5.2 Subsurface Conditions

5.2.1 Existing Pavement

Structural pavement consisting of asphalt concrete (AC) underlain by aggregate base (AB) was encountered in all five borings. The AC ranged from approximately 2 to 3 inches thick and the AB ranged from 2 to 3¹/₂ inches thick. The AB generally consisted of moist, medium dense, well-graded gravel with sand.

5.2.2 Fill

Fill soils were encountered beneath the pavement sections to depths ranging from approximately 8 to 9 feet. The fill generally consisted of light brown and yellowish brown, moist, loose to medium dense, silty sand, poorly graded sand and sandy silt.

5.2.3 Alluvium

Alluvium was encountered beneath the fill to the total depths explored of up to approximately $101\frac{1}{2}$ feet. The alluvial materials generally consisted light brown, brown and gray, moist to wet, loose to very dense, silty sand and sandy silt, and firm to hard, sandy lean clay.

5.3 Groundwater

Groundwater was encountered in our exploratory borings during drilling at depths ranging from approximately 9½ to 16½ feet below the ground surface. The groundwater depth encountered during drilling is not considered a stabilized water level. Fluctuations in groundwater levels may occur due to variations in precipitation, ground surface topography, subsurface stratification, irrigation, groundwater pumping, and other factors that may not have been evident at the time of our field evaluation.

Regional maps indicate that the historic high groundwater at the site is mapped as being approximately 10 feet below the ground surface (California Division of Mines and Geology [CDMG], 1998). Review of groundwater well data from a site located on the northeast corner of Norwalk Boulevard and West Cerritos Avenue (approximately 1,200 feet southwest of the site) indicates the depth to groundwater as approximately 11 feet below the ground surface (GeoTracker, 2022).

6 FLOOD HAZARDS

Based on our review of flood insurance rate maps for the project area (Federal Emergency Management Agency [FEMA], 2009), the project site is not located in the 100-year Flood Hazard Zone. The maps indicate that the site is located within a "Zone X" area with a reduced flood risk due to a levee. Zone X is defined as an area considered to have a 0.2 percent annual chance of flood; to have a 1 percent annual chance of flood with average depth of less than 1 foot or with drainage areas less than 1 square mile; or to be in an area protected by levees from 1 percent annual chance of flood (FEMA, 2009).

7 FAULTING, SEISMICITY AND GEOLOGIC HAZARDS

The site is located in a seismically active area, as is the majority of southern California. The numerous faults in southern California include active, potentially active, and inactive faults. As defined by the California Geological Survey (CGS), active faults are faults that have ruptured within Holocene time (approximately the last 11,000 years). Potentially active faults are those that show evidence of movement during Quaternary time (approximately the last 1.6 million years), but for which evidence of Holocene movement has not been established. Inactive faults have not ruptured in the last approximately 1.6 million years.

The site is not located within a State of California Earthquake Fault Zone (formerly known as an Alquist-Priolo Special Studies Zone). Based on our review of referenced geologic literature, geologic maps, stereoscopic aerial photographs, and our geologic field reconnaissance, no active faults are known to cross the subject site. The active Newport-Inglewood fault is mapped approximately 4.2 miles (USGS, 2008) southwest of the site. The approximate locations of major active faults in the region and their geographic relationship to the site are shown on Figure 4.

An inferred buried trace of a strand of the potentially active Los Alamitos Fault has been mapped as approximately crossing the location of Los Alamitos High School (Figure 3) (Saucedo, 2016). This fault is not located on other fault maps (Figure 4) or on the State of California Seismic Hazard Zone maps (Figure 6) and is not considered to be active. Therefore, this mapped fault is not considered a hazard or constraint to the project.

Historical earthquakes, greater than magnitude 6.5 or that caused significant loss of life and property, within approximately 62 miles (100 kilometers) of the subject site are presented in Table 1. The nearest historical earthquake is the Long Beach earthquake, which occurred on March 11, 1933.

Table 1 – Historical Earthquakes							
Date	Name, Location, or Region Affected	Approximate Fault to Site Distance in miles (km)	Magnitude				
March 11, 1933	Long Beach	8.8 (14.1)	6.4				
October 1, 1987	Whittier Narrows	17.7 (28.6)	6.0				
January 17, 1994	Northridge	38.5 (61.9)	6.7				
December 8, 1812	Wrightwood	45.3 (72.9)	7.3				
February 9, 1971	San Fernando	45.4 (73.0)	6.6				
July 22, 1899	Wrightwood	46.8 (75.3)	6.4				
December 25, 1899	San Jacinto and Hemet	61.4 (98.8)	6.7				
April 21, 1918	San Jacinto	61.5 (99.0)	6.8				
Note:							

```
CGS, 2022.
```

The principal seismic hazards that may impact the site are surface fault rupture, ground motion, liquefaction, dynamic settlement, lateral spreading, liquefaction-induced loss of bearing capacity, landsliding, and tsunamis and seiches. A brief description of these hazards and the potential for their occurrences on site are discussed in the following sections.

7.1 Surface Fault Rupture

Based on our review of the referenced literature and our site reconnaissance, no active faults are known to cross the project site. Therefore, the probability of damage from surface fault rupture is considered to be low. However, lurching or cracking of the ground surface as a result of nearby seismic events is possible.

7.2 Site Specific Ground Motion

Considering the proximity of the site to active faults capable of producing a maximum moment magnitude of 6.0 or more, the project area has a high potential for experiencing strong ground motion. The 2019 California Building Code (CBC) specifies that the risk-targeted maximum considered earthquake (MCE_R) ground motion response accelerations be used to evaluate seismic loads for design of buildings and other structures. Based on the shear wave velocity measurement performed at CPT-1, the site shear wave velocity (Vs30) is approximately 217 meters per second (m/s). Accordingly, the site is classified as Site Class D. Per the 2019 CBC, a site-specific ground motion hazard analysis shall be performed for structures on Site Class D with a mapped MCE_R 5 percent damped, spectral response acceleration parameter at a period of 1 second (S₁) greater than or equal to 0.2g in accordance with Sections 21.2 and 21.3 of the American Society of Civil Engineers (ASCE) Publication 7-16 (2016) for the Minimum Design Loads and Associated Criteria for Building and Other Structures. We calculated that the S₁ for the site is equal to 0.532g using the 2022 Applied Technology Council (ATC) seismic design tool (webbased); therefore, a site-specific ground motion hazard analysis was performed for the project area.

The site-specific ground motion hazard analysis consisted of the review of available seismologic information for nearby faults and performance of probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA) to develop acceleration response spectrum (ARS) curves corresponding to the MCE_R for 5 percent damping. The 2014 new generation attenuation (NGA) West-2 relationships were used to evaluate the site-specific ground motions. The NGA relationships that we used for developing the probabilistic and deterministic response spectra are by Chiou and Youngs (2014), Campbell and Bozorgnia (2014), Boore, Stewart, Seyhan, and Atkinson (2014), and Abrahamson, Silva, and Kamai (2014). The Open Seismic

Hazard Analysis software developed by United States Geological Survey (USGS, 2021b) was used for performing the PSHA. The Calculation of Weighted Average 2014 NGA Models spreadsheet by the Pacific Earthquake Engineering Research Center (PEER) was used for performing the DSHA (Seyhan, 2014).

PSHA was performed for earthquake hazards having a 2 percent chance of being exceeded in 50 years multiplied by the risk coefficients per ASCE 7-16. The maximum rotated components of ground motions were considered in PSHA with 5 percent damping. For the DSHA, we analyzed accelerations from characteristic earthquakes on active faults within the region using the hazard curves and deaggregation plots at the site obtained from the USGS Unified Hazard Tool application (USGS, 2022b). A magnitude 7.3 event on the Compton fault with a rupture distance of 8.8 kilometers (5.5 miles) from the site was evaluated to be the controlling earthquake. Hence, the DSHA was performed for the site using this event and corrections were made to the spectral accelerations for the 84th percentile of the maximum rotated component of ground motion with 5 percent damping.

The site-specific MCE_R response spectrum was taken as the lesser of the spectral response acceleration at any period from the PSHA and DSHA, and the site-specific general response spectrum was determined by taking two-thirds of the MCE_R response spectrum with some conditions in accordance with Section 21.3 of ASCE 7-16. Figure 5 presents the site-specific MCE_R response spectrum and the site-specific design response spectrum. The general mapped design response spectrum calculated in accordance with Section 11.4 of ASCE 7-16 is also presented on Figure 5 for comparison. The site-specific spectral response acceleration parameters, consistent with the 2019 CBC, are provided in Section 9.2 for the evaluation of seismic loads on buildings and other structures. The site-specific maximum considered earthquake geometric mean (MCE_G) peak ground acceleration, PGA_M, was calculated as 0.685g.

7.3 Liquefaction Potential

Liquefaction is the phenomenon in which loosely deposited granular soils with silt and clay contents of less than approximately 35 percent and non-plastic silts located below the water table undergo rapid loss of shear strength when subjected to strong earthquake-induced ground shaking. Ground shaking of sufficient duration results in the loss of grain-to-grain contact due to a rapid rise in pore water pressure, and causes the soil to behave as a fluid for a short period of time. Liquefaction is known generally to occur in saturated or near-saturated cohesionless soils at depths shallower than 50 feet below the ground surface. Factors known to influence liquefaction

potential include composition and thickness of soil layers, grain size, relative density, groundwater level, degree of saturation, and both intensity and duration of ground shaking.

The State of California Seismic Hazard Zones Map (Figure 6) indicates the project area is located within an area mapped as subject to seismically induced liquefaction hazards (CDMG, 1999). The historic high depth to groundwater is mapped in the vicinity of the site as approximately 10 feet below the existing ground surface (CDMG, 1998). Groundwater was encountered during drilling at depths ranging from approximately 9½ to 16½ feet below the ground surface. Our review of the exploration results indicated a good agreement in correlation with borings and CPT soundings. However, due to the fact that CPT soundings provide nearly continuous subsurface soil strata data, liquefaction potential of subsurface soils was evaluated using the CPT soundings. The liquefaction analysis was based on the National Center for Earthquake Engineering Research (NCEER) procedure (Youd, et al., 2001) developed from the methods originally recommended by Seed and Idriss (1982) using the computer program LiquefyPro (CivilTech Software, 2019). A groundwater depth of 10 feet, a PGA_m of 0.685g, and a design earthquake magnitude of 7.3 were used in our analyses. Our liquefaction analysis indicates that the granular soil layers below the historic high depth to groundwater level and between depths of approximately 30 to 75 feet below the ground surface are susceptible to liquefaction during the design seismic event.

7.4 Liquefaction-Induced Settlement of Saturated Soils

As a result of seismically-induced liquefaction, the proposed gymnasium may be subject to liquefaction-induced settlement. In order to estimate the amount of post-earthquake settlement, the method proposed by Tokimatsu and Seed (1987) was used in which the seismically induced cyclic stress ratios and corrected N-values are related to the volumetric strain of the soil. The amount of soil settlement during a strong seismic event depends on the thickness of the liquefiable layers and the density and/or consistency of the soils

Under the current conditions and when using the data collected for CPT-1 and CPT-2, postearthquake liquefaction-induced settlements of approximately 3.5 and 2.6 inches are calculated for the site, respectively. CPT-1 and CPT-2 are located at opposite ends of the proposed building, approximately 190 feet apart. Based on these test results and the guidelines presented in CGS Special Publication 117A (2008) and assuming relatively uniform subsurface stratigraphy across the site, we estimate a differential dynamic settlement on the order of 0.4 inch over a horizontal distance of 30 feet. Results of our liquefaction analysis are presented in Appendix E

With the existence of a non-liquefiable soil crust overlying liquefiable soil, the performance of a low-rise building with shallow foundations founded on the non-liquefiable soil crust during a soil

liquefaction event has been observed to be generally satisfactory depending on the thickness of the non-liquefiable soil crust (Ishihara, 1995). In addition, Bouckovalas and Dakoulas (2007) have developed a design procedure to estimate the bearing capacity, the degraded post-shaking factor of safety against bearing capacity failure, and the dynamic settlement of a shallow foundation during an earthquake. Based on this procedure, our analysis indicated that the estimated dynamic settlement under a 3-foot-wide foundation footing is less than 0.1 inch for a 30-feet-thick non-liquefiable soil crust between the bottom of the footing and the underlying liquefiable soil layer at the proposed building site. Results of our dynamic settlement analysis are presented in Appendix F.

7.5 Dynamic Settlement of Dry Soils

Relatively dry soils (e.g., soils above the groundwater table) with low density or softer consistency tend to undergo dynamic settlement during a seismic event. Earthquake shaking often induces significant cyclic shear strain in a soil mass, which responds to the vibration by undergoing volumetric changes. Volumetric changes in dry soils take place primarily through changes in the void ratio (usually contraction in loose or normally consolidated, soft soils and dilation in dense or over consolidated, stiff soils) and secondarily through particle reorientation. Such volumetric changes are generally non-recoverable.

Based on our evaluation, the relatively loose soils in the upper approximately 10 feet could be susceptible to dynamic compaction of dry soils during a design earthquake. Our analysis indicated that up to approximately 1 inch of dynamic settlement of dry sand may occur during the design seismic event. However, with the remedial recommendation for overexcavation of approximately 8 feet of soil below the existing ground surface provided in Section 9.1.5 of this report, the dynamic settlement of dry sand during the design seismic event is not a design consideration.

7.6 Lateral Spread

Lateral spread of the ground surface during an earthquake usually takes place along weak shear zones that have formed within a liquefiable soil layer. Lateral spread has generally been observed to take place in the direction of a free-face (i.e., retaining wall, slope, channel, etc.) but has also been observed to a lesser extent on ground surfaces with gentle slopes. An empirical model developed by Youd, et al. (2002) is typically used to predict the amount of horizontal ground displacement within a site. For sites located in proximity to a free-face, the amount of lateral ground displacement is correlated with the distance of the site from the free-face as well as the depth of liquefiable strata which contribute to the lateral spreading. The depth of liquefiable strata below the ground surface is approximately twice of the height of the free face (Chu et al., 2006).

Other factors such as earthquake magnitude, distance from the causative fault, thickness of the liquefiable layers, and the fines content (FC) and particle sizes of the liquefiable layers also influence the amount of lateral ground displacement.

The concrete-line Coyote creek is located approximately 500 feet north of the proposed gymnasium. We estimated the height of the Coyote Creek is approximately 15 feet. Accordingly, the depth of the liquefiable soil layer contributing to lateral spreading on-site is approximately 30 feet below the existing ground surface. Due to the fine-grained nature of the soils in the upper 30 feet as well as the lacking of soil layers having corrected sampler blow counts less than 15 within the upper 30 feet, the site is not considered susceptible to seismically induced lateral spread.

7.7 Liquefaction-Induced Loss of Bearing Capacity

Our analysis also included using the residual shear strength of the liquefiable soil as recommended in the monograph by Earthquake Engineering Research Institute (EERI, 2008) to evaluate the potential for bearing capacity failure under the proposed footings. Due to the existence of a non-liquefiable soil crust (approximately 30 feet in thickness) overlying the liquefiable soils, our analysis indicated that the potential for bearing capacity failure during a seismic-induced soil liquefaction condition is low.

7.8 Landsliding

The site is located in an area of relatively flat terrain. There are no mapped landslides on site or in the vicinity. Landsliding is not considered to be a potential hazard at the site.

7.9 **Tsunamis and Seiches**

Tsunamis are long wavelength, seismic, sea waves (long compared to ocean depth) generated by the sudden movements of the ocean floor during submarine earthquakes, landslides, or volcanic activity. Seiches are waves generated in a large, enclosed body of water. The project area is not mapped within an area considered susceptible to tsunamis or seiches inundation. Therefore, damage due to tsunamis or seiches is not a design consideration.

8 DISCUSSIONS AND CONCLUSIONS

Based on the results of our geotechnical evaluation, it is our opinion that the proposed project is feasible from a geotechnical standpoint provided the recommendations of this report and appropriate construction practices are followed. In general, the following conclusions were made:

• Based on our exploratory borings, the site is underlain by fill overlying alluvial deposits. Fill was encountered to depths ranging from approximately 8 to 9 feet below the ground surface. The fill generally consisted of moist, loose to medium dense, silty sand, poorly graded sand

and sandy silt. The alluvial materials generally consisted of moist to wet, loose to very dense, silty sand and sandy silt, and firm to hard, sandy lean clay.

- Excavations into the underlying fill and alluvial deposits should be feasible with grading
 equipment in good working order. We anticipate that the on-site sandy soils should be
 generally suitable for use as compacted fill following moisture-conditioning, provided they are
 free of trash, debris, roots, vegetation, deleterious materials, and cobbles or hard lumps of
 materials in excess of 4 inches in diameter.
- Granular soils encountered at the site are anticipated to have little cohesion and may be subject to caving. These soils should be considered Type C soils in accordance with Occupational Safety and Health Administration (OSHA) soil classifications.
- Groundwater was encountered in our borings during drilling at depths ranging from approximately 9½ to 16½ feet below the ground surface. The historic high groundwater level is reported to be at approximately 10 feet below the ground surface. Fluctuations in the groundwater level may occur as a result of variations in seasonal precipitation, irrigation practices, groundwater pumping and other factors. Seepage and wet soil conditions should be anticipated during construction. Seepage should be anticipated by the contractor.
- The site is mapped within a State of California Seismic Hazards Zone as being potentially liquefiable (CDMG, 1999). Our liquefaction analysis indicated that liquefaction-induced dynamic settlement up to 3½ inches may occur during the design seismic event. Differential settlement on the order of 0.4 inch over a horizontal distance of 30 feet may be anticipated.
- The site-specific PGA_M was estimated to be 0.685g for the site.
- The subject site is not located within a State of California Earthquake Fault Zone (Alquist-Priolo Special Studies Zone). The probability of surface fault rupture is considered low at the site.
- The site is not located in an area considered susceptible to landsliding, tsunamis, or seiches.
- The site is located within an area with a reduced flood risk due to a potential levee failure (FEMA, 2009).
- Based on our laboratory corrosion testing, the on-site soil can be classified as non-corrosive based on the Caltrans Corrosion Guidelines (Caltrans, 2021).

9 **RECOMMENDATIONS**

The following sections include our geotechnical recommendations for construction of the proposed improvements. Grading and building foundations plans were not available for review at the time of this report. It is important that Ninyo & Moore be notified and given an opportunity to reevaluate our recommendations once this information becomes available and prior to bidding the project for construction.

9.1 Earthwork

Earthwork at the site is anticipated to consist of remedial grading of the near-surface soils, fill placement, foundation excavations, trenching and backfilling for new utilities, pavement construction, and finish grading for establishment of site drainage. Earthwork should be performed

in accordance with the requirements of applicable governing agencies and the recommendations presented in the following sections.

9.1.1 Construction Plan Review and Pre-Construction Conference

We recommend that the grading and construction plans be submitted to Ninyo & Moore for review to evaluate conformance to the geotechnical recommendations provided in this report. We further recommend that a pre-construction conference be held in order to discuss the grading recommendations presented in this report. The owner and/or their representative, the governing agencies' representatives, the civil engineer, Ninyo & Moore, and the contractor should be in attendance to discuss the work plan, project schedule, and earthwork requirements.

9.1.2 Site Clearing and Preparation

Prior to excavation and fill placement, the site should be cleared of existing site improvements, pavements, surface obstructions and other deleterious materials, and abandoned utilities and stripped of rubble, debris, and vegetation, as well as surface soils containing organic materials. Existing utilities to remain in place (if any) should be located and protected from damage by construction activities. Obstructions that extend below the finish grade, if any, should be removed and the resulting holes filled with compacted soil. The materials generated from the clearing operations should be removed from the site and disposed of at a legal dump site.

9.1.3 Excavation Characteristics

Based on our field exploration, we anticipate that excavations within the existing fill and alluvium materials at the site may be accomplished with earthmoving equipment in good working condition. The near surface fill soils encountered in the exploratory borings are comprised of moist, loose to medium dense, silty sand, poorly graded sand and sandy silt. The alluvial materials generally consisted of moist to wet, loose to very dense, silty sand and sandy silt, and firm to hard, sandy lean clay. In the event that oversize material (larger than 4 inches in longest diameter), including cobbles, is encountered during excavation operations, the oversized material is not suitable for backfill and should be disposed of offsite. Contractors should make their own independent evaluation of the excavatability of the on-site materials prior to submitting their bids.

9.1.4 Temporary Excavations

Temporary excavations above groundwater up to approximately 10 feet in depth should be stable at inclinations of up to approximately 1½:1 (horizontal to vertical). Excavations which expose friable, cohesionless sands, may be subject to caving. Some surficial sloughing may occur, and temporary excavations should be evaluated in the field in accordance with Occupational Safety and Health Administration (OSHA) guidelines. The surficial soils should be considered as OSHA Soil Type C, and temporary excavations should conform with OSHA regulations.

Temporary slope surfaces should be kept moist to retard raveling and sloughing. Water should not be allowed to flow over the top of excavations in an uncontrolled manner. Stockpiled material and/or equipment should be kept back from the top of excavations a distance equivalent to the depth of the excavation or more. Temporary excavations should be observed by the geotechnical consultant so that appropriate additional recommendations necessitated by actual field conditions may be provided. Temporary excavations are time sensitive, and failures are possible.

9.1.5 Treatment of Near Surface Soils

Based on our subsurface evaluation, it is our opinion that suitable foundation support for the proposed at-grade structure and associated improvements may be provided by remedial grading consisting of the overexcavation and recompaction of the near-surface fill soils. For the proposed construction, we recommend that the near-surface soils be overexcavated and recompacted to a depth of approximately eight (8) feet below the existing ground surface or the depth of the undocumented fill, whichever is deeper. The limits of overexcavation should extend laterally beyond the building footprint to a distance of five (5) or more feet. The actual depths and limits of overexcavation should be evaluated by our representative based on the materials exposed at the time of construction.

Due to the existence of an active electrical conduit inside the west side of the proposed building footprint, we recommend that the overexcavation in the areas where the proposed footings are parallel and adjacent to the electrical conduit as well as the 6-foot-wide electrical conduit area be excluded from the recommendations provided above. Instead, we recommend the proposed footings parallel to the electrical conduit be extended to the bottom of the electrical conduit to avoid surcharging the electrical conduit. Where the footings cross over the electrical conduit, the top of the electrical conduit should be encased with concrete designed by the project structural engineer.

Additional overexcavation of loose, soft, and/or wet areas may be appropriate, depending on our observations during construction. The subgrade at the bottom of the overexcavation should be scarified to a depth of 8 inches, moisture conditioned to slightly above the laboratory optimum moisture content, and compacted to a relative compaction of 90 percent as evaluated by ASTM D 1557. The overexcavated area should be backfilled to the finished grade with on-site soils compacted to a relative compaction of 90 percent.

Exterior flatwork may be supported on compacted, low-expansion potential soil. Subgrade for exterior flatwork areas should be prepared by overexcavation and recompaction to a depth of approximately two (2) feet below the existing ground surface. At the bottom of the excavation, the upper approximately 8 inches of exposed subgrade should be scarified, moisture conditioned to slightly over optimum moisture content and compacted to 90 percent relative compaction as evaluated by ASTM D 1557.

Care should be taken by the contractor to avoid undermining adjacent existing foundations and improvements. New excavations should not extend within the "zone of influence" of existing foundations, which is defined as a 1:1 (horizontal to vertical) plane projecting out from the bottom outside edge of the foundations. In the event that excavations will extend into the "zone of influence" of existing foundations, our office should be notified. In such case, appropriate recommendations will need to be developed, such as temporary underpinning of impacted foundations and/or temporary shoring.

9.1.6 Excavation Bottom Stability

Excavations close to or below the groundwater will encounter wet and loose or soft ground conditions. Excavations that expose loose/soft soils or encounter seepage or groundwater, or that become disturbed during excavation, may be unstable and subject to pumping under heavy equipment loads. In general, unstable bottom conditions may be mitigated by over-excavating to a depth of approximately 1 to 2 feet below the proposed subgrade and replacing the excavated soil with crushed aggregate base or gravel wrapped in geofabric. If aggregate base is used, it should consist of either Caltrans Class II aggregate base or crushed miscellaneous base. Caltrans Class II aggregate base should conform to the State of California Standard Specifications, Section 26 1.02A. Crushed miscellaneous base should conform to the Standard Specifications for Public Works Construction, Section 200 2.4. Recommendations for stabilizing excavation bottoms should be based on evaluation in the field by a Ninyo & Moore representative at the time of construction.

9.1.7 Fill Material

In general, the on-site sandy soils should be suitable re-use as structural fill and trench backfill provided that they are free of trash, debris, roots, vegetation, or other deleterious materials. Non-granular clay materials may be used as general fill, but should not be used as structure or trench backfill. Fill should generally be free of rocks or lumps of material in excess of 4 inches in diameter. Rocks or hard lumps larger than approximately 4 inches in diameter should be broken into smaller pieces or should be removed from the site. Structure backfill should be comprised of granular, non-expansive soil that conforms to the latest edition of "Greenbook" Standard Specifications for Public Works Construction for structural backfill. "Non-expansive" can be defined as soil having an expansion index (EI) of 20 or less in accordance with ASTM D 4829. The on-site materials will involve moisture-conditioning to achieve appropriate moisture content for compaction.

Imported materials, if used, should consist of clean, non-expansive, granular material, which conforms to the "Greenbook" for structure backfill. The imported materials should also meet the Caltrans (2021) criteria for non-corrosive soils (i.e., soils having a minimum resistivity greater than 1,500 ohm-cm, a chloride concentration less than 500 parts per million [ppm], a sulfate concentration of less than 0.15 percent (1,500 ppm), and a pH value greater than 5.5). Import materials for use as fill should be evaluated by the geotechnical consultant prior to importing. The contractor should be responsible for the uniformity of import material brought to the site.

9.1.8 Fill Placement and Compaction

Fill soils placed should be compacted in horizontal lifts to a relative compaction of 90 percent as evaluated by ASTM D 1557. The lift thickness for fill soils will vary depending on the type of compaction equipment used but should generally be placed in horizontal lifts not exceeding 8 inches in loose thickness. Fill soils should be placed at generally slightly above the optimum moisture content as evaluated by ASTM D 1557. Special care should be taken to avoid damage to utility lines when compacting fill and subgrade materials.

9.2 Site-Specific Seismic Design Considerations

Design of the proposed improvements should be performed in accordance with the requirements of governing jurisdictions and applicable building codes. Table 2 presents the site-specific spectral response acceleration parameters in accordance with the CBC (2019) guidelines.

Table 2 – 2019 California Building Code Seismic Design Criteria					
Site Coefficients and Spectral Response Acceleration Parameters	Values				
Site Class	D				
Mapped Spectral Response Acceleration at 0.2-second Period, Ss	1.491g				
Mapped Spectral Response Acceleration at 1.0-second Period, S1	0.532g				
Site-Specific Spectral Response Acceleration at 0.2-second Period, SMS	1.637g				
Site-Specific Spectral Response Acceleration at 1.0-second Period, S _{M1}	2.036g				
Site-Specific Design Spectral Response Acceleration at 0.2-second Period, SDS	1.091g				
Site-Specific Design Spectral Response Acceleration at 1.0-second Period, Sp1	1.357g				
Site-Specific Mapped Maximum Considered Earthquake Geometric Mean (MCE _G) Peak Ground Acceleration, PGA_M	0.685g				

9.3 Foundations

The proposed gymnasium may be supported on shallow foundations including spread and continuous footings bearing on engineered fill material compacted in accordance with the recommendations presented in the Earthwork section of this report. Foundations should be designed in accordance with structural considerations and the following recommendations. In addition, requirements of the appropriate governing jurisdictions and applicable building codes should be considered in the design of the structures.

9.3.1 Spread Footings

Spread footings for the proposed gymnasium should extend 24 inches or more below the adjacent finished grade. Continuous and isolated pad footings should have a width of 36 inches or more. Continuous footings should be reinforced with four No. 4 steel reinforcing bars, two placed near the top and two placed near the bottom of the footings, and further detailed in accordance with the recommendations of the structural engineer.

Footings, as described above, may be designed using an allowable bearing capacity of 3,000 pounds per square foot (psf). The bearing capacity may be increased by one-third when considering loads of short duration such as wind or seismic forces. Total and differential settlements for footings designed and constructed in accordance with the above recommendations are estimated to be less than approximately 1 and ½ inch over a horizontal span of 30 feet, respectively.

Footings bearing on compacted fill may be designed using a coefficient of friction of 0.30, where the total frictional resistance equals the coefficient of friction times the dead load. Footings may be designed using a passive resistance of 300 psf per foot of depth for level ground condition up to a value of 3,000 psf. The allowable lateral resistance can be taken as the sum of the frictional resistance and passive resistance, provided the passive resistance does not exceed one-half of the total allowable resistance. The passive resistance may be

increased by one-third when considering loads of short duration such as wind or seismic forces.

Trenches should not be excavated adjacent to spread footings. If trenches are to be excavated near a continuous footing, the bottom of the trench should be located above a 1:1 (horizontal to vertical) plane projected downward from the bottom of the footing. Utility lines that cross beneath footings should be encased in concrete below the footing. In addition, footings constructed near existing underground utility lines should be deepened such that the utility line is located above a 1:1 (horizontal to vertical) plane projected to vertical) plane projected downward from the base of the footing.

9.3.2 Slabs-On-Grade

Buildings supported on shallow footings should have floor slabs designed by the project structural engineer based on the anticipated loading conditions. Building floor slabs should be underlain by compacted fill prepared in accordance with the recommendations presented in this report. As a minimum we recommend that slabs have a thickness of 5 inches or more, and be reinforced with No. 4 steel reinforcing bars placed 18 inches on-center (each way) in the middle one-third of the slab height. Exterior slabs-on-grade may be 4 inches thick. The proper placement of the reinforcement in the slab is vital for satisfactory performance. The floor slab and foundations should be tied together by extending the slab reinforcement into the footings. The slab should be underlain by a polyethylene vapor retarder, 10-mil or thicker. The vapor retarder should further be underlain by a 4-inch-thick layer of sand or gravel with a particle size of approximately ³/₄ inch or smaller. The vapor retarder is recommended in areas where moisture sensitive floor coverings are anticipated. Soils underlying the slabs should be moisture conditioned and compacted in accordance with the recommendations contained in this report prior to concrete placement. Joints should be constructed at intervals designed by the structural engineer to help reduce random cracking of the slab.

9.4 Underground Utilities

We anticipate that utility pipelines will be supported on compacted fill or alluvial deposits. The depths of the pipelines are not known; however, we anticipate that the pipe invert depths will not exceed 5 feet. Trenches should not be excavated parallel to building footings. If needed, trenches can be excavated adjacent to a continuous footing, provided that the bottom of the trench is located above a 1:1 (horizontal to vertical) plane projected downward from a point 6 inches above the bottom of the adjacent footing. Utility lines that cross beneath footings should be encased in concrete below the footing. To reduce the potential for pipe to building differential settlement due to liquefaction which could cause pipe shearing; we recommend that a pipe joint be located close

to the exterior of the building. The type of joint should be such that relative movement can be accommodated without distress. The pipe connections should be sufficiently flexible to withstand differential settlement on the order of $1\frac{1}{2}$ inches.

9.4.1 Pipe Bedding

We recommend that pipelines be supported on 6 inches or more of granular bedding material. Bedding material should be placed around pipe zones to 1 foot or more above the top of the pipe. The bedding material should be classified as sand, be free of organic material, and have a sand equivalent of 30 or more. We do not recommend gravel be used for bedding material. It has been our experience that the voids within gravel material are sufficiently large to allow fines to migrate into the voids, thereby creating the potential for sinkholes and depressions to develop at the ground surface.

Special care should be taken not to allow voids beneath and around the pipe. Compaction of the bedding material and backfill should proceed along both sides of the pipe concurrently. Trench backfill, including bedding material, should be placed in accordance with the recommendations presented in the Earthwork section of this report.

9.4.2 Trench Backfill

Based on our subsurface evaluation, the on-site sandy soils should generally be suitable for re-use as trench backfill provided that they are free of organic material, clay lumps, debris, and rocks more than approximately 4 inches in diameter. We recommend that trench backfilling be in general conformance with the Standard Specifications for Public Works Construction ("Greenbook") for structure backfill. Fill should be moisture-conditioned to at or slightly above the laboratory optimum. Wet soils should be allowed to dry to a moisture content near the optimum prior to their placement as trench backfill. Trench backfill should be compacted to a relative compaction of 90 percent as evaluated by ASTM D 1557. Lift thickness for backfill will depend on the type of compaction equipment utilized, but fill should generally be placed in horizontal lifts not exceeding 8 inches in loose thickness. Special care should be exercised to avoid damaging the pipe during compaction of the backfill.

9.4.3 Modulus of Soil Reaction

The modulus of soil reaction is used to characterize the stiffness of soil backfill placed on the sides of buried flexible pipelines for the purpose of evaluating lateral deflection caused by the weight of the backfill above the pipe. We recommend that a modulus of soil reaction of

1,000 pounds per square inch be used for design, provided that granular bedding material is placed adjacent to the pipe, as recommended in this report.

9.5 Sidewalks and Hardscape

We recommend that new exterior concrete sidewalks and flatwork (hardscape) have a thickness of 4 inches and be reinforced with No. 3 steel reinforcing bars placed 24 inches on-center (each way) near the mid-height of the slab. The hardscape should be underlain by 4 inches of clean sand and installed with crack-control joints at an appropriate spacing as designed by the structural engineer to reduce the potential for shrinkage cracking. Positive drainage should be established and maintained adjacent to flatwork. To reduce the potential for differential offset, joints between the new hardscape and adjacent curbs, existing hardscape, building walls, and/or other structures, and between sections of new hardscape, should be doweled.

9.6 Corrosivity

Laboratory testing was performed on a representative sample of near-surface soil to evaluate pH, electrical resistivity, water-soluble chloride content, and water-soluble sulfate content. The soil pH and electrical resistivity tests were performed in general accordance with CT 643. Chloride content testing was performed in general accordance with CT 422. Sulfate content testing was performed in general accordance with CT 417. The laboratory test results are presented in Appendix C.

The soil pH was measured at approximately 7.9 and the electrical resistivity was measured to be approximately 4,485 ohm-centimeters. The chloride content of the sample was measured to be approximately 30 ppm. The sulfate content of the tested sample was approximately 0.001 percent (10 ppm). Based on the laboratory test results and Caltrans (2021) criteria, the project site can be classified as a non-corrosive site, which is defined as having earth materials with less than 500 ppm chlorides, less than 0.15 percent sulfates (i.e., 1,500 ppm), a pH of 5.5 or more, or an electrical resistivity of more than 1,500 ohm-centimeters. If corrosion susceptible improvements are planned on site, we recommend that a corrosion engineer be consulted for further evaluation and recommendations.

9.7 Concrete Placement

Concrete in contact with soil or water that contains high concentrations of water-soluble sulfates can be subject to premature chemical and/or physical deterioration. Based on the CBC (2019), the potential for sulfate attack is negligible for water-soluble sulfate contents in soil ranging from 0.00 to 0.10 percent by weight, moderate for water-soluble sulfate contents ranging from 0.10 to

0.20 percent by weight, severe for water-soluble sulfate contents ranging from 0.20 to 2.00 percent by weight, and very severe for water-soluble sulfate contents over 2.00 percent by weight. The soil sample tested for this evaluation, using Caltrans Test Method 417, indicates a water-soluble sulfate content of approximately 0.001 percent by weight (i.e., 10 ppm). Accordingly, the on-site soils are considered to have a negligible potential for sulfate attack. However, due to the potential variability of the on-site soils, consideration should be given to using Type II/V cement for the project.

In order to reduce the potential for shrinkage cracks in the concrete during curing, we recommend that the concrete for the proposed structures be placed with a slump of 4 inches based on ASTM C 143. The slump should be checked periodically at the site prior to concrete placement. We further recommend that concrete cover over reinforcing steel for foundations be provided in accordance with CBC (2019). The structural engineer should be consulted for additional concrete specifications.

9.8 Drainage

Good surface drainage is imperative for satisfactory site performance. Positive drainage should be provided and maintained to channel surface water away from foundations and off-site. Positive drainage is defined as a slope of two percent or more for a distance of 5 feet or more away from foundations and tops of slopes. Runoff should then be transported by the use of swales or pipes into a collective drainage system. Surface waters should not be allowed to pond adjacent to foundations or on pavements. Concentrated runoff should not be allowed to flow over asphalt pavement as this can result in early deterioration of the pavement. We recommend that structures have roof drains and downspouts installed to collect runoff. Area drains for landscaped and paved areas are recommended.

10 CONSTRUCTION OBSERVATION

The recommendations provided in this report are based on our understanding of the proposed project and on our evaluation of the data collected based on subsurface conditions disclosed by widely spaced exploratory borings. It is imperative that the interpolated subsurface conditions be checked by our representative during construction. Observation and testing of compacted fill and backfill should also be performed by our representative during constructions. We further recommend that the project plans and specifications be reviewed by this office prior to construction. It should be noted that, upon review of these documents, some recommendations presented in this report might be revised or modified.

During construction, we recommend that the duties of the geotechnical consultant include, but not be limited to:

- Observing clearing, grubbing, and removals.
- Observing excavation bottoms and the placement and compaction of fill, including trench backfill.
- Evaluating imported materials prior to their use as fill.
- Performing field tests to evaluate fill compaction.
- Observing foundation excavations for bearing materials and cleaning prior to placement of reinforcing steel or concrete.

The recommendations provided in this report assume that Ninyo & Moore will be retained as the geotechnical consultant during the construction phase of this project. In the event that the services of Ninyo & Moore are not utilized during construction, we request that the selected consultant provide the owner with a letter (with a copy to Ninyo & Moore) indicating that they fully understand Ninyo & Moore's recommendations, and that they are in full agreement with the design parameters and recommendations contained in this report.

11 LIMITATIONS

The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation of environmental concerns or the presence of hazardous materials.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document.

This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing.

Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified, and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

12 REFERENCES

- Abrahamson, N.A., Silva, W.J. and Kamai, R., 2014, Summary of the ASK14 Ground Motion Relation for Active Crustal Regions, Earthquake Spectra: Vol. 30, No. 3, pp. 1025-1055, dated August.
- American Concrete Institute (ACI), 2016, ACI Manual of Concrete Practice.
- American Concrete Institute, 2019, Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19).
- American Society of Civil Engineers (ASCE), 2016, Minimum Design Loads and Associated Criteria for Building and Other Structures, ASCE Standard 7-16.
- The Applied Technology Council (ATC), 2022, Hazards by Location, https://hazards.atcouncil.org.
- ASTM International (ASTM), 2019, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania.
- Boore, D.M., Stewart, J.P., Seyhan, E., and Atkinson, G.M., 2014, NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes, Earthquake Spectra, Vol. 30, No. 3, pp. 1057-1085, dated August.
- Bouckovalas, G. and Dakoulas, P., 2007, Liquefaction performance of shallow foundations in presence of a soil crust, 4th ICEGE Invited Lecture, edited by K.D. Pitilakis.
- Bowles, J.E., 1996, Foundation Analysis and Design, Fifth Edition, The McGraw-Hill Companies, Inc.
- Building Seismic Safety Council, 2009, National Earthquake Hazards Reduction Program (NEHRP) Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-750).
- California Building Standards Commission, 2019, California Building Code (CBC): California Code of Regulations, Title 24, Part 2, Volumes 1 and 2, dated July 1.
- California Department of Conservation, Division of Mines and Geology (CDMG), State of California, 1998, Seismic Hazard Zone Report for the Los Alamitos 7.5-Minute Quadrangle, Los Angeles and Orange Counties, California: Seismic Hazard Zone Report 019.
- California Department of Conservation, Division of Mines and Geology (CDMG), State of California, 1999, Seismic Hazard Zones Official Map, Los Alamitos Quadrangle, dated March 25.
- California Department of Transportation, 2021, Corrosion Guidelines, Version 3.2, Division of Engineering Services, Materials Engineering and Testing Services, Corrosion Technology Branch, dated May.
- California Geological Survey, State of California, 2008, Guidelines for Evaluating and Mitigating Seismic Hazards in California, CDMG Special Publication 117A.
- California Geological Survey (CGS), 2018, Earthquake Fault Zones, A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California: Special Publication 42.
- California Geological Survey, 2022, Table of Significant California Earthquakes (Magnitude greater than or equal to 6.5, or that caused loss of life or more than \$200,000 in damage), https://www.conservation.ca.gov/cgs/earthquakes/significant, accessed on January 4.
- Campbell, K.W., and Bozorgnia, Y., 2014, NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra, Earthquake Spectra, Vol. 30, No. 3, pp. 1087-1115, dated August.

- Chiou, B. S.-J., and Youngs, R.R., 2014, Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra, August 2014, Vol. 30, No. 3, dated August.
- Chu, D.B., Stewart, J.P., Youd, T.L., and Chu, B.L., 2006. "Liquefaction-induced lateral spreading in near-fault regions during the 1999 Chi-Chi, Taiwan earthquake," ASCE, 132 (12), 1549-1565.
- CivilTech Software, 2019, Liquefy Pro (Version 5.9d), a computer program for liquefaction and settlement analysis.
- Earthquake Engineering Research Institute (EERI), 2008, Soil Liquefaction during Earthquakes, by I.M. Idriss and R.W. Boulanger, MNO-12.
- Federal Emergency Management Agency (FEMA), 2009, Flood Insurance Rate Map, City of Los Alamitos, Map Number 06059C0104J, dated December 3.
- Google Earth, 2022, http://earth.google.com.
- Historical Aerials, 2022, Website for Viewing Aerial Photographs, www.historicaerials.com.
- Ishihara, K., 1995, "Effects of At-Depth Liquefaction on Embedded Foundations during Earthquakes", Proceedings of the Tenth Asian Regional Conference on Soil Mechanics and Foundation Engineering, Beijing, China, Volume 2, 16-26.
- Ninyo & Moore, 2022, Proposal for Geotechnical Consulting Services, New Gymnasium Project, Los Alamitos High School, Los Alamitos, California, dated January 13.
- Norris, R.M., and Webb, R.W., 1990, Geology of California, Second Edition: John Wiley & Sons.
- Public Works Standard, Inc., 2018, The "Greenbook": Standard Specifications for Public Works Construction, with Errata No. 1, dated 2019: BNI Building News, Vista, California.
- Saucedo, G.J., Greene, H.G., Kennedy, M.P., and Bezore, S.P., 2016, Geologic Map of the Long Beach 30' x 60' Quadrangle, California, Version 2.0, Scale 1:100,000.
- Seed, H.B., and Idriss, I.M., 1982, Ground Motions and Soil Liquefaction During Earthquakes, Volume 5 of Engineering Monographs on Earthquake Criteria, Structural Design, and Strong Motion Records: Berkeley, Earthquake Engineering Research Institute.
- Seyhan, E, 2014, Weighted Average 2014 NGA West-2 GMPE, Pacific Earthquake Engineering Research Center.
- State of California, State Water Resources Control Board, 2021, GeoTracker Database System, http://geotracker.swrcb.ca.gov/.
- Tokimatsu, K., and Seed, H.B., 1987, Evaluation of Settlements in Sands Due to Earthquake Shaking, Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 8, pp. 861-878.
- United States Geological Survey, 2008, National Seismic Hazard Maps Fault Parameters, https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_main.cfm.
- United States Geological Survey, 2021a, USGS US Topo 7.5-Minute Map for Los Alamitos, CA: USGS National Geospatial Technical Operations Center (NGTOC).
- United States Geological Survey and Southern California Earthquake Center, 2021b, Open Seismic Hazard Analysis, Version 1.5.2, released June 3, http://www.opensha.org/.
- United States Geological Survey and California Geological Survey, 2022a, Quaternary fault and fold database for the United States, accessed May 9, at: https://www.usgs.gov/natural-hazards/earthquake-hazards/faults.

- United States Geological Survey, 2022b, Unified Hazard Tool, https://earthquake.usgs.gov/hazards/interactive/.
- Westgroup Designs, 2022, Los Alamitos High School Gymnasium, Los Alamitos Unified School District, Floor Plan, dated January 5.
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H., II., 2001, Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(10), 817-833.
- Youd, T.L., Hansen, C.M., and Bartlett, S.F., 2002, Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement, ASCE Geotechnical Journal, Vol. 128, No. 12.
- Zhang, G., Robertson, P.K., and Brachman, R.W.I., 2002, "Estimating liquefaction-induced ground settlements from CPT for level ground", Canadian Geotechnical Journal, 39(5): 1168– 1180.

FIGURES

Ninyo & Moore | Los Alamitos High School New Gymnasium, Los Alamitos, California | 211897001 | September 30, 2022

LOS ALAMITOS, CALIFORNIA 211897001 I 9/22

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM 3591 WEST CERRITOS AVENUE LOS ALAMITOS, CALIFORNIA 211897001 | 9/22

Geotechnical & Environmental Sciences Consultants

Geotechnical & Environmental Sciences Consultants

LOS ALAMITOS, CALIFORNIA 211897001 I 9/22

Ningo & **Moore** Geotechnical & Environmental Sciences Consultants

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM 3591 WEST CERRITOS AVENUE LOS CERRITOS, CALIFORNIA 211897001 | 9/22

NOTES:

- 1 The probabilistic ground motion spectral response accelerations are based on the risk-targeted Maximum Considered Earthquake (MCE_R) having a 2% probability of exceedance in 50 years in the maximum direction using the Chiou & Youngs (2014), Campbell & Bozorgnia (2014), Boore et al. (2014), and Abrahamson et al. (2014) attenuation relationships and the risk coefficients.
- 2 The deterministic ground motion spectral response accelerations are for the 84th percentile of the geometric mean values in the maximum direction using the Chiou & Youngs (2014), Campbell & Bozorgnia (2014), Boore et al. (2014), and Abrahamson et al. (2014) attenuation relationships for deep soil sites considering a Mw 7.3 event on the Compton fault zone located 8.8 kilometers from the site. It conforms with the lower bound limit per ASCE 7-16 Section 21.2.2.
- 3 The Site-Specific MCE_R Response Spectrum is the lesser of spectral ordinates of deterministic and probabilistic accelerations at each period per ASCE 7-16 Section 21.2.3. The Site-Specific Design Response Spectrum conforms with lower bound limit per ASCE 7-16 Section 21.3.
- 4 The Mapped Design MCE Response Spectrum is computed from mapped spectral ordinates modified for Site Class D (stiff soil profile) per ASCE 7-16 Section 11.4. It is presented for the sake of comparison.

Ningo & **Moore** Geotechnical & Environmental Sciences Consultants

ACCELERATION RESPONSE SPECTRA

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM 3591 WEST CERRITOS AVENUE LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

FIGURE 5

211897001_SHZ.dwg 05/10/2022

JDP

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM 3591 WEST CERRITOS AVENUE LOS ALAMITOS, CALIFORNIA 211897001 | 9/22

APPENDIX A

Boring Logs

Ninyo & Moore | Los Alamitos High School New Gymnasium, Los Alamitos, California | 211897001 | September 30, 2022

APPENDIX A

BORING LOGS

Field Procedure for the Collection of Disturbed Samples

Disturbed soil samples were obtained in the field using the following methods.

Bulk Samples

Bulk samples of representative earth materials were obtained from the exploratory borings. The samples were bagged and transported to the laboratory for testing.

The Standard Penetration Test (SPT) Sampler

Disturbed drive samples of earth materials were obtained by means of a Standard Penetration Test sampler. The sampler is composed of a split barrel with an external diameter of 2 inches and an unlined internal diameter of 1³/₈ inches. The sampler was driven into the ground 12 to 18 inches with a 140-pound hammer falling freely from a height of 30 inches in general accordance with ASTM International (ASTM) D 1586. The blow counts were recorded for every 6 inches of penetration; the blow counts reported on the logs are those for the last 12 inches of penetration. Soil samples were observed and removed from the sampler, bagged, sealed, and transported to the laboratory for testing.

Field Procedure for the Collection of Relatively Undisturbed Samples

Relatively undisturbed soil samples were obtained in the field using the following method.

The Modified Split-Barrel Drive Sampler

The sampler, with an external diameter of 3 inches, was lined with 1-inch-long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing.

Shelby Tube

The Shelby tube is a seamless, thin-walled, steel tube having an external diameter of 2.4 or 3.0 inches and a length of 8 to 30 inches. The tube was connected to the drill rod or a hand tool and pushed into an undisturbed soil mass to obtain a relatively undisturbed sample of soft, cohesive soil in general accordance with ASTM D 1587. When the tube was almost full (to avoid overpenetration), it was withdrawn from the excavation, removed from the drill rod or hand tool, sealed at both ends, and transported to the laboratory for testing.

	Soil Clas	sification CI	nart	Per AST	M D 2488	Grain Size				
		ione		Seco	ndary Divisions	Dece	tintion	Sieve	Grain Siza	Approximate
F	rimary Divis	sions	Gro	up Symbol	Group Name	Desci	πριιοπ	Size	Grain Size	Size
		CLEAN GRAVEL		GW	well-graded GRAVEL	Bou	Iders	> 12"	> 12"	Larger than
		less than 5% fines		GP	poorly graded GRAVEL					basketball-sized
	GRAVEI			GW-GM	well-graded GRAVEL with silt	Cob	bles	3 - 12"	3 - 12"	Fist-sized to basketball-sized
	more than	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt					
	coarse	CLASSIFICATIONS 5% to 12% fines		GW-GC	well-graded GRAVEL with clay		Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized
	retained on			GP-GC	poorly graded GRAVEL with clay	Gravel				Pea-sized to
	INO. 4 SIEVE	GRAVEL with		GM	silty GRAVEL		Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized
GRAINED		FINES more than		GC	clayey GRAVEL		Cooroo	#10 #4	0.070 0.10"	Rock-salt-sized to
SOILS		12% fines		GC-GM	silty, clayey GRAVEL		Coarse	#10 - #4	0.079 - 0.19	pea-sized
50% retained		CLEAN SAND		SW	well-graded SAND	Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to
on No. 200 sieve		less than 5% fines		SP	poorly graded SAND					rock-salt-sized
				SW-SM	well-graded SAND with silt		Fine	#200 - #40	0.0029 -	Flour-sized to
	SAND 50% or more	SAND with DUAL CLASSIFICATIONS 5% to 12% fines		SP-SM	poorly graded SAND with silt					
	of coarse fraction			SW-SC	well-graded SAND with clay	Fir	nes	Passing #200	< 0.0029"	Flour-sized and smaller
	passes No. 4 sieve			SP-SC	poorly graded SAND with clay					
				SM	silty SAND			Plastic	ity Chart	
		more than		SC	clayey SAND					
		12 /0 111105		SC-SM	silty, clayey SAND	70				
				CL	lean CLAY	% 60				
	SILT and	INORGANIC		ML	SILT	[Id] 50				
	CLAY liquid limit			CL-ML	silty CLAY	H 40			CH or C	DH
FINE-	less than 50%	ORGANIC		OL (PI > 4)	organic CLAY	∠ 30				
SOILS				OL (PI < 4)	organic SILT	.ID 20		CL o	r OL	MH or OH
50% or more passes				СН	fat CLAY	SH 10				
No. 200 sieve	SILT and CLAY			MH	elastic SILT	₽ 7 4	CL - I	ML ML o	r OL	
	liquid limit 50% or more	ORGANIC		OH (plots on or above "A"-line)	organic CLAY	0 10 20 30 40 50 60 70			70 80 90 100	
5		ONOANIO		OH (plots below "A"-line)	organic SILT			LIQUI	D LIMIT (LL),	%
Highly		Organic Soils		PT	Peat					

Apparent Density - Coarse-Grained Soil

	parent De	marty - Obar	Se-Oranie								
	Spooling C	able or Cathead	Automatic	Trip Hammer		Spooling Ca	ble or Cathead	Automatic Trip Hammer			
Apparent Density	SPT (blows/foot)	Modified Split Barrel (blows/foot)	SPT (blows/foot)	Modified Split Barrel (blows/foot)	Consis- tency	SPT (blows/foot)	Modified Split Barrel (blows/foot)	SPT (blows/foot)	Modified Split Barrel (blows/foot)		
Very Loose	≤4	≤ 8	≤ 3	≤ 5	Very Soft	< 2	< 3	< 1	< 2		
Loose	5 - 10	9 - 21	4 - 7	6 - 14	Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Medium	11 - 30	22 - 63	8 - 20	15 - 42	Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Dense			0 20		Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Dense	31 - 50	64 - 105	21 - 33	43 - 70	Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Very Dense	> 50	> 105	> 33	> 70	Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Consistency - Fine-Grained Soil

DEPTH (feet) Bulk SAMPLES Driven BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET
		DRY DENSITY	SYMBOI SYMBOI	CL CL	BORING LOG EXPLANATION SHEET Bulk sample. Modified split-barrel drive sampler. No recovery with modified split-barrel drive sampler. Sample retained by others. Standard Penetration Test (SPT). No recovery with a SPT. Shelby tube sample. Distance pushed in inches/length of sample recovered in inches. No recovery with Shelby tube sampler. Continuous Push Sample. Seepage. Groundwater encountered during drilling. Groundwater measured after drilling. MAJOR MATERIAL TYPE (SOIL): Solid line denotes unit change. Dashed line denotes material change. Attitudes: Strike/Dip b: Bedding c: Contact j: Joint
20					f: Fracture F: Fault cs: Clay Seam s: Shear bss: Basal Slide Surface sf: Shear Fracture sz: Shear Zone sbs: Shear Bedding Surface The total depth line is a solid line that is drawn at the bottom of the boring.

BORING LOG

DEPTH (feet) Bulk Drivoo	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	D CLASSIFICATION U.S.C.S.	DATE DRILLED 4/7/22 BORING NO. B-1 GROUND ELEVATION 26' ± (MSL) SHEET 1 OF 2 METHOD OF DRILLING 8" Hollow Stem Auger (MR) DRIVE WEIGHT 140 lbs (Auto. Trip Hammer) DROP 30" SAMPLED BY KWK LOGGED BY KWK REVIEWED BY RDH DSPHALT CONCRETE: ASPHALT CONCRETE: Approximately, 3 inches thick Amountain the state of the
	8	5.4	87.0		SM	AGGREGATE BASE: Brown, moist, medium dense, well-graded GRAVEL with sand; approximately 3 inches thick. FILL: Light brown, moist, loose, silty SAND; micaceous; trace gravel.
10	- - <u>4</u> -	<u>_</u> 			<u>-</u>	ALLOVIOM. Brown, moist, loose, sandy SILT. @ 9.5': Groundwater encountered during drilling. Brown, wet, firm, sandy lean CLAY.
	12 30/30"	41.4	79.3		SP CL	Light brown, wet, loose, poorly graded SAND.
20	10				ML	Brown, wet, medium dense, sandy SILT.
	10	25.7	97.5			Loose.
30	16					Medium dense.
40	36				SM	Light brown, wet, medium dense, silty SAND.
Nin Geotechnica	I & Environmental	100 Sciences Cor	re			FIGURE A- 1 LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA 211897001 9/22

t)	AMPLES	ъ	%)	(PCF)		NO	DATE DRILLED H/7/22 BORING NOB-1
H (fee	N	S/FOC	URE (SITY (ABOL	FICATI .C.S.	$\frac{26 \pm (MSL)}{METHOD OF DRILLING 8" Hollow Stem Auger (MR)}$
DEPT	ulk iven	BLOW	IOIST	/ DEN	SYN	ASSII U.S	DRIVE WEIGHT 140 lbs (Auto. Trip Hammer) DROP 30"
	۳Z		2	DR		C	SAMPLED BY KWK LOGGED BY KWK REVIEWED BY RDH
40		50				SM	DESCRIPTION/INTERPRETATION ALLUVIUM: (Continued)
		24					Light brown, wet, very dense, silty SAND. Medium dense.
50 -		27					Dense.
-							Total Depth = 51.5 feet. Groundwater encountered at approximately 9.5 feet during drilling.
							Backfilled with bentonite-cement grout and patched with black dyed concrete on 4/7/22.
							<u>Notes</u> : Groundwater may rise to a level higher than that measured in borehole due to seasonal
							The ground elevation shown above is an estimation only. It is based on our interpretations
-							of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
60 -							
-							
70 -							
-							
-							
-							
80 -							
Geot	ing echnical & E	0 &	Sciences Con	re sultants			

f (feet)	SAMPLES	/FOOT	RE (%)	ытү (РСF)	BOL	ICATION C.S.	DATE DRILLED 4/7/22 BORING NO. B-2 GROUND ELEVATION 26' ± (MSL) SHEET 1 OF 1
DEPTH	Bulk Driven	BLOWS	MOISTU	ORY DENS	SYM	CLASSIF U.S.(DRIVE WEIGHT 140 lbs (Auto. Trip Hammer) DROP 30"
]			SAMPLED BY KWK LOGGED BY KWK REVIEWED BY RDH DESCRIPTION/INTERPRETATION
0		9				<u>SM</u> SP	ASPHALT CONCRETE: Approximately 2 inches thick. AGGREGATE BASE: Brown, moist, medium dense, well-graded GRAVEL with sand; approximately 3 inches thick. FILL: Brown, moist, medium dense, silty SAND. Yellowish brown, moist, medium dense, poorly graded SAND. Light gray.
10 -			<u> </u>			ML	ALLUVIUM: Brown, moist, loose, sandy SILT.
-		6	35.7	86.0		CL	Light brown, wet, firm, sandy lean CLAY.
-	$-\bot$					 ML	Brown, wet, very loose, sandy SILT.
20 -		3					
-		8					Medium dense; micaceous.
30 -		13					Loose.
-							Total Depth = 31.5 feet. Groundwater encountered at approximately 10 feet during drilling. Backfilled with bentonite-cement grout and patched with black dyed concrete on 4/7/22.
-							<u>Notes</u> : Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report.
-							The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
40 -						·	FIGURE A- 3
^		40 & 1		re			LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA
							211897001 9/22

	PLES			F)			DATE DRILLED 4/7/22 BORING NOB-3
eet)	SAM	DOT	(%)	Y (PC		NOIT	GROUND ELEVATION 28' ± (MSL) SHEET 1 OF 1
TH (f		NS/FC	TURE	NSIT	MBO	S.C.S	METHOD OF DRILLING 8" Hollow Stem Auger (MR)
DEP	Bulk	BLO	MOIS	kΥ DE	S		DRIVE WEIGHT 140 lbs (Auto. Trip Hammer) DROP 30"
				DF			SAMPLED BY KWK LOGGED BY KWK REVIEWED BY RDH
0						∖ <u>G</u> W ML	ASPHALT CONCRETE: Approximately 3 inches thick. AGGREGATE BASE: Brown, moist, medium dense, well-graded GRAVEL with sand; approximately 3.5 inches thick. FILL: Light brown, moist, medium dense, sandy SILT.
-		15	8.1	102.4		 SP	Light brown, moist, medium dense, poorly graded SAND; micaceous.
10 -		9	Ţ			ML	ALLUVIUM: Brown, wet, medium dense, sandy SILT. @ 10': Groundwater encountered during drilling.
		7	32.2	89.5			Loose.
20 -		11					Medium dense.
		8					Loose.
		8					Medium dense.
							Total Depth = 31.5 feet. Groundwater encountered at approximately 10 feet during drilling. Backfilled with bentonite-cement grout and patched with black dyed concrete on 4/7/22. <u>Notes</u> : Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
							FIGURE A- 4
1	ling	0&/	Noo	re			LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA
Geote	ecnnical &	Environmenta	sciences Cor	sultants			

L

211897001 9/22

DEPTH (feet)	Bulk SAMPLES	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	DATE DRILLED 4/6/22 BORING NO. B-4 GROUND ELEVATION 28' ± (MSL) SHEET 1 OF 1 METHOD OF DRILLING 8" Hollow Stem Auger (MR)
0		-				∖ <u>GW</u> ML	ASPHALT CONCRETE: Approximately 2 inches thick. AGGREGATE BASE: Brown, moist, medium dense, well-graded GRAVEL with sand; approximately 2 inches thick.
-		10				SM	Brown, moist, medium dense, sandy SILT with clay; micaceous Brown, moist, medium dense, silty SAND; micaceous.
10 -		10	33.2	86.9		CL	<u>ALLUVIUM</u> : Brown, moist, stiff, sandy lean CLAY; micaceous.
		12				 ML	Brown, moist, medium dense, sandy SILT.
20 -		30					Wet.
-		6					Loose; some clay.
30 -		16	34.7	88.4			Medium dense.
-		-					Total Depth = 31.5 feet. Groundwater encountered at approximately 16.5 feet during drilling. Backfilled with bentonite-cement grout and patched with black dyed concrete on 4/7/22. <u>Notes</u> : Groundwater may rise to a level higher than that measured in borehole due to seasonal variations in precipitation and several other factors as discussed in the report.
-							I he ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents.
40 -					·	L	FIGURE A- 5
Geote	chnical	YO & & Environmental	NOO Sciences Cor	re nsultants			LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA 211897001 9/22

S S S						DATE DRILLED 4/8/22 BORING NO B-5
et) SAMP	5	(%)	(PCF)		NO	GROUND ELEVATION 28' + (MSL) SHEET 1 OF 3
H (fee	S/FOC	URE	ISITY	ABOL	FICAT S.C.S.	METHOD OF DRILLING 8" Hollow Stem Auger (MR)
DEPT	3LOW	VOIST	Y DEN	SYN	-ASSI U.S	DRIVE WEIGHT 140 lbs (Auto. Trip Hammer) DROP 30"
		2	DR		C	SAMPLED BYKWK LOGGED BYKWK REVIEWED BYRDH
0					CW/	DESCRIPTION/INTERPRETATION ASPHALT CONCRETE:
					SM	Approximately 3 inches thick. AGGREGATE BASE:
						Brown, moist, medium dense, well-graded GRAVEL with sand; approximately 3 inches thick.
	-					<u>FILL</u> : Light brown, moist, medium dense, silty SAND.
	-					
						A1.1.1.1V/ILIM+
		Ţ				Brown, wet, firm, lean CLAY.
	4					@ 10': Groundwater encountered during drilling.
		25.4	04.0			
	∐ ^{30″/24″}	35.4	84.9			
	_					
20	12					Brown, wet, medium dense, sandy SILT; micaceous.
	-					
	_					
	-					
30						
	10					Clayey.
	1					
	-					
	_					
						FIGURE A- 6
Nin	nyo « M	Voo	re			LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA
Geotechnic	aı & ⊨nvironmental	Sciences Cor	nsultants			211897001 9/22

	IPLES			F)		7	DATE DRILLED 4/8/22 BORING NO B-5
eet)	SAN	20 T	≡ (%)	Y (PC	2	ATION	GROUND ELEVATION 28' ± (MSL) SHEET 2 OF 3
TH (f		NS/F	TURI	IISN	MBC	SIFIC,	METHOD OF DRILLING 8" Hollow Stem Auger (MR)
DEF	Bulk	BLO	MOIS	ζΥ DE	Ś	n N	DRIVE WEIGHT 140 lbs (Auto. Trip Hammer) DROP 30"
				Ð			SAMPLED BY KWK LOGGED BY KWK REVIEWED BY RDH
40		12				ML	ALLUVIUM: (Continued)
-		12					Brown, wet, medium dense, sandy SIL1; micaceous.
-							
-							
-							
50 -		35					Gray; very dense.
-							
-							
-							
60-							
00		35					
-							
-							
-							
-							
70 -							
	ľЦ	54					
-							
-							
-							
						 	Gray, wet, very stiff, sandy lean CLAY; scattered shell fragments.
80 -						1	FIGURE A- 7
•	linı	<u>П &</u> Г	Ann	rp			LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM
Geote	chnical & E	Environmental	Sciences Cor	nsultants			LOS ALAMITOS, CALIFORNIA 211897001 9/22

	MPLES			CF)		z	DATE DRILLED 4/8/22 BORING NO B-5
(feet)	SAI	=00T	KE (%)	TY (P	Ы	S.	GROUND ELEVATION 28' ± (MSL) SHEET 3 OF 3
HTH		I/SMC	ISTUF	ENSI	SYMB	SSIFIC U.S.C	METHOD OF DRILLING 8" Hollow Stem Auger (MR)
B	Bulk Drive	BL(MO	RY D		CLAS	DRIVE WEIGHT140 lbs (Auto. Trip Hammer) DROP30"
							SAMPLED BY KWK LOGGED BY KWK REVIEWED BY RDH DESCRIPTION/INTERPRETATION
80	1	11				CL	<u>ALLUVIUM</u> : (Continued) Gray, wet, very stiff, sandy lean CLAY; scattered shell fragments.
-							
		30"/30"					
-							
-						 ML	Gray, wet, dense, sandy SILT.
90 -							
		21					
-							
-							
100 -	17	34					Very dense.
.							Total Depth = 101.5 feet. Groundwater encountered at approximately 10 feet during drilling.
-							Backfilled with bentonite-cement grout and patched with black dyed concrete on 4/7/22.
							Notes: Groundwater may rise to a level higher than that measured in borehole due to seasonal
-							variations in precipitation and several other factors as discussed in the report.
-							The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is
110 -							not sufficiently accurate for preparing construction bids and design documents.
-							
-							
-							
-							
120 -							FIGURE A- 8
٨	lin	40 & A	Noo	re			LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM
Geote	echnical 8	& Environmental	Sciences Con	sultants			211897001 9/22

APPENDIX B

Cone Penetration Test Data

SUMMARY

OF CONE PENETRATION TEST DATA

Project:

Los Alamitos High School Los Alamitos, CA April 6, 2022

Prepared for:

Ms. Julianne Padgett Ninyo & Moore 475 Goddard, Ste 200 Irvine, CA 92618-4605 Office (949) 753-7070 / Fax (949) 753-7071

Prepared by:

Kehoe Testing & Engineering

5415 Industrial Drive Huntington Beach, CA 92649-1518 Office (714) 901-7270 / Fax (714) 901-7289 www.kehoetesting.com

TABLE OF CONTENTS

1. INTRODUCTION

- 2. SUMMARY OF FIELD WORK
- 3. FIELD EQUIPMENT & PROCEDURES
- 4. CONE PENETRATION TEST DATA & INTERPRETATION

APPENDIX

- CPT Plots
- CPT Classification/Soil Behavior Chart
- Summary of Shear Wave Velocities
- Pore Pressure Dissipation Graphs
- CPT Data Files (sent via email)

SUMMARY OF CONE PENETRATION TEST DATA

1. INTRODUCTION

This report presents the results of a Cone Penetration Test (CPT) program carried out for the Los Alamitos High School project located in Los Alamitos, California. The work was performed by Kehoe Testing & Engineering (KTE) on April 6, 2022. The scope of work was performed as directed by Ninyo & Moore personnel.

2. SUMMARY OF FIELD WORK

The fieldwork consisted of performing CPT soundings at two locations to determine the soil lithology. A summary is provided in **TABLE 2.1**.

LOCATION	DEPTH OF CPT (ft)	COMMENTS/NOTES:
CPT-1	100	
CPT-2	100	

 TABLE 2.1 - Summary of CPT Soundings

3. FIELD EQUIPMENT & PROCEDURES

The CPT soundings were carried out by **KTE** using an integrated electronic cone system manufactured by Vertek. The CPT soundings were performed in accordance with ASTM standards (D5778). The cone penetrometers were pushed using a 30-ton CPT rig. The cone used during the program was a 15 cm² cone with a cone net area ratio of 0.83. The following parameters were recorded at approximately 2.5 cm depth intervals:

- Cone Resistance (qc)
- Inclination
- Sleeve Friction (fs)
- Penetration Speed
- Dynamic Pore Pressure (u) Pore Pressure Dissipation (at selected depths)

At location CPT-1 shear wave measurements were obtained at approximately 10-foot intervals. The shear wave is generated using an air-actuated hammer, which is located inside the front jack of the CPT rig. The cone has a triaxial geophone, which recorded the shear wave signal generated by the air hammer.

The above parameters were recorded and viewed in real time using a laptop computer. Data is stored at the KTE office for up to 2 years for future analysis and reference. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly.

4. CONE PENETRATION TEST DATA & INTERPRETATION

The Cone Penetration Test data is presented in graphical form in the attached Appendix. These plots were generated using the CPeT-IT program. Penetration depths are referenced to ground surface. The soil behavior type on the CPT plots is derived from the attached CPT SBT plot (Robertson, "Interpretation of Cone Penetration Test...", 2009) and presents major soil lithologic changes. The stratigraphic interpretation is based on relationships between cone resistance (qc), sleeve friction (fs), and penetration pore pressure (u). The friction ratio (Rf), which is sleeve friction divided by cone resistance, is a calculated parameter that is used along with cone resistance to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone resistance and generate excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little (or negative) excess pore water pressures.

The CPT data files have also been provided. These files can be imported in CPeT-IT (software by GeoLogismiki) and other programs to calculate various geotechnical parameters.

It should be noted that it is not always possible to clearly identify a soil type based on qc, fs and u. In these situations, experience, judgement and an assessment of the pore pressure data should be used to infer the soil behavior type.

If you have any questions regarding this information, please do not hesitate to call our office at (714) 901-7270.

Sincerely,

Kehoe Testing & Engineering

P. Kha

Steven P. Kehoe President

04/13/22-kd-3948-1

APPENDIX

Kehoe Testing and Engineering 714-901-7270 steve@kehoetesting.com www.kehoetesting.com

Project: Ninyo & Moore / Los Alamitos High School

Location: Los Alamitos, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 4/7/2022, 10:27:03 AM Project file:

CPT-1 Total depth: 100.02 ft, Date: 4/6/2022

Kehoe Testing and Engineering 714-901-7270 steve@kehoetesting.com www.kehoetesting.com

Project: Ninyo & Moore / Los Alamitos High School

Location: Los Alamitos, CA

CPeT-IT v.2.3.1.9 - CPTU data presentation & interpretation software - Report created on: 4/7/2022, 10:27:03 AM Project file:

CPT-2 Total depth: 100.34 ft, Date: 4/6/2022

Kehoe Testing and Engineering 714-901-7270 rich@kehoetesting.com www.kehoetesting.com

Ninyo & Moore Los Alamitos High School Los Alamitos, CA

CPT Shear Wave Measurements

					S-Wave	Interval
	Tip	Geophone	Travel	S-Wave	Velocity	S-Wave
	Depth	Depth	Distance	Arrival	from Surface	Velocity
Location	(ft)	(ft)	(ft)	(msec)	(ft/sec)	(ft/sec)
CPT-1	10.04	9.04	9.26	14.88	622	
	20.14	19.14	19.24	33.08	582	549
	30.02	29.02	29.09	49.12	592	614
	40.16	39.16	39.21	64.00	613	680
	50.69	49.69	49.73	78.16	636	743
	60.04	59.04	59.07	91.20	648	717
	70.05	69.05	69.08	103.20	669	834
	80.12	79.12	79.15	116.44	680	760
	90.16	89.16	89.18	127.40	700	916
	100.00	99.00	99.02	137.14	722	1010

Shear Wave Source Offset - 2 ft

S-Wave Velocity from Surface = Travel Distance/S-Wave Arrival Interval S-Wave Velocity = (Travel Dist2-Travel Dist1)/(Time2-Time1)

APPENDIX C

Laboratory Testing

Ninyo & Moore | Los Alamitos High School New Gymnasium, Los Alamitos, California | 211897001 | September 30, 2022

APPENDIX C

LABORATORY TESTING

Classification

Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings in Appendix A.

In-Place Moisture and Density Tests

The moisture content and dry density of relatively undisturbed samples obtained from the exploratory borings were evaluated in general accordance with ASTM D 2937. The test results are presented on the logs of the exploratory borings in Appendix A.

<u>200 Wash</u>

An evaluation of the percentage of minus-200 sieve material in selected soil samples was performed in general accordance with ASTM D 1140. The results of the tests are presented on Figure C-1.

Atterberg Limits

Tests were performed on selected representative fine-grained soil samples to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. The test results were utilized to evaluate the soil classification in accordance with the Unified Soil Classification System (USCS). The test results and classifications are shown on Figures C-2 and C-3.

Consolidation Tests

Consolidation tests were performed on selected relatively undisturbed soil samples in general accordance with ASTM D 2435. The samples were inundated during testing to represent adverse field conditions. The percent of consolidation for each load cycle was recorded as a ratio of the amount of vertical compression to the original height of the sample. The results of the tests are summarized on Figure C-4 and C-5.

Direct Shear Tests

Direct shear tests were performed on relatively undisturbed samples in general accordance with ASTM D 3080 to evaluate the shear strength characteristics of selected materials. The samples were inundated during shearing to represent adverse field conditions. The results are shown on Figures C-6 and C-7.

Soil Corrosivity Tests

Soil pH and minimum resistivity tests were performed on a representative soil sample in general accordance with California Test (CT) 643. The chloride content of the selected sample was evaluated in general accordance with CT 422. The sulfate content of the selected sample was evaluated in general accordance with CT 417. The test results are presented on Figure C-8.

SAMPLE LOCATION	SAMPLE DEPTH (ft)	DESCRIPTION	PERCENT PASSING NO. 4	PERCENT PASSING NO. 200	USCS (TOTAL SAMPLE)
B-1	5.0-6.5	SILTY SAND	96	14	SM
B-1	25.0-26.5	SILT	97	82	ML
B-2	15.0-16.5	SILT	99	91	ML
B-3	10.0-11.5	SILT	100	58	ML
B-4	5.0-6.5	SILTY SAND	100	15	SM
B-5	20.0-21.5	SILT	100	75	ML
B-5	60.0-61.5	SILT	100	53	ML
B-5	80.0-81.5	LEAN CLAY	98	74	CL

FIGURE C-1

NO. 200 SIEVE ANALYSIS TEST RESULTS

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

SYMBOL	LOCATION	DEPTH (ft)	liquid Limit	PLASTIC LIMIT	PLASTICITY INDEX	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS
•	B-1	17.0-19.5	47	25	22	CL	CL
-	B-3	10.0-11.5				NP	ML
•	B-5	12.0-14.0	43	20	23	CL	CL
0	B-5	30.0-31.5	29	24	5	ML	ML

NP - INDICATES NON-PLASTIC

PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318

ATTERBERG LIMITS TEST RESULTS

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

FIGURE C-2

SYMBOL	LOCATION	DEPTH (ft)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	USCS CLASSIFICATION (Fraction Finer Than No. 40 Sieve)	USCS
•	B-1	25.0-26.5	29	27	2	ML	ML

ATTERBERG LIMITS TEST RESULTS

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

FIGURE C-3

FIGURE C-6

DIRECT SHEAR TEST RESULTS

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

FIGURE C-7

DIRECT SHEAR TEST RESULTS

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

SAMPLE LOCATION	SAMPLE DEPTH (ft)	pH ¹	RESISTIVITY ¹ (ohm-cm)	SULFATE CONTENT ²		
				(ppm)	(%)	(ppm)
B-2	1.0-5.0	7.9	4,485	10	0.001	30

¹ PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643

² PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417

³ PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422

FIGURE C-8

CORROSIVITY TEST RESULTS

LOS ALAMITOS HIGH SCHOOL NEW GYMNASIUM LOS ALAMITOS, CALIFORNIA

211897001 | 9/22

Ninyo & **Moore** Geotechnical & Environmental Sciences Consultants

APPENDIX D

Site Specific Ground Motion Analysis

Ninyo & Moore | Los Alamitos High School New Gymnasium, Los Alamitos, California | 211897001 | September 30, 2022
			stic MCEr					
Period (sec)	2%-in-50 Years Probabilistic Spectrum	C _{RS}	С _{R1} 0.911	84th Percentile Deterministic Spectrum	Scaled Deterministic Spectrum	Site-Specific MCEr	80% of Modified General Response Spectrum	Design Response Spectrum
0.010	0.753	0.6	685	0.910	0.910	0.685	0.345	0.456
0.020	0.759	0.6	690	0.906	0.906	0.690	0.372	0.460
0.030	0.762	0.6	692	0.884	0.884	0.692	0.398	0.462
0.050	0.842	0.7	766	0.937	0.937	0.766	0.452	0.511
0.075	1.050	0.9	954	1.089	1.089	0.954	0.519	0.636
0.100	1.260	1.1	146	1.256	1.256	1.146	0.586	0.764
0.150	1.523	1.3	1.384		1.463	1.384	0.719	0.923
0.200	1.665	1.5	1.514		1.653	1.514	0.795	1.009
0.250	1.798	1.6	634	1.857	1.857	1.634	0.795	1.090
0.300	1.934	1.7	758	2.095	2.095	1.758	0.795	1.172
0.400	1.993	1.8	313	2.393	2.393	1.813	0.795	1.209
0.500	1.999	1.8	319	2.508	2.508	1.819	0.795	1.212
0.750	1.800	1.6	639	2.441	2.441	1.639	0.795	1.093
1.000	1.677	1.5	527	2.353	2.353	1.527	0.709	1.018
1.500	1.313	1.1	196	1.935	1.935	1.196	0.473	0.797
2.000	1.076	0.9	981	1.593	1.593	0.981	0.355	0.654
3.000	0.745	0.6	679	0.982	0.982	0.679	0.236	0.452
4.000	0.537	0.4	189	0.636	0.636	0.489	0.177	0.326
5.000	0.406	0.3	370	0.451	0.451	0.370	0.142	0.247
7.500	0.211	0.1	193	0.207	0.207	0.193	0.095	0.128
10.000	0.118	0.1	107	0.108	0.108	0.107	0.057	0.072

	Prot		stic MCEr					
Period	2%-in-50 Years	C _{RS}	C _{R1}	84th Percentile	Scaled	Site-Specific	80% of Modified General	Design Bosponso
(sec)	Probabilistic Spectrum			Deterministic Spectrum	Spectrum	MCEr	Response Spectrum	Spectrum
		0.909	0.911				-	
0.010	0.753	0.6	85	0.702	0.702	0.685	0.345	0.456
0.020	0.759	0.6	690	0.722	0.722	0.690	0.372	0.460
0.030	0.762	0.6	692	0.714	0.714	0.692	0.398	0.462
0.050	0.842	0.7	66	0.729	0.729	0.729	0.452	0.486
0.075	1.050	0.9	954	0.853	0.853	0.853	0.519	0.569
0.100	1.260	1.1	46	0.993	0.993	0.993	0.586	0.662
0.150	1.523	1.384		1.207	1.207	1.207	0.719	0.805
0.200	1.665	1.514		1.374	1.374	1.374	0.795	0.916
0.250	1.798	1.6	634	1.551	1.551	1.551	0.795	1.034
0.300	1.934	1.7	758	1.720	1.720	1.720	0.795	1.147
0.400	1.993	1.8	313	1.905	1.905	1.813	0.795	1.209
0.500	1.999	1.8	319	1.986	1.986	1.819	0.795	1.212
0.750	1.800	1.6	639	1.914	1.914	1.639	0.795	1.093
1.000	1.677	1.5	527	1.890	1.890	1.527	0.709	1.018
1.500	1.313	1.1	96	1.609	1.609	1.196	0.473	0.797
2.000	1.076	0.9	981	1.379	1.379	0.981	0.355	0.654
3.000	0.745	0.6	679	1.023	1.023	0.679	0.236	0.452
4.000	0.537	0.4	89	0.758	0.758	0.489	0.177	0.326
5.000	0.406	0.3	370	0.574	0.574	0.370	0.142	0.247
7.500	0.211	0.1	93	0.278	0.278	0.193	0.095	0.128
10.000	0.118	0.1	07	0.151	0.151	0.107	0.057	0.072

Los Alamitos HS 211897001

	lat	33.813297	
Source:	<u>Vs30, m/s</u>	Site Class	
CPT Shear Wave Survey	217	D	
CGS Map Viewer (2015)	228	D	
use Vs30=	217	D	
Z2.5	4.5	km	
Z1.0	0.8	km	
Faults for Deaggregation:			
<u>Compton</u>		Reference	
NA	7 2	1	

<u>Compton</u>		Reference	Newport Inglewood		Reference
М	7.3	1	М	7.5	1
Туре	Thrust	2	Туре	Strike slip	4
dip	20	3	dip	90	4
dip direction	NE	2	dip direction	-	
Hanging Wall Side	Yes		Hanging Wall Side	-	
ztop, km	5.2	3	ztop, km	0	3
zbot, km	15.6	3	zbot, km	15	3
rx, km	11.3	3 (measured)	rx, km	6.8	4
rjb, km	0	calculated	rjb, km	6.8	
rrup, km	8.8	1 & confirmed by calculation from measured rx	rrup, km	6.8	

long -118.068715

References:

1. United States Geological Survey, 2022, Unified Hazard Tool; https://earthquake.usgs.gov/hazards/interactive/.

2. United States Geological Survey, 2022, U.S. Quaternary Faults;

https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=5a6038b3a1684561a9b0aadf88412fcf.

3. United States Geological Survey, UCERF3 kmz file

4. United States Geological Survey, 2008, National Seismic Hazard Maps - Fault Parameters,

https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_main.cfm

211897001 Los Alamitos High School New Gynasium CPT-1

Тір	Geophone	Travel	S-Wave	S-Wave Velocity	Interval S-Wave		
						Layer	d/v
						thicness d	
Depth	Depth	Distance	Arrival	rom Surface	Velocity		
 (ft)	(ft)	(ft)	(msec)	(ft/sec)	(ft/sec)	(ft)	_
 10.04	9.04	9.26	14.88	622			-
20.14	19.14	19.24	33.08	582	549	19.24	0.035075
30.02	29.02	29.09	49.12	592	614	9.84	0.01604
40.16	39.16	39.21	64.00	613	680	10.12	0.01488
50.69	49.69	49.73	78.16	636	743	10.52	0.01416
60.04	59.04	59.07	91.20	648	717	9.34	0.01304
70.05	69.05	69.08	103.20	669	834	10.01	0.012
80.12	79.12	79.15	116.44	680	760	10.07	0.01324
90.16	89.16	89.18	127.40	700	916	10.04	0.01096
100.00	99.00	99.02	137.14	722	1010	9.84	0.00974

99.02 0.139135

 $V_{s30} =$ 712 (ft/sec) 217 (m/sec)

Site data for Location: 33.813297, -118.068715
Source: CGS/Wills VS30 Map (2015)
 Type: Vs30
 Type Flag: Inferred
 Value: 228.2
Source: SCEC Community Velocity Model Version 4, Iteration 26, Basin Depth
 Type: Depth to Vs = 2.5 km/sec
 Type Flag: Inferred
 Value: 4.5
Source: SCEC Community Velocity Model Version 4, Iteration 26, Basin Depth
 Type: Depth to Vs = 1.0 km/sec
 Type Flag: Inferred
 Value: 0.8

U.S. Geological Survey - Earthquake Hazards Program

Unified Hazard Tool

Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the <u>U.S. Seismic Design Maps web tools</u> (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.

∧ Input	
Edition	Spectral Period
Dynamic: Conterminous U.S. 2014 (u	Peak Ground Acceleration
Latitude	Time Horizon
Decimal degrees	Return period in years
33.813297	2475
Longitude	
Decimal degrees, negative values for western longitudes	
-118.068715	
Site Class	
259 m/s (Site class D)	

Deaggregation

Component

Summary statistics for, Deaggregation: Total

Deaggregation targets	Recovered targets
Return period: 2475 yrs	Return period: 2915.2721 yrs
Exceedance rate: 0.0004040404 yr ⁻¹	Exceedance rate: 0.00034302115 yr ⁻¹
PGA ground motion: 0.70720979 g	
Totals	Mean (over all sources)
Binned: 100 %	m: 6.78
Residual: 0 %	r: 11.2 km
Trace: 0.06 %	εο: 1.32 σ
Mode (largest m-r bin)	Mode (largest m-r-ɛ₀ bin)
m: 7.3	m: 7.29
r: 10.77 km	r: 8.18 km
ε ₀ : 0.94 σ	εο: 0.7 σ
Contribution: 18.37 %	Contribution: 8.06 %
Discretization	Epsilon keys
r: min = 0.0, max = 1000.0, ∆ = 20.0 km	ε0: [-∞2.5)
m: min = 4.4, max = 9.4, Δ = 0.2	ε1: [-2.52.0)
ε: min = -3.0, max = 3.0, Δ = 0.5 σ	ε2: [-2.01.5)
	ε3: [-1.51.0)
	ε4: [-1.00.5)
	ε5: [-0.50.0)
	ε6: [0.00.5)
	ε7: [0.51.0)
	ε8: [1.01.5]
	ε9: [1.52.0]
	ε10: [2.02.5]

ε11: [2.5 .. +∞]

Deaggregation Contributors

Source Set 👍 Source	Туре	r	m	ε ₀	lon	lat	az	%
UC33brAvg_FM32	System							33.57
Compton [0]		8.80	7.31	0.50	118.112°W	33.746°N	208.04	8.64
Newport-Inglewood alt 2 [3]		6.93	7.46	0.89	118.117°W	33.768°N	221.64	7.13
Puente Hills (Coyote Hills) [1]		12.11	7.29	1.41	118.034°W	33.912°N	16.10	3.4
Palos Verdes [10]		18.70	7.42	1.84	118.253°W	33.746°N	246.30	2.9
Anaheim [1]		7.31	6.90	0.94	118.024°W	33.846°N	48.71	2.69
Compton [1]		9.89	7.21	0.72	118.161°W	33.764°N	237.30	1.19
Puente Hills (Santa Fe Springs) [0]		14.22	7.71	1.37	118.083°W	33.935°N	354.54	1.03
UC33brAvg_FM31	System							32.64
Newport-Inglewood alt 1 [3]	-	6.94	7.47	0.87	118.118°W	33.768°N	222.54	9.50
Compton [0]		8.80	7.25	0.52	118.112°W	33.746°N	208.04	8.5
Palos Verdes [10]		18.70	7.27	1.92	118.253°W	33.746°N	246.30	2.8
Anaheim [1]		7.31	6.87	0.95	118.024°W	33.846°N	48.71	2.6
Puente Hills [1]		16.16	7.40	1.59	118.041°W	33.947°N	9.60	2.39
UC33brAvg_FM31 (opt)	Grid							16.96
PointSourceFinite: -118.069, 33.845		6.18	5.64	1.38	118.069°W	33.845°N	0.00	3.66
PointSourceFinite: -118.069, 33.845		6.18	5.64	1.38	118.069°W	33.845°N	0.00	3.66
PointSourceFinite: -118.069, 33.872		8.05	5.68	1.66	118.069°W	33.872°N	0.00	1.8
PointSourceFinite: -118.069, 33.872		8.05	5.68	1.66	118.069°W	33.872°N	0.00	1.83
UC33brAvg_FM32 (opt)	Grid							16.82
PointSourceFinite: -118.069, 33.845		6.18	5.64	1.38	118.069°W	33.845°N	0.00	3.44
PointSourceFinite: -118.069, 33.845		6.18	5.64	1.38	118.069°W	33.845°N	0.00	3.4
PointSourceFinite: -118.069, 33.872		8.06	5.68	1.67	118.069°W	33.872°N	0.00	1.8
PointSourceFinite: -118.069. 33.872		8.06	5.68	1.67	118.069°W	33 872°N	0.00	1.8

Deterministic Seismic Hazard Analysis Input						
Compton						
M _w :	7.3					
R _{RUP} (km):	8.80					
R _{JB} (km):	0.00					
R _x (km):	11.30					
Ry0 (km):	999					
V _{S30} (m/sec):	217					
U:	0					
F _{RV} :	1					
F _{NM} :	0					
F _{HW} :	1					
Dip (deg):	20					
Z _{TOR} (km):	5.2					
Z _{HYP} (km):	999					
Z _{1.0} (km):	0.8					
Z _{2.5} (km):	4.5					
W (km):	30					
Vs30Flag:	measured					
F _{AS} :	no					
Region	California					

Deterministic Seismic Hazard Ar	nalysis Output (50th Percentile)

Chiou & Youngs (2014)		Campbell & Bozorgnia (2014)		Boore et al. (2014)		Abrahamson et al. (2014)	
Period (sec)	S _a (g)	Period (sec)	S _a (g)	Period (sec)	S _a (g)	Period (sec)	S _a (g)
0.01	0.610	0.01	0.468	0.01	0.501	0.01	0.509
0.02	0.613	0.02	0.472	0.02	0.478	0.02	0.501
0.03	0.604	0.03	0.477	0.03	0.460	0.03	0.462
0.05	0.618	0.05	0.523	0.05	0.488	0.05	0.461
0.075	0.692	0.075	0.604	0.075	0.575	0.075	0.521
0.1	0.774	0.1	0.685	0.1	0.694	0.1	0.608
0.15	0.902	0.15	0.728	0.15	0.854	0.15	0.809
0.2	1.059	0.2	0.793	0.2	0.968	0.2	0.980
0.25	1.199	0.25	0.863	0.25	1.022	0.25	1.151
0.3	1.289	0.3	0.955	0.3	1.086	0.3	1.332
0.4	1.370	0.4	1.103	0.4	1.069	0.4	1.518
0.5	1.402	0.5	1.159	0.5	1.029	0.5	1.466
0.75	1.279	0.75	1.123	0.75	0.861	0.75	1.174
1	1.122	1	0.939	1	0.855	1	0.958
1.5	0.833	1.5	0.737	1.5	0.743	1.5	0.694
2	0.655	2	0.614	2	0.641	2	0.485
3	0.347	3	0.349	3	0.440	3	0.281
4	0.196	4	0.223	4	0.308	4	0.176
5	0.121	5	0.143	5	0.225	5	0.134
7.5	0.048	7.5	0.062	7.5	0.107	7.5	0.073
10	0.024	10	0.031	10	0.057	10	0.043
Deterministic Seismic Hazard Analysis Output (84th Percentile)							
	De	terministic Seisn	nic Hazard Ai	nalysis Output (8	4th Percentil	le)	
Chiou & Young	De s (2014)	Campbell & Bozo	ric Hazard Ai rgnia (2014)	Boore et al.	4th Percentil (2014)	e) Abrahamson ei	t al. (2014)
Chiou & Young Period	De Is (2014) S _a	Campbell & Bozo Period	ric Hazard Ai rgnia (2014) S _a	Boore et al. Period	(2014) S _a	l e) Abrahamson et Period	t al. (2014) S _a
Chiou & Young Period	De <u> s (2014)</u> S _a 0.948	Campbell & Bozo Period	nic Hazard Ar Irgnia (2014) S _a 0.707	Boore et al. Period	4th Percentil (2014) S _a 0.869	e) Abrahamson et Period 0.01	t al. (2014) S _a 0.806
Chiou & Young Period 0.01 0.02	De Is (2014) S _a 0.948 0.955	Campbell & Bozo Period 0.01 0.02	nic Hazard Ai orgnia (2014) S _a 0.707 0.713	Boore et al. Period 0.01 0.02	4th Percentil (2014) S _a 0.869 0.858	Abrahamson ei Period 0.01 0.02	t al. (2014) S _a 0.806 0.790
Chiou & Young Period 0.01 0.02 0.03	De (2014) S _a 0.948 0.955 0.946	Campbell & Bozo Period 0.01 0.02 0.03	nic Hazard Ai orgnia (2014) S _a 0.707 0.713 0.723	Difference Output (8 Boore et al. Period 0.01 0.02 0.03 0.03	4th Percentil (2014) S _a 0.869 0.858 0.844 0.844	e) Abrahamson e Period 0.01 0.02 0.03	t al. (2014) S _a 0.806 0.790 0.721
Chiou & Young Period 0.01 0.02 0.03 0.05	De <u>is (2014)</u> <u>Sa</u> 0.948 0.955 0.946 0.960 0.960	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806	Design of the second	4th Percentil (2014) S _a 0.869 0.858 0.844 0.944 0.944	e) Abrahamson e Period 0.01 0.02 0.03 0.05	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.721
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075	nic Hazard Au rgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 4.007	Period 0.01 0.02 0.03 0.05 0.075	4th Percenti (2014) S _a 0.869 0.858 0.844 0.944 1.157 4.002	Abrahamson e Period 0.01 0.02 0.03 0.05 0.075	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.255 1.168	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1	nic Hazard Au rgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.097	Period 0.01 0.02 0.03 0.05 0.075 0.1	4th Percenti (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.1	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.358	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.15	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 4.202	halysis Output (8 Boore et al. Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.15	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 4.724	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 4.405
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.2	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.040	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.07	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 4.225	halysis Output (8 Boore et al. Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 4 707	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 4.700
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.2	De (2014) Sa 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.240	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.2 0.25	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 4.500	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.22	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 4.001	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.2 0.25 0.55 0.55 0.55 0.55 0.55 0.55 0.55	t al. (2014) Sa 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 0.202
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4	De (2014) Sa 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 4.421	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.2	4th Percenti (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 4.902	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.4	De (2014) Sa 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.1 0.15 0.2 0.25 0.3 0.4 0.5	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.245	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.22 0.3 0.5 0.25 0.3 0.45 0.25 0.3 0.45	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 1.892 4.945	e) <u>Abrahamson e</u> <u>Period</u> 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.400
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75	De (2014) Sa 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.221	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124	Design of the second system Design of the second system <t< td=""><td>4th Percentii (2014) S₃ 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 1.892 1.845 1.636</td><td>e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75</td><td>t al. (2014) S_a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007</td></t<>	4th Percentii (2014) S₃ 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 1.892 1.845 1.636	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.020	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 4.227	Design of the second system Design of the second system <t< td=""><td>4th Percentii (2014) S_a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.734 1.787 1.901 1.892 1.845 1.590 1.670</td><td>e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75 1</td><td>t al. (2014) S_a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706</td></t<>	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.734 1.787 1.901 1.892 1.845 1.590 1.670	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75 1	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.039 1.580 1.590 1.	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 1.837 1.485 1.620 1.843 2.016 2.124 1.837 1.485 1	halysis Output (8 Boore et al. Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 15	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.734 1.787 1.901 1.892 1.845 1.590 1.679	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1 5	t al. (2014) S _a 0.806 0.790 0.711 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706 1.243
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.039 1.589 1.284	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1 1.5	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 1.837 1.486 1.242	halysis Output (8 Boore et al. Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.737 1.901 1.892 1.845 1.590 1.679 1.476 1.291	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2	t al. (2014) S _a 0.806 0.790 0.711 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706 1.305 0.900
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3	De (2014) Sa 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.039 1.589 1.284 0.688	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 2 2	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 1.837 1.486 1.243 0.712	halysis Output (8 Boore et al. Period 0.01 0.02 0.03 0.05 0.075 0.15 0.2 0.25 0.3 0.4 0.25 0.3 0.4 0.5 0.75 1 1.5 2 2 2	4th Percenti (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.734 1.787 1.901 1.892 1.845 1.590 1.679 1.476 1.281 0.893	Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.11 0.15 0.22 0.23 0.25 0.3 0.4 0.5 0.75 1 1.5 2	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706 1.305 0.949 0.554
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1.5 2 3 4	De (2014) Sa 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.039 1.589 1.284 0.688 0.300	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 1.837 1.486 1.243 0.712 0.441	Period 0.01 0.02 0.03 0.05 0.075 0.11 0.15 0.22 0.23 0.25 0.3 0.4 0.55 1 1.5 2 3 4	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 1.892 1.845 1.590 1.679 1.476 1.281 0.893 0.825	Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.22 0.25 0.3 0.4 0.5 1 1.5 2 3 4	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706 1.305 0.949 0.534
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1.5 2 3 4 5	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.039 1.589 1.284 0.688 0.390 0.220	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 4	nic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 1.837 1.486 1.243 0.712 0.441 0.225	Design of the second	4th Percentii (2014) S₃ 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 1.892 1.845 1.590 1.679 1.476 1.281 0.893 0.625 0.455	Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706 1.305 0.949 0.554 0.344 0.344
Chiou & Young Period 0.01 0.02 0.03 0.05 0.075 0.1 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 5 7 5	De (s (2014) S _a 0.948 0.955 0.946 0.960 1.055 1.168 1.358 1.610 1.849 2.016 2.204 2.316 2.232 2.039 1.589 1.284 0.688 0.390 0.239 0.094	terministic Seisn Campbell & Bozo Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.3 0.4 0.5 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 7 5	hic Hazard Au orgnia (2014) S _a 0.707 0.713 0.723 0.806 0.962 1.097 1.134 1.223 1.335 1.520 1.843 2.016 2.124 1.837 1.486 1.243 0.712 0.441 0.285 0.125	Allysis Output (8 Boore et al. Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.22 0.23 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 7.5	4th Percentii (2014) S _a 0.869 0.858 0.844 0.944 1.157 1.395 1.636 1.734 1.787 1.901 1.892 1.845 1.590 1.679 1.476 1.281 0.893 0.625 0.455 0.455	e) Abrahamson e Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 75	t al. (2014) S _a 0.806 0.790 0.721 0.719 0.817 0.950 1.243 1.495 1.760 2.063 2.441 2.409 2.007 1.706 1.305 0.949 0.554 0.344 0.263 0.144

Deterministic Seismic Hazard Analysis Input					
Newport Inglewood					
M _w :	7.5				
R _{RUP} (km):	6.80				
R _{JB} (km):	6.80				
R _x (km):	6.80				
Ry0 (km):	999				
V _{s30} (m/sec):	217				
U:	0				
F _{RV} :	0				
F _{NM} :	0				
F _{HW} :	0				
Dip (deg):	90				
Z _{TOR} (km):	0				
Z _{HYP} (km):	999				
Z _{1.0} (km):	0.8				
Z _{2.5} (km):	4.5				
W (km):	15				
Vs30Flag:	measured				
F _{AS} :	no				
Region	California				

	s (2014)	Campbell & Bozo	rgnia (2014)) Boore et al. (2014)		Abrahamson e	t al. (2014)
Period (sec)	S _a (g)	Period (sec)	S _a (g)	Period (sec)	S _a (g)	Period (sec)	S _a (g)
0.01	0.427	0.01	0.380	0.01	0.406	0.01	0.369
0.02	0.486	0.02	0.384	0.02	0.387	0.02	0.367
0.03	0.486	0.03	0.386	0.03	0.379	0.03	0.349
0.05	0.442	0.05	0.405	0.05	0.404	0.05	0.356
0.075	0.515	0.075	0.475	0.075	0.465	0.075	0.404
0.1	0.596	0.1	0.546	0.1	0.546	0.1	0.478
0.15	0.715	0.15	0.630	0.15	0.677	0.15	0.666
0.2	0.840	0.2	0.682	0.2	0.777	0.2	0.819
0.25	0.944	0.25	0.785	0.25	0.809	0.25	0.941
0.3	1.006	0.3	0.861	0.3	0.842	0.3	1.046
0.4	1.057	0.4	0.949	0.4	0.826	0.4	1.118
0.5	1.073	0.5	0.982	0.5	0.808	0.5	1.070
0.75	0.976	0.75	0.890	0.75	0.693	0.75	0.870
1	0.854	1	0.825	1	0.682	1	0.723
1.5	0.643	1.5	0.677	1.5	0.613	1.5	0.559
2	0.523	2	0.571	2	0.556	2	0.420
3	0.352	3	0.400	3	0.430	3	0.290
4	0.231	4	0.274	4	0.336	4	0.224
5	0.151	5	0.194	5	0.265	5	0.176
7.5	0.064	7.5	0.085	7.5	0.140	7.5	0.100
10	0.034 Da	terministic Seisn	0.043 nic Hazard Au	nalvsis Output (8	4th Percenti	<u>ان</u>	0.000
Chiou & Young	s (2014)	Campbell & Bozo	rgnia (2014)	Boore et al.	(2014)	Abrahamson e	t al. (2014)
Period	<u>ر م</u>	Doriod		Doriod	· · · ·	B : 1	
	Ja	Fellou	Sa	Feriou	Sa	Period	Sa
0.01	0.671	0.01	S _a 0.582	0.01	S _a 0.704	Period 0.01	S _a 0.601
0.01 0.02	0.671 0.766	0.01 0.02	5 _a 0.582 0.587	0.01 0.02	5 _a 0.704 0.695	0.01 0.02	5 _a 0.601 0.594
0.01 0.02 0.03	0.671 0.766 0.770	0.01 0.02 0.03	5 _a 0.582 0.587 0.593	0.01 0.02 0.03	S _a 0.704 0.695 0.696	0.01 0.02 0.03	S _a 0.601 0.594 0.558
0.01 0.02 0.03 0.05	0.671 0.766 0.770 0.695	0.01 0.02 0.03 0.05	5₄ 0.582 0.587 0.593 0.631	0.01 0.02 0.03 0.05	5 _a 0.704 0.695 0.696 0.780	0.01 0.02 0.03 0.05	5 _a 0.601 0.594 0.558 0.563
0.01 0.02 0.03 0.05 0.075	0.671 0.766 0.770 0.695 0.796	0.01 0.02 0.03 0.05 0.075	5 _a 0.582 0.587 0.593 0.631 0.764	0.01 0.02 0.03 0.05 0.075	S _a 0.704 0.695 0.696 0.780 0.934	0.01 0.02 0.03 0.05 0.075	S _a 0.601 0.594 0.558 0.563 0.637
0.01 0.02 0.03 0.05 0.075 0.1	0.671 0.766 0.770 0.695 0.796 0.913	0.01 0.02 0.03 0.05 0.075 0.1	5 _a 0.582 0.587 0.593 0.631 0.764 0.883	0.01 0.02 0.03 0.05 0.075 0.1	5 _a 0.704 0.695 0.696 0.780 0.934 1.098	Period 0.01 0.02 0.03 0.05 0.075 0.1	S _a 0.601 0.594 0.558 0.563 0.637 0.750
0.01 0.02 0.03 0.05 0.075 0.1 0.15	0.671 0.766 0.770 0.695 0.796 0.913 1.095	0.01 0.02 0.03 0.05 0.075 0.1 0.15	5a 0.582 0.587 0.593 0.631 0.764 0.883 0.992	0.01 0.02 0.03 0.05 0.075 0.1 0.15	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15	5a 0.601 0.594 0.558 0.563 0.637 0.750 1.029
0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2	S _a 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2	5 _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2	5₄ 0.601 0.594 0.558 0.653 0.637 0.750 1.029 1.262
0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25	S _a 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415	Period 0.01 0.02 0.03 0.075 0.1 0.15 0.2 0.25	5₄ 0.601 0.594 0.558 0.637 0.750 1.029 1.262 1.467
0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3	S _a 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3	5 _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3	5₂ 0.601 0.594 0.558 0.563 0.750 1.029 1.262 1.467 1.667
0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726	0.01 0.02 0.03 0.05 0.075 0.1 0.1 0.2 0.25 0.3 0.4	S _a 0.582 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.462	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5	S₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.667 1.862
0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.726	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5	Sa 0.582 0.587 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 0.200	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.475 1.462 1.448	Period 0.01 0.03 0.05 0.075 0.1 0.15 0.25 0.3 0.4 0.55	S₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.667 1.862 1.822 1.822
$\begin{array}{c} 0.01 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.075 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.75 \\ \end{array}$	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.719 1.719	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75	Sa 0.582 0.587 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 4.602	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.475 1.462 1.448 1.279	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75	S₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.667 1.862 1.822 1.822 1.531 .531
0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.719 1.560	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75 1	S _a 0.582 0.587 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 1.624	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.25 0.3 0.4 0.5 0.75 1	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.475 1.462 1.448 1.279 1.339 1.339	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1	5₀ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.862 1.862 1.822 1.531 1.316 1.316
$\begin{array}{c} 0.01 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.075 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.75 \\ 1 \\ 1.5 \end{array}$	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.719 1.560 1.231 1.231	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5	S _a 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 1.624 1.369 1.624 1.369	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.3 0.4 0.5 0.75 1 1.5	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.462 1.448 1.279 1.339 1.218	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2	5₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.667 1.862 1.822 1.531 1.316 1.061 0.621
$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.05\\ 0.075\\ 0.1\\ 0.15\\ 0.2\\ 0.25\\ 0.3\\ 0.4\\ 0.5\\ 0.75\\ 1\\ 1.5\\ 2\\ 2\\ 2\end{array}$	5a 0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.719 1.560 1.231 1.027	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 2	Sa 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 1.624 1.369 1.624 1.369 0.582 0.582 0.587 0.587 0.587 0.587 0.587 0.593 0.631 0.764 0.883 0.992 1.064 0.883 0.992	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.462 1.448 1.279 1.339 1.218 1.218 1.218 1.218	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 2	S_a 0.601 0.594 0.558 0.558 0.637 0.750 1.029 1.262 1.467 1.667 1.862 1.822 1.531 1.316 1.061 0.824 0.572
$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.05\\ 0.075\\ 0.1\\ 0.15\\ 0.2\\ 0.25\\ 0.3\\ 0.4\\ 0.5\\ 0.75\\ 1\\ 1.5\\ 2\\ 3\\ 4\end{array}$	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.795 1.719 1.560 1.231 1.027 0.699 0.460	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4	S _a 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 1.624 1.369 1.156 0.816	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.415 1.475 1.462 1.448 1.279 1.339 1.218 1.113 0.874 0.622	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4	S₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.862 1.822 1.531 1.316 1.061 0.824 0.572 0.427
$\begin{array}{c} 0.01 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.075 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.75 \\ 1 \\ 1.5 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.719 1.560 1.231 1.027 0.699 0.460 0.220	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4	Sa 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 1.624 1.369 1.156 0.816 0.813 0.237	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.415 1.475 1.462 1.448 1.279 1.339 1.218 1.113 0.874 0.682	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 2 3 4 5 5 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	S₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.862 1.822 1.531 1.316 1.061 0.824 0.572 0.437 0.246
$\begin{array}{c} 0.01\\ 0.02\\ 0.03\\ 0.05\\ 0.075\\ 0.1\\ 0.15\\ 0.2\\ 0.25\\ 0.3\\ 0.4\\ 0.5\\ 0.75\\ 1\\ 1.5\\ 2\\ 3\\ 4\\ 5\\ 75\end{array}$	0.671 0.766 0.770 0.695 0.796 0.913 1.095 1.300 1.482 1.601 1.726 1.795 1.719 1.560 1.231 1.027 0.699 0.460 0.298 0.126	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 5 5	Sa 0.582 0.587 0.593 0.631 0.764 0.883 0.992 1.064 1.229 1.389 1.602 1.725 1.699 1.624 1.369 1.156 0.816 0.543 0.387 0.172	0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 5	S _a 0.704 0.695 0.696 0.780 0.934 1.098 1.298 1.392 1.415 1.475 1.462 1.448 1.279 1.339 1.218 1.113 0.874 0.683 0.270	Period 0.01 0.02 0.03 0.05 0.075 0.1 0.15 0.25 0.3 0.4 0.5 0.75 1 1.5 2 3 4 5 75	S₂ 0.601 0.594 0.558 0.563 0.637 0.750 1.029 1.262 1.467 1.862 1.822 1.531 1.316 1.061 0.824 0.572 0.437 0.346 0.197

Chiou & Youngs (2014) Campbell &		Campbell & Bozorgr	nia (2014)	Boore et al. (2	014)	Abrahamson et al	al. (2014)	
Site Param List:		Site Param List:		Site Param List:		Site Param List:		
Longitude	-118.06872	Longitude	-118.06872	Longitude	-118.06872	Longitude	-118.06872	
Latitude	33.813297	Latitude	33.813297	Latitude	33.813297	Latitude	33.813297	
Vs30	217	Vs30	217	Vs30	217	Vs30	217	
Vs30 Type	Measured	Vs30 Type	Measured	Vs30 Type	Measured	Vs30 Type	Measured	
Depth 1.0 km/sec (m)	800	Depth 1.0 km/sec (m)	800	Depth 1.0 km/sec (m)	800	Depth 1.0 km/sec (m)	800	
Depth 2.5 km/sec (km)) 4.5	Depth 2.5 km/sec (km)	4.5	Depth 2.5 km/sec (km)	4.5	Depth 2.5 km/sec (km)	4.5	

IMR Param List:

Gaussian Truncation **Tectonic Region** Component Std Dev Type Additional Epistemic Uncertainty IML/Prob Param List: Мар Туре Probability Forecast Param List: Eqk Rup Forecast Mean UCERF3 Presets Apply Aftershock Filter Aleatory Mag-Area StdDev Background Seismicity Treat Background Seismicity As Use Quad Surfaces (otherwise gridded) Fault Grid Spacing Probability Model Sect Upper Depth Averaging Tolerance (km) Use Mean Upper Depth Rup Mag Averaging Tolerance Rupture Rake To Use Fault Model(s) Ignore Cache TimeSpan Param List: Duration (Years)

None Active Shallow Crust RotD50 Total (Disabled) IML@Prob 0.02 Mean UCERF3 (POISSON ONLY) Both FM Branch Averaged False 0 Include **Point Sources** False 1 Poisson 100 True 1 Def. Model Mean Both FALSE 50

		Probabilistic S	eismic Hazar	d Analysis (2%	in 50 years)		
Chiou & Your	ngs (2014)	Campbell & Bozorgnia (2014) Boore et al. (2014) Abra			Abrahamson	et al. (2014)	
Period (sec)	S _a (g)	Period (sec)	S _a (g)	Period (sec)	S _a (g)	Period (sec)	S _a (g)
0.01	0.697	0.01	0.563	0.01	0.772	0.01	0.725
0.02	0.702	0.02	0.566	0.02	0.791	0.02	0.721
0.03	0.713	0.03	0.576	0.03	0.812	0.03	0.690
0.05	0.768	0.05	0.638	0.05	0.983	0.05	0.714
0.075	0.909	0.075	0.837	0.075	1.332	0.075	0.818
0.1	1.067	0.1	1.040	0.1	1.595	0.1	0.974
0.15	1.305	0.15	1.216	0.15	1.723	0.15	1.344
0.2	1.536	0.2	1.307	0.2	1.614	0.2	1.620
0.25	1.712	0.25	1.438	0.25	1.541	0.25	1.799
0.3	1.802	0.3	1.619	0.3	1.542	0.3	1.941
0.4	1.841	0.4	1.676	0.4	1.444	0.4	2.025
0.5	1.820	0.5	1.721	0.5	1.391	0.5	1.923
0.75	1.591	0.75	1.621	0.75	1.136	0.75	1.528
1	1.367	1	1.379	1	1.156	1	1.269
1.5	1.029	1.5	1.039	1.5	0.926	1.5	0.974
2	0.829	2	0.823	2	0.810	2	0.730
3	0.513	3	0.542	3	0.607	3	0.474
4	0.319	4	0.362	4	0.475	4	0.343
5	0.202	5	0.258	5	0.380	5	0.271
7.5	0.084	7.5	0.122	7.5	0.223	7.5	0.173
10	0.044	10	0.059	10	0.125	10	0.118

APPENDIX E

Liquefaction Analysis

Ninyo & Moore | Los Alamitos High School New Gymnasium, Los Alamitos, California | 211897001 | September 30, 2022

CivilTech Corporation

Liquefy.sum

***** LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltech.com ***** Font: Courier New, Regular, Size 8 is recommended for this report. 5/25/2022 Licensed to . 2:42:15 PM Input File Name: G:\Projects\200000 - Irvine\211850 -211899\211897\211897001\Electronic Project File\Data Analysis & Calculations\Liquefaction\CPT-1 Los Alamitos HS Liquefy starting at 5'.liq Title: Los Alamitos High School Subtitle: 211897001 Surface Elev.=28 Hole No.=CPT-1 Depth of Hole= 100.00 ft Water Table during Earthquake= 10.00 ft Water Table during In-Situ Testing= 10.00 ft Max. Acceleration= 0.69 g Earthquake Magnitude= 7.30 Input Data: Surface Elev.=28 Hole No.=CPT-1 Depth of Hole=100.00 ft Water Table during Earthquake= 10.00 ft Water Table during In-Situ Testing= 10.00 ft Max. Acceleration=0.69 g Earthquake Magnitude=7.30 No-Liquefiable Soils: CL, OL are Non-Liq. Soil 1. CPT Calculation Method: Modify Robertson* 2. Settlement Analysis Method: Tokimatsu/Seed 3. Fines Correction for Liquefaction: Stark/Olson et al.* 4. Fine Correction for Settlement: During Liquefaction* Settlement Calculation in: All zones*
 User request factor of safety (apply to CSR) , Plot one CSR curve (fs1=User) User= 1.3 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: D50 Rf Fines Depth qc ts. gamma ft atm pcf atm % mm 0.00 -999.00 -999.00 100.00 120.00 * 0.50 6.96 91.18 0.47 0.51 120.00 * 0.50 14.51 * 0.50 9.06 0.21 1.44 120.00 0.16 * 9.71 1.62 120.00 0.50 11.18* 13.26 9.84 0.32 3.21 120.00 0.50 * 15.35 13.47 0.35 2.57 120.00 0.50 * 17.47 120.00 11.66 0.32 2.76 0.50 * 19.61 12.78 0.22 1.75 120.00 0.50 * 76.94 21.69 1.67 2.17 120.00 0.50 2.22 15.20 * 0.50 23.76 0.34 120.00 * 25.86 14.51 0.34 2.37 120.00 0.50 27.96 17.27 * 0.34 1.96 120.00 0.50 * 30.12 11.74 0.13 120.00 0.50 1.14 * 32.23 27.54 0.52 1.88 120.00 0.50 * 34.34 43.17 0.89 120.00 2.07 0.50 120.00 36.42 123.10 * 1.37 1.12 0.50 120.00 3.72 * 38.55 19.86 0.74 0.50 * 40.66 69.77 1.83 2.62 120.00 0.50 * 48.18 2.58 120.00 0.50 42.73 1.24 44.81 * 40.93 5.36 120.00 0.50 2.19

				Liquefv	.sum	
46.92	51.12	2.37	4.64	120.00	*	0.50
49.04	170.50	2.18	1.28	120.00	*	0.50
51.12	43.61	1.48	3.40	120.00	*	0.50
53.21	125.10	1.63	1.30	120.00	*	0.50
55.31	37.65	1.47	3.91	120.00	*	0.50
57.41	16.58	0.57	3.45	120.00	*	0.50
59.61	50.00	1.60	3.19	120.00	*	0.50
61.70	93.95	0.81	0.87	120.00	*	0.50
63.80	144.70	1.86	1.29	120.00	*	0.50
65.88	204.80	2.65	1.29	120.00	*	0.50
67.98	110.00	2.56	2.33	120.00	*	0.50
70.08	20.90	1.06	5.07	120.00	*	0.50
72.20	92.91	1.81	1.94	120.00	*	0.50
74.34	67.09	1.66	2.47	120.00	*	0.50
86.39	63.64	2.12	3.33	120.00	*	0.50
95.54	290.90	1.83	0.63	120.00	*	0.50
97.66	374.00	2.03	0.54	120.00	*	0.50
99.74	411.90	0.00	0.00	120.00	*	0.50

* Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results: Settlement of Saturated Sands=3.46 in. Settlement of Unsaturated Sands=1.08 in. Total Settlement of Saturated and Unsaturated Sands=4.54 in. Differential Settlement=2.271 to 2.998 in.

Depth ft	CRRm	CSRfs	F.S.	S_sat. in.	S_dry in.	S_all in.	
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 14.00 15.00 14.00 15.00 14.00 20.00 21.00 22.00 23.00 24.00 25.00 24.00 25.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 31.00 31.00 31.00 31.00 32.00 31.00 31.00 32.00 31.00 32.00 31.00 32.00 33.00 34.00 35.00 37.00 37.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 0.23 0.34 0.14 0.19 0.11 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.58 0.58 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.62 0.64 0.66 0.68 0.69 0.71 0.72 0.73 0.75 0.75 0.78 0.77 0.78 0.78 0.78 0.78 0.81 0.82 0.820	5.00 5.00	3.46 3.39 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.111 3.986 2.74	$\begin{array}{c} 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 1.08\\ 0.82\\ 0.66\\ 0.45\\ 0.38\\ 0.00\\$	4.54 4.54 4.54 4.54 4.54 4.28 4.12 3.91 3.84 3.39 3.50 3.16	
38.00	0.21	0.81	0.26*	2.6/	0.00	2.6/	

39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 61.00	2.00 2.00 0.16 2.00 0.30 2.00 2.00 2.00 0.44 0.29 0.29 2.00 0.19 2.00 0.22 2.00	0.81 0.80 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.77 0.76 0.75 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.73 0.72 0.71 0.70 0.69	5.00 5.00 0.20* 5.00 0.38* 5.00 0.39* 5.00 0.57* 0.39* 5.00 0.57* 0.39* 5.00 0.25* 5.00	Liquefy 2.64 2.59 2.55 2.50 2.44 2.25 2.25 2.20 2.09 1.94 1.94 1.85 1.77 1.72 1.71 1.71 1.71 1.71 1.64 1.60	.sum 0.00	2.64 2.59 2.55 2.50 2.44 2.40 2.33 2.25 2.20 2.09 1.94 1.94 1.85 1.77 1.72 1.71 1.71 1.71 1.71 1.71 1.64 1.60
78.00 79.00 80.00 81.00 82.00 83.00 84.00 85.00 84.00 85.00 86.00 87.00 88.00 90.00 91.00 92.00 93.00 93.00 94.00 95.00 95.00 95.00 96.00 97.00 98.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.59 0.58 0.58 0.58 0.58 0.58 0.58 0.57 0.57 0.57 0.57 0.57 0.56 0.56 0.56 0.56 0.55 0.55 0.55 0.55	5.00 5.00	0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.22 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.07 0.00 0.00 0.00	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.29\\ 0.22\\ 0.28\\ 0.22\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.14\\ 0.07\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$
99.00 100.00 * F.S.<1	0.95 2.00	0.54 0.54	1.74 5.00	0.00 0.00	0.00	0.00

(F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in. Liquefy.sum 1 atm (atmosphere) = 1 tsf (ton/ft2) CRRm Cyclic resistance ratio from soils CSRsf Cyclic stress ratio induced by a given earthquake (with user request factor of safety) F.S. Factor of Safety against liquefaction, F.S.=CRRm/CSRsf S_sat Settlement from saturated sands S_dry Settlement from Unsaturated Sands S_all Total Settlement from Saturated and Unsaturated Sands NoLiq No-Liquefy Soils

Liquefy.sum

***** LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltech.com ***** Font: Courier New, Regular, Size 8 is recommended for this report. 5/25/2022 Licensed to . 2:10:08 PM Input File Name: G:\Projects\200000 - Irvine\211850 -211899\211897\211897001\Electronic Project File\Data Analysis & Calculations\Liquefaction\CPT-2 Los Alamitos HS LiquefyPro starting at 5'.liq Title: Los Alamitos High School Subtitle: 211897001 Surface Elev.=28 Hole No.=CPT-2 Depth of Hole= 100.00 ft Water Table during Earthquake= 10.00 ft Water Table during In-Situ Testing= 10.00 ft Max. Acceleration= 0.69 g Earthquake Magnitude= 7.30 Input Data: Surface Elev.=28 Hole No.=CPT-2 Depth of Hole=100.00 ft Water Table during Earthquake= 10.00 ft Water Table during In-Situ Testing= 10.00 ft Max. Acceleration=0.69 g Earthquake Magnitude=7.30 No-Liquefiable Soils: CL, OL are Non-Liq. Soil 1. CPT Calculation Method: Modify Robertson* 2. Settlement Analysis Method: Tokimatsu/Seed 3. Fines Correction for Liquefaction: Stark/Olson et al.* 4. Fine Correction for Settlement: During Liquefaction* Settlement Calculation in: All zones*
 User request factor of safety (apply to CSR) , Plot one CSR curve (fs1=User) User= 1.3 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: D50 Rf Fines Depth qc ts. gamma ft atm pcf atm % mm 0.00 -999.00 -999.00 100.00 120.00 * 0.50 5.84 54.49 0.47 0.86 120.00 * 0.50 10.53 * 0.50 6.79 0.33 3.16 120.00 * 7.71 7.25 0.32 4.38 120.00 0.50 * 8.61 9.07 0.27 3.01 120.00 0.50 1.90 * 9.53 0.12 120.00 0.50 6.13 2.59 * 10.44 120.00 10.71 0.28 0.50 * 11.35 10.45 0.38 3.67 120.00 0.50 * 12.29 11.83 0.39 3.27 120.00 0.50 13.20 * 0.50 10.10 0.39 3.88 120.00 0.40 * 14.12 10.71 3.77 120.00 0.50 * 15.05 11.48 0.37 3.25 120.00 0.50 * 15.97 10.10 0.47 4.66 120.00 0.50 * 16.89 8.55 0.21 2.49 120.00 0.50 3.40 * 120.00 17.79 8.29 0.28 0.50 120.00 18.70 12.43 5.66 * 0.70 0.50 120.00 2.27 5.13 * 19.64 44.21 0.50 * 20.57 46.71 1.63 3.49 120.00 0.50 * 21.46 3.27 0.50 19.60 0.64 120.00 * 22.41 12.00 120.00 0.50 0.44 3.68

23 20	11 66	0 33	2 62	Liquefy.	sum	
23.30 24.24 25.17 26.990 27.90 31.51 33.33 35.17 38.92 41.62 43.51 45.29 55.41 37.10 38.92 41.62 44.44 45.36 41.62 43.51 45.29 55.21 55.42 55.21 55.	11.66 12.26 13.90 15.89 15.37 16.58 13.12 16.15 53.88 13.12 22.36 70.20 141.70 123.56 95.50 30.22 71.58 44.21 25.04 69.34 221.74 104.39 62.00 147.57 33.42 32.60 142.30 39.89 60.51 92.91 71.06 150.33 32.010 96.19 30.14 69.25 203.09 169.85 155.77 118.12 2131.85 72.45 216.04 253.52 249.03 244.02 241.17 251.62 282.70 302.22 332.87 273.03 237.89 213.03 237.89 243.03 231.67	$\begin{array}{c} 0.3268900\\ 0.000000000000000000000000000000000$	2.83 2.64 4.26 3.60 4.52 1.84 4.60 2.94 4.52 1.03 4.71 1.51 4.821 1.251 4.821 1.251 4.232 1.251 4.232 1.251 4.232 1.251 4.232 1.225 4.222 1.225 4.222 1.225 4.222 1.225 4.222 1.225	Liquefy. 120.00	Sx * * * * * * * * * * * * * * * * * * *	0.50 0.50
76.78 77.73 78.62 79.53 80.47 81.38	237.89 213.97 243.03 231.67 252.31 136.26	2.58 2.27 2.59 2.65 2.61 1.44	$1.08 \\ 1.06 \\ 1.07 \\ 1.14 \\ 1.04 \\ 1.06$	$120.00 \\ 1$	* * * * * *	0.50 0.50 0.50 0.50 0.50 0.50
88.00 90.06	87.30 143.40	2.05 3.09	2.34 2.15	120.00	*	0.50

* Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results: Settlement of Saturated Sands=2.60 in. Settlement of Unsaturated Sands=0.20 in. Total Settlement of Saturated and Unsaturated Sands=2.80 in. Differential Settlement=1.401 to 1.849 in.

Depth ft	CRRm	CSRfs	F.S.	S_sat. in.	S_dry in.	S_all in.
Depth 0.00 1.00 2.00 3.00 4.00 5.00 7.00 8.00 9.00 11.00 12.00 13.00 14.00 15.00 17.00 18.00 22.00 23.00 24.00 25.00 27.00 28.00 29.00 31.00 32.00 33.00 34.00 44.00 45.00 44.00 45.00 47.00 50.00 51.00 52.00 53.00 54.00 55.00 57.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.58 0.58 0.58 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57	F.S. 5.00 5.00 5.00 5.000	<pre>s_sat. in. 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.6</pre>	S_ary in. 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.	S_aii in. 2.80 2.80 2.80 2.80 2.80 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.6
59.00 60.00	2.00	0.71 0.70	5.00 0.76*	1.10 1.05	0.00	$1.\overline{10} \\ 1.05$

					Liquefy	/.sum				
	61.00 62.00 63.00 64.00 65.00 66.00 67.00 70.00 71.00 72.00 73.00 74.00 75.00 75.00 79.00 80.00 81.00 81.00 82.00 81.00 82.00 83.00 84.00 85.00 85.00 90.00 91.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 92.00 91.00 9	0.50 0.33 0.23 0.25 2.00 0.70 0.80 0.74 0.62 0.71 0.62 0.861 1.01 1.00 1.08 0.48 0.48 0.52 2.000 2.00 2.	0.69 0.68 0.67 0.665 0.665 0.665 0.662 0.621 0.599 0.558 0.558 0.557 0.556 0.555	0.72* 0.49* 0.34* 0.37* 1.05 1.22 1.15 0.97* 1.39 1.66 1.62 1.09 0.82* 0.92* 0.93* 0.90 5.0	Liquefy 1.02 0.98 0.85 0.71 0.64 0.60 0.60 0.58 0.57 0.56 0.56 0.55 0.55 0.55 0.55 0.55 0.21 0.01 0.00 0.0	<pre>/.sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.</pre>	$\begin{array}{c} 1.02\\ 0.98\\ 0.85\\ 0.71\\ 0.64\\ 0.60\\ 0.60\\ 0.60\\ 0.56\\ 0.56\\ 0.56\\ 0.56\\ 0.55\\ 0.51\\ 0.43\\ 0.38\\ 0.221\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.21\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.00$			
	97.00 98.00 99.00 100.00	2.00 2.00 2.00 2.00 2.00	0.55 0.55 0.54 0.54	5.00 5.00 5.00 5.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00			
	* F.S.< (F.S. i	1, Liqu s limit	efaction ed to 5,	Potenti CRR is	al Zone limited	to 2,	CSR is	limited to	o 2)	
=	Units: ft; Set	Unit: tlement	qc, fs, = in.	Stress o	r Pressu	re = atm	(1.0581t	sf); Unit	Weight =	pcf;
	1 atm (CRRm CSRsf	atmosph	ere) = 1 Cyclic Cyclic	tsf (to resista stress	n/ft2) nce rati ratio in	o from so duced bv	oils a given	earthquake	e (with u	 ser

CSRst Cyclic stress ratio induced by a given earthquake	(with user
request factor of safety)	
F.S. Factor of Safety against liquefaction, F.S.=CRRm/	CSRsf
S_sat Settlement from saturated sands	
S_dry Settlement from Unsaturated Sands	
S_all Total Settlement from Saturated and Unsaturated S	ands
NoLiq No-Liquefy Soils	

Depth

APPENDIX F

Dynamic Settlement of Shallow Foundations Analysis

Estimate bearing capacity and soil dynamic settlement for strip footing in liquefiable soil

Los Alamitos High School, Proj. No. 211897001

Reference: Bouckovalas, G. and Dakoulas, P., 2007, Liquefaction performance of shallow foundations in presence of a soil crust, 4th ICEGE Invited Lecture, edited by K.D. Pitilakis

•	nput design	parameter	S					
Footing De	pth, B (ft) = <mark>_</mark>	2						
Footing cor	ntact pressu	re, q (psf) =	-	3000				
Soil Crust,	Cu (psf) = <mark> </mark>	1000						
Soil Crust,	Thickness H	l (ft) =	30					
Soil Crust,	buoyant unit	t weightγ' (pcf) =	52.6	Soil Crust t	otal unit wei	ght (pcf) =	115
Liqufiable s	soil, ϕ_o (deg)	=	30					
Thickness of	of liquefied s	soil, Z (ft)=	45					
Liqufiable s	Liquifiable soil, σ_{vo} at depth B below soil crust (psf) = 2307.2							
Liqufiable s	oil, $\Delta \sigma_v$ indu	ced by q a	t depth B be	low soil cru	st (psf) =	100		
Estimated of	dynamic sett	tlement , $ ho_{c}$	_{lyn} (ft) =	0.007045				
Design s	eismic para	meters:						
PGA, a _{max} ((ft/s^2) =		22.057					
Number of	cycles, N =		12.8					
Predomina	nt period, T	(sec) =	0.35					
			Iterat	ive Calcula	tions			
	3rd Run			2nd Run			1st Run	
a = 1-250(p	o _{dyn} /B)^2 =	0.996898	a = 1-250(re	dyn/B)^2 =	0.997058	a = 1-250(ro	lyn/B)^2 =	0.84375
a = 1-250(p U =	o _{dyn} /B)^2 = 0.977742	0.996898	a = 1-250(re U =	dyn/B)^2 = 0.977819	0.997058	a = 1-250(ro U =	lyn/B)^2 = 0.904349	0.84375
a = 1-250(ρ U = φ =	o _{dyn} /B)^2 = 0.977742 0.74	0.996898 (deg)	a = 1-250(rd U = f =	dyn/B)^2 = 0.977819 0.733703	0.997058 (deg)	a = 1-250(rc U = f =	lyn/B)^2 = 0.904349 3.160884	0.84375 (deg)
a = 1-250(ρ U = φ = N _{γ-φ} =	o _{dyn} /B)^2 = 0.977742 0.74 0.1	0.996898 (deg)	a = 1-250(rd U = f = Ng-f =	dyn/B)^2 = 0.977819 0.733703 0.1	0.997058 (deg)	a = 1-250(rc U = f = Ng-f =	lyn/B)^2 = 0.904349 3.160884 0.2	0.84375 (deg)
a = 1-250(ρ U = ϕ = N _{$\gamma-\phi$} = N _{$q-\phi$} =	o _{dyn} /B)^2 = 0.977742 0.74 0.1 1.1	0.996898 (deg)	a = 1-250(rd U = f = Ng-f = Nq-f =	dyn/B)^2 = 0.977819 0.733703 0.1 1.1	0.997058 (deg)	a = 1-250(rc U = f = Ng-f = Nq-f =	lyn/B)^2 = 0.904349 3.160884 0.2 1.3	0.84375 (deg)
a = 1-250(ρ U = φ = N _{γ-φ} = N _{q-φ} = FS ^c deg =	D _{dyn} /B)^2 = 0.977742 0.74 0.1 1.1 10.05435	0.996898 (deg)	a = 1-250(n U = f = Ng-f = Nq-f = FScdeg =	dyn/B)^2 = 0.977819 0.733703 0.1 1.1 10.05435	0.997058 (deg)	a = 1-250(rc U = f = Ng-f = Nq-f = FScdeg =	lyn/B)^2 = 0.904349 3.160884 0.2 1.3 10.16131	0.84375 (deg)
a = 1-250(ρ U = φ = N _{γ-φ} = FS [°] deg = FS [°] deg =	o _{dyn} /B)^2 = 0.977742 0.74 0.1 1.1 10.05435 1.713333	0.996898 (deg)	a = 1-250(rd U = f = Ng-f = Nq-f = FScdeg = FSdeg =	dyn/B)^2 = 0.977819 0.733703 0.1 1.1 10.05435 1.713333	0.997058 (deg)	a = 1-250(rc U = f = Ng-f = Nq-f = FScdeg = FSdeg =	lyn/B)^2 = 0.904349 3.160884 0.2 1.3 10.16131 1.713333	0.84375 (deg)
$a = 1-250(\rho)$ $U = \phi = N_{\gamma \rightarrow \phi} = N_{q \rightarrow \phi} = FScdeg = FSdeg = \rho_o = $	o _{dyn} /B)^2 = 0.977742 0.74 0.1 1.1 10.05435 1.713333 2.258278	0.996898 (deg) (ft)	a = 1-250(rd U = f = Ng-f = Nq-f = FScdeg = FSdeg = ro =	dyn/B)^2 = 0.977819 0.733703 0.1 1.1 10.05435 1.713333 2.258278	0.997058 (deg) (ft)	a = 1-250(rc U = f = Ng-f = Nq-f = FScdeg = FSdeg = ro =	lyn/B)^2 = 0.904349 3.160884 0.2 1.3 10.16131 1.713333 2.258278	0.84375 (deg) (ft)
a = $1-250(\rho)$ U = ϕ = $N_{\gamma-\phi}$ = $N_{q-\phi}$ = $FS^{c}deg$ = FSdeg = ρ_{o} = ρ_{dyn} =	D _{dyn} /B)^2 = 0.977742 0.74 0.1 1.1 10.05435 1.713333 2.258278 0.007045	0.996898 (deg) (ft) (ft)	a = 1-250(rd U = f = Ng-f = Nq-f = FScdeg = FSdeg = ro = rdyn =	dyn/B)^2 = 0.977819 0.733703 0.1 1.1 10.05435 1.713333 2.258278 0.007045	0.997058 (deg) (ft) (ft)	a = 1-250(rc U = f = Ng-f = Nq-f = FScdeg = FSdeg = ro = rdyn =	lyn/B)^2 = 0.904349 3.160884 0.2 1.3 10.16131 1.713333 2.258278 0.006861	0.84375 (deg) (ft) (ft)

475 Goddard, Suite 200 | Irvine, California 92618 | p. 949.753.7070

ARIZONA | CALIFORNIA | COLORADO | NEVADA | TEXAS | UTAH

ninyoandmoore.com

