

Electronic Transmittal Form for DEEP Remediation, LUST, and PCB Secure File Transfer (SFT)

DEPARTMENT OF ENERGY AND ENVIRONMENTAL PROTECTION REMEDIATION DIVISION, PCB PROGRAM, AND LEAKING UNDERGROUND STORAGE TANK COORDINATION PROGRAM

www.ct.gov/deep

This Electronic Transmittal Form must be completed and included as the cover sheet of your electronic document when uploading a document to the Connecticut SFT website. Requirements for Transmittals through the SFT website:

- Documents submitted through the SFT website must include all applicable figures, tables and laboratory data.
- Files must be formatted as PDF/A and use the appropriate naming convention:
 - For Remediation Filings: REM_REMID #_SiteAddress_Town_DocumentType_DateofDocument
 - For LUST Filings: LUST_SiteAddress_Town_AbbreviationForDocumentType_DateofDocument
 - o For PCB Filings: PCB_SiteAddress_Town_AbbreviationForDocumentType_DateofDocument Example: LUST_1MainStreet_Hartford_ESA_01-01-2001

Note: For "AbbreviationForDocumentType" use appropriate abbreviation at Transmittal of Documents

If no Rem ID assigned (new filing) or REM ID is unknown leave field blank

Part I: Primary Recipient*: REM, PCB or LUST (* required)

For Remediation documents: For PCB/LUST documents:

Primary Program*: Brownfield Program UST Facility ID: (if applicable)

Rem ID*: 14919 Spill Case Number: (if known)

Part II: Site Information

Site Name*: Former Daniel's Mill

Site Address*: 98 East Main Street

City/Town*: Vernon State: CT Zip Code: 06066

Secondary Programs (complete as many as applicable for this document):

Program: PCB Project ID:
Program: Select Secondary Program Project ID:
Program: Select Secondary Program Project ID:
Program: Select Secondary Program Project ID:

Provide Project ID for each secondary program if it is known.

Each program has a unique ID (i.e. Rem ID, Spill Case #, UST Facility ID, etc.)

Part III: Document Information (document type required for appropriate program[s] only)

Remediation*: Notification Required by the RSRs

LUST/PCB*: SIP Notification

Date of Document*: 1/20/2023 Version: Final

Part IV: Submitter Information

Name*: David Rusczyk

E-mail*: david.rusczyk@gza.com

Name of company/business this document is being submitted on behalf of: *

Town of Vernon

NOTIFICATION OF SELF-IMPLEMENTING CLEANUP PCB IMPACTED CONCRETE AND SOIL FORMER DANIEL'S MILL 98 East Main Street Vernon, Connecticut

January 2023 File No. 05.0045441.12

PREPARED FOR:

Environmental Protection Agency Boston, Massachusetts

GZA GeoEnvironmental, Inc.

95 Glastonbury Boulevard, 3rd Floor | Glastonbury, CT 06033 860-286-8900

28 Offices Nationwide www.gza.com

Copyright© 2023 GZA GeoEnvironmental, Inc

ECOLOGICAL

CONSTRUCTION MANAGEMENT

95 Glastonbury Boulevard Glastonbury, CT 06033 T: 860.286.8900 F: 860.633.5699 www.gza.com

January 20, 2023 GZA Project No. 05.0045441.12

Mr. Brian Drake RCRA Corrective Action & TSCA Section Environmental Protection Agency, Region 1 5 Post Office Square, Suite 100 Boston, MA 02109

Notification of Self-Implementing Cleanup PCB Impacted Concrete and Soil Former Daniel's Mill 98 East Main Street Vernon, Connecticut

Dear Mr. Drake:

On behalf of the Town of Vernon, GZA GeoEnvironmental, Inc. (GZA) has prepared this Notification of a Self-Implementing Cleanup to address polychlorinated biphenyl (PCB) impacted concrete and soil identified at the Daniel's Mill property located at 98 East Main Street in Vernon, Connecticut (Site). Environmental investigations detected the presence of PCBs within the concrete floor of the basement of the mill building at concentrations up to 50.9 mg/kg, in soil below the basement floor at concentrations up to 91 mg/kg, and in two exterior areas directly adjacent to the mill building at concentrations up to 26 mg/kg. These materials meet the definition of Bulk PCB Remediation Waste and the goal of the cleanup is to remediate these materials to meet the levels for unrestricted, high occupancy use (less than 1 mg/kg) under 761.61(a)(4)(i)(A). This report is subject to the Limitations presented in Appendix A.

Consistent with 761.61(a)(3)(E), certifications by the preparers of this notification and by the Owner/Operator are included in **Appendix B**.

We trust this report satisfies your requirements; should you require additional information, please call the David Rusczyk at (860)-858-3110.

Very truly yours,

GZA GEOENVIRONMENTAL. INC.

David Rusczyk, P.E. Associate Principal

Adam Henry, LEP Consultant/Reviewer

cc: Katherine Woodward, Environmental Protection Agency Shaun Gately, Town of Vernon Gary Trombly, CT Department of Energy and Environmental Protection Amber Trahan, CT Department of Energy and Environmental Protection John Gumpert, Vernon Mill, LLC Malcolm Beeler, Weston & Sampson

1.0 INTRODUCTION	
1.1 PROJECT TEAM	1
2.0 SITE BACKGROUND AND HISTORY	2
3.0 SUMMARY OF INVESTIGATIONS AND EXTENT OF PCB IMPACTS	3
3.1 SUMMARY OF PHASE II INVESTIGATIONS	
3.2 SUMMARY OF PHASE III/DATA GAP INVESTIGATIONS	
3.3 PHASE I ENVIRONMENTAL SITE ASSESSMENT (ESA)	
3.4 SUPPLEMENTAL TESTING PROGRAM	5
4.0 SUMMARY OF SAMPLING PROCEDURES	5
5.0 CLEAN UP PLAN	6
6.0 QUALITY ASSURANCE	
6.1 VERIFICATION SAMPLE COLLECTION	
6.2 SAMPLE CUSTODY AND DOCUMENT CONTROL	
6.3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES	<u>c</u>
6.4 DATA VALIDATION/USABILITY	
7.0 DECONTAMINATION PROCEDURES	10
8.0 WASTE CHARACTERIZATION PROCEDURES	10
9.0 PCB ABATEMENT REPORT	11
10.0 PROPOSED IMPLEMENTATION SCHEDULE	11

TABLES

Table 1	Soil Analytical Data Summary – AOC-3: Loading Dock
Table 2	Soil Analytical Data Summary – AOC-6: East of Building
Table 3	Concrete Analytical Data Summary – AOC-6: Basement of Building

Table 4 Soil Analytical Data Summary – AOC-6: Basement of Building

FIGURES

Figure 1	Site	Locus
----------	------	-------

Figure 2 Site Plan With Exploration Locations

Figure 3 PCB Sampling Results

Figure 4 PCB Excavation Area West of Building Figure 5 PCB Excavation Area East of Building

Figure 6 Basement Remediation Plan Concrete and Soil

APPENDICES

Appendix A	Limitations
Appendix B	Certifications

Appendix C Exploration Logs and Sampling Sheets

Appendix D Laboratory Data Reports

1.0 INTRODUCTION

On behalf of the Town of Vernon (Owner), GZA GeoEnvironmental, Inc. (GZA) has prepared this Notification a Self-Implementing Cleanup to address polychlorinated biphenyl (PCB) impacted concrete and soil identified at the former Daniel's Mill property located at 98 East Main Street in Vernon, Connecticut (the Site). Environmental investigations have detected the presence of PCBs within the concrete floor of the basement of the mill building, in soil below the basement floor, and in two exterior areas directly adjacent to the building. These PCB impacted materials are considered Bulk PCB Remediation Waste and the goal of the cleanup is to meet the clean-up levels for unrestricted, high occupancy use under 761.61(a)(4)(i)(A) and the Residential Direct Exposure Criteria (R-DEC) within the Connecticut Department of Energy and Environmental Protection's (CTDEEP) Remediation Standard Regulations (RSRs) of 1 mg/kg. Releases of certain other constituents of concern (COCs) were also identified at the Site; however, these impacts were commingled with the PCB impacted soil and will be addressed concurrently with the PCB impacted materials in accordance with the RSRs.

A Remedial Action Plan (RAP) for building materials containing PCBs was submitted to the United States Environmental Protection Agency (EPA) and CTDEEP in December 2021. The building materials RAP addresses PCB impacts in the basement area but only those related to building materials (i.e., paint on structural elements).

This report is subject to the Limitations presented in **Appendix A**.

1.1 PROJECT TEAM

It is anticipated that the remediation project team will consist of the following parties. Contact information and the responsibilities for each of these parties are provided below.

- Owner The Town of Vernon (the Town) is the current Owner of the Site and will be responsible for the implementation of the cleanup. Contact information for the Owner is as follows:
 - Mr. Shaun Gately
 Director of Development Services, Town of Vernon
 55 West Main Street
 Vernon, Connecticut 06066-3291

Phone: (860) 870-3637 sgately@vernon-ct.gov

- Remedial Contractor The Remedial Contractor will be selected after completion of a public bidding/procurement process. The Remedial Contractor will be responsible for performance of the remediation activities described in this notification. Contact information will be provided to EPA upon completion of the procurement process.
- Remediation Observation Contractor Contracted to the Owner and responsible for the collection of verification samples to document that residual PCB concentrations meet the clean-up objectives (less than 1 mg/kg) and observation and documentation of the remedial and restoration activities as described herein. The Remediation Observation Contractor will also prepare closure documents for the work. Contact information for the Remediation Observation Contractor is as follows:

Mr. David Rusczyk
GZA GeoEnvironmental, Inc.
95 Glastonbury Boulevard, 3rd Floor
Glastonbury, Connecticut 06033

Phone: (860) 250-8556 David.rusczyk@gza.com

EPA should direct all communications regarding this cleanup to both Mr. Gately and Mr. Rusczyk.

2.0 SITE BACKGROUND AND HISTORY

The Site consists of an approximate 1-acre parcel of land located in an industrial zoned section of Vernon, Connecticut and is the location of the former Daniel's Mill facility, which was built in approximately 1855. The Site is improved with a six-story (including basement and attic) historical mill building with a footprint measuring approximately 9,000 square-feet. The north side of the Site building is located approximately 8 to 10 feet off the edge of East Main Street. Areas to the west of the Site building are predominantly asphalt paved and a narrow-grassed area is located to the east of the building. The Hockanum River runs from east to west through the abutting former Amerbelle Textile Mill property in a stone lined raceway and discharges to the American Mill Pond which is located adjacent to the south of the Site. Historically, a portion of the river flowed through the Daniel's Mill building via a raceway pipe to provide power to the former mill facility. The Site was previously serviced by municipal water and sanitary sewer, natural gas, and electric services; however, the utilities to the building have been shut-off since the building is vacant and the building is no longer being heated. Six underground storage tanks (USTs) were present within a narrow strip of land between the East Main Street sidewalk and the building. Three of the USTs were removed in 2021 and the other 3 USTs were abandoned in place using flowable fill after removal of the contents and cleaning the interior of each tank. An additional UST was identified to the east of the building. The contents and size of this UST are not known. A Locus Plan is attached as **Figure 1** and a Site Plan depicting current Site conditions is attached as **Figure 2**.

The Site was reportedly developed in 1855 and the Site building was historically used as a textile mill (Sam Fitch's Knitting Mill, Carlisle Mill, S. Fitch & Sons Co. Knitting Mill, Rockville-Worsted Co., M.T. Stevens & Sons Co.) from the mid-1880s through the 1940s. Activities within the Site building during this period included a carpentry shop, a machine shop, knitting, carding, spinning, dyeing, drying and storage. From the 1950s to 1970s, the Site was occupied by Double B Products Co., a producer of insecticides and paints, and Albi Manufacturing Company (Albi), a producer of fire-retardant paints. Operations by Albi are suspected to be the source of the PCB releases. In the 1980s through 2014, the Site was occupied by a variety of commercial entities and used as office and warehousing space, as well as self-storage. The Town acquired the Site in June 2021 and the Site has been vacant since the 2014 timeframe.

Properties adjoining the Site to the west, east, and south were historically occupied by textile mills. The property adjoining the Site to the south and east at 104 East Main Street was occupied by the Belding Bros. & Co Sewing Silk Mill from the 1880s to the 1920s-1930s, by the American Dyeing Corporation (wool dyeing) in the 1940s to 1960s, then by the Amerbelle Corporation (textile dyeing) from the 1980s until the mid-2000s. The former Amerbelle Corporation property is current vacant. The property adjoining the Site to the west at 40 Brooklyn Street (aka 60 East Main Street) was occupied by the American Mills Co. (wool and worsted cloth mill) from the 1880s to the 1920s or 1930s, by the M.T. Stevens & Sons Co. (woolen yarn manufacturer) in the 1940s, by the Granby Corp. in the 1960s,

then by Anocoil Corporation (lithographic plate manufacturer) from the 1980s through 2016. The former Anocoil Corporation property is current vacant.

Remediation of the Site will be partially funded with a Brownfield grant received from the Connecticut Department of Economic and Community Development (CTDECD) and an additional Brownfield grant received from EPA. As required, the prospective owner of the Site¹ applied for, and the property has been entered into, the Brownfield Remediation and Revitalization Program (BRRP) and the Site will be verified by a State of Connecticut Licensed Environmental Professional (LEP) following the completion of remediation.

3.0 SUMMARY OF INVESTIGATIONS AND EXTENT OF PCB IMPACTS

In 2015, the Town received a grant from the CTDECD to assess environmental conditions at the Site to facilitate future redevelopment and reuse of the property. The Town subsequently engaged GZA to perform Site characterization activities to evaluate potential releases to the environment from historical Site operations. The results of these characterization activities were summarized in the following reports:

- Phase II Environmental Site Assessment (ESA), September 2015; and,
- Phase III Data Gap Investigation Report, December 2019.

The following sections provide a discussion of the findings of both of these reports as well as the results of supplemental testing performed subsequent to 2019.

3.1 SUMMARY OF PHASE II INVESTIGATIONS

The Phase II investigation program was designed to evaluate potential releases to the environment from former Site operations within 8 Recognized Environmental Conditions (RECs) identified in an October 2011 *Phase I Environmental Site Assessment* prepared by Apex Companies LLC and in a December 2014 *Phase I Environmental Site Assessment* prepared by Fuss & O'Neill, Inc. The scope of the Phase II ESA was designed to be consistent with CTDEEP's December 2010 *Site Characterization Guidance Document* and the Phase II work was completed in July and August 2015. Phase II investigations included the performance of 20 soil borings (B-1 through B-20), laboratory analysis of 15 soil samples; installation of 2 groundwater monitoring wells within the bedrock aquifer (B-2/MW-1 and B-7/MW-2); sampling and laboratory analysis of 2 groundwater samples from the newly installed wells; and the collection and analysis of 3 soil vapor samples from beneath the basement of the building. The locations of the RECs (subsequently referred to as Areas of Concern (AOCs)) and the Phase II sampling locations are depicted on **Figure 2**.

The results of the Phase II indicated the following:

- Fill materials were identified west and east (AOC-6) of the Site building. Fill materials on the eastern side of the building appear to be impacted with PCBs.
- PCBs were detected in shallow soils just below the pavement within AOC-3 (western loading dock) and the PCB concentration in one soil sample (B-2, 0.5-2') was above the unrestricted, high occupancy use level of 1 mg/kg.

¹ The Town has entered into a Purchase and Sale Agreement with Vernon Mill Owner II, LLC to take ownership of the Site once the remedial activities have been completed.

PCBs were detected in the soils beneath the concrete floor of the basement at concentrations ranging from 0.8 mg/kg to 91 mg/kg. The detected PCB concentrations in 5 samples were above the unrestricted, high occupancy use level of 1 mg/kg. The detected PCB impacts indicate releases from historical Site operations have impacted soils below the basement floor of the building.

3.2 SUMMARY OF PHASE III/DATA GAP INVESTIGATIONS

The objectives of the Phase III/Data Gap investigation program included further evaluation of the extent and degree of the identified PCB impacts within AOC-3 (west of the building), AOC-6 (east of the building), and in the concrete floor of the basement and in soils beneath the concrete floor (interior portion of AOC-6). The Phase III investigation program was completed between 2017 and 2019 and included the advancement of 48 soil borings using either a GeoProbe® direct-push unit or portable, hand-held sampling equipment, the analysis of 71 soil samples, and the analysis of 10 concrete samples from the basement floor

The following summarizes the results of the Phase III/Data Gap investigation program:

- AOC-3: As summarized in **Table 1**, PCB soil impacts in the loading dock area to the west of the building range in concentration from 0.13 mg/kg (B-35, 6-9") to 26 mg/kg (B-35, 10.5-13.5"). PCBs were detected above the Unrestricted, High-Occupancy Use Limit of 1 mg/kg in 7 of the 19 samples analyzed within this AOC. As depicted in **Figures 3** and **4**, the detected PCB impacts above 1 mg/kg appear to be bounded laterally to the north by boring B-24, to the west by borings B-21 and B-58, to the east by the loading dock, and to the south by a retaining wall between the paved loading dock area and the steep slope down to American Mill pond. We note, based on historical drawings of the facility, it appears that the loading dock may have extended at one point to the southwest and the retaining wall may be remnants of the rear foundation wall for this former loading dock. The PCB impacts above 1 mg/kg extend to depths ranging from 24 inches below the ground surface (bgs) to 39 inches bgs. A potential source of the identified impacts within this AOC is releases of PCB containing materials that were formerly managed at the loading dock to the ground surface. Given this release model, the highest concentrations would be anticipated to be located directly below the asphalt pavement. However, in certain locations (B-22/B-22A, B-23/B-23A and B-35/B-35A), the highest PCB concentrations were observed approximately 10 to 39-inches bgs. Given this discrepancy in the release model, it is possible that fill was imported to backfill this area after the historical removal of the southwestern portion of the loading dock.
- AOC-6 (East of Building): As summarized in **Table 2**, PCBs were detected within the fill materials east of the building at concentrations ranging from 0.36 mg/kg (B-27, 3-5') to 17 mg/kg in sample B-7A (1.75-2'). PCBs were detected above the Unrestricted, High-Occupancy Use Limit of 1 mg/kg in 11 of the 19 samples analyzed within this area. As depicted in **Figures 3** and **5**, the extent of the PCB impacts above 1 mg/kg appear to be bounded laterally to the north and west by the building foundation wall and to the south by boring B-37A. These PCB impacts may extend to the east onto the adjacent former Amerbelle Textile Mill property, which is currently vacant and also owned by the Town. PCB impacts above 1 mg/kg extend vertically to a depth of at least 5 feet bgs at borings B-7. The source of these PCB impacts is potentially related to releases of materials used in the former Site manufacturing operations that were managed and/or handled at a former overhead door that provides access into the building in this area.

• AOC-6 (Basement): As summarized in **Table 3,** PCBs were detected in the upper ½-inch of concrete within the basement floor at concentrations ranging from 0.8 mg/kg to 50.9 mg/kg (PCB-1-B11-32). PCBs were detected above 1 mg/kg in 8 of the 10 concrete samples analyzed. As summarized in **Table 4,** PCBs were also detected in sub-slab soils at concentrations ranging from 0.09 mg/kg (B-57, 5.5-8.5") to 91 mg/kg in sample B-11 (0.5-2'). Twelve of the 40 sub-slab soil samples analyzed contained PCB concentrations above 1 mg/kg. As depicted in **Figures 3** and **6**, the highest PCB concentrations in soil and concrete were observed in the north-central portion of the basement proximate to former "Ball Mill" loading points and in the south-central portion of the basement proximate to the elevator. The vertical extent of these PCBs is generally delineated except at borings B-14, B-47 and B-56. However, based upon the results from other sub-slab soil samples, the PCB impacts appear to be generally within the upper 2 feet below the concrete floor. The source of these sub-slab soil impacts appears to be related to the former manufacturing activities performed within the basement.

3.3 PHASE I ENVIRONMENTAL SITE ASSESSMENT (ESA)

A Phase I Environmental Site Assessment (ESA) was completed in March 2021 by GZA to support the submittal of grant applications to CTDECD and EPA and to update the previous Phase I ESAs completed for the Site. No new RECs or AOCs were identified in the March 2021 Phase I ESA, but it was noted that historical operations in the basement of the building were the likely source of the PCB impacts identified in the previous Site investigations. These operations included the production of heat-resistant paints and mastics, which are considered to be the likely source of PCBs released to soil and concrete in the basement, as PCBs are known to have been used in the manufacture of these types of materials.

3.4 SUPPLEMENTAL TESTING PROGRAM

In October 2022, an additional round of sampling was performed within the basement of the building to further characterize the sub-slab PCB soil impacts directly adjacent to the exterior perimeter load-bearing walls and to refine the limits of PCB soil impacts above 1 mg/kg. The sampling round included the collection of 13 soil samples (B-59 through B-64 and B-66 through B-72) from directly below the basement floor slab. As shown on **Figures 4** and **Figure 6**, samples B-59 through B-61 were collected directly north of the elevator and the remaining 10 samples were collected inside of the north exterior perimeter wall. As summarized in **Table 4**, PCBs were only detected in 1 of the 13 sub-slab soil samples at a high concentration of 0.370 mg/kg.

4.0 SUMMARY OF SAMPLING PROCEDURES

Three rounds of investigations have been performed at the Site between 2015 and 2022. All of the explorations during the initial Phase II ESA in 2015 were performed using a GeoProbe® direct-push unit and the soil samples were collected using dedicated acetate sleeves. The Phase III/Data Gap investigation program included the collection and analysis of soil and concrete samples. The soil samples were either collected using a GeoProbe® direct-push unit and dedicated acetate sleeves or with a hand-driven stainless-steel sampler equipped with dedicated acetate sleeves. The concrete samples were collected from the upper ½-inch of the basement floor in accordance with the EPA Region I Standard Operating Procedure for Sampling Porous Surfaces for Polychlorinated Biphenyls (May 2011). The last sampling round in 2022 was focused within the basement of the building. At each of the 2022 sampling locations, the concrete floor was penetrated with a water-cooled core drill. During drilling, the concrete cutting water was collected and containerized in a 55-gallon drum for subsequent characterization and disposal at a later date. After coring through the floor, sub-slab soil samples were collected from bellow the floor slab with a hand-driven stainless-steel sampler

equipped with dedicated acetate sleeves. Although these characterization sampling activities were not performed strictly consistent with the sampling frequency outlined in Subpart N, the horizontal and vertical extent of PCBs have been delineated and the areas requiring remediation defined.

During each sampling event, the recovered soil samples were observed by GZA's staff for indicators of a release (e.g., staining, discoloration and/or odors) and grain size descriptions of the samples were recorded using a modified Burmister soil classification system. Soil samples were placed in clean glass jars provided by the laboratory and field screened for the presence of organic vapors with a photo-ionization detector (PID). Boring and soil sampling logs documenting the subsurface conditions encountered are included in **Appendix C**.

The soil samples were collected using samplers equipped with acetate sleeves that were replaced between sampling locations to mitigate potential cross contamination. The concrete sampling equipment was decontaminated between sampling location and the resulting decontamination fluids were collected in a 55-gallon drum for subsequent characterization and disposal at a later date.

Soil samples were placed in certified clean containers supplied by the analytical laboratory, placed on ice in coolers and submitted under chain of custody control to Phoenix Laboratories of Manchester, Connecticut, a Connecticut Department of Health Services certified environmental laboratory. Since the objective of the initial Phase II investigation program was to evaluate potential releases to the environment and the extent of the PCB impacts were not known at the time, the soil samples from the Phase II program were analyzed for PCBs via EPA Method 8082A. All subsequent soil and concrete samples were analyzed for PCBs by EPA Method 3540C (manual Soxhlet extraction)/8082A. Copies of the laboratory data reports with the PCB sampling results are attached in **Appendix D**.

5.0 CLEAN UP PLAN

The remedial approach to address the PCB impacted materials consists of the removal of the concrete floor in the basement of the building and the soils under the basement floor and to the east and west of the building until residual PCB concentrations are less than 1 mg/kg, which is the Clean-Up Goal. The approximate extent of remedial work in each area is as follows:

As shown on **Figure 4**, the remedial work to the west of the building is anticipated to include the following:

- Removal and disposal of asphalt pavement over an approximate area of 580 square feet;
- Removal of soil over an approximate area of 580 square feet to a depth of 4 feet below the pavement surface (approximately 129 tons); and,
- Since characterization sampling has not been completed on a Subpart N grid, the soil and asphalt generated during the remedial work on the west of the building will be treated as soil/asphalt impacted with PCBs at concentrations \geq 50 mg/kg and disposed of at a chemical waste landfill or Subtitle C landfill permitted to take PCB remediation waste at a concentration greater than 50 mg/kg.

As shown on **Figure 5**, the remedial work to the east of the building is anticipated to include the removal and disposal of soil over an area of approximately 824 square feet to depths of 5 to 7 feet below grade (approximately 280 tons). Since characterization sampling has not been completed on a Subpart N grid, the soil generated during the remedial work on the east of the building will be treated as soil impacted with PCBs at concentrations > 50 mg/kg and will be

disposed of at a chemical waste landfill or Subtitle C landfill permitted to take PCB remediation waste at a concentration greater than 50 mg/kg.

As shown on **Figure 6**, the remedial work within the basement is anticipated to include the following:

- Removal of concrete over an area of approximately 2,900 square feet and disposal of approximately 109 tons of concrete;
- Removal of soil over an area of approximately 1,564 square feet to an average depth of 2 feet below the concrete floor (approximately 175 tons of soil);
- Scarification of the remaining approximately 2,350 square feet of concrete; and,
- Soil and concrete with PCB concentrations greater than 50 mg/kg (one area) will be segregated and disposed of
 at a chemical waste landfill or Subtitle C landfill permitted to take PCB remediation waste at a concentration
 greater than 50 mg/kg. Soil and concrete with PCB concentrations less than 50 mg/kg will be segregated and
 disposed of at a Subtitle D landfill.

Additional details related to the remedial work include the following.

- Access to the basement will be created by demolishing the loading dock on the west side of the building and
 constructing a ramp down to the basement through doors within the basement wall on this side of the structure.
 As described in the December 2021 Building Materials RAP, the loading dock debris will be disposed off-Site as
 PCB Bulk Product Waste upon demolition. Construction of the ramp into the basement will be performed after
 the PCB impacts in soil to the west of the building have been remediated.
- The basement will only be accessible to smaller equipment (e.g., mini-excavator and skid steer) and ventilation and air monitoring will be performed within the basement throughout the duration of the interior remedial activities due to the operation of diesel- or gas-powered equipment.
- Prior to performing any work, the basement area will be cleaned of soil and dust that have accumulated on the concrete floor and the materials collected for disposal as PCB Remediation Waste greater than 50 mg/kg.
- There is no electrical service to the building and temporary lighting powered by a generator will be used in the basement.
- For the areas where underlying soil does not require remediation in the basement, the concrete floor will be scarified. The initial scarification depth will be 1-inch. If after removal of this upper inch of concrete PCB concentrations still exceed 1 mg/kg, an additional layer of concrete will be removed until residual PCB concentrations achieve the Clean-Up Goal.
- Various types of columns are present within the basement, including 11.5-inch square timber columns, 6-inch diameter columns, and 3.5-inch diameter lolli-columns. It appears the larger timber columns were original to the building and the smaller diameter columns were added over time to provide additional structural support. Some of these columns are located within the limits of the soil remediation. As described in the December 2021 Building Materials RAP, paint has been applied to the columns and beams in the basement and PCBs were detected in the paint at concentrations above 50 mg/kg (Bulk Product Waste). In addition, the current

development plan includes removal of as many of the columns as feasible based upon structural considerations, installation of steel structural supports on the existing wood beams, and the installation of new columns adjacent to the exterior foundation walls. Any columns that are removed will be disposed as PCB Bulk Product Waste. As described in the December 2021 *Building Materials RAP*, the paint on the remaining columns and the existing beams will be abated and two contrasting layers of epoxy paint applied to the surface of the column. Depending on the timing of the approval of the *Building Materials RAP*, temporary structural supports may be necessary proximate to the existing columns to allow the performance of the soil remediation in the basement.

- All verification samples will be extracted using EPA Method 3540C (Soxhlet extraction) and analyzed for PCBs using EPA Method 8082 on an accelerated turnaround. Verification sampling will be performed on a modified Subpart O basis. Samples will be collected on a 1.5-meter grid pattern either from the upper 0.5-inches of concrete or the upper 3-inches of soil. Up to 4 adjacent samples will be composited and analyzed for PCBs using Method 3540C (Soxhlet extraction) and Method 8082. If the results of the composited sample are equal to or above 0.25 mg/kg (1/4 of the remedial target of 1 mg/kg), then the individual samples comprising the composite will be analyzed to determine where additional removal of concrete or soil is required. Additional remediation will be performed until all individual verification sample results meet the established remedial goal of less than 1 mg/kg or the results of composite samples are below the remedial goal divided by the number of samples (e.g., the target residual concentration for a composite sample consisting of 2 individual samples will be 0.5 mg/kg [1 mg/kg divided by 2 individual samples]).
- Excavations will be backfilled with clean fill imported from an off-Site source.
- In the basement, a new 6-inch thick concrete floor will be poured over the entire area. In the areas where the existing concrete floor was scarified, the overall thickness of the floor will be more than 6 inches and rebar dowels will be installed to connect the new concrete to the existing remaining concrete floor.

As indicated above, the lateral and vertical limits of the PCB impacted soil and concrete have been well defined to develop this Clean-Up Plan with the possible exception of the area to the east of borings B-7/7A, B-25A/-25B, B-27/27A, and B-35/B-35A on the east side of the building. If PCB concentrations greater than 1 mg/kg extend onto the adjacent property to the east (which is also owned by the Town), the PCB impacted material will be removed as part of this plan.

6.0 QUALITY ASSURANCE

The CTDEEP Quality Assurance/Quality Control (QA/QC) Work Group finalized Reasonable Confidence Protocols (RCPs) in August 2006. These RCPs are guidelines for enhanced QA/QC procedures for analytical methods and reporting. The CTDEEP currently recommends that environmental professionals request that the laboratory follow the RCPs when producing data that is used as the basis of decisions regarding compliance with the RSRs. RCP data was assessed according to the CTDEEP *Quality Assessment and Data Usability Evaluation Guidelines* (May 2009; revised December 2010).

The laboratory analyses for the verification sampling will be completed by Phoenix Environmental Laboratory (Phoenix) in Manchester, Connecticut, registered Department of Public Health Certified Laboratory (Registration No.

PH-0618). The laboratory data reports will be consistent with the QA/QC procedures outlined in EPA 600/4-79-019, "Handbook for Analytical Quality in Water and Waste Water" and method QA/QC procedures from SW 846.

The data quality objectives (DQOs) for the laboratory analytical data will be to achieve analytical detection limits that are consistently below the Clean-Up Goal of 1 mg/kg.

6.1 VERIFICATION SAMPLE COLLECTION

Concrete verification samples will be obtained utilizing an electric drill equipped with a ½-inch diameter drill bit and the resulting concrete dust will be collected via a stainless steel spatula. The drill bit and the spatula will be decontaminated between each core location consistent with 761.79(c)(2)(i) or (ii).

Soil samples will be obtained with a stainless steel hand auger or dedicated plastic scoops depending on the depth of the excavations and the stability of the sidewalls of the excavation. If stainless steel hand augers are utilized, the hand augers will be decontaminated between locations consistent with 761.79(c)(2)(i) or (ii). If the plastic scoops are used, no decontamination of the equipment is needed since each is scoop is dedicated to a specific sampling location.

Concrete and soil samples will be placed in new laboratory supplied containers and stored at 4 degrees Celsius or less. The samples will be delivered to the laboratory either the same day that they are collected or by priority overnight shipping the following morning.

6.2 SAMPLE CUSTODY AND DOCUMENT CONTROL

Verification samples will remain in the custody of the field sampling personnel until they are dropped off at the laboratory or released to a common carrier. The chain of custody form will be signed by the laboratory receiving personnel. The chain of custody form will specify the analyses to be performed, date and time of collection and sample designation.

6.3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

Field prepared Quality Assurance/Quality Control samples will consist of the following:

- An equipment blank will be prepared on each sampling day by immersing the decontaminated or dedicated sampling equipment into deionized water in a clean container and collecting the rinse water directly into laboratory containers.
- A duplicate soil sample will also be analyzed to evaluate the reproducibility of the analytical procedures at the
 rate of one per twenty samples to be analyzed. Duplicates samples will be prepared by thoroughly homogenizing
 a selected soil sample interval and collecting two samples with different sample identifiers.
- A project specific matrix spike/matrix spike duplicate (MS/MSD) sample will be analyzed for each 20 samples obtained from the field matrix (concrete or soil).

6.4 DATA VALIDATION/USABILITY

The Remediation Observation Contractor will be responsible for vetting the data based upon Quality Control reporting from the laboratory. The responsibility of the Remediation Observation Contractor will be to review any laboratory corrective actions, perform analytical data assessment, review laboratory QA/QC and to provide a written opinion of sample acceptability. The criteria used by the Remediation Observation Contractor to determine the usability of the laboratory data is outlined in the following table.

QA/QC Parameter	Data Quality Objective	Required Performance Standard	Response Action
Matrix	Precision and	• Every 20 samples per	No pre-determined action taken on MS/MSD results,
Spike/Matrix	accuracy in	matrix	LEP will determine if sample data requires qualification
Spike	sample matrix	Percent recovery limits	or if the result only affect the MS/MSD sample itself
Duplicate		between 40 and 140%	, , , , , ,
(MS/MSD)		Relative percent	
		difference less than or	
		equal to 50%	
Equipment	Evaluation of	• Daily	Flag compounds detected in the sample as estimated
Blank	decontaminati	 Results non-detect 	(J) if also detected in the equipment blank
	on procedures		No qualification needed if compound detected in the
			equipment blank but not in sample set
Field	Laboratory	 One field duplicate for 	• If RPD less than 50% no qualification of data required
Duplicate	precision	every 20 soil samples	• If RPD greater than 50%, flag sample results as
Sample		Relative percent	estimated (J)
		difference (RPD) less	
		than or equal to 50%	

7.0 DECONTAMINATION PROCEDURES

Prior to the removal of any equipment (e.g., excavation equipment buckets, hand tools) from the work areas, the remediation equipment will be decontaminated consistent with 761.79(c)(2)(i) or (ii). All decontamination rinse waters and fluids will be collected, containerized, and disposed off-Site..

8.0 WASTE CHARACTERIZATION PROCEDURES

All decontamination and related wastes generated during this PCB remediation work will be immediately collected and containerized in either roll-off containers, 55-gallon drums or in a materials management area on poly-lining prior to off-Site disposal. Prior to off-Site disposal, the containerized wastes will be temporarily staged within an on-Site area. Roll-off containers shall be equipped with a polyethylene liner and a cover capable of shedding precipitation. Each roll-off container and drum will be labeled with a large Mark (M_L) label indicating the material contains PCBs. Labels will also include the date the container was filled, the type of material (soil, concrete) and the name and contract information of the generator. Material management areas will be managed in accordance with the terms of the expired Connecticut General Permit for Contaminated Soil and/or Sediment Management (Staging and Transfer), DEP-SW-GP-001.

All PCB wastes generated during the remedial work on the east and west side of the building will be disposed of at a chemical waste landfill or Subtitle C landfill permitted to take PCB remediation waste at a concentration greater than 50 mg/kg. Soil and concrete with PCB concentrations greater than 50 mg/kg from the basement area of the building will be segregated and disposed of at a chemical waste landfill or Subtitle C landfill permitted to take PCB remediation waste at a concentration greater than 50 mg/kg. Soil and concrete with PCB concentrations less than 50 mg/kg from the basement area will be segregated and disposed of at a Subtitle D landfill.

9.0 PCB ABATEMENT REPORT

Upon completion of the PCB remedial activities described herein, GZA will prepare a PCB Abatement Report that summarizes the work. This report will include a summary of the remedial activities within each remediation area and the results of confirmatory concrete and soil analytical testing. The report will also include the following:

- Figures depicting the limits and depths of remedial activities;
- Figures depicting confirmatory sampling locations;
- Tables summarizing the verification sampling results; and,
- Summary of all PCB impacted wastes (e.g., concrete, soil, sampling equipment, decontamination fluids, and PPE) shipped off-Site including copies of shipping profiles and manifests.

Upon finalizing, this report will be provided to both the CTDEEP and the EPA.

10.0 PROPOSED IMPLEMENTATION SCHEDULE

The Town anticipates issuing a public Request for Proposal (RFP) to solicit quotes from qualified environmental contractors to implement the remedial action outlined herein in the February 2023 timeframe. Upon review of these bids and engagement of the selected contractor, the Town anticipates implementation of the remedial work in the spring of 2023 (March/April 2023 timeframe). The remedial work is anticipated to require 3 to 4 months to complete depending on whether temporary structural supports are utilized in the basement to allow completion of the soil remedial work.

TABLES

Table 1 Soil Analytical Data Summary - AOC-3: Loading Dock Former Daniel's Mill 98 East Main Street Vernon, Connecticut

Ar	ea of Concern						A	OC-3				
Sample ID	R-DEC	Unrestricted, High	B-1	B-2	B-21	B-22	B-22		B-22A		B-22B	B-23
Sample Date		Occupancy Use	7/20/2015	7/20/2015	8/7/2017	8/7/2017	8/7/2017		6/3/2019		6/24/2019	8/7/2017
Depth			0.5-2 feet	0.5-2 feet	0.5-2 feet	0.5-2 feet	4-6 feet	6-9 inches	30-33 inches	45-48 inches	2-4 feet	
Polychlorinated Biphenyls (PC	Bs) (mg/kg)											
Aroclor 1254	1	1	ND<0.36	6	ND<0.06	3.1	ND<0.05	0.57	1.2	0.3	0.3	
Aroclor 1260	1	1	ND<0.36	ND<1.7	ND<0.06	ND<0.06	ND<0.05	< 0.072	< 0.36	< 0.07	ND<0.06	
Total PCBs	1	1	ND<0.36	6	ND<0.06	3.1	ND<0.05	0.57	1.2	2.4	0.3	0.3

Are	a of Concern						AOC-3				
Sample ID	R-DEC	Unrestricted, High		B-23A		B-23B	B-24		B-35	B-35A	B-58
Sample Date		Occupancy Use		6/3/2019		6/24/2019	8/7/2017		6/3/2019	6/24/2019	6/24/2019
Depth			6-9 inches	12-15 inches	21-24 inches	33-36 inches	0.5-2 (feet)	6-9 inches	10.5-13.5 inches	21-24 inches	10-13 inches
Polychlorinated Biphenyls (PCB	Bs) (mg/kg)										
Aroclor 1254	1	1	< 0.071	2.8	1.7	0.55	ND<0.06	0.13	26	< 0.07	0.16
Aroclor 1260	1	1	< 0.071	< 0.34	< 0.56	< 0.07	ND<0.06	< 0.072	<6.8	< 0.07	< 0.069
Total PCBs	1	1	< 0.071	2.8	1.7	0.55	ND<0.06	0.13	26	< 0.07	0.16

- Notes:

 1. R-DEC is the Residential Direct Exposure Criteria within CT Department of Energy and Environmental Protection's Remediation Standard Regulations.

 2. Bold and shaded indicates sample was detected above the R-DEC and the non-conditional Unrestricted, High Occupancy Use Limit.

 3. All depths are measured from ground surface.

Table 2
Soil Analytical Data Summary
AOC-6 - East of Building
Former Daniel's Mill
98 East Main Street Vernon, Connecticut

Area	of Concern						AOC-6 (East	of Building)				
Sample ID	R-DEC	Unrestricted, High	B-7		B-7A		B-25A	B-25B		B-26	B-27	'
Sample Date		Occupancy Use	7/22/2015		6/12/2019		8/9/2017	6/12/	2019	8/9/2017	8/7/2017	8/7/2017
Depth			3-5 feet	0-0.25 feet	1.75-2 feet	2.75-3 feet	0-1 feet	0-0.25 feet	0.75-1 feet	5-6 feet	0-2 feet	3-5 feet
Polychlorinated Biphenyls (PCB												
Aroclor 1254	1	1	11	2.8	17	< 0.39	8.4	1.7	0.93	0.6	4.8	0.3
Aroclor 1260	1	1	ND<1.8	<1.8	<2.1	< 0.39	ND<1.2	< 0.38	< 0.4	ND<0.06	ND<0.06	0.06
Total PCBs	1	1	11	2.8	17	< 0.39	8.4	1.7	0.93	0.6	4.8	0.36

Area	of Concern					A	OC-6 (East of Build	ling)					
Sample ID	R-DEC	Unrestricted, High	B-2	27A			B-36A			B-37A			
Sample Date		Occupancy Use	6/12	6/12/2019 6/12/2019						6/12/2019			
Depth	0-0.25 feet 1.75-2 feet					1.75-2 feet	2.75-3 feet	4-4.25 feet	6-6.25 feet	0-0.25 feet 1.5-1.75 fee			
Polychlorinated Biphenyls (PCB	s) (mg/kg)												
Aroclor 1254	1	1	8.5	< 0.38	8.8	12	8.4	1.4	0.84	< 0.37	0.79		
Aroclor 1260	1	1	<1.9	< 0.38	<1.9	<1.9	< 0.81	< 0.79	< 0.38	< 0.37	< 0.36		
Total PCBs	1	1	8.5	< 0.38	8.8	12	8.4	1.4	0.84	< 0.37	0.79		

- 1. R-DEC is the Residential Direct Exposure Criteria within CT Department of Energy and Environmental Protection's Remediation Standard Regulations.

 2. Bold and shaded indicates sample was detected above the R-DEC and the non-conditional Unrestricted, High Occupancy Use Limit.

 3. All depths are measured from ground surface.

Table 3 Concrete Analytical Data Summary AOC-6: Basement of Building 98 East Main Street Vernon, Connecticut

	DATE					РСВ СО	NCENTRA	ATION (mg/kg)	
SAMPLE NUMBER	DATE SAMPLED		MATERIAL DESCRIPTION	MATERIAL LOCATION	Aroclor	Aroclor	Aroclor	A I 4260	Total
	SAIVIPLED				1242	1254	1260	Aroclor 1268	PCBs
BASEMENT									
PCB-1-B-24	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-31, floor	ND<4.3	39.3	ND<4.3	ND<4.3	39.3
PCB-1-B-25	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-30, floor	ND<0.2	5.9	1.8	ND<0.2	7.7
PCB-1-B-26	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-32, floor	ND<0.2	9.4	3.1	ND<0.2	12.5
PCB-1-B-27	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, between boring B-31 and B-32, floor	ND<0.2	0.8	ND<0.2	ND<0.2	8.0
PCB-1-B-28	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-33, floor	ND<0.2	9.2	ND<0.2	ND<0.2	9.2
PCB-1-B-29	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-29, floor	ND<0.2	1.9	ND<0.2	ND<0.2	1.9
PCB-1-B-30	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-28, floor	ND<0.2	7.8	3.3	ND<0.2	11.1
PCB-1-B-31	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-34, floor	ND<0.2	0.8	ND<0.2	ND<0.2	0.8
PCB-1-B11-32	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-11A, floor	ND<4.1	50.9	ND<4.1	ND<4.1	50.9
PCB-1-B15-33	8/7/2017	Concrete Floor	Top 0.5" - upper layer of concrete flooring	Building 1, basement, at boring B-15A, floor	ND<4.2	38.3	ND<4.2	ND<4.2	38.3

ND = Not detected at a concentration above the laboratory's reporting limit.

Bold = Sample results exceed 1 mg/kg.

Table 4 Soil Analytical Data Summary - AOC-6: Basement of Building Former Daniel's Mill 98 East Main Street Vernon, Connecticut

Area	of Concern						AOC	-6: Basement of	Building				
Sample ID	R-DEC	Unrestricted, High	B-10	B-11	B-11A	B-13	B-13A	B-14	B-15A	B-19	B-28	B-29	B-31
Date		Occupancy Use	7/21/2015	7/21/2015	8/8/2017	7/21/2015	8/8/2017	7/21/2015	8/8/2017	7/21/2015	8/8/2017	8/8/2017	8/8/2017
Depth			0.5-2 ft	0.5-2 ft	2-2.25 ft	0.25-1 ft	0-0.25 ft	0.5-2 ft	0-0.25 ft	0.5-3 ft	0-0.25 ft	0-0.25 ft	0-0.25 ft
Polychlorinated Biphenyls (PCB	s) (mg/kg)												
Aroclor 1254	1	1	ND<0.36	91	0.5	6.3	ND<0.06	21	ND<0.06	0.8	0.2	0.2	0.2
Aroclor 1260	1	1	ND<0.36	< 14	0.07	< 1.8	ND<0.06	< 1.9	ND<0.06	< 0.36	ND<0.06	ND<0.06	ND<0.06
Total PCBs	1	1	ND<0.36	91	0.57	6.3	ND<0.06	21	ND<0.06	0.8	0.2	0.2	0.2

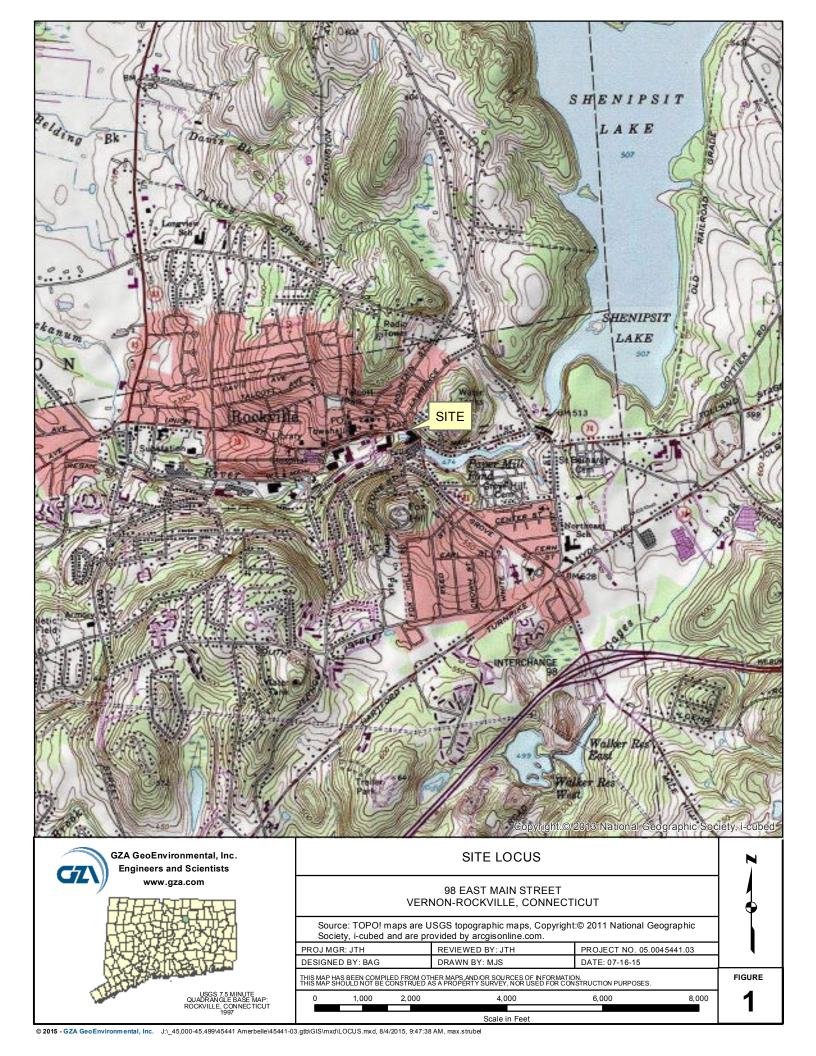
Area	of Concern						AOC	-6: Basement of l	Building				
Sample ID	R-DEC	Unrestricted, High	B-32	B-33	B-38	B-39	B-40	B-41	B-42	B-	B-43		-44
Date		Occupancy Use	8/8/2017	8/8/2017	6/3/2019	6/3/2019	6/3/2019	6/3/2019	6/3/2019	6/3/	2019	6/3/	2019
Depth			0-0.25 ft	0-0.25 ft	7-10 in.	6-9 in.	4-7 in.	1-4 in.	7-10 in.	3-6 in.	15-18 in.	0-3 in.	12.5-15.5 in.
Polychlorinated Biphenyls (PCB													
Aroclor 1254	1	1	ND<0.06	0.1	< 0.074	< 0.072	< 0.073	0.29	< 0.07	1.8	< 0.35	1.8	< 0.38
Aroclor 1260	1	1	ND<0.06	ND<0.06	< 0.074	< 0.072	< 0.073	< 0.078	< 0.07	< 0.37	< 0.35	< 0.37	< 0.38
Total PCBs	1	1	ND<0.06	0.1	< 0.074	< 0.072	< 0.073	0.29	< 0.07	1.8	< 0.35	1.8	< 0.38

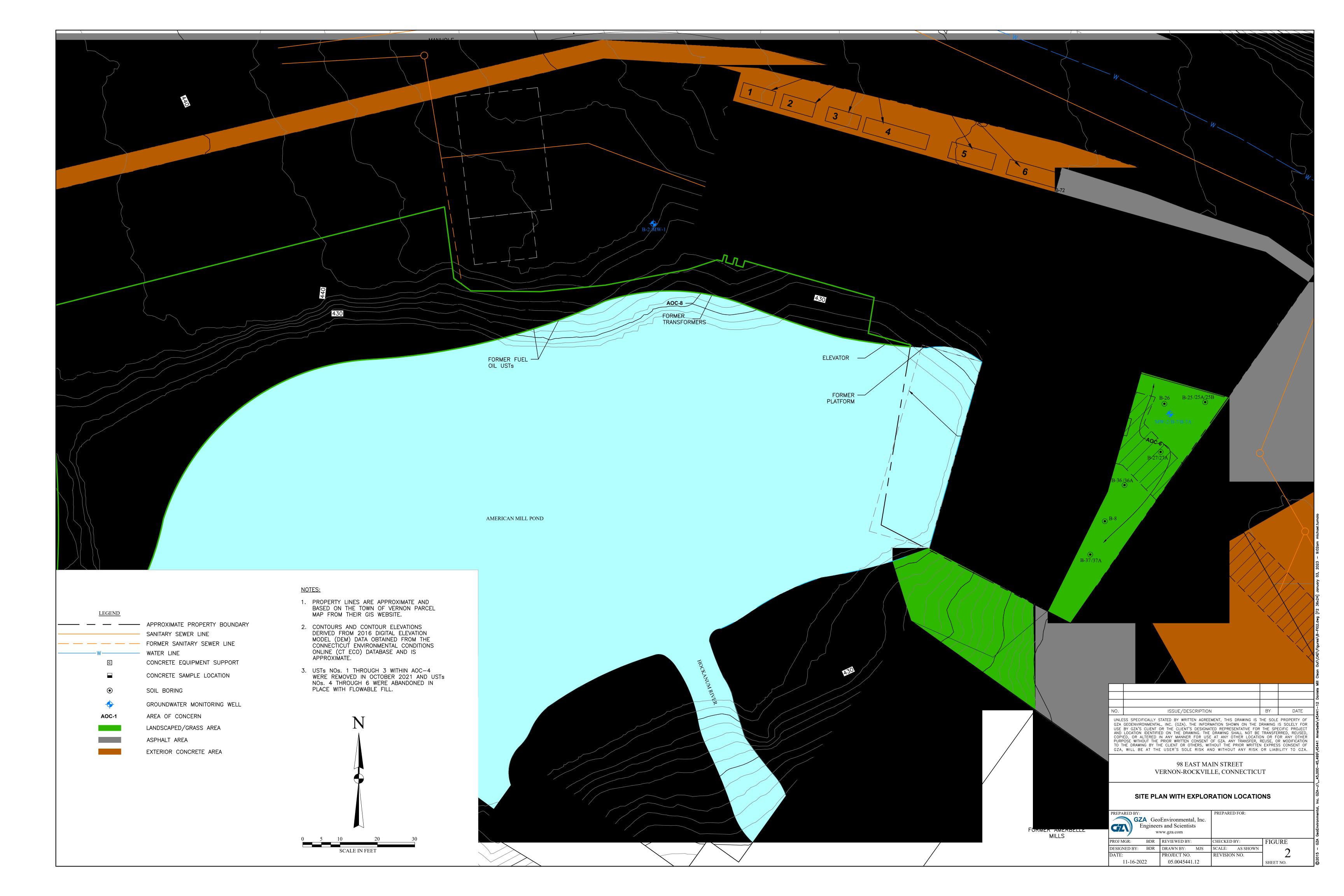
Area	of Concern			AOC-6: Basement of Building									
Sample ID	R-DEC	Unrestricted, High	B-45 B-46		B-47	B-48	B-49		B-50	B-51			
Date		Occupancy Use	6/3/2019	9 6/3/2019		6/3/2019	6/3/2019	6/3/2019		6/3/2019	6/3/2019		
Depth			5.5-8.5 in.	4-7 in.	16-19"	8-11 in.	4-7 in.	4-7 in.	16-19 in.	4-7 in.	1-4 in.	13-16 in.	
Polychlorinated Biphenyls (PCE	s) (mg/kg)												
Aroclor 1254	1	1	< 0.074	2.1	< 0.34	2	< 0.07	1.4	< 0.38	< 0.077	11	< 0.45	
Aroclor 1260	1	1	< 0.074	< 0.37	< 0.34	< 0.38	< 0.07	< 0.39	< 0.38	< 0.077	< 5.9	< 0.45	
Total PCBs	1	1	< 0.074	2.1	< 0.34	2	< 0.07	1.4	< 0.38	< 0.077	11	< 0.45	

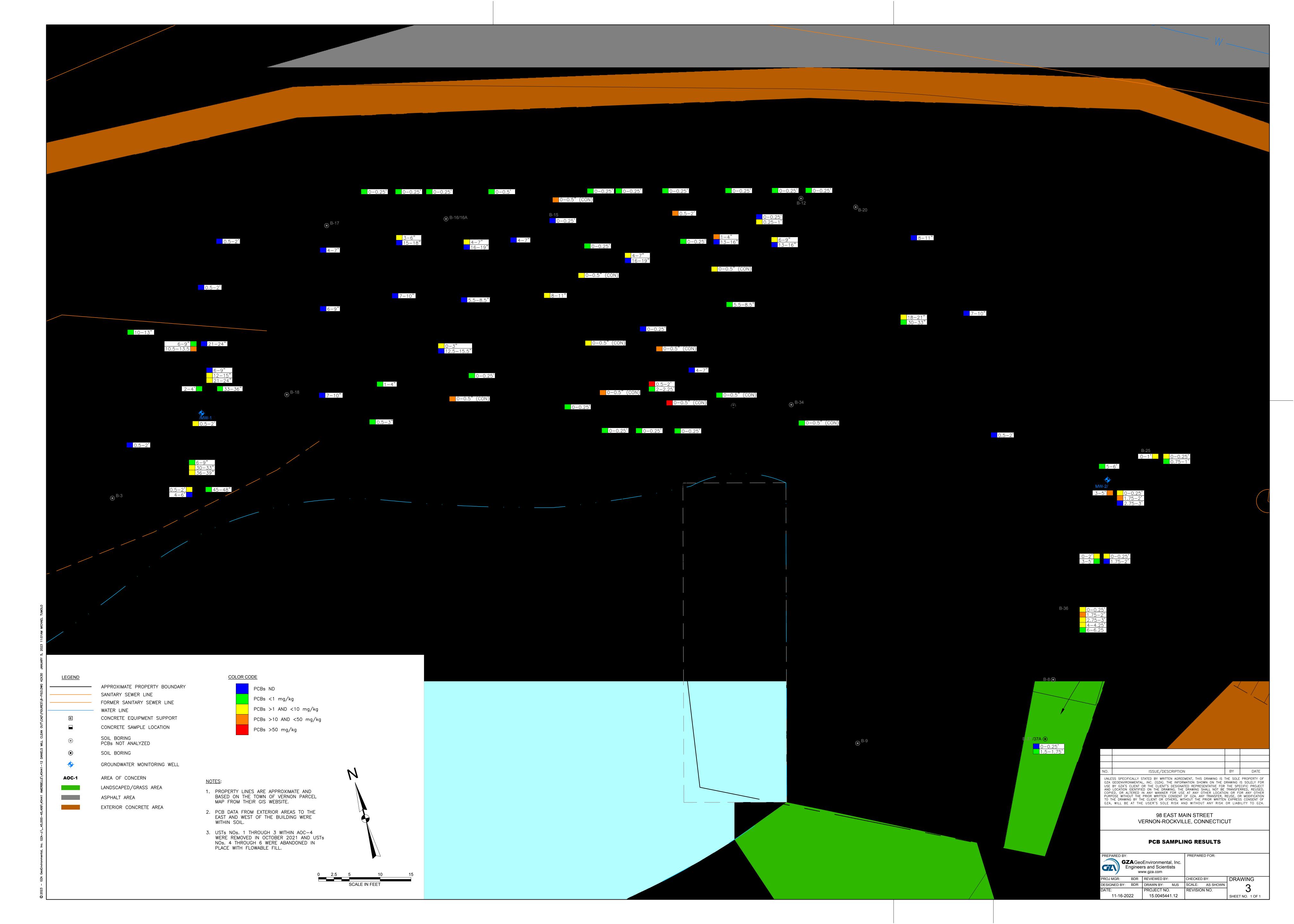
Area	of Concern		AOC-6: Basement of Building								
Sample ID	R-DEC	Unrestricted, High	B-52		B-53	B-54		B-55	B-56	B-57	
Date		Occupancy Use	6/3/2019		6/3/2019	6/3/2019		6/3/2019	6/3/2019	6/24/2019	
Depth			6-9 in.	13-16 in.	7-10 in.	18-21 in.	30-33 in.	8-11 in.	8-10 in.	5.5-8.5 in.	
Polychlorinated Biphenyls (PCB	s) (mg/kg)										
Aroclor 1254	1	1	3.7	< 0.36	< 0.078	1.3	0.52	< 0.057	2.1	0.09	
Aroclor 1260	1	1	< 0.54	< 0.36	< 0.078	< 0.33	< 0.52	< 0.057	< 0.41	< 0.07	
Total PCBs	1	1	3.7	< 0.36	< 0.078	1.3	0.52	< 0.057	2.1	0.09	

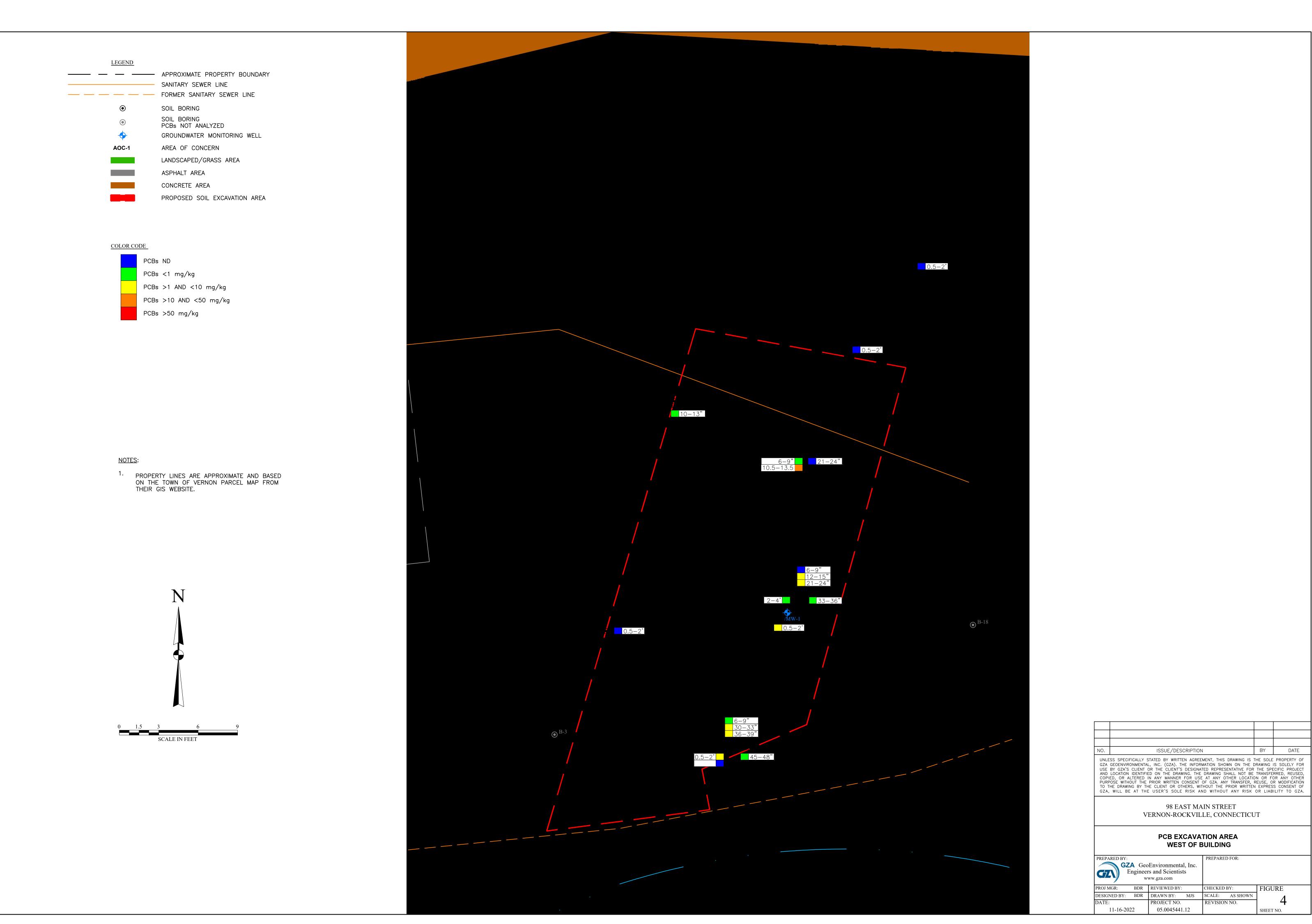
Area	AOC-6: Basement of Building												
Sample ID	R-DEC	Unrestricted, High	B-59	B-60	B-61	B-62	B-63	B-64	B-66	B-67	B-68	B-69	B-70
Date		Occupancy Use	10/11/22	10/11/22	10/11/22	10/11/22	10/11/22	10/11/22	10/13/22	10/13/22	10/13/22	10/13/22	10/13/22
Depth			0-0.25 ft	0-0.5 ft	0-0.25 ft	0-0.25 ft	0-0.25 ft	0-0.25 ft					
Polychlorinated Biphenyls (PCB	s) (mg/kg)												
Aroclor 1254	1	1	ND<0.20	ND<0.18	ND<0.19	ND<0.19	ND<0.18	ND<0.18	ND<0.17	ND<0.18	ND<0.19	ND<0.20	ND<0.19
Aroclor 1260	1	1	ND<0.20	ND<0.18	ND<0.19	ND<0.19	ND<0.18	ND<0.18	ND<0.17	ND<0.18	ND<0.19	ND<0.20	ND<0.19
Total PCBs	1	1	ND<0.20	ND<0.18	ND<0.19	ND<0.19	ND<0.18	ND<0.18	ND<0.17	ND<0.18	ND<0.19	ND<0.20	ND<0.19

Area	of Concern		AOC-6: Basement of Building			
Sample ID	R-DEC	Unrestricted, High	B-71	B-72		
Date		Occupancy Use	10/13/22	10/13/22		
Depth			0-0.25 ft	0-0.25 ft		
Polychlorinated Biphenyls (PCB	s) (mg/kg)					
Aroclor 1254	1	1	0.37	ND<0.19		
Aroclor 1260	1	1	ND<0.19	ND<0.19		
Total PCBs	1	1	0.37	ND<0.19		


Notes:


- 1. R-DEC is the Residential Direct Exposure Criteria within CT Department of Energy and Environmental Protection's Remediation Standard Regulations.
- 2. **Bold** and shaded indicates sample was detected above the R-DEC and the non-conditional Unrestricted, High Occupancy Use Limit.
- 3. All depths are measured from ground surface.


Page 1 of 1



FIGURES

ISSUE/DESCRIPTION

www.gza.com

05.0045441.12

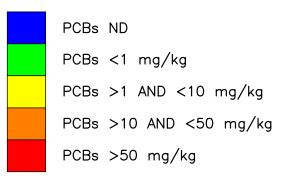
98 EAST MAIN STREET VERNON-ROCKVILLE, CONNECTICUT

> PCB EXCAVATION AREA **WEST OF BUILDING**

> > REVISION NO.

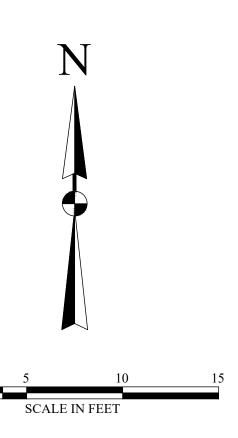
FIGURE

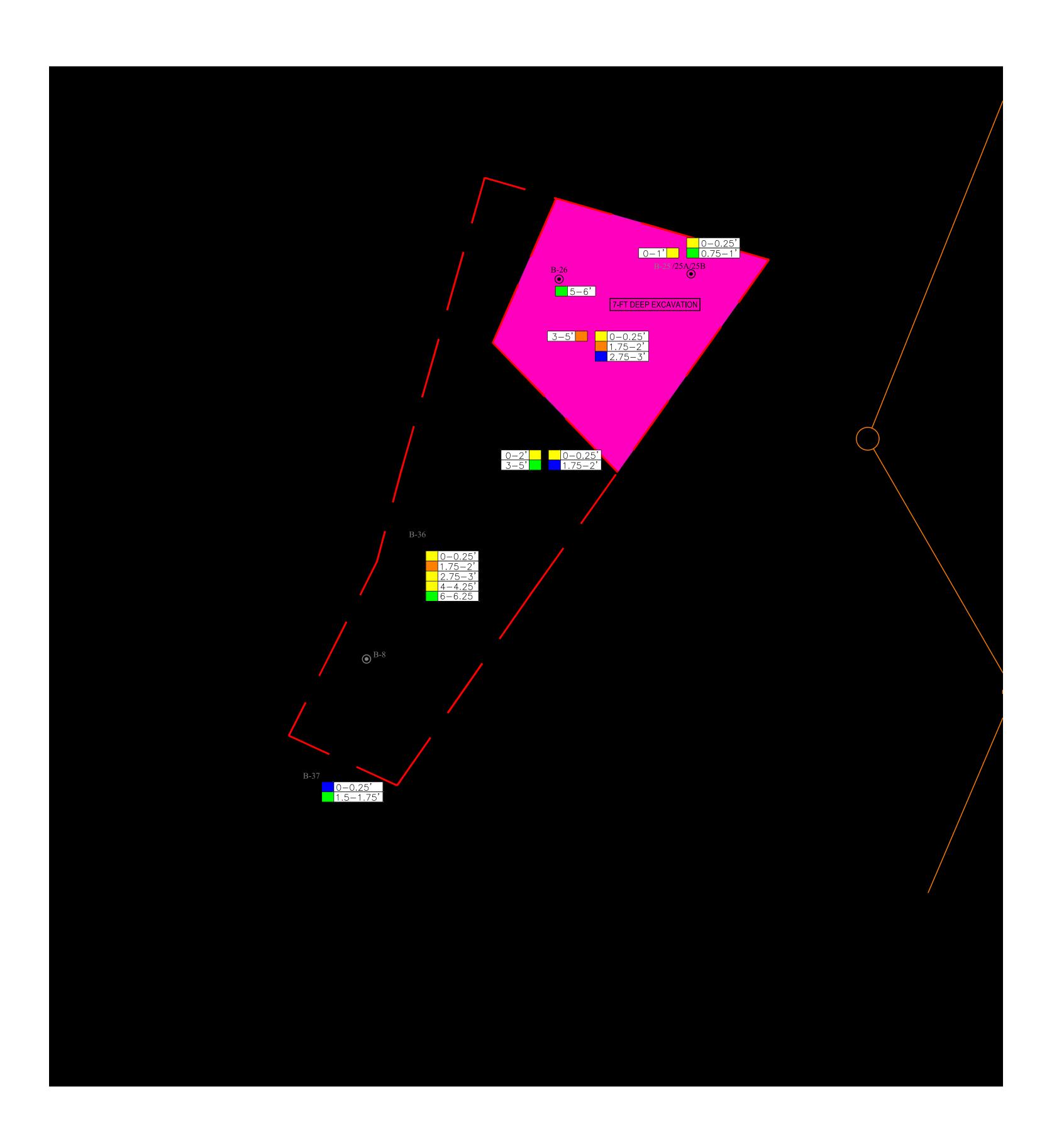
SHEET NO.


SOIL BORING
SOIL BORING
PCBs NOT ANALYZED

GROUNDWATER MONITORING WELL

AOC-1
AREA OF CONCERN
LANDSCAPED/GRASS AREA
ASPHALT AREA
CONCRETE AREA
PROPOSED SOIL EXCAVATION AREA


----- APPROXIMATE PROPERTY BOUNDARY


COLOR CODE

NOTES:

 PROPERTY LINES ARE APPROXIMATE AND BASED ON THE TOWN OF VERNON PARCEL MAP FROM THEIR GIS WEBSITE.

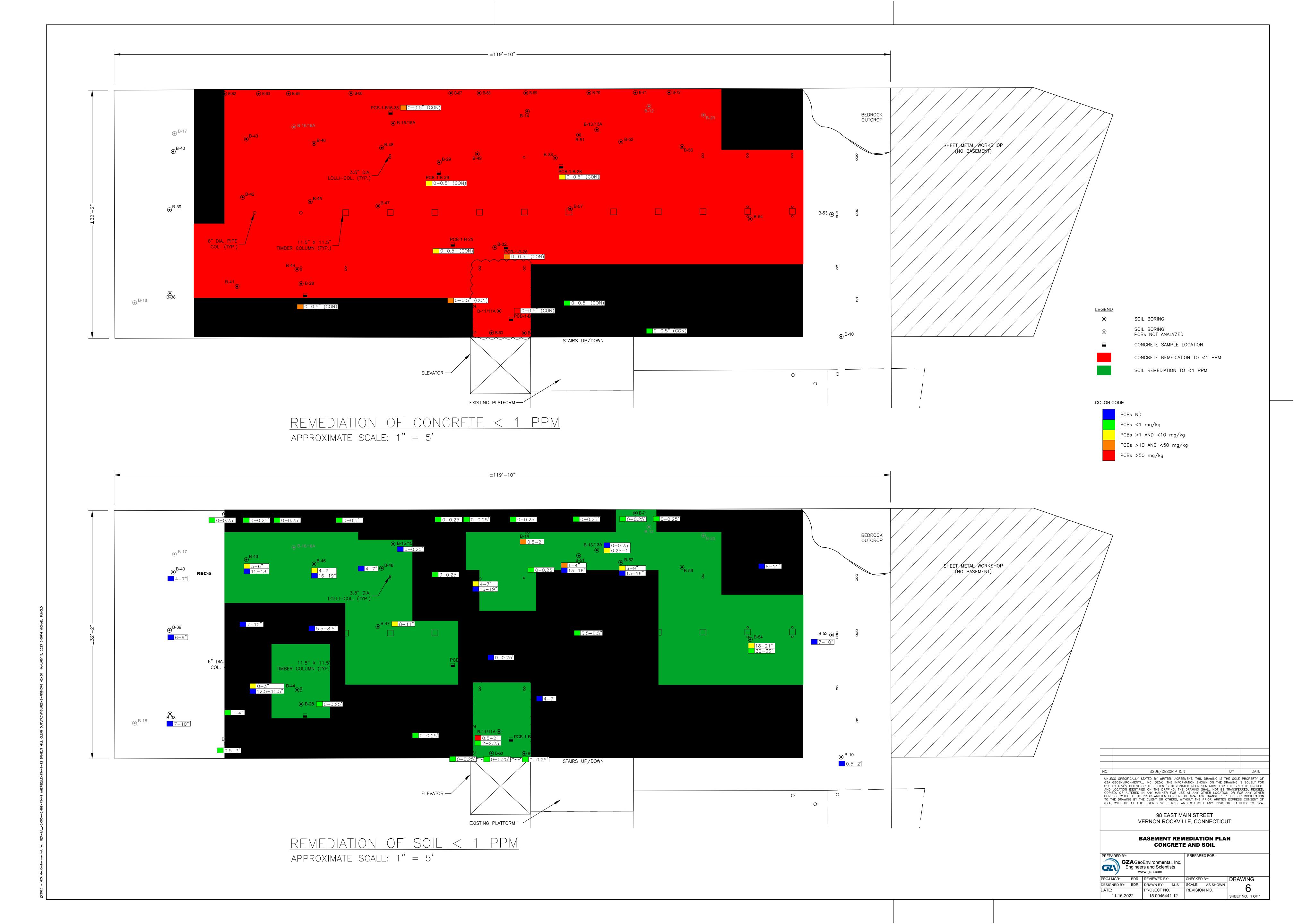
DATE	BY	ISSUE/DESCRIPTION	10.

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

98 EAST MAIN STREET VERNON-ROCKVILLE, CONNECTICUT

PCB EXCAVATION AREA EAST OF BUILDING

REPARED	BY:
	GZA GeoEnvironmental, Inc.
4 74	Engineers and Scientists
	www.gza.com


.

PROJ MGR: BDR REVIEWED BY: CHECKED BY: FIGURE

DESIGNED BY: BDR DRAWN BY: MJS SCALE: AS SHOWN

DATE: PROJECT NO. REVISION NO.

11-16-2022 05.0045441.12 SHEET NO.

APPENDIX A LIMITATIONS

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B CERTIFICATIONS

As required by 761.61(a)(3)(E), the following certifications are provided as part of this Notification.

CERTIFICATION BY PREPARER:

I, David Rusczyk, an employee of GZA GeoEnvironmenta	l, Inc. and the preparer of this report, herby certify
that the information contained within this report is con	nplete and accurate to the best of my knowledge.
D 411 12	
- Lund Wart	
Preparer's Signature	Date
Associate Principal Preparer's Title	
CERTIFICATION BY REVIEWER:	
I, Adam Henry, an employee of GZA GeoEnvironmental that the information contained within this report is contained. Reviewer's Signature	
Associate Principal Reviewer's Title	
CERTIFICATION BY OWNER/OPERATOR:	
I certify that the information contained within this rep the circumstances known about the release to the be sample collection and preparation procedures, extraction procedures used to assess or characterize the PCB contents of the procedures of the procedures are the procedures of the procedures of the procedures are the procedures of the procedures are the procedures of the procedures are	est of my knowledge and that all sampling plans on procedures, and instrumental/chemical analysis ntamination at the Site are on file at the Town o
Marin Ha	1-19-23
Owner/Operator's Signature	Date
Director of Development Services Owner/Operator's Title	

APPENDIX C EXPLORATION LOGS AND SAMPLING SHEETS

						GEOPROBE LOG						
GI		GZA GeoEnv Engineers	iron and S	men cienti	tal, Inc.	Daniel's Mill Vernon, CT		SHE	ET: JECT NO	1 of 1 D: 05.0045441.	03	
Drill	ing Co	y: B. Graha o.: Aquifer (Lavelle 1	Drillin		Testing, Inc	Final Geoprobe Depth (ft.): 14.5	/2015					
Type	of R	ig: GeoPro	be			Sampler Type: MacroCore					<u> </u>	
Rig	Model	: 6610 DT ethod: Dire		ısh		Daniel's Mili Vernon, CT	Stab.	Time				
Depth		1	ple	ln		Sample Description			å ¥	\$? .	to a to con	ŧ.
(ft)	No.	Depth (ft.)	(in)		(ppm)				Rem	De:		Depth
	S-1	0-5	60	36	0.0	•		21		AS	PHALT	0,
		0.0		Bottom 26": Brown, fine SAND, trace Silt, t			se					
							Daniel's Mill Vernon, CT Daniel's Mill Vernon, CT Date Time Water Depth (ft.) Sample Description Modified Burmister ALT addium SAND, Ittle fine to coarse Gravel fine SAND, trace Silt, trace fine to coarse of the SAND, trace Silt, fine SAND, trace Silt, fine SAND, trace Silt, fine to medium Sand own, fine to medium SAND, trace Silt, trace fine to coarse own, fine to medium SAND, trace Silt, trace fine to medium SAND, trace Silt, trace fine to coarse own, fine to medium SAND, trace Silt, trace fine to the medium SAND, trace Silt, trace fine to medium SAND, tr					
5_	S-2	5-10	60	60 36 0.0 S-Mi Bc Gr 0.0 Gr 0.0 S-S-Ne Ne O.0 Ne Gr 0.0 S-Ne Ne O.0 Bc fin	Bottom 32": Brown, fine SAND, some Silt, t	se						
						Gravel (Organic Roots @ ~8')				SAN	ID (FILL)	
					0.0							
10 _	S-3	10-14.5	54	54		S-3 : Top 6": Red-brown, fine SAND, trace	Silt					
						Next 1": ASPHALT						
							to coarse	Gravel				
					0.0	Bottom 36": Red-brown, fine to medium SA	ND, trace	Silt, tr	ace			02040
15 _									2			14.
-										i i		
-												
20												
25												
25_												
30												
Ş							epresent m	eter res	ponse in p	arts per million (pp	om)	
		usal at 14.5		anu ai	oove backgrou	nu readings.						
RE												
Strat	ificatio	n lines ren	reser	it ann	roximate bor	indaries between soil types. Actual transitio	ns may he	e gradi	al. Water			
level due	readir o othe	ngs have be r factors th	en n	nade ose p	at the times a	and under the conditions stated. Fluctuation times the measurements were made.	is of groun	idwate	may occ	ur	B-1	

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan H. Datum: Logged By: B. Graham Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): V. Datum: Final Geoprobe Depth (ft.): 20.5 Foreman: Lavelle Tatum Date Start - Finish: 7/20/2015 - 7/20/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 6610 DT Sampler O.D. (in.): 2.0 **Drilling Method:** Direct Push Sampler Length (in.): 60 **Rock Core Size:** Sample Depth (ft.) Remark Elev. Depth Sample Description Pen Rec Stratum PID Depth Modified Burmister (ft) Description (ft.) (in) (in) No. (ppm) 60 42 S-1: Top 4": ASPHALT 0/ S-1 0 - 5**ASPHALT** 0.0 Middle 4": Gray SAND and GRAVEL Bottom 34": Red-brown, fine to medium SAND, little fine to 0.0 coarse Gravel, trace Silt 0.0 5 S-2 5-10 60 48 S-2: Top 12": Brown, fine SAND, some Silt, trace fine to 0.0 coarse Gravel Bottom 36": Red-brown, fine SAND, little fine to coarse Gravel 0.0 0.0 10 52 S-3: Top 6": Red-brown, fine SAND, little fine to coarse Gravel S-3 10-15 60 0.0 SAND (FILL) Bottom 46": Brown, fine SAND, some Silt, trace fine to coarse Gravel 0.0 0.0 15 60 60 15-20 S-4: Top 6": Red-brown, fine SAND S-4 0.0 Next 18": Red brown, fine to medium SAND, some fine to coarse Gravel 0.0 Next 12": Red-brown, fine SAND, little Silt, little fine to coarse Next 6": Red-brown, medium SAND, little fine to coarse Gravel 0.0 20 Bottom 18": Red-brown, fine SAND, little fine to coarse Gravel, 20.5 6 6 20-20.5 S-5 trace Silt 2 S-5: Red-brown, fine to coarse SAND, some fine to coarse Gravel End of exploration at 20.5 feet. 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 20.5'. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

B-2

TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111.GLB 8/25/2015 8:52:00 AM

GEOPROBE LOG

GZA GeoEnvironmental, Inc. Engineers and Scientists

Daniel's Mill Vernon, CT

EXPLORATION NO.: B-3 SHEET: 1 of 1 PROJECT NO: 05.0045441.03 **REVIEWED BY:**

Logged By: B. Graham

GZ

Drilling Co.: Aquifer Drilling and Testing, Inc.

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 23 H. Datum: V. Datum:

Foreman: Lavelle Tatum

Type of Rig: GeoProbe Rig Model: 6610 DT **Drilling Method:** Direct Push Sampler Type: MacroCore Sampler O.D. (in.): 2.0 Sampler Length (in.): 60 Rock Core Size:

Date Start - Finish:

7/20/2015 - 7/20/2015 Groundwater Depth (ft.)

Water Depth Date Time Stab. Time

Ŧ		21		-
Remark	Sample Description Modified Burmister	Elev.	Stratum Description	Depth
1	S-1: Top 3": ASPHALT Next 2": Light brown, medium SAND Next 31": Red-brown, fine to medium SAND, little fine to coarse Gravel, trace Silt, trace Asphalt		ASPHALT	C
2	Botom 6": Red-brown, fine SAND, trace Silt and fine to coarse Gravel			
	S-2 : Red-brown, fine to medium SAND, little fine to coarse Gravel, trace Silt			
	S-3 : Top 10": Red-brown, fine to medium SAND, little fine to coarse Gravel, trace Silt			
	Next 4": Brown, fine to coarse SAND Next 22": Brown, fine SAND, some Silt, trace fine to coarse Gravel		SAND (FILL)	
	Bottom 12": Red-brown, fine to medium SAND, some fine to			
	coarse Gravel, trace Silt S-4: Top 12": Red-brown, fine to medium SAND, some fine to coarse Gravel, trace Silt			
	Next 3": Light brown, coarse SAND Next 10": Red-brown, fine SAND, some Silt, trace fine to			
	coarse Gravel Next 23": Red-brown, fine to medium SAND and fine to coarse			
	GRAVEL Bottom 6": Red-brown, fine to medium SAND and fine to coarse Gravel			
3	S-5 : Red-brown, fine to medium SAND, little fine to coarse Gravel, trace Silt, wet @ ~21' below grade.			
	End of exploration at 23 feet.			
<u></u>				
se in pa	MiniRAE photoionization detector (PID). PID values represent meter respons ground readings. aining wall. Offset ~3' north just off asphalt patch.	rts per m	illion (ppm)	
	ground readings.			

^{1 -} Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings.

2 - Refusal on rebar 2x directly against retaining wall. Offset ~3' north just off asphalt patch.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

^{3 -} Refusal at 23'.

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. GZ PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): V. Datum: Foreman: Lavelle Tatum Final Geoprobe Depth (ft.): 10 Date Start - Finish: 7/20/2015 - 7/20/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 6610 DT Sampler O.D. (in.): 2.0 **Drilling Method:** Direct Push Sampler Length (in.): 60 **Rock Core Size:** Sample Remark Depth (ft.) Depth Sample Description Elev. Pen. Rec. PID Stratum Depth (ft) Modified Burmister Description (in) No. (ft.) (in) (ppm) 60 42 S-1: Top 4": ASPHALT S-1 0-5 0,4 **ASPHALT** 0.0 Next 2": Brown, fine SAND, little Silt 2 Next 2": BRICK 0.0 Next 4": ASPHALT and SAND and GRAVEL Bottom 30": Brown, fine to medium SAND, little Silt and fine to coarse Gravel 0.0 5 S-2 5-10 60 48 S-2: Brown, fine to medium SAND, little fine to coarse Gravel, SAND (FILL) 0.0 trace Silt and Asphalt 0.0 0.0 10 10 End of exploration at 10 feet. 15 TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:06 AM 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal @ 1'. Offset @ ~3' north.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): V. Datum: Foreman: Lavelle Tatum Final Geoprobe Depth (ft.): 14 Date Start - Finish: 7/20/2015 - 7/20/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 6610 DT Sampler O.D. (in.): 2.0 Sampler Length (in.): 60 **Drilling Method:** Direct Push **Rock Core Size:** Sample Depth (ff.) Remark Depth Sample Description Modified Burmister Elev. Pen. Rec. Stratum PID Depth (ft) Description (ft.) (in) (in) No. (ppm) S-1: Top 4": ASPHALT 60 42 0,4 S-1 0 - 5**ASPHALT** 0.0 Next 2": Light brown medium SAND 0.0 Next 12": Dark brown, fine to medium SAND, trace Silt, trace 0.0 fine to coarse Gravel and Asphalt Bottom 24": Brown, fine to medium SAND, some Silt, little fine to coarse Gravel 5 S-2 5-10 60 30 S-2: Top 6": COBBLE 0.0 Middle 12": Gray-brown, fine to medium SAND, some Silt and fine to coarse Gravel 0.0 SAND (FILL) Bottom 12": Red-brown, fine to medium SAND, some Silt, fine to coarse Gravel 10 36 10-14 48 S-3: Top 12": Gray/black, fine to medium SAND, some fine to 0.0 coarse Gravel, little Silt Middle 12": Brown, fine SAND and SILT, little fine to coarse 0.0 Bottom 12": Brown, fine to medium SAND, some fine to coarse Gravel, trace Silt 2 15 End of exploration at 14 feet. GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:07 AM 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 14'. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA

B-5

GEOPROBE LOG **EXPLORATION NO.: GZA** SHEET: Daniel's Mill 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Ground Surface Elev. (ft.): Foreman: Lavelle Tatum Final Geoprobe Depth (ft.): 15 Date Start - Finish: 7/20/2015 - 7/20/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): 2.0 Rig Model: 6610 DT Drilling Method: Direct Push Sampler Length (in.): 60 Rock Core Size: Sample Depth (ft.) Remark Elev. (ft.) Depth Sample Description Stratum Pen. Rec. Depth PID (ft) Modified Burmister Description (in) (in) No (ft.) (ppm) 60 36 S-1: Top 3": ASPHALT ASPHALT 0/3 S-1 0.0 Middle 2": Light brown, medium SAND Bottom 31": Red-brown, fine to medium SAND, little fine to 0.0 coarse Gravel, trace Silt 0.0 5 S-2: Brown/red-brown, fine to medium SAND, little fine to 60 36 S-2 5-10 0.0 coarse Gravel, trace Silt 0.0 SAND (FILL) 0.0 10 60 42 S-3: Top 2": BRICK 10-15 S-3 0.0 Next 28": Brown/red-brown, fine to medium SAND, some fine to coarse Gravel, trace Silt, wet @ 13' 0.0 Next 6": Brown, fine to medium SAND, little fine to coarse Gravel Bottom 6": Red-brown, fine to coarse SAND 0.0 15 End of exploration at 15 feet. 2 TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:09 AM 20 25 30

1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings,

2 - Refusal at 15'.

REMARKS

GZA.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GEOPROBE LOG EXPLORATION NO.: B-7 GZA SHEET: Daniel's Mill 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 20 Foreman: Lavelle Tatum Date Start - Finish: 7/20/2015 - 7/20/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): 2.0 Rig Model: 6610 DT **Drilling Method:** Direct Push Sampler Length (in.): 60 **Rock Core Size:** Sample Elev. (ft.) Depth Sample Description Stratum Pen. Rec. Depth PID (ft) Modified Burmister Description (in) (in) (ft.) No (mgg) S-1: Top 4": Light brown, medium SAND (Topsoil) S-1 60 48 0.0 Middle 20": Medium brown SAND, Brick and Cobble (layers) Botom 24": Brown/black, medium SAND, little Silt, little fine to 0.0 coarse Gravel, little Apshalt, little Brick 0.0 42 5-10 60 S-2 : Top 18": Brown, medium SAND, some Brick S-2 0.0 Bottom 24": Red-brown, medium SAND, little fine to coarse Gravel, trace Silt 0.0 0.0 10 SAND (FILL) 36 S-3: Red-brown, medium SAND, little Silt, little fine to coarse 10-15 60 S-3 0.0 Gravel, trace Cobble, wet @ ~14' 0.0 0.0 15

S-4: Brown/red-brown, fine to medium SAND, some fine to

0.0 20 End of exploration at 20 feet.

0.0

0.0

1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. 2 - Refusal at 20'.

S-4

BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:11 AM

25

30

REMARKS

15-20

60 54

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

coarse Gravel, little Silt

2

GEOPROBE LOG EXPLORATION NO.: SHEET: Daniel's Mill 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan H. Datum: Logged By: B. Graham V. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 14 Foreman: Lavelle Tatum Date Start - Finish: 7/20/2015 - 7/20/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): 2.0 Rig Model: 6610 DT **Drilling Method:** Direct Push Sampler Length (in.): 60 **Rock Core Size:** Sample Depth (ft.) Remark Elev. Depth Sample Description Stratum Depth Pen. Rec. PID (ft) Modified Burmister Description (in) (in) (ft.) (maa) No S-1: Top 3": ASPHALT 0/3 S-1 60 48 **ASPHALT** 0.0 Next 15": Red-brown, fine to medium SAND, little fine to coarse Gravel, trace Brick 0.0 Next 6": Dark brown, fine to medium SAND, trace Silt Bottom 24": Brown, fine to coarse SAND, little fine to coarse Gravel, little Asphalt, little Glass 0.0 5 S-2: Top 38": Brown, fine to medium SAND, little fine to 5-10 60 42 S-2 0.0 coarse Gravel, trace Silt Bottom 4': BRICK/Red COBBLE 0.0 SAND (FILL) 0.0 10 S-3: Brown, fine to medium SAND, little fine to coarse Gravel, 10-14 48 36 S-3 0.0 trace Silt, trace Glass, trace Brick 0.0 2 End of exploration at 14 feet. 15 15 BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:13 AM 20 25 30 1 - Soil samples screened with a 10,6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 14'.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

B-8

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 PROJECT NO: 05.0045441.03 GeoEnvironmental, Inc. Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc Ground Surface Elev. (ft.): V. Datum: Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 3 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Rig Model: 420 Sampler Type: MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): 2.0 **Drilling Method:** Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Depth (ft.) Remark (ft.) Depth Sample Description Stratum Depth Pen. Rec. PID (ft) Modified Burmister Description (ft.) (in) (in) No. (ppm) S-1: Top 3": CONCRETE S-1 0-3 36 18 0/3 CONCRETE 0.0 Next 5": Brown, fine to medium SAND, some fine to coarse SAND (FILL) Grave 0.0 Next 2": BRICK Bottom 8": Brown, fine to medium SAND, some fine to coarse 2 Gravel 5 End of exploration at 3 feet. 10 15 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings, 2 - Refusal at 3'.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:15 AM

GZA

GEOPROBE LOG EXPLORATION NO.: Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Ground Surface Elev. (ft.): Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 2 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): 2.0 Rig Model: 420 Drilling Method: Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Depth (ft.) Remark Depth Elev. (ft.) Sample Description Stratum Pen. Rec. PID Depth (ft) Modified Burmister (in) (in) Description No. (ft.) (ppm) 0,6 S-1 0-2 24 18 S-1: Top 6": CONCRETE CONCRETE 33.8 Middle 6": Brown, fine to medium SAND, little Silt, little fine to SAND (FILL) coarse Gravel (black stain @ 10") 2 Bottom 6": Light brown, fine to medium SAND, little fine to coarse Gravel End of exploration at 2 feet. 5 10 15 TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:42 AM 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 2'. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. **B-10**

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): V. Datum: Final Geoprobe Depth (ft.): 3 Foreman: Scott Przybylsky Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 Drilling Method: Direct Push Sampler Length (in.): 36 Rock Core Size: Sample Depth (ft.) Remark Depth Elev. Sample Description Stratum Pen Rec. Depth (ft) Modified Burmister Description (in) (in) No (ft.) (mgg) S-1: Top 2"; CONCRETE 0/2 S-1 0-3 36 24 1 CONCRETE 0.0 Bottom 22": Brown, fine to medium SAND, some fine to coarse 2 SAND (FILL) Gravel, little Brick End of exploration at 3 feet. 5 10 15 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Concrete adjacent/north to outdoor pad was over13" thick. Moved boring ~10' west to bottom of ramp. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. **B-11**

TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111, GLB 8/25/2015 8:51:45 AM

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 PROJECT NO: 05.0045441.03 GeoEnvironmental, Inc. Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Ground Surface Elev. (ft.): V. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 1.5 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 **Drilling Method:** Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Elev. Depth Sample Description Stratum Pen. Rec. Depth PID (ft) Modified Burmister Description (in) (in) No (ft.) (ppm) S-1: Top 6": CONCRETE S-1 0-1.5 18 12 0.6 CONCRETE 6.8 Bottom 6": Brown, fine to medium SAND, little Silt, little fine to SAND (FILL) 1.5 2 coarse Gravel End of exploration at 1.5 feet. 5 10 15 TEMPLATE GEO-ROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:47 AM 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 1.5'.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GZA.

GEOPROBE LOG EXPLORATION NO.: GZA SHEET: Daniel's Mill 1 of 1 PROJECT NO: 05.0045441.03 GeoEnvironmental, Inc. Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Ground Surface Elev. (ft.): Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 1 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 **Drilling Method:** Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Depth (ft.) Remark (f.) Depth Sample Description Stratum Depth (ft.) Pen. Rec. PID (ft) Modified Burmister Description (in) (in) No. (maga) S-1: Top 2": CONCRETE 0/2 S-1 0-1 12 8 1 CONCRETE 0.0 Bottom 6": Brown, fine to medium SAND, some fine to coarse SAND (FILL) 2 Gravel, trace Silt End of exploration at 1 feet. 5 10 15 TEMPLATE GEO-ROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:48 AM 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 1'-Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. B-13

GEOPROBE LOG EXPLORATION NO.: GZA SHEET: 1 of 1 Daniel's Mill GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B, Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Ground Surface Elev. (ft.): Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 2 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): 2.0 Rig Model: 420 **Drilling Method:** Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Depth (ff.) Remark Elev. Depth Sample Description Stratum Pen. Rec. Depth PID (ft) Modified Burmister Description (in) (in) (ft.) No. (ppm) S-1: Top 2": CONCRETE 0/2 24 18 CONCRETE S-1 0.7 Bottom 16": Brown, fine to medium SAND, some fine to coarse SAND (FILL) Gravel, trace Silt 2 End of exploration at 2 feet. 5 10 15 GZA TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:50 AM 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 2' Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. **B-14**

GEOPROBE LOG EXPLORATION NO.: GZA SHEET: 1 of 1 PROJECT NO: 05.0045441.03 Daniel's Mill GeoEnvironmental, Inc. GZ Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: V. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 3 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Water Depth Date Time Stab. Time Sampler O.D. (in.): 2.0 Rig Model: 420 **Drilling Method:** Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Depth (ft.) Elev. Depth Sample Description Stratum Pen. Rec. PID Depth (ft) Modified Burmister Description (in) (in) No. (ft.) (ppm) 36 30 S-1: Top 3": CONCRETE 0/3 S-1 0-3 CONCRETE 0.0 Bottom 28": Red-brown, fine to medium SAND, some fine to 0.0 SAND (FILL) coarse Gravel, trace Silt 2 End of exploration at 3 feet. 5 10 15 GZA TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:52 AM 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 3'-

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan H. Datum: Logged By: B. Graham Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 6.5 Foreman: Scott Przybylsky Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Water Depth Date Time Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 Sampler Length (in.): 36 **Drilling Method: Direct Push** Rock Core Size: Depth (ft.) Sample Remark (ft.) Depth Sample Description Stratum Depth Pen. Rec. PID **Modified Burmister** (ft) Description (in) (in) (ppm) No (ft.) 0/3 30 S-1: Top 3": CONCRETE CONCRETE 36 S-1 < 0-3 32.9 Bottom 27": Red-brown, fine to medium SAND, little fine to 8.1 coarse Gravel, trace Silt 6.5 S-2: Top 12": Red-brown, fine to medium SAND, little fine to 3-6 36 32 SAND (FILL) S-2 286.5 coarse Gravel, trace Silt 4.1 Bottom 20": Red-brown, fine to medium SAND, some fine to 5 coarse Gravel, trace Silt 6.5 6 6 S-3: Red-brown, fine to medium SAND, little fine to coarse 6-6.5 S-3 367.4 Gravel, trace Silt, strong chemical odor. End of exploration at 6.5 feet. 10 15

30

1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings.
6.5 - Refusal at 6.5'.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

B-16

GZA TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111, GLB 8/25/2015 8:51:53 AM

20

25

GEOPROBE LOG EXPLORATION NO.: GZA SHEET: 1 of 1 PROJECT NO: 05.0045441.03 Daniel's Mill GeoEnvironmental, Inc. Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Ground Surface Elev. (ft.): Drilling Co.: Aquifer Drilling and Testing, Inc. V. Datum: Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 5 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 **Drilling Method: Direct Push** Sampler Length (in.): 36 **Rock Core Size:** Sample Elev. (ft.) Depth Sample Description Pen. Rec Stratum Depth PID (ft) Modified Burmister (in) (in) Description No (ft.) (ppm) S-1 0-3 36 24 S-1: Top 2": CONCRETE 0.0 CONCRETE Bottom 22": Red-brown, fine to medium SAND, some fine to 0.0 coarse Gravel, trace Silt SAND (FILL) 24 S-2 3-5 24 S-2: Top 12": Red-brown, fine to medium SAND, some fine to 0.0 coarse Gravel, trace Silt 5 Bottom 12": Red-brown, fine SAND 2 End of exploration at 5 feet. 10 15 GZA TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111.GLB 8/25/2015 8:51:55 AM 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 5'. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. **B-17**

GEOPROBE LOG

GZA
GeoEnvironmental, Inc.
Engineers and Scientists

Daniel's Mill Vernon, CT EXPLORATION NO.: B-18 SHEET: 1 of 1 PROJECT NO: 05.0045441.03

PROJECT NO: 05.004544
REVIEWED BY:

Logged By: B. Graham

Drilling Co.: Aquifer Drilling and Testing, Inc.
Foreman: Scott Przybylsky

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 3 H. Datum: V. Datum:

Date Start - Finish: 7/22/2015 - 7/22/2015

Type of Rig: GeoProbe

Rig Model: 420

Drilling Method: Direct Push

Sampler Type: MacroCore Sampler O.D. (in.): 2.0 Sampler Length (in.): 36

Rock Core Size:

Groundwater Depth (ft.)

Date Time Water Depth Stab. Time

		San	nple				Ĭ.	÷_		₽
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID (ppm)	Sample Description Modified Burmister	Remark	Elev. (ft.)	Stratum Description	Depth (ft.)
:= :-	S-1	0-3	36	24	0.0	S-1 : Top 6": CONCRETE Bottom 30": Red-brown, fine SAND, some fine to coarse Gravel, trace Silt	1	_	CONCRETE SAND (FILL)	0,6
5_						End of exploration at 3 feet.				
10 _										
15 _			1)			9				
20 _										
25 _										
30										

1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID)... PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings...

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

B-18

GZA TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:57 AM

REMARKS

GEOPROBE LOG EXPLORATION NO.: GZA Daniel's Mill SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 05.0045441.03 Vernon, CT Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan H. Datum: Logged By: B. Graham V. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 3.5 Date Start - Finish: 7/22/2015 - 7/22/2015 Foreman: Scott Przybylsky Date Start - Finish: Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Time Water Depth Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 Sampler Length (in.): 36 **Drilling Method:** Direct Push Rock Core Size: Depth (ft.) Sample Remark Elev. (ft.) Depth Sample Description Stratum Depth Pen. Rec. PID (ft) Modified Burmister Description (in) (in) (ft.) (ppm) No 0/2 36 S-1: Top 2": CONCRETE 12 CONCRETE S-1 0 - 32.1 Bottom 10": Brown, fine to medium SAND, some fine to coarse SAND (FILL) Gravel, trace Silt 0.0 3.5 6 6 S-2 3-3.5 S-2: BRICK BRICK 2 End of exploration at 3.5 feet. 5 10 15 GZA TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:51:59 AM 20 25 30 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. REMARKS 2 - Refusal at 3.5'. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. **B-19**

GEOPROBE LOG EXPLORATION NO.: GZA SHEET: 1 of 1 PROJECT NO: 05.0045441.03 Daniel's Mill GeoEnvironmental, Inc. GZN Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B. Graham Geoprobe Location: See Plan H. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): V. Datum: Foreman: Scott Przybylsky Final Geoprobe Depth (ft.): 1.5 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type: MacroCore Date Water Depth Time Stab. Time Rig Model: 420 Sampler O.D. (in.): 2.0 Drilling Method: Direct Push Sampler Length (in.): 36 **Rock Core Size:** Sample Remark Depth (ft.) Sample Description Pen. Rec. Depth PID Stratum (ft) Modified Burmister No (ft.) (in) (in) Description (ppm) 18 10 S-1: Top 5": CONCRETE S-1 0 - 1.50,5 0.0 CONCRETE Bottom 5": Red-brown, fine to medium SAND and fine to SAND AND GRAVEL (FILL)1.5 coarse GRAVEL 2 End of exploration at 1.5 feet. 5 10 15 TEMPLATE GEOPROBE BORING LOGS GPJ LIBRARY 012111 GLB 8/25/2015 8:52:02 AM 20 25 1 - Soil samples screened with a 10.6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) REMARKS relative to benzene in air and above background readings. 2 - Refusal at 1.5'. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. B-20

GEOPROBE LOG EXPLORATION NO.: GZA SHEET: Daniel's Mill 1 of 2 PROJECT NO: 05.0045441.03 GeoEnvironmental, Inc. Vernon, CT Engineers and Scientists **REVIEWED BY:** Logged By: B, Graham Geoprobe Location: See Plan H. Datum: Ground Surface Elev. (ft.): V. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Foreman: Lavelle Tatum Final Geoprobe Depth (ft.): 32 Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type:MacroCore Date Time Water Depth Stab. Time Sampler O.D. (in.): Rig Model: 6610 DT Drilling Method: Auger/Air Rotary Sampler Length (in.): **Rock Core Size:** Equipment Installed Sample Stratum (#) Remark Depth Sample Description Pen. Rec. Depth PID* (ft) Modified Burmister Description (in) (in) No (ft.) (ppm) : Auger to ~20' (bedrock), 1 foot into bedrock; Air 0-32 Rotary to 32' 2 5 10 **PVC Riser** (0-22')15 Bentonite (17-20')GZADEPTH.GDT; GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO; 8/25/2015; 8:52:57 AM 20 25 Filter Sand (20-32')Well Screen (22-32')1 - Soil samples screened with a 10,6 eV MiniRAE photoionization detector (PID). PID values represent meter response in parts per million (ppm) relative to benzene in air and above background REMARKS readings 2 - For soil description refer to B-2. Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. **MW-1**

						GEOPROBE LOG								
GZ	GZA GeoEnvironmental, Inc. Engineers and Scientists Daniel's Mill Vernon, CT Daniel's Mill Vernon, CT SHEET: 2 of 2 PROJECT NO: 05.0045441.03 REVIEWED BY: Logged By: B. Graham Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): Daniel's Mill Vernon, CT SHEET: 2 of 2 PROJECT NO: 05.0045441.03 REVIEWED BY: H. Datum: V. Datum:													
Drilli	ng Co	r: B. Graha .: Aquifer D Lavelle T	rilling	g and	Testing, Inc		2/2015							
Туре	of Ri	g: GeoPro	be			Sampler Type:MacroCore	Data	Ground	water Dep		Ctab Time			
		: 6610 DT ethod: Aug	er/Aiı	Rota	ry	Sampler O.D. (in.): Sampler Length (in.): Rock Core Size:	Date	Time	Water		Stab. Time			
Depth		Sam		Dag	DIO.	Sample Description	1	Stratu	(£ bt	Equipm	ent installed			
(ft)	No.	Depth (ft.)	(in)	Rec. (in)	PID* (ppm)	Modified Burmister		Descrip	otion	*1 1:-1				
						End of any leasting at 20 feet			3					
3						End of exploration at 32 feet.	1,	·						
1.5														
35 _														
:														
12														
:														
40														
-									1					
	1													
					1									
8														
45 _														
9														
		- 21												
									1					
8:														
50 _	-													
2	-													
55 _														
0.	1													
- 28														
7.5														
60	1													
REMARKS	2. 40 for 142 and disprete. School 140, threaded flush inject 40 clot PMC well eccent set at approximately 32 feet below grade. Well completed to ground surface with a 2 inch dismeter. School 140, 150 feet PMC well eccent													
nemaric Strain 100 100 100 100 100 100 100 100 100 10	tification reading to other	on lines rep ngs have b er factors th	reser een r an th	nt app nade nose p	roximate bo at the times bresent at th	oundaries between soil types. Actual transi and under the conditions stated. Fluctuati e times the measurements were made.	tions may boons of groun	e gradual. Wate ndwater may o	er	ı	//W-1			

GEOPROBE LOG EXPLORATION NO.: **GZA** SHEET: 1 of 2 PROJECT NO: 05.0045441.03 Daniel's Mill GeoEnvironmental, Inc. Vernon, CT Engineers and Scientists **REVIEWED BY:** Geoprobe Location: See Plan H. Datum: Logged By: B. Graham V. Datum: Drilling Co.: Aquifer Drilling and Testing, Inc. Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 35 Foreman: Lavelle Tatum Date Start - Finish: 7/22/2015 - 7/22/2015 Groundwater Depth (ft.) Type of Rig: GeoProbe Sampler Type:MacroCore Date Time Water Depth Stab. Time Rig Model: 6610 DT Sampler O.D. (in.): Drilling Method: Auger/Air Rotary Sampler Length (in.): Rock Core Size: Equipment Installed Stratum (#) Sample Remark Depth Sample Description Pen. Rec. (in) (in) Depth PID* (ft) Modified Burmister Description (ft.) (ppm) No : Augered to 20' (rock), air rotary to 23', Hole 0 - 35collapsing. Augered to 23', air rotary to 36'. Rig losing air somewhere could not remove all rock, debris. 5 10 **PVC Riser** (0-25')15 Bentonite (17-20') GZA TEMPLATE GEOPROBE W/EQUIP & SAMP NO. 8/25/2015, 8:53:00 AM 20 25 Filter Sand (20-35')1 - 10 feet of 2 inch diameter, Schedule 40, threaded, flush joint, 10-slot PVC well screen set at approximately 35 feet below grade. Well completed to ground surface with a 2 inch diameter, Schedule 40, threaded, flush joint, PVC riser. Filter sand placed in annulus around well from 20 to 35 feet below grade. Bentonite seal installed from 17 to 20 feet below grade. Remaining annulus filled with native sand from 0 to 17 feet below grade. Well protected with flush mount. REMARKS GZADEPTH,GDT; Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

MW-2

								GEO	PROB	E LOG						
GZ	GZA GeoEnvironmental, Inc. Engineers and Scientists Daniel's Mill Vernon, CT Daniel's Mill Vernon, CT SHEET: 2 of 2 PROJECT NO: 05.0045441.03 REVIEWED BY: H. Datum: V. Datum: Foreman: Lavelle Tatum EXPLORATION NO.: MW-2 SHEET: 2 of 2 PROJECT NO: 05.0045441.03 REVIEWED BY: H. Datum: V. Datum:															
Drillin	ng Co	: B. Graha .: Aquifer [Lavelle]	Orilling	g and	Testing, In	c. Gi	round Su	rface Ele [.] robe Dep	v. (ft.): th (ft.):		/2015					
Tuno	of Di	g: GeoPro	ha			99	mpler Ty	net/lacro	Core				Groundw			
Rig N	fodel	6610 DT				Sa	mpler O.	D. (in.):			Date	•	Time	Wate	r Depth	Stab. Time
Drilli	ng Me	ethod: Aug		r Rota	ary		mpler Le ock Core):							
Depth (ft)	No.	San Depth (ft.)	Pen.	Rec.	PID* (ppm)			Sample I Modified	Description	on er		Remark	Stratun Descripti	Depth (#.)	Equipme	nt Installed
25	NO.	(it.)	(11)	(III)	(ррш)							œ	Description	OI1		Well Screen (25-35')
35						End	of explora	ition at 35	feet.						30.0	
45 _ 50 _ 60																
REMARKS																
Strati level due t	fication reading o other	n lines rep ngs have b er factors th	reser een r nan tr	nt app nade nose p	proximate be at the times present at ti	ounda s and ne tim	aries betwo under the les the me	een soil ty condition asureme	ypes. Act is stated. nts were	ual transition Fluctuation made.	ons may l ns of grou	be gi undw	adual. Water ater may occ	ur	N	IW-2

GEOPROBE LOG

GZA
GeoEnvironmental, Inc.
Engineers and Scientists

Daniel's Mill 98 East Main Street Vernon, Connecticut

8/7/2017 - 8/7/2017

EXPLORATION NO.: B-21 SHEET: 1 of 1 PROJECT NO: 45441.06 REVIEWED BY: D. Rusczyk

Logged By: B. Graham
Drilling Co.: Glacier Drilling
Foreman: Lavelle

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 10 H. Datum: V. Datum:

Type of Rig:GeoProbe Rig Model: 6610 DT Drilling Method:Direct Push Sampler Type: Macro Core Sampler O.D. (in.): 2.75 Sampler Length (in.):60 Rock Core Size:

Date Start - Finish:

Groundwater Depth (ft.)

Date Time Water Depth Stab. Time

Donth		Sam	ple			0 1 5 1 11			퐀	si		£ _
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID (ppm)	Sample Description Modified Burmister			Remark	Elev. (ft.)	Stratum Description	Depth (ft.)
- - -	S-1	0-5	60	42	0.0 0.2 0.2 0.1	S-1: Top 2": ASPHALT Next 10": Brown-gray, fine to medium SAND, little S Brick and Asphalt Next 15": Brown, fine to medium SAND, some Silt, coarse Gravel	, trace fi	ne to	1		ASPHALT FILL	0/2
5_	S-2	5-10	60	42	0.3 0.3 0.0	Bottom 15": Gray-brown, fine to medium SAND, so Asphalt, Brick and fine to coarse Gravel S-2: Top 18": Gray-brown, fine to medium SAND, s little Asphalt and fine to coarse Gravel Next 8": Red-brown, fine to medium SAND, little Sil	some Si	ilt,				- 7
10 _					0.0	coarse Gravel Next 4": Brown, fine SAND Bottom 12": Brown, fine to medium SAND, little Silt coarse Gravel	lt and fin	ie to			SAND	10
-						End of Exploration at 10 feet.						
- 15 _ -												
20												
-												
25 _ -												
- - 30												

1 - Soil samples screened with a 10.6 eV Thermo Environmental Instruments Model 580B organic vapor meter (OVM). OVM values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. A "*" indicates a sample sent to a laboratory for additional analyses or screening. ND=None Detected above background.

GEOPROBE LOG Daniel's Mill **EXPLORATION NO.: GZA** 98 East Main Street SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 45441.06 Vernon, Connecticut Engineers and Scientists REVIEWED BY: D. Rusczyk Logged By: B. Graham Geoprobe Location: See Plan H. Datum: **Drilling Co.:** Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Lavelle Final Geoprobe Depth (ft.): 10 Date Start - Finish: 8/7/2017 - 8/7/2017 Groundwater Depth (ft.) Type of Rig:GeoProbe Sampler Type: Macro Core Date Time Water Depth Stab. Time Ria Model: 6610 DT Sampler O.D. (in.): 2.75 **Drilling Method:**Direct Push Sampler Length (in.):60 **Rock Core Size:** Sample Remark Elev. Depth Sample Description Pen. Rec. (in) (in) PID Stratum Depth (ft) Modified Burmister Description No (ft.) (ppm) 60 48 S-1: Top 3": ASPHALT S-1 0-5 0.5 **ASPHALT** 0.3 Middle 4": Gray, medium SAND and GRAVEL (ROAD BASE) **ROAD BASE** 0.0 Bottom 41": Dark brown, fine to medium SAND, little Silt, trace 0.3 Asphalt and Brick 0.2 **FILL** 5 7.1 42 S-2 5-10 60 S-2: Red-brown, fine to medium SAND, some Silt, little fine to 0.7 coarse Gravel 0.2 SAND 0.4 10 End of Exploration at 10 feet. 15

GZA TEMPLATE GEOPROBE GEOPROBE LOGS.GPJ LIBRARY 012111.GLB 10/2/2019 4:41:46 PN 20 25

1 - Soil samples screened with a 10.6 eV Thermo Environmental Instruments Model 580B organic vapor meter (OVM). OVM values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. A indicates a sample sent to a laboratory for additional analyses or screening. ND=None Detected above background.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

REMARKS

B-22

GEOPROBE LOG

GZA
GeoEnvironmental, Inc.
Engineers and Scientists

Daniel's Mill 98 East Main Street Vernon, Connecticut

8/7/2017 - 8/7/2017

EXPLORATION NO.: B-23 SHEET: 1 of 1 PROJECT NO: 45441.06 REVIEWED BY: D. Rusczyk

Logged By: B. Graham
Drilling Co.: Glacier Drilling
Foreman: Lavelle

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 10 H. Datum: V. Datum:

Type of Rig:GeoProbe Rig Model: 6610DT Drilling Method:Direct Push Sampler Type: Macro Core Sampler O.D. (in.): 2.75 Sampler Length (in.):60 Rock Core Size:

Date Start - Finish:

Groundwater Depth (ft.)

Date Time Water Depth Stab. Time

Denth		San	nple			Comple Description	ar F	> ~	_	₽́~
Depth (ft)	INO.	Depth (ft.)	Pen. (in)	Rec. (in)	PID (ppm)	Sample Description Modified Burmister	Remark	Elev. (ft.)	Stratum Description	Depth (ft.)
	S-1	0-5	60	48	0.3	S-1: Top 3": ASPHALT	1	<u> </u>	ASPHALT	0/
_					0.2	Middle 4": ROAD BASE				
-					0.2	Bottom 41": Red-brown, fine to medium SAND, some Silt, little fine to coarse Gravel, trace Asphalt	'			
-					0.2	Time to coarse Graver, trace Aspirant				
5 _					0.1					
	S-2	5-10	60	42	0.0	S-2: Red-brown, fine to medium SAND, little Silt and fine to			SAND (FILL)	
_					0.0	coarse Gravel				
_										
					0.0					
10 _								L		1
_						End of Exploration at 10 feet.				
_										
-										
-										
15 _										
-										
-										
-										
-										
20 _										
-										
-										
-										
25 _										
-										
-										
-										
-										
30										

1 - Soil samples screened with a 10.6 eV Thermo Environmental Instruments Model 580B organic vapor meter (OVM). OVM values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. A "*" indicates a sample sent to a laboratory for additional analyses or screening. ND=None Detected above background.

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

B-23

GZA TEMPLATE GEOPROBE GEOPROBE LOGS.GPJ LIBRARY 012111.GLB 10/2/20194:42:17 PM

REMARKS

GEOPROBE LOG

GZA
GeoEnvironmental, Inc.
Engineers and Scientists

Daniel's Mill 98 East Main Street Vernon, Connecticut

8/7/2017 - 8/7/2017

EXPLORATION NO.: B-24 SHEET: 1 of 1 PROJECT NO: 45441.06 REVIEWED BY: D. Rusczyk

Logged By: B. Graham
Drilling Co.: Glacier Drilling
Foreman: Lavelle

Geoprobe Location: See Plan Ground Surface Elev. (ft.): Final Geoprobe Depth (ft.): 10 H. Datum: V. Datum:

Type of Rig:GeoProbe Rig Model: 6610DT Drilling Method:Direct Push Sampler Type: Macro Core Sampler O.D. (in.): 2.75 Sampler Length (in.):60 Rock Core Size:

Date Start - Finish:

Groundwater Depth (ft.)

Date Time Water Depth Stab. Time

D 41-		Sam					ırk	· -	•	<u>ڊ</u> _
Depth (ft)	No.	Depth (ft.)	Pen. (in)	Rec. (in)	PID (ppm)	Sample Description Modified Burmister	Remark	Elev. (ft.)	Stratum Description	Depth (ft.)
-	S-1	0-5	60	45	0.6 0.8 0.6	S-1: Top 3": ASPHALT Next 2": Brown, fine to medium SAND Next 2": Gray, ROAD BASE	1		ASPHALT ROAD BASE	0,3 0,7
-					0.4	Next 5": Red-brown, fine to medium SAND, little Silt, fine to coarse Gravel and Asphalt Next 12": Red-brown, fine to medium SAND, little Silt and fine			FILL	
5_	S-2	5-10	60	43	0.2 0.0	to coarse Gravel Bottom 21": Red-brown, fine SAND, some Silt, little fine to				6
-					0.0	coarse Gravel S-2: Top 12": Red-brown, fine SAND, little Silt, trace Asphalt				
-					0.0	(5-7") Bottom 31": Brown, fine SAND, some Silt, little fine to coarse			SAND	
10 _						Gravel End of Exploration at 10 feet.				10
-										
-										
15 _										
-										
-										
i										
20 _										
-										
25 _										
-										
-										
30										

1 - Soil samples screened with a 10.6 eV Thermo Environmental Instruments Model 580B organic vapor meter (OVM). OVM values represent meter response in parts per million (ppm) relative to benzene in air and above background readings. A "*" indicates a sample sent to a laboratory for additional analyses or screening. ND=None Detected above background.

REMARKS

GZA TEMPLATE GEOPROBE GEOPROBE LOGS.GPJ LIBRARY 012111.GLB 10/2/2019 4:42:45 PM

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

GEOPROBE LOG Daniel's Mill **EXPLORATION NO.: GZA** SHEET: 98 East Main Street 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 45441.06 Vernon, Connecticut Engineers and Scientists REVIEWED BY: D. Rusczyk Logged By: B. Graham Geoprobe Location: See Plan H. Datum: **Drilling Co.:** Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Lavelle Final Geoprobe Depth (ft.): 2 Date Start - Finish: 8/7/2017 - 8/7/2017 Groundwater Depth (ft.) Type of Rig:GeoProbe Sampler Type: Macro Core Date Time **Water Depth** Stab. Time Rig Model: 6610DT Sampler O.D. (in.): 2.75 **Drilling Method:**Direct Push Sampler Length (in.):60 **Rock Core Size:** Sample Remark Depth (ft.) Elev. Depth Sample Description Stratum Depth Pen. Rec PID (ft) Modified Burmister Description (in) (in) No (ft.) (ppm) 24 0 S-1: Sampler stuck (footing) at 2 feet below grade. No sample. S-1 0-2 End of Exploration at 2 feet. 5 10 15 20 25 REMARKS Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made. B-25

GZA TEMPLATE GEOPROBE GEOPROBE LOGS.GPJ LIBRARY 012111.GLB 10/2/2019 4:42:52 PM

GEOPROBE LOG Daniel's Mill **EXPLORATION NO.: GZA** 98 East Main Street SHEET: 1 of 1 GeoEnvironmental, Inc. PROJECT NO: 45441.06 Vernon, Connecticut Engineers and Scientists REVIEWED BY: D. Rusczyk Logged By: B. Graham Geoprobe Location: See Plan H. Datum: **Drilling Co.:** Glacier Drilling Ground Surface Elev. (ft.): V. Datum: Foreman: Lavelle Final Geoprobe Depth (ft.): 10 Date Start - Finish: 8/7/2017 - 8/7/2017 Groundwater Depth (ft.) Type of Rig:GeoProbe Sampler Type: Macro Core Date Time **Water Depth** Stab. Time Ria Model: 6610DT Sampler O.D. (in.): 2.75 **Drilling Method:**Direct Push Sampler Length (in.):60 **Rock Core Size:** Sample Remark Depth (ft.) Elev. Depth Sample Description Pen. Rec PID Stratum Depth (ft) Modified Burmister Description (in) (in) No (ft.) (ppm) 60 30 S-1: Top 3": ORGANIC COVER S-1 0-5 0,3 **ORGANIC** Middle 17": Brown, fine to medium SAND, little fine to coarse Gravel, trace Brick Bottom 10": Black, fine to medium SAND, some Silt, little fine to coarse Gravel, petroleum odor 5 FILL S-2 5-10 60 0 S-2: No recovery. Piece of steel in tip bottom at 8 feet. Approximately 44 inches #2 oil (possible UST). 1 10 End of Exploration at 10 feet. 15 20 25 1 - Sampler sleeve left in place and borehole and sleeve graveled in place. REMARKS

GZA TEMPLATE GEOPROBE GEOPROBE LOGS.GPJ LIBRARY 012111.GLB 10/2/2019 4:43:10 PM

Stratification lines represent approximate boundaries between soil types. Actual transitions may be gradual. Water level readings have been made at the times and under the conditions stated. Fluctuations of groundwater may occur due to other factors than those present at the times the measurements were made.

B-27

			SI	HALLO	W SOIL S	SAMPLE	FIELD LOG			
GZA GeoEnvironment 655 Winding Brook Dr Glastonbury, CT 0603 Phone: (860) 286-890	rive, Suite 402		Project Name Location:	:	PROJECT Daniels Mill Vernon, CT			Date: 8/9/17 Page 1 of 1 File No. 45441.06 GZA Staff/Sampler: BAG		
Air Temperature (°F):	80			SAN	MPLING EQUIP	MENT		PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV		
Weather Conditions:	Sunny		Sample Met	thod/Device:		GeoProbe Han		Instrument Reading (start): 97.3		
			Grab	Hand Auger		Core/Borer	Dredge Other	Instrument Reading (finish): 100.1		
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)		Sample Description		
B-25A	1045	0-1	0	None	Grass	1	Brown, fine to medium S Silt, 12" recovery, refusa	SAND, some fine to coarse Gravel and Brick Fragments, trace al at 1'		
B-26	1055	0-2	0	None	Grass	1	Brown, fine to medium SAND, some fine to coarse Gravel, little Silt and Brick Fragments, 12" recovery			
B-26	1100	2-4	0	None	-	-	0-3": Light brown, fine to coarse SAND, some fine to coarse Gravel, 3-9": Bla to medium SAND, some Silt, fine to coarse Gravel and Brick, 9-15": Orange-b fine to coarse SAND and SILT, 15" recovery			
B-26	1110	4-5	0	None	-	-	Dark brown-black, fine to medium SAND, some Silt and fine to coarse Gravel recovery			
B-26	1120	5-6	0	None	-	-		fine to medium SAND, some Silt and fine to coarse Gravel, 3 medium SAND, some Silt and fine to coarse Gravel, 12"		
	SOIL CONDITI	IONS		DI	ENSITY		ABBREVIATIONS	ORGANIC MATERIALS		
Med. Sand 1/64"-1/10	Too fine to see. est visible particles. 6" (granular sugar). /6"-1/4" (rock salt).	LITTLE (L.) SOME (S.)	0-10% 10-20% 20-35% 35-50%	V. Loose Loose M. Dense	Silt/Clay V. Soft Soft M. Stiff	V - Very GR - Gray BN - Brown YEL - Yellow	F - Fine M - Medium C - Coarse F/M - Fine to Medium	Organic Silt: Dark gray to black, light weight, often H2S odor. Humus: Decomposed root/twig/leaf litter - forest areas. Root Mat: Living root fiber structures, found in marshes. Peat: Fossiliferous root mat - decomposed fiber structure.		
	3/4" (pea to grape).			Dense	Stiff	RD - Red	· · · · · · · · · · · · · · · · · · ·			

			SI	HALLO	W SOIL S	SAMPLE	FIELD	LOG		
GZA GeoEnvironment 655 Winding Brook Dr Glastonbury, CT 0603 Phone: (860) 286-8900	rive, Suite 402		Project Name: Location:	:	PROJECT Daniels Mill Vernon, CT			<u>-</u>	Date: 6/3/2019 File No. 45441.06 GZA Staff/Sampler: SCC	Page 1 of 1
Air Temperature (°F):	80s			SAN	MPLING EQUIP	MENT			PID: Calibration Standard: 100 ppm Sou	rce lamp: 10.6 eV
Weather Conditions:	Sunny		Sample Met	hod/Device:		GeoProbe		_	Instrument Reading (start): 97.3	
			Grab	Hand Auger	Hand	l Core/Borer	Dredge	Other	Instrument Reading (finish): 100.1	
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)			Sample Description	
B-22A	1045	6-9"	-	-	Asphalt	4"	Gray-brown,	fine to coar	rse GRAVEL, little fine to coarse Sand, tr	race Silt, dry
B-22A	1100	12-15"	_	-	Asphalt	4"	Red-brown,	fine to coars	se SAND, some fine to coarse Gravel, trac	ce Silt, Dry
B-22A	1115	21-24"	-	-	Asphalt	4"	Red-brown, 1	fine to coars	se SAND, some fine to coarse Gravel, trac	ce Silt, Dry
B-22A	1130	30-33"	-	-	Asphalt	4"	Brown, fine	to coarse SA	AND, trace Silt, trace Gravel, Dry	
B-22B	1555	45-48"	-	-	Asphalt	4"	Brown, fine	to coarse SA	ND, trace Gravel, trace Silt, Moist	
B-23A	1000	6-9"	-	-	Asphalt	4"			vel, some fine to coarse Sand, trace Silt, I	
B-23A	1015	12-15"	-	-	Asphalt	4"	Dark gray, re Dry	ed-brown, fi	ne to coarse GRAVEL, some fine to coars	se Sand, trace Silt,
B-23A	1030	21-24"	-	-	Asphalt	4"	Red-brown,	fine to coars	ee SAND, little fine to coarse Gravel, trac	e Silt, Dry
B-35	1200	6-9"	-	-	Asphalt	3.5"			se GRAVEL, fine to coarse Sand, trace S	
B-35	1215	10.5-13.5"	-	-	Asphalt	3.5"	trace Silt, Dr	у	o coarse GRAVEL, some fine to coarse S	
B-38	1545	7-10"	-	-	Concrete	7"	Brown, fine to petroleum od		AND, some fine to coarse Gravel, trace Si	lt, Dry, slight
B-39	1615	6-9"	-	-	Concrete	6"			AND, some fine to coarse Gravel, little Sil	· •
B-40	1630	4-7"	-	-	Concrete	4"	Brown to yel dry	low brown,	fine to coarse SAND, some fine to coarse	e Gravel, trace Silt,
B-41	1710	1-4"	-	-	Concrete	1"	Brown, fine	to coarse SA	AND, little, fine to coarse Gravel, trace Si	lt, Dry
B-42	1650	7-10"	-	-	Concrete	7"	Brown, fine	to coarse SA	AND, little fine to coarse Gravel, trace Sil	t, Dry
	SOIL CONDIT	IONS		DI	ENSITY		ABBREVIATIO	NS	ORGANIC MATERIA	LS
Med. Sand 1/64"-1/16 C. Sand 1/64"-1/16	est visible particles 6" (granular sugar) /6"-1/4" (rock salt)	SOME (S.) AND	0-10% 10-20% 20-35% 35-50%	Sand V. Loose Loose M. Dense	Silt/Clay V. Soft Soft M. Stiff	V - Very GR - Gray BN - Brown YEL - Yellow	F - Fine M - Medium C - Coarse F/M - Fine to Me	edium	Organic Silt: Dark gray to black, light we: Humus: Decomposed root/twig/leaf litter - 1 Root Mat: Living root fiber structures, found Peat: Fossiliferous root mat - decompose	forest areas. in marshes. ed fiber structure.
Fine gravel 1/4"-:	3/4" (pea to grape)	.[Dense	Stiff	RD - Red	F/C - Fine to Co	arse	Note: e.g. logs, branches, roots, shells, black strea	ks, H2S odor.

			SH	HALLO	W SOIL S	SAMPLE	FIELD LOG	
GZA GeoEnvironment 655 Winding Brook Dr Glastonbury, CT 0603. Phone: (860) 286-8900	ive, Suite 402		Project Name: Location:		PROJECT Daniels Mill Vernon, CT			Date: 6/4/2019 Page 1 of 2 File No. 45441.06 GZA Staff/Sampler: Sean Connolly
Air Temperature (°F):	80s			SAN	MPLING EQUIP	MENT		PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV
Weather Conditions:	Sunny		Sample Met	hod/Device:		GeoProbe		Instrument Reading (start): 97.3
			Grab	Hand Auger	Hand	Core/Borer	Dredge Other	Instrument Reading (finish): 100.1
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)	3	Sample Description
B-43	935	3-6"	-	-	Concrete	3"	Brown, fine to coarse S	AND, little fine to coarse Gravel, trace Silt, dry
B-43	940	15-18"	-	-	Concrete	3"	Brown, fine to coarse S	AND, little fine to coarse Gravel, trace Silt, dry
B-44	1010	0-3"	-	-	Concrete	0.25"	Brown, fine to coarse S	AND, some fine to coarse Gravel, trace Silt, dry
B-44	1015	12.5-15.5"	-	-	Concrete	0.25"	Grey-red, fine to coarse dry	GRAVEL, BRICK and CONCRETE, little Sand, trace Silt,
B-45	1025	5.5-8.5"	-	-	Concrete	5.5"	Brown, fine to coarse S	AND, some Gravel, trace Silt, dry
B-46	1043	4-7"	-	-	Concrete	4"	Brown, fine to coarse S	AND, some fine to coarse Gravel, trace Silt, dry
B-46	1050	16-19"	-	-	Concrete	4"	Brown, fine to coarse S	AND, little fine to coarse Gravel, trace Silt, dry
B-47	1055	8-11"	-	-	Concrete	4"	Brown, fine to coarse S	AND, some fine to coarse Gravel, trace Silt, dry
B-48	1215	4-7"	-	-	Concrete	4"	Brown, fine to coarse G	GRAVEL, some fine to coarse Sand, trace Silt, wet
B-49	1305	4-7"	-	-	Concrete	4"	Brown, fine to coarse S	AND, little fine to coarse Gravel, trace Silt, dry
B-49	1315	16-19"	-	-	Concrete	4"	Brown, fine to coarse S	AND, little fine to coarse Gravel, trace Silt, dry
B-50	1325	4-7"	-	-	Concrete	4"	Brown, fine to coarse S	AND, some fine to coarse Gravel, trace Silt, dry
B-51	1415	1-4"	-	-	Concrete	4"	Brown, fine to coarse S	AND, some fine to coarse Gravel, trace Silt, musty smell, dry
B-51	1420	13-16"	-	-	Concrete	1"	Tan, brown, fine to coa	rse SAND, little fine to coarse Gravel, trace Silt, wet
B-52	1425	6-9"	-	-	Concrete	1"	Brown, fine to coarse G	RAVEL, some fine to coarse Sand, trace Silt, musty smell, dry
	SOIL CONDIT	IONS		DI	ENSITY		ABBREVIATIONS	ORGANIC MATERIALS
	est visible particles	` ′	0-10% 10-20%	Sand V. Loose	Silt/Clay V. Soft	V - Very GR - Gray	F - Fine M - Medium	Organic Silt: Dark gray to black, light weight, often H2S odor. Humus: Decomposed root/twig/leaf litter - forest areas.
	6" (granular sugar)		20-35%	Loose	Soft	BN - Brown	C - Coarse	Root Mat: Living root fiber structures, found in marshes.
	/6"-1/4" (rock salt) 3/4" (pea to grape)		35-50%	M. Dense Dense	M. Stiff Stiff	YEL - Yellow RD - Red	F/M - Fine to Medium F/C - Fine to Coarse	Peat: Fossiliferous root mat - decomposed fiber structure. Note: e.g. logs, branches, roots, shells, black streaks, H2S odor.

			SH	HALLO'	W SOIL S	SAMPLE	FIELD I	LOG		
GZA GeoEnvironment 655 Winding Brook Dr Glastonbury, CT 0603 Phone: (860) 286-8900	ive, Suite 402		Project Name: Location:		PROJECT Daniels Mill Vernon, CT				Date: 6/4/2019 File No. 45441.06 GZA Staff/Sampler: Sean Connol	Page 2 of 2
Air Temperature (°F):	80s			SAN	MPLING EQUIP	MENT			PID: Calibration Standard: 100 ppm S	Source lamp: 10.6 eV
Weather Conditions:	Sunny		Sample Met	hod/Device:		GeoProbe			Instrument Reading (start): 97.3	
			Grab	Hand Auger	Hand	Core/Borer	Dredge	Other	Instrument Reading (finish): 100.	<u>1</u>
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)			Sample Description	
B-52	1430	13-16"	-	-	Concrete	4"	Brown-grey, f	ine to coar	se SAND, some fine to coarse Gravel,	, trace Silt, slight musty
B-53	1525	7-10"	-	-	Concrete	7"	Brown, fine to	coarse SA	ND, some fine to coarse Gravel, trace	e Silt, dry
B-54	1535	18-21"	-	-	Concrete	5", Void 18"	Brown, fine to	coarse SA	ND, little fine to coarse Gravel, trace	Silt, dry
B-54	1540	30-33"	-	-	Concrete	5", Void 8"	Brown, fine to	coarse SA	ND, some fine to coarse Gravel, trace	e Silt, dry
B55	1650	8-11"	-	-	Concrete	4.5", Void 8"	Grey-brown, f	ine to coar	se GRAVEL, little fine to coarse Sand	d, trace Silt, dry
B-56	110	8-10"	-	-	Concrete	4", Void 8"	Brown-grey, f	ine to coar	se SAND, some fine to coarse Gravel,	, trace Silt, dry
B-57	1350	5.5-8.5"	-	-	Concrete	5.5"	Brown, fine to	coarse SA	ND, little fine to coarse Gravel, trace	Silt, dry
B-58	1515	10-13"	-	-	Asphalt	3"	Brown-grey, f	ine to coar	se SAND, some fine to coarse Gravel	, trace Silt, moist
	SOIL CONDIT	IONS	•	DI	ENSITY		ABBREVIATION	s	ORGANIC MATE	RIALS
Fines (silts & clay)	Too fine to see.	TRACE (TR.)	0-10%	Sand	Silt/Clay	V - Very	F - Fine		Organic Silt: Dark gray to black, ligh	t weight, often H2S odor.
	est visible particles		10-20%	V. Loose	V. Soft	GR - Gray	M - Medium		Humus: Decomposed root/twig/leaf litt	
	6" (granular sugar).		20-35%	Loose	Soft	BN - Brown	C - Coarse	1.	Root Mat: Living root fiber structures, for	
	/6"-1/4" (rock salt). 3/4" (pea to grape).		35-50%	M. Dense Dense	M. Stiff Stiff	YEL - Yellow RD - Red	F/M - Fine to Med F/C - Fine to Coar		Peat: Fossiliferous root mat - decom Note: e.g. logs, branches, roots, shells, black	
1 1110 graver 1/4 -	. (pea to grape).	· I		Dense	S4111	na - noa	1, C - I IIIC to Coal	.50	1.000. e.g. 10go, oranienes, 100to, silens, black	Juliano, 1120 Outl.

			SI	HALLO	W SOIL S	SAMPLE	FIELD LOG	
GZA GeoEnvironment 95 Glastonbury Boulev Glastonbury, CT 06033 Phone: (860) 286-8900	ard, 3rd Floor	r	Project Name Location:		PROJECT Daniels Mill Vernon, CT			Date: 6/12/2019 Page 1 of 2 File No. 05.0045441.06 GZA Staff/Sampler: AJT
Air Temperature (°F):	~70'			SAN	MPLING EQUIP	MENT		PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV
Weather Conditions:	Sunny		Sample Met	hod/Device:		Bosch		Instrument Reading (start): 99.9
			Grab	Hand Auger	Hand	Core/Borer	Dredge Other	Instrument Reading (finish):
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)		Sample Description
B-25B	0758	0-0.25	0	None	Grass	-	Brown, fine to mediur	n SAND, some Silt, little fine Gravel
B-25B	0835	0.25-1	0	None	-	-	Brown, fine to medium	n SAND and fine GRAVEL, little Silt, refusal at 1'
B-7A	0845	0-0.25	0	None	Grass	-	Brown, fine to medium	n SAND, some Silt, little fine Gravel
B-7A	0851	0.25-1.75	0	None	-	-	Brown, fine to mediur	n SAND, some Silt, little fine Gravel, trace Brick
B-7A	0900	1.75-2	0	None	-	-	Light brown SILT, so	ne fine to medium SAND, trace fine Gravel
B-7A	0915	2-3	0	None	-	-	Brown SILT, some fir	e to medium SAND, trace fine Gravel, refusal at 3'
B-27A	0925	0-0.25	0	None	Grass	-	Brown, fine to mediur	n SAND, some Silt, little fine Gravel, trace Brick
B-27A	0935	0.25-1.75	0	None	-	-	Brown, fine to mediur	n SAND and fine GRAVEL, some Silt, trace Brick
B-27A	0940	1.75-2	0	None	-	-	Brown, fine to mediur	n SAND and fine GRAVEL, some Silt, trace Brick
B-36A	0950	0-0.25	0	None	-	-	Brown, fine to mediur	n SAND, some Silt, little fine Gravel, trace Brick
B-36A	0956	0.25-1.75	0	None	-	-	Brown SILT, some fir	e to medium SAND, some fine Gravel, trace Brick
B-36A	1005	1.75-2	0	None	-	-	Brown SILT, some fir	e to medium SAND, some fine Gravel, trace Brick
B-36A	1015	2-4	0	None	-	-	Brown SILT, some fir	e to medium SAND, some fine Gravel, trace Brick, trace Coal
B-36A	1040	4-6	0	None	-	-	Brown SILT and fine	GRAVEL, trace fine Sand, moist
B-36A	1100	6-8	0	None	-	-	Brown SILT and fine	to coarse SAND, trace fine Gravel, wet
	SOIL CONDIT	IONS		DI	ENSITY		ABBREVIATIONS	ORGANIC MATERIALS
Med. Sand 1/64"-1/16	st visible particles o" (granular sugar)	SOME (S.)	0-10% 10-20% 20-35%	V. Loose Loose	Silt/Clay V. Soft Soft	V - Very GR - Gray BN - Brown	F - Fine M - Medium C - Coarse	Organic Silt: Dark gray to black, light weight, often H2S odor. Humus: Decomposed root/twig/leaf litter - forest areas. Root Mat: Living root fiber structures, found in marshes.
	6"-1/4" (rock salt) 8/4" (pea to grape)		35-50%	M. Dense Dense	M. Stiff Stiff	YEL - Yellow RD - Red	F/M - Fine to Medium F/C - Fine to Coarse	Peat: Fossiliferous root mat - decomposed fiber structure. Note: e.g. logs, branches, roots, shells, black streaks, H2S odor.

			SI	HALLO	W SOIL S	SAMPLE	FIELD LO	OG			
GZA GeoEnvironment 95 Glastonbury Boulev Glastonbury, CT 06033 Phone: (860) 286-8900	ard, 3rd Flooi 3	r	Project Name: Location:	:	PROJECT Daniels Mill Vernon, CT				Date: 6/12/2019 Page 2 of 2 File No. 05.0045441.06 GZA Staff/Sampler: AJT		
Air Temperature (°F):	~70'				MPLING EQUIP	MENT			PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV		
Weather Conditions:	Sunny		Sample Met Grab	hod/Device: Hand Auger		Bosch Core/Borer	Dredge Ot	than	Instrument Reading (start): 99.9 Instrument Reading (finish):		
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)	Dreuge Ot	iner	Sample Description		
B-36A	1120	8-9.75	0	None	-	-	Brown SILT and	fine to c	coarse SAND, trace fine Gravel, wet		
B-37A	1205	0-0.25	0	None	Asphalt	0.42			e to medium SAND, trace fine Gravel		
B-37A	1220	0.25-1.75	0	None	-	-	Red-brown SILT Rock, 1.75' refusa	l-brown SILT and fine to medium SAND, trace fine Gravel, trace Brick, Bottor kk, 1.75' refusal			
	Too fine to see	TRACE (TR.) LITTLE (L.)	0-10% 10-20%	Sand V. Loose	Silt/Clay V. Soft	V - Very GR - Gray	F - Fine M - Medium		Organic Silt: Dark gray to black, light weight, often H2S odor. Humus: Decomposed root/twig/leaf litter - forest areas.		
C. Sand	5" (granular sugar) 6"-1/4" (rock salt) 3/4" (pea to grape)	. AND	20-35% 35-50%	Loose M. Dense Dense	Soft M. Stiff Stiff	BN - Brown YEL - Yellow RD - Red	C - Coarse F/M - Fine to Medium F/C - Fine to Coarse	n	Root Mat: Living root fiber structures, found in marshes. Peat: Fossiliferous root mat - decomposed fiber structure. Note: e.g. logs, branches, roots, shells, black streaks, H2S odor.		

SHALLOW SOIL SAMPLE FIELD LOG											
GZA GeoEnvironment 655 Winding Brook Dri Glastonbury, CT 06033 Phone: (860) 286-8900	PROJECT Project Name: Daniels Mill Location: Vernon, CT				- -	Date: 6/24/2019 Page 1 of 1 File No. 45441.06 GZA Staff/Sampler: Alan Welch					
Air Temperature (°F): 80s					MPLING EQUIPMENT				PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV		
Weather Conditions:	Sunny		Sample Method/Device:						Instrument Reading (start): 97.3		
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Hand Auger Odor	Ground Cover (asphlt/cnc.gras)	Core/Borer Cover Thickness (in)	Dredge	Other	Instrument Reading (finish): 100.1 Sample Description		
B-35A	1445	21-24"	-	-	Asphalt	3"	Brown, fine	wn, fine to coarse SAND, little fine to coarse Gravel, trace Silt, Dry			
	DE		ENSITY		ABBREVIATIONS		ORGANIC MATERIALS				
Fines (silts & clay) Fine sand. Med. Sand 1/64"-1/16" (granular sugar). C. Sand 1/6"-1/4" (rock salt). AND 1/4"-3/4" (nea to grane)		0-10% 10-20% 20-35% 35-50%	V. Loose Loose M. Dense	Silt/Clay V. Soft Soft M. Stiff Stiff	V - Very GR - Gray BN - Brown YEL - Yellow RD - Red	F - Fine M - Medium C - Coarse F/M - Fine to M		Organic Silt: Dark gray to black, light weight, often H Humus: Decomposed root/twig/leaf litter - forest areas. Root Mat: Living root fiber structures, found in marshes. Peat: Fossiliferous root mat - decomposed fiber structures, black streaks H2S odd.	cture.		

			SI	HALLO	W SOIL S	SAMPLE	E FIELD	LOG			
GZA GeoEnvironment 655 Winding Brook Dr Glastonbury, CT 0603. Phone: (860) 286-890	Project Name: Location:	:	PROJECT Daniels Mill Vernon, CT			-	Date: 8/7/17 File No. 45441.06 GZA Staff/Sampler: BAG	Page 1 of 1			
Air Temperature (°F):				SAMPLING EQUIPMENT					PID: Calibration Standard: 100 ppm Source lamp: 10.6 eV		
Weather Conditions:	N/A - Indoor		Sample Method/Device:		GeoProbe Macro Core			_	Instrument Reading (start): 98.2		
			Grab	Hand Auger	Hand	l Core/Borer	Dredge	Other	Instrument Reading (finish):	99.7	
Sample ID	Time	Sample Depth (FT)	OVM Reading (PPM)	Odor	Ground Cover (asphlt/cnc.gras)	Cover Thickness (in)	Sample Description				
B-16A	930	0-4	0.0/0.0	None	Concrete	3	Red-brown, fine to medium SAND, little fine to coarse Gravel, trace Silt, 42" recovery				
B-16A	1020	4-6.5	0.0/69.7	Slight chemical	-	-	0-18": Red-brown, fine to medium SAND, little Silt and fine to coarse Gravel, 18-24": Red-brown, fine to medium SAND, some Silt, little fine to coarse Gravel, slight odor 18-24", 24" recovery				
B-28	1050	0-2	0.0/0.0	None	Concrete	4	Red-brown, fine to medium SAND, Brick and Gravel, 18" recovery				
B-15A	1115	0-1.5	0.0/0.0	None	Concrete	5	Red-brown, fine to medium SAND, some fine to coarse Gravel, trace Brick, 12" recovery				
B-29	1135	0-2.5	0.0/0.0	None	Concrete	8	Red-brown, f	ine to medi	ium SAND, some fine to coarse	Gravel, trace Silt, 20" recovery	
B-30	1120	-	-	-	Concrete	7.5	Void space to 30", Gravel Debris				
B-31	1145	0-3	0.0/0.0	None	Concrete	5	0-2": ASPHALT, 2-15": Brown, fine to medium SAND, 15-20": Brown, fine to medium SAND, some Brick, 20" recovery				
B-11A	1200	0-3	0.0/0.0	None	Concrete	5	Brown, fine to medium SAND, some Gravel, 24" recovery				
B-32	1215	0-2	0.0/0.0	None	Concrete	6.5	Red-brown, fine to medium SAND, little Silt and fine to coarse Gravel, 18" recovery				
B-14A	1230	0-2	0.0/0.0	None	Concrete	5.5	Brown, fine to medium SAND, some fine to coarse Gravel, trace Silt, 15" recovery				
B-13A	1245	0-1.5	0.0/0.0	None	Concrete	4.5	Brown, fine to medium SAND, some fine to coarse Gravel, trace Silt, 12" recovery				
B-33	1255	0-2	0.0/0.0	None	Concrete	7.5	Brown, fine to medium SAND, some fine Gravel, trace silt, 15" recovery				
B-34	1330	-	-	-	Concrete	>15"	No sample				
Note: Sample intervals a	are depths below	w the concrete	e slab.								
		DENSITY		ABBREVIATIONS		NS	ORGANIC I	MATERIALS			
Fines (silts & clay) Too fine to see. TRACE (TR.) Fine sand. Finest visible particles. LITTLE (L.) Med. Sand 1/64"-1/16" (granular sugar). SOME (S.)		0-10% 10-20% 20-35%	Sand V. Loose Loose	Silt/Clay V. Soft Soft	V - Very GR - Gray BN - Brown	F - Fine M - Medium C - Coarse		Organic Silt: Dark gray to bla Humus: Decomposed root/twig. Root Mat: Living root fiber struct			
C. Sand 1/6"-1/4" (rock salt). AND Fine gravel 1/4"-3/4" (pea to grape).		35-50%	M. Dense Dense	M. Stiff Stiff	YEL - Yellow RD - Red	F/M - Fine to Mo		_	decomposed fiber structure.		

APPENDIX D LABORATORY DATA REPORTS

Wednesday, July 29, 2015

Attn: Mr. Jim Hutton GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: DANIELS MILL 05.0045441.03

Sample ID#s: BJ62586 - BJ62589

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 29, 2015

FOR: Attn: Mr. Jim Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/22/15Location Code:GZACTENGReceived by:LB07/23/1516:00

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBJ62586

Phoenix ID: BJ62586

Project ID: DANIELS MILL 05.0045441.03

Client ID: TRIP BLANK LL

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				07/22/15		SW5035A
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloroethene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
2,2-Dichloropropane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
2-Chlorotoluene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
2-Hexanone	ND	25	ug/Kg	1	07/24/15	JLI	SW8260C
2-Isopropyltoluene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
4-Chlorotoluene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C

Page 1 of 14 Ver 1

Phoenix I.D.: BJ62586

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	ug/Kg	1	07/24/15	JLI	SW8260C
Acetone	ND	30	ug/Kg	1	07/24/15	JLI	SW8260C
Acrylonitrile	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Benzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Bromobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Bromochloromethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Bromodichloromethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Bromoform	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Bromomethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Carbon Disulfide	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Carbon tetrachloride	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Chlorobenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Chloroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Chloroform	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Chloromethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Dibromochloromethane	ND	3.0	ug/Kg	1	07/24/15	JLI	SW8260C
Dibromomethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Ethylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Hexachlorobutadiene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Isopropylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
m&p-Xylene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	ug/Kg	1	07/24/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	07/24/15	JLI	SW8260C
Methylene chloride	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Naphthalene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
n-Butylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
n-Propylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
o-Xylene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
p-Isopropyltoluene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
sec-Butylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Styrene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
tert-Butylbenzene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Tetrachloroethene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	07/24/15	JLI	SW8260C
Toluene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Total Xylenes	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	07/24/15	JLI	SW8260C
Trichloroethene	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Trichlorofluoromethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
Vinyl chloride	ND	5.0	ug/Kg	1	07/24/15	JLI	SW8260C
QA/QC Surrogates		-	J J				
% 1,2-dichlorobenzene-d4	101		%	1	07/24/15	JLI	70 - 130 %
% Bromofluorobenzene	95		%	1	07/24/15	JLI	70 - 130 %

Page 2 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03

Client ID: TRIP BLANK LL

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	95		%	1	07/24/15	JLI	70 - 130 %
% Toluene-d8	99		%	1	07/24/15	JLI	70 - 130 %

Phoenix I.D.: BJ62586

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight. Trip blank included

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 3 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 29, 2015

FOR: Attn: Mr. Jim Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/22/15Location Code:GZACTENGReceived by:LB07/23/1516:00

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBJ62586

Phoenix ID: BJ62587

Project ID: DANIELS MILL 05.0045441.03

Client ID: TRIP BLANK HIGH

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				07/22/15		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,1-Dichloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,1-Dichloroethene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,1-Dichloropropene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2-Dibromoethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2-Dichloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,2-Dichloropropane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,3-Dichloropropane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
2,2-Dichloropropane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
2-Chlorotoluene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
2-Hexanone	ND	1300	ug/Kg	50	07/24/15	JLI	SW8260C
2-Isopropyltoluene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
4-Chlorotoluene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C

Page 4 of 14 Ver 1

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	1300	ug/Kg	50	07/24/15	JLI	SW8260C
Acetone	ND	5000	ug/Kg	50	07/24/15	JLI	SW8260C
Acrylonitrile	ND	500	ug/Kg	50	07/24/15	JLI	SW8260C
Benzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Bromobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Bromochloromethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Bromodichloromethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Bromoform	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Bromomethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Carbon Disulfide	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Carbon tetrachloride	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Chlorobenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Chloroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Chloroform	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Chloromethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Dibromochloromethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Dibromomethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Dichlorodifluoromethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Ethylbenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Hexachlorobutadiene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
sopropylbenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
n&p-Xylene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	3000	ug/Kg	50	07/24/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Methylene chloride	ND	500	ug/Kg	50	07/24/15	JLI	SW8260C
Naphthalene	ND	250	ug/Kg ug/Kg	50	07/24/15	JLI	SW8260C
-	ND	250	ug/Kg ug/Kg	50	07/24/15	JLI	SW8260C
n-Butylbenzene	ND	250	ug/Kg ug/Kg	50 50	07/24/15	JLI	SW8260C
n-Propylbenzene		250			07/24/15		
o-Xylene	ND		ug/Kg	50 50		JLI	SW8260C
o-Isopropyltoluene	ND	250	ug/Kg	50 50	07/24/15	JLI	SW8260C
sec-Butylbenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Styrene	ND	250	ug/Kg	50	07/24/15	JLI 	SW8260C
ert-Butylbenzene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Tetrachloroethene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Гetrahydrofuran (ТНF)	ND	500	ug/Kg	50	07/24/15	JLI	SW8260C
Γoluene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Total Xylenes	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
rans-1,2-Dichloroethene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
rans-1,3-Dichloropropene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
rans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	07/24/15	JLI	SW8260C
richloroethene	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
richlorofluoromethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
/inyl chloride	ND	250	ug/Kg	50	07/24/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	50	07/24/15	JLI	70 - 130 %
% Bromofluorobenzene	98		%	50	07/24/15	JLI	70 - 130 %

Page 5 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03

Client ID: TRIP BLANK HIGH

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	94		%	50	07/24/15	JLI	70 - 130 %
% Toluene-d8	101		%	50	07/24/15	JLI	70 - 130 %

Phoenix I.D.: BJ62587

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight. Trip blank included

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 6 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 29, 2015

FOR: Attn: Mr. Jim Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/22/158:15Location Code:GZACTENGReceived by:LB07/23/1516:00

Rush Request: Standard Analyzed by: see "By" below

DL/

P.O.#:

Laboratory Data SDG ID: GBJ62586

Phoenix ID: BJ62588

Project ID: DANIELS MILL 05.0045441.03

Client ID: B-5 5-7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	07/24/15	LK	SW6010C
Arsenic	1.6	0.7	mg/Kg	1	07/24/15	LK	SW6010C
Barium	33.3	0.36	mg/Kg	1	07/24/15	LK	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	07/24/15	LK	SW6010C
Chromium	12.2	0.36	mg/Kg	1	07/24/15	LK	SW6010C
Copper	9.03	0.36	mg/kg	1	07/24/15	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	07/24/15	RS	SW7471B
Lead	8.11	0.36	mg/Kg	1	07/24/15	LK	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	07/24/15	LK	SW6010C
Percent Solid	89		%		07/23/15	ı	SW846-%Solid
Soil Extraction for PCB	Completed				07/23/15	CC/H	SW3545A
Soil Extraction SVOA PAH	Completed				07/23/15	CJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/23/15	BC/V	SW3545A
Mercury Digestion	Completed				07/24/15	1/1	SW7471B
Total Metals Digest	Completed				07/23/15	G/AG	SW3050B
Field Extraction	Completed				07/22/15		SW5035A
TPH by GC (Extractable	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	55	mg/Kg	1	07/24/15	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	07/24/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	69		%	1	07/24/15	JRB	50 - 150 %
Polychlorinated Biphe	<u>nyls</u>						
PCB-1016	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1221	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1232	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1242	ND	370	ug/Kg	10	07/24/15	AW	SW8082A

Page 7 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03

Client ID: B-5 5-7

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1248	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1254	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1260	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1262	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
PCB-1268	ND	370	ug/Kg	10	07/24/15	AW	SW8082A
QA/QC Surrogates							
% DCBP	120		%	10	07/24/15	AW	30 - 150 %
% TCMX	108		%	10	07/24/15	AW	30 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloroethene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
2,2-Dichloropropane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
2-Chlorotoluene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
2-Hexanone	ND	26	ug/Kg	1	07/24/15	JLI	SW8260C
2-Isopropyltoluene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
4-Chlorotoluene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	ug/Kg	1	07/24/15	JLI	SW8260C
Acetone	ND	31	ug/Kg	1	07/24/15	JLI	SW8260C
Acrylonitrile	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Benzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Bromobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Bromochloromethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Bromodichloromethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Bromoform	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Bromomethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Carbon Disulfide	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Carbon tetrachloride	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Chlorobenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Chloroethane	ND	5.1	ug/Kg ug/Kg	1	07/24/15	JLI	SW8260C
Chloroform	ND	5.1	ug/Kg ug/Kg	1	07/24/15	JLI	SW8260C
Chloromethane	ND	5.1	ug/Kg ug/Kg	1	07/24/15	JLI	SW8260C
		V. 1	49/119	•	3.,2,,,10	V-1	

Page 8 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03

Client ID: B-5 5-7

Client ID. B-3 5-7		5 1.7					
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
cis-1,2-Dichloroethene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Dibromochloromethane	ND	3.1	ug/Kg	1	07/24/15	JLI	SW8260C
Dibromomethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Ethylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Hexachlorobutadiene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Isopropylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
m&p-Xylene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	31	ug/Kg	1	07/24/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	07/24/15	JLI	SW8260C
Methylene chloride	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Naphthalene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
n-Butylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
n-Propylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
o-Xylene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
p-Isopropyltoluene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
sec-Butylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Styrene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
tert-Butylbenzene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Tetrachloroethene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	07/24/15	JLI	SW8260C
Toluene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Total Xylenes	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	07/24/15	JLI	SW8260C
Trichloroethene	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Trichlorofluoromethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
Vinyl chloride	ND	5.1	ug/Kg	1	07/24/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	107		%	1	07/24/15	JLI	70 - 130 %
% Bromofluorobenzene	87		%	1	07/24/15	JLI	70 - 130 %
% Dibromofluoromethane	103		%	1	07/24/15	JLI	70 - 130 %
% Toluene-d8	101		%	1	07/24/15	JLI	70 - 130 %
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(a)pyrene	270	260	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
-			Dama 0 of 14				Van 4

Page 9 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03 Phoenix I.D.: BJ62588

Client ID: B-5 5-7

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Fluorene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	07/24/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	67		%	1	07/24/15	DD	30 - 130 %
% Nitrobenzene-d5	59		%	1	07/24/15	DD	30 - 130 %
% Terphenyl-d14	64		%	1	07/24/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 10 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 29, 2015

FOR: Attn: Mr. Jim Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/22/1513:00Location Code:GZACTENGReceived by:LB07/23/1516:00

Rush Request: Standard Analyzed by: see "By" below

DL/

P.O.#:

Laboratory Data SDG ID: GBJ62586

Phoenix ID: BJ62589

Project ID: DANIELS MILL 05.0045441.03

Client ID: B-7 3-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	07/27/15	LK	SW6010C
Arsenic	16.0	0.7	mg/Kg	1	07/27/15	LK	SW6010C
Barium	105	0.36	mg/Kg	1	07/27/15	LK	SW6010C
Cadmium	0.74	0.36	mg/Kg	1	07/27/15	LK	SW6010C
Chromium	36.9	0.36	mg/Kg	1	07/27/15	LK	SW6010C
Copper	46.5	0.36	mg/kg	1	07/27/15	LK	SW6010C
Mercury	0.11	0.03	mg/Kg	1	07/24/15	RS	SW7471B
Lead	781	3.6	mg/Kg	10	07/28/15	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	07/27/15	LK	SW6010C
Percent Solid	90		%		07/23/15	I	SW846-%Solid
Soil Extraction for PCB	Completed				07/23/15	CC/H	SW3545A
Soil Extraction SVOA PAH	Completed				07/23/15	CJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/23/15	BC/V	SW3545A
Mercury Digestion	Completed				07/24/15	1/1	SW7471B
Total Metals Digest	Completed				07/24/15	N/AG	SW3050B
Field Extraction	Completed				07/22/15		SW5035A
TPH by GC (Extractable	le Products	<u>s)</u>					
Ext. Petroleum HC	280	54	mg/Kg	1	07/24/15	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	07/24/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	74		%	1	07/24/15	JRB	50 - 150 %
Polychlorinated Biphe	nyls						
PCB-1016	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1221	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1232	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1242	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A

Page 11 of 14 Ver 1

Client ID: B-7 3-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1248	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1254	11000	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1260	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1262	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
PCB-1268	ND	1800	ug/Kg	50	07/24/15	AW	SW8082A
QA/QC Surrogates			5 5				
% DCBP	Diluted Out		%	50	07/24/15	AW	30 - 150 %
% TCMX	Diluted Out		%	50	07/24/15	AW	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,1-Trichloroethane	320	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	2.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloroethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloroethene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,1-Dichloropropene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,2-Dibromoethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,2-Dichloroethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,2-Dichloropropane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
1,3-Dichloropropane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
2,2-Dichloropropane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
2-Chlorotoluene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
2-Hexanone	ND	24	ug/Kg	1	07/24/15	JLI	SW8260C
2-Isopropyltoluene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
4-Chlorotoluene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	24	ug/Kg	1	07/24/15	JLI	SW8260C
Acetone	ND	29	ug/Kg	1	07/24/15	JLI	SW8260C
Acrylonitrile	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Benzene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Bromobenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
Bromochloromethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Bromodichloromethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Bromoform	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Bromomethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Carbon Disulfide	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Carbon Disuilide Carbon tetrachloride	5.6	4.9 4.9	ug/Kg ug/Kg	1	07/24/15	JLI	SW8260C
	5.6 ND	4.9 4.9		1	07/24/15 07/24/15	JLI	SW8260C SW8260C
Chlorosthana			ug/Kg	1			
Chloroethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Chloroform	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Chloromethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C

Page 12 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03

Client ID: B-7 3-5

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
cis-1,2-Dichloroethene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Dibromochloromethane	ND	2.9	ug/Kg	1	07/24/15	JLI	SW8260C
Dibromomethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Dichlorodifluoromethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Ethylbenzene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Hexachlorobutadiene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
Isopropylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
m&p-Xylene	7.7	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	29	ug/Kg	1	07/24/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.8	ug/Kg	1	07/24/15	JLI	SW8260C
Methylene chloride	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Naphthalene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
n-Butylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
n-Propylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
o-Xylene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
p-Isopropyltoluene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
sec-Butylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
Styrene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
tert-Butylbenzene	ND	270	ug/Kg	50	07/25/15	JLI	SW8260C
Tetrachloroethene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.8	ug/Kg	1	07/24/15	JLI	SW8260C
Toluene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Total Xylenes	7.7	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	540	ug/Kg	50	07/25/15	JLI	SW8260C
Trichloroethene	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Trichlorofluoromethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
Vinyl chloride	ND	4.9	ug/Kg	1	07/24/15	JLI	SW8260C
QA/QC Surrogates	ND	4.0	ug/itg	·	07724710	OL.	01102000
% 1,2-dichlorobenzene-d4	101		%	50	07/25/15	JLI	70 - 130 %
% 1,2-dichlorobenzene-u4-	96		%	50	07/25/15	JLI	70 - 130 %
% Dibromofluoromethane	111		%	1	07/24/15	JLI	70 - 130 %
% Toluene-d8	84		%	1	07/24/15	JLI	70 - 130 %
			70	,	01/24/10	OLI	70 - 100 70
Polynuclear Aromatic H		250		4	07/04/45	DD	CMOOZOD
2-Methylnaphthalene	ND	250	ug/Kg	1	07/24/15	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	07/24/15	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	07/24/15	DD	SW8270D
Anthracene	650	250	ug/Kg	1	07/24/15	DD	SW8270D
Benz(a)anthracene	1400	250	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(a)pyrene	1900	250	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(b)fluoranthene	1900	250	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(ghi)perylene	1600	250	ug/Kg	1	07/24/15	DD	SW8270D
Benzo(k)fluoranthene	1300	250	ug/Kg	1	07/24/15	DD	SW8270D
Chrysene	1800	250	ug/Kg	1	07/24/15	DD	SW8270D
Dibenz(a,h)anthracene	380	250	ug/Kg	1	07/24/15	DD	SW8270D
Fluoranthene	2700	250	ug/Kg	1	07/24/15	DD	SW8270D

Page 13 of 14 Ver 1

Project ID: DANIELS MILL 05.0045441.03

Client ID: B-7 3-5

Devementor	Dagult	RL/	l linite	Dilution	Dete/Times	D.	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Fluorene	280	250	ug/Kg	1	07/24/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	1600	250	ug/Kg	1	07/24/15	DD	SW8270D
Naphthalene	640	250	ug/Kg	1	07/24/15	DD	SW8270D
Phenanthrene	2500	250	ug/Kg	1	07/24/15	DD	SW8270D
Pyrene	2300	250	ug/Kg	1	07/24/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	54		%	1	07/24/15	DD	30 - 130 %
% Nitrobenzene-d5	50		%	1	07/24/15	DD	30 - 130 %
% Terphenyl-d14	49		%	1	07/24/15	DD	30 - 130 %

Phoenix I.D.: BJ62589

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C12 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

Volatile comment:

**Surrogate recoveries as well as internal standard responses were outside control limits for volatiles. Sample was analyzed twice with similar results indicating matrix interference.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

July 29, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 14 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 29, 2015

QA/QC Data

SDG I.D.: GBJ62586 % RPD Blk Sample Dup Dup LCS **LCSD** LCS MS MSD MS Rec Blank Result Result RPD % % **RPD** % % **RPD Limits Limits Parameter** QA/QC Batch 314813 (mg/kg), QC Sample No: BJ62522 (BJ62588) ICP Metals - Soil Arsenic **BRL** 0.67 1.5 1.33 NC 91.4 94.2 3.0 89.9 89.2 0.8 75 - 125 30 **BRL** 0.33 51.7 52.6 1.70 95.9 101 98.3 95.9 5.2 2.5 75 - 125 Barium 30 **BRL** 0.33 < 0.36 < 0.37 NC 92.4 Cadmium 93.9 1.6 90.7 89.9 0.9 75 - 125 30 **BRL** 0.33 12.9 12.8 0.80 98.0 98.4 0.4 96.6 94.5 2.2 Chromium 75 - 125 30 **BRL** 0.33 14.4 10.1 35.1 97.5 99.8 2.3 99.4 98.0 1.4 75 - 125 30 Copper Lead **BRL** 0.33 3.53 3.03 15.2 91.0 94.5 3.8 92.0 91.8 0.2 75 - 125 30 **BRL** 1.3 <1.4 <1.5 NC 77.4 79.2 2.3 80.1 79.4 0.9 75 - 125 30 Selenium NC Silver **BRL** 0.33 < 0.36 < 0.37 92.4 94.2 1.9 95.0 94.3 0.7 75 - 125 30 QA/QC Batch 314865 (mg/kg), QC Sample No: BJ62588 (BJ62588, BJ62589) Mercury - Soil **BRL** 0.06 < 0.03 < 0.03 NC 92.9 90.6 2.5 96.1 93.2 70 - 130 30 Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. QA/QC Batch 314944 (mg/kg), QC Sample No: BJ62912 (BJ62589) **ICP Metals - Soil** Arsenic **BRL** 0.67 6.0 6.83 12.9 95.6 95.0 0.6 93.4 94.6 1.3 75 - 125 30 **BRL** 106 Barium 0.33 52.5 51.2 2.50 101 96.8 4.2 107 0.9 75 - 125 30 **BRL** 0.33 <0.42 <0.48 NC 93.7 93.8 0.1 94.7 94.2 Cadmium 0.5 75 - 125 30 0.33 11.7 12.0 75 - 125 Chromium **BRL** 2.50 97.9 96.2 1.8 98.3 98.7 0.4 30 **BRL** 0.33 97.4 98.4 Copper 6.04 6.26 3.60 1.0 101 102 1.0 75 - 125 30 Lead **BRL** 0.33 22.7 25.3 10.8 95.6 94.4 1.3 95.4 96.8 1.5 75 - 125 30 Selenium **BRL** 1.3 <1.7 <1.9 NC 80.6 78.9 2.1 83.0 83.9 1.1 75 - 125 30

<0.48

<0.42

NC

93.6

93.5

0.1

95.4

95.5

0.1

75 - 125

30

BRL

0.33

Silver

r = This parameter is outside laboratory rpd specified recovery limits.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 29, 2015

QA/QC Data

SDG I.D.: GBJ62586

5 day = 5, = 5 i 5												
Parameter	Blank	BIk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	i
QA/QC Batch 314904 (ug/kg)	, QC Samp	ole No: BJ6	62141 (BJ62586,	BJ62587 (5	50X) , B.	J62588,	BJ625	589)				
Volatiles - Soil	•		•	,	,			,				
1,1,1,2-Tetrachloroethane	ND	5.0		100	96	4.1	94	92	2.2	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0		109	106	2.8	112	107	4.6	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0		99	100	1.0	84	82	2.4	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0		96	90	6.5	85	82	3.6	70 - 130	30	
1,1-Dichloroethane	ND	5.0		118	113	4.3	113	113	0.0	70 - 130	30	
1,1-Dichloroethene	ND	5.0		114	110	3.6	119	111	7.0	70 - 130	30	
1,1-Dichloropropene	ND	5.0		103	99	4.0	104	99	4.9	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0		92	94	2.2	69	66	4.4	70 - 130	30	m
1,2,3-Trichloropropane	ND	5.0		102	99	3.0	88	85	3.5	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0		100	101	1.0	72	70	2.8	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0		97	99	2.0	89	87	2.3	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0		96	95	1.0	72	73	1.4	70 - 130	30	
1,2-Dibromoethane	ND	5.0		100	96	4.1	86	85	1.2	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0		96	95	1.0	83	82	1.2	70 - 130	30	
1,2-Dichloroethane	ND	5.0		105	100	4.9	94	93	1.1	70 - 130	30	
1,2-Dichloropropane	ND	5.0		97	94	3.1	92	91	1.1	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0		100	102	2.0	96	93	3.2	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0		97	96	1.0	84	82	2.4	70 - 130	30	
1,3-Dichloropropane	ND	5.0		98	94	4.2	85	86	1.2	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0		95	99	4.1	82	82	0.0	70 - 130	30	
2,2-Dichloropropane	ND	5.0		113	109	3.6	112	103	8.4	70 - 130	30	
2-Chlorotoluene	ND	5.0		98	99	1.0	91	89	2.2	70 - 130	30	
2-Hexanone	ND	25		101	89	12.6	74	71	4.1	70 - 130	30	
2-Isopropyltoluene	ND	5.0		99	100	1.0	94	93	1.1	70 - 130	30	
4-Chlorotoluene	ND	5.0		97	98	1.0	88	86	2.3	70 - 130	30	
4-Methyl-2-pentanone	ND	25		102	93	9.2	79	77	2.6	70 - 130	30	
Acetone	ND	10		96	85	12.2	89	79	11.9	70 - 130	30	
Acrylonitrile	ND	5.0		105	100	4.9	89	83	7.0	70 - 130	30	
Benzene	ND	1.0		98	95	3.1	95	94	1.1	70 - 130	30	
Bromobenzene	ND	5.0		92	95	3.2	85	84	1.2	70 - 130	30	
Bromochloromethane	ND	5.0		105	101	3.9	96	93	3.2	70 - 130	30	
Bromodichloromethane	ND	5.0		107	105	1.9	100	100	0.0	70 - 130	30	
Bromoform	ND	5.0		106	101	4.8	87	90	3.4	70 - 130	30	
Bromomethane	ND	5.0		131	121	7.9	139	135	2.9	70 - 130	30	l,m
Carbon Disulfide	ND	5.0		122	119	2.5	125	120	4.1	70 - 130	30	
Carbon tetrachloride	ND	5.0		111	107	3.7	116	108	7.1	70 - 130	30	
Chlorobenzene	ND	5.0		97 404	93	4.2	91	89 440	2.2	70 - 130	30	
Chloroform	ND ND	5.0 5.0		101	103	2.0	114	110	3.6	70 - 130	30	
Chloroform Chloromethane	ND ND	5.0 5.0		106 100	103 97	2.9 3.0	102 102	101 98	1.0 4.0	70 - 130 70 - 130	30	
											30	
cis-1,2-Dichloroethene	ND	5.0		106	102	3.8	100	99	1.0	70 - 130	30	

QA/QC Data

SDG I.D.: GBJ62586

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
cis-1,3-Dichloropropene	ND	5.0	107	104	2.8	96	96	0.0	70 - 130	30
Dibromochloromethane	ND	3.0	105	102	2.9	93	93	0.0	70 - 130	30
Dibromomethane	ND	5.0	102	97	5.0	90	88	2.2	70 - 130	30
Dichlorodifluoromethane	ND	5.0	106	104	1.9	116	108	7.1	70 - 130	30
Ethylbenzene	ND	1.0	99	95	4.1	96	94	2.1	70 - 130	30
Hexachlorobutadiene	ND	5.0	95	98	3.1	85	82	3.6	70 - 130	30
Isopropylbenzene	ND	1.0	97	100	3.0	97	93	4.2	70 - 130	30
m&p-Xylene	ND	2.0	101	96	5.1	96	94	2.1	70 - 130	30
Methyl ethyl ketone	ND	5.0	100	87	13.9	75	71	5.5	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	113	108	4.5	101	97	4.0	70 - 130	30
Methylene chloride	ND	5.0	101	98	3.0	111	107	3.7	70 - 130	30
Naphthalene	ND	5.0	100	100	0.0	76	72	5.4	70 - 130	30
n-Butylbenzene	ND	1.0	104	104	0.0	92	89	3.3	70 - 130	30
n-Propylbenzene	ND	1.0	93	94	1.1	89	86	3.4	70 - 130	30
o-Xylene	ND	2.0	100	96	4.1	95	93	2.1	70 - 130	30
p-Isopropyltoluene	ND	1.0	101	104	2.9	96	93	3.2	70 - 130	30
sec-Butylbenzene	ND	1.0	101	103	2.0	99	96	3.1	70 - 130	30
Styrene	ND	5.0	101	96	5.1	92	90	2.2	70 - 130	30
tert-Butylbenzene	ND	1.0	99	99	0.0	99	94	5.2	70 - 130	30
Tetrachloroethene	ND	5.0	98	94	4.2	97	92	5.3	70 - 130	30
Tetrahydrofuran (THF)	ND	5.0	102	97	5.0	86	81	6.0	70 - 130	30
Toluene	ND	1.0	97	97	0.0	95	92	3.2	70 - 130	30
trans-1,2-Dichloroethene	ND	5.0	113	110	2.7	116	109	6.2	70 - 130	30
trans-1,3-Dichloropropene	ND	5.0	113	108	4.5	98	96	2.1	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	110	109	0.9	87	84	3.5	70 - 130	30
Trichloroethene	ND	5.0	100	96	4.1	101	97	4.0	70 - 130	30
Trichlorofluoromethane	ND	5.0	117	113	3.5	123	116	5.9	70 - 130	30
Trichlorotrifluoroethane	ND	5.0	108	104	3.8	112	103	8.4	70 - 130	30
Vinyl chloride	ND	5.0	114	111	2.7	121	114	6.0	70 - 130	30
% 1,2-dichlorobenzene-d4	98	%	101	104	2.9	98	98	0.0	70 - 130	30
% Bromofluorobenzene	98	%	104	102	1.9	102	103	1.0	70 - 130	30
% Dibromofluoromethane	96	%	98	100	2.0	104	98	5.9	70 - 130	30
% Toluene-d8	101	%	100	98	2.0	101	100	1.0	70 - 130	30
C										

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 314666 (ug/kg), QC Sample No: BJ62158 (BJ62588, BJ62589)

Polynuclear Aromatic HC - Soil

i orginadicai Ardina	<u></u> 0	••								
2-Methylnaphthalene	ND	230	87	78	10.9	91	92	1.1	30 - 130	30
Acenaphthene	ND	230	79	72	9.3	85	86	1.2	30 - 130	30
Acenaphthylene	ND	230	74	67	9.9	80	80	0.0	30 - 130	30
Anthracene	ND	230	95	81	15.9	93	94	1.1	30 - 130	30
Benz(a)anthracene	ND	230	83	72	14.2	83	83	0.0	30 - 130	30
Benzo(a)pyrene	ND	230	85	73	15.2	83	85	2.4	30 - 130	30
Benzo(b)fluoranthene	ND	230	85	73	15.2	85	86	1.2	30 - 130	30
Benzo(ghi)perylene	ND	230	109	95	13.7	102	109	6.6	30 - 130	30
Benzo(k)fluoranthene	ND	230	87	75	14.8	84	85	1.2	30 - 130	30
Chrysene	ND	230	89	79	11.9	89	90	1.1	30 - 130	30
Dibenz(a,h)anthracene	ND	230	102	87	15.9	100	104	3.9	30 - 130	30
Fluoranthene	ND	230	97	81	18.0	99	98	1.0	30 - 130	30
Fluorene	ND	230	82	73	11.6	86	86	0.0	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230	104	89	15.5	99	106	6.8	30 - 130	30
Naphthalene	ND	230	76	68	11.1	77	80	3.8	30 - 130	30

SDG I.D.: GBJ62586

Parameter	Blank	Blk RL	LCS	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Phenanthrene	ND	230	92	79	15.2	93	94	1.1	30 - 130	30	
Pyrene	ND	230	98	84	15.4	100	98	2.0	30 - 130	30	
% 2-Fluorobiphenyl	73	%	76	70	8.2	82	85	3.6	30 - 130	30	
% Nitrobenzene-d5	62	%	59	52	12.6	58	61	5.0	30 - 130	30	
% Terphenyl-d14	99	%	105	88	17.6	107	104	2.8	30 - 130	30	
QA/QC Batch 314789 (ug/Kg), (QC Samı	ole No	: BJ62691 2X (BJ62588, BJ625	89)							
Polychlorinated Bipheny			,	,							
PCB-1016	ND	33	97	108	10.7	62	85	31.3	40 - 140	30	r
PCB-1221	ND	33							40 - 140	30	•
PCB-1232	ND	33							40 - 140	30	
PCB-1242	ND	33							40 - 140	30	
PCB-1248	ND	33							40 - 140	30	
PCB-1254	ND	33							40 - 140	30	
PCB-1260	ND	33	101	116	13.8	71	94	27.9	40 - 140	30	
PCB-1262	ND	33							40 - 140	30	
PCB-1268	ND	33							40 - 140	30	
% DCBP (Surrogate Rec)	89	%	116	135	15.1	88	111	23.1	30 - 150	30	
% TCMX (Surrogate Rec)	80	%	108	121	11.4	74	97	26.9	30 - 150	30	
QA/QC Batch 314806 (mg/Kg),											
TPH by GC (Extractable		-	,	,							
Ext. Petroleum HC	ND	50		73	16.3	60	73	19.5	30 - 130	30	
% n-Pentacosane	67	%	78	73 81	3.8	61	75 75	20.6	50 - 150	30	
				01	3.0	01	73	20.0	30 - 130	30	
QA/QC Batch 315058 (ug/kg), C	ac Samp	ole ino:	BJ63159 (BJ62589 (50X))								
<u>Volatiles - So</u> il											
1,1,1-Trichloroethane	ND	5.0	107	106	0.9	110	114	3.6	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	89	89	0.0	56	56	0.0	70 - 130	30	m
1,2,3-Trichloropropane	ND	5.0	101	100	1.0	112	118	5.2	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	92	96	4.3	61	60	1.7	70 - 130	30	m
1,2,4-Trimethylbenzene	ND	1.0	98	99	1.0	94	99	5.2	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	91	87	4.5	97	107	9.8	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	97	96	1.0	91	94	3.2	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	102	104	1.9	101	106	4.8	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	96	97	1.0	92	97	5.3	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	96	96	0.0	93	97	4.2	70 - 130	30	
2-Chlorotoluene	ND	5.0	98	98	0.0	103	107	3.8	70 - 130	30	
2-Isopropyltoluene	ND	5.0	101	103	2.0	88	92	4.4	70 - 130		
4-Chlorotoluene	ND	5.0	96	98	2.1	99	106	6.8	70 - 130		
Bromobenzene	ND	5.0	94	94	0.0	104	111	6.5	70 - 130		
Hexachlorobutadiene	ND	5.0	94	104	10.1	35	35	0.0	70 - 130	30	m
Isopropylbenzene	ND	1.0	99	102	3.0	105	109	3.7	70 - 130	30	
Naphthalene	ND	5.0	96	96	0.0	93	94	1.1	70 - 130	30	
n-Butylbenzene	ND	1.0	99	105	5.9	72	75 22	4.1	70 - 130	30	
n-Propylbenzene	ND	1.0	93	96 405	3.2	93	98	5.2	70 - 130	30	
p-Isopropyltoluene	ND	1.0	101	105	3.9	83	88	5.8	70 - 130	30	
sec-Butylbenzene	ND	1.0	103	107	3.8	85	89	4.6	70 - 130	30	
tert-Butylbenzene	ND	1.0	102	105	2.9	93	97	4.2	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	106	105	0.9	123	128	4.0	70 - 130	30	
% 1,2-dichlorobenzene-d4	102	%	100	100	0.0	102	101	1.0	70 - 130	30	
% Bromofluorobenzene	93	%	102	102	0.0	95	95	0.0	70 - 130	30	

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

% RPD Blk LCS LCSD LCS MS MSD MS Rec Blank RL % % **RPD** % % **RPD Limits Limits Parameter**

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

r = This parameter is outside laboratory rpd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBJ62586

July 29, 2015

Page 1 of 1

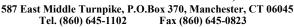
Wednesday, July 29, 2015 Criteria: CT: GAM, RC

Sample Criteria Exceedences Report GBJ62586 - GZACTENG

State: CT

State:	CT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BJ62589	\$8100SMR	Benzo(a)pyrene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (1900	250	1000	1000	ug/Kg
BJ62589	\$8100SMR	Benzo(b)fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (1900	250	1000	1000	ug/Kg
BJ62589	\$8100SMR	Benzo(k)fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (1300	250	1000	1000	ug/Kg
BJ62589	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (1400	250	1000	1000	ug/Kg
BJ62589	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/k	1400	250	1000	1000	ug/Kg
BJ62589	\$8100SMR	Benzo(a)pyrene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/k	1900	250	1000	1000	ug/Kg
BJ62589	\$8100SMR	Benzo(b)fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/k	1900	250	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1232	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1221	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1242	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1248	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1254	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	11000	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1260	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1262	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1268	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	\$PCB_SMR	PCB-1016	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1800	1000	1000	ug/Kg
BJ62589	AS-SM	Arsenic	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	16.0	0.7	10	10	mg/Kg
BJ62589	PB-SM	Lead	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	781	3.6	400	400	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.


Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

GZA GeoEnvironmental, Inc.

Laboratory Name: Phoenix Environmental Labs, Inc. Client:

Proje	ect Locat	ion: DANI	ELS MILL (05.0045441.0	3 Project	Number:						
Labo	ratory S	ample ID(s)	: BJ62586	, BJ62587, B	J62588, BJ625	89						
Samı	pling Dat	e(s): 7/22/2	2015									
RCP	Methods	s Used:										
13	311/1312	✓ 6010	7000	7196	✓ 7470/7471	8081	EPH		TO15			
✓ 80	182	8151	✓ 8260	✓ 8270	✓ ETPH	9010/9012	☐ VPH					
	specified any criteri	QA/QC perfor a falling outsi	mance criter de of accept	ria followed, in	s, as specified in	rement to explain	✓ Yes	□No				
1a. Were the method specified preservation and holding time requirements met? ✓ Yes □ No												
	1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) ☐ Yes ☐ No ☑ NA											
2.	described on the associated Chain-of-Custody document(s)? ✓ Yes ☐ No											
3.	Were san	nples received	d at an appro	priate tempera	ature (< 6 Degre	es C)?	✓ Yes	\square No	□NA			
4.				ia specified in Section: VOA	the Reasonable Narration.	Confidence	□Yes	✓ No				
5a.	Were rep	orting limits sp	pecified or re	eferenced on the	ne chain-of-custo	dy?	✓ Yes	□No				
5b.	Were the	se reporting li	mits met?				✓ Yes	□No	□NA			
6.	results rep	ported for all o	constituents		oratory report pace method-specifi documents?		☐ Yes	✓ No	□NA			
7.	Are projed	ct-specific ma	trix spikes aı	nd laboratory d	luplicates include	ed in the data set?	☐Yes	✓ No	□NA			
Note:	be provid	estions to whi ed in an attach ents for "Reas	ned narrative.	If the answer	with the exception to question #1, #	n of question #5a, # IA or 1B is "No", th	7), additiona e data packa	il informat ige does n	ion must ot meet the			
and	I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.											
						Date: Wedr	nesdav. Jul	v 29. 201	15			
	norized nature:	91	than :	See	Print	ed Name: Ethan	•	, -,				
						Position: Project	ct Managei	r				

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. The following analytes from the 6010 RCP Metals list were not reported: Antimony, Beryllium, Nickel, Thallium, Vanadium, Zinc.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Au-fid1 07/24/15-1 (BJ62589)</u>

The initial calibration (ETPH620I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (724A003) and contained the following outliers: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko
Position: Chemist
Date: 7/24/2015

Instrument: <u>Au-xl1 07/23/15-2 (BJ62588)</u>

Initial Calibration (FIDXL1 ETPH 1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

The initial calibration (ETPH617I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (723A014_1) and contained the following outliers: C36 (26%L)

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko **Position:** Chemist **Date:** 7/23/2015

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

QC (Batch Specific)

----- Sample No: BJ62757, QA/QC Batch: 314806 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 07/24/15-1 (BJ62588, BJ62589)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name Rick Schweitzer

Position: Chemist **Date:** 7/24/2015

QC (Batch Specific)

----- Sample No: BJ62588, QA/QC Batch: 314865 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

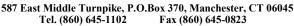
All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 07/24/15-1 (BJ62588)


The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

Printed Name Laura Kinnin Position: Chemist Date: 7/24/2015

Instrument: Arcos 07/27/15-1 (BJ62589)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist 7/27/2015

Instrument: Arcos 07/28/15-1 (BJ62589)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist 7/28/2015

QC (Batch Specific)

------ Sample No: BJ62522, QA/QC Batch: 314813 ------All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

----- Sample No: BJ62912, QA/QC Batch: 314944 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem05 07/23/15-2 (BJ62588)

Initial Calibration Verification (CHEM05/BN 0713):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM05/0723 35-BN 0713):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 7/23/2015

QC (Batch Specific)

----- Sample No: BJ62158, QA/QC Batch: 314666 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

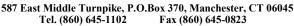
All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd5 07/24/15-1 (BJ62588, BJ62589)


The initial calibration (PC714AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC714BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Adam Werner Position: Chemist 7/24/2015

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

QC (Batch Specific)

----- Sample No: BJ62691, QA/QC Batch: 314789 -----

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem12 07/23/15-1 (BJ62589)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM12/sv 0723):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol (41%), 4,6-Dinitro-2-methylphenol (23%), Benzidine (28%), Benzoic Acid (22%), Di-n-octylphthalate (23%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM12/0723_12-sv_0723):

99% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: Benzidine (34%L)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.056)[0.1], Hexachlorobenzene (.079)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 7/23/2015

QC (Batch Specific)

----- Sample No: BJ62158, QA/QC Batch: 314666 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 314904 (Samples: BJ62586, BJ62587, BJ62588, BJ62589): -----

The QC recovery for one or more analytes is above the upper range but were not reported in the sample(s), therefore no significant bias is suspected. (Bromomethane)

Instrument: Chem03 07/24/15-1 (BJ62586, BJ62587, BJ62588, BJ62589)

Initial Calibration Verification (CHEM03/VT-L0622):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone (27%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM03/0723L64-VT-L0622):

99% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: Acrolein (36%L)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li
Position: Chemist
Date: 7/24/2015

Instrument: Chem03 07/25/15-1 (BJ62589)

Initial Calibration Verification (CHEM03/VT-L0622):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone (27%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM03/0725L03-VT-L0622):

98% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: 1,2,4-trichlorobenzene (32%L)[30%], Acrolein (33%L)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li
Position: Chemist
Date: 7/25/2015

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 29, 2015

SDG I.D.: GBJ62586

QC (Batch Specific) Sample No: BJ62141, QA/QC Batch: 314904
All LCS recoveries were within 70 - 130 with the following exceptions: Bromomethane(131%)
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Sample No: BJ63159, QA/QC Batch: 315058
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Cooler: Yes No	, c Pg / of (Contact Options: δίο 280 γενο σημείο μηθείος συν	This section MUST be completed with Bottle Quantities.	Set Thoo Those Se	BUBILLE OF TO BE SEED OF THE S		Data Format	EQUIS Other	
Coolant:	7 dwb _	Contact Options Fax:	Próject	\$ \$ \$ 1 140 00 1 140	8 CO 100 100 100 100 100 100 100 100 100 10	72	4		inity S-1 tial DEC S-2 S-3 MWRA eSMART Other re collected:
	RECORD	0, Manchester, CT 06040 Fax (860) 645-0823 645-8726	5 Mil (05,0045441,0)	S.C.				Direct Exposure RRCP Cert (Residential)	GB Mobility CB Mobility CB CC CB CB CC C
	CHAIN OF CUSTODY RECORD	iast Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: Anith	Analysis Request	Z X X	X X Y X Y X X X X X X X X X X X X X X X	Date.	23/15 23/16	Turnaround: 1 Day* 2 Days* 3 Days* Other Suncharge Applies
	O	. √ <i>Matte</i>	Bark Down	Date: 7/2 L(s)	Sample Date Time Matrix Sampled Sampled D: 7/22//	5 0015		Currel	
		PHOENIX ENVIRONMENTAL LA L	GZA 655 Winding	Sampler's Signature Date: 7/2 L/G. Matrix Code: DW-Drinking Water 6W-Ground Water SW-Surface Water Ww=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Identification 7.25 Stark It	6-7(5-7) 6-4(3-5) F	Accounted hy:	L. G.14	Comments, Special Kequirements or Kegulations:
		PHO Environment	Customer:	Sampler's Signature Signature Matrix Code: DW=Drinking Water GW=RW=Raw Water SE=Sedir OIL=Oil B=Bulk L=Liquid	PHOENIX USE ONLY SAMPLE#	02589 02589 62589	Polinanished hv.	(2) Ca	Comments, opecial

Thursday, August 06, 2015

Attn: Mr. James Hutton GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: DANIELS MILL/05.0045441.00

Sample ID#s: BJ61166 - BJ61173, BJ61175, BJ61177

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date SOIL Collected by: 07/21/15 10:40 Matrix: **GZACTENG** Received by: LPB 07/21/15 17:23 **Location Code:** Analyzed by: see "By" below

Rush Request: 72 Hour

P.O.#:

Laboratory Data SDG ID: GBJ61165

Phoenix ID: BJ61166

Project ID: DANIELS MILL/05.0045441.00

B-10 (0.5-2) Client ID:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.34	0.34	mg/Kg	1	07/23/15	LK	SW6010C
Arsenic	2.1	0.54	mg/Kg	1	07/23/15	LK	SW6010C
Barium	83.8	0.7	mg/Kg	1	07/23/15	LK	SW6010C SW6010C
Cadmium	< 0.34	0.34	mg/Kg	1	07/23/15	LK	SW6010C SW6010C
Chromium	19.4	0.34	mg/Kg	1	07/23/15	LK	SW6010C
Copper	20.4	0.34	mg/kg	1	07/23/15	LK	SW6010C
Mercury	0.06	0.03	mg/Kg	1	07/23/15	RS	SW7471B
Lead	58.7	0.34	mg/Kg	1	07/23/15	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	07/23/15	LK	SW6010C
SPLP Lead	0.010	0.010	mg/L	1	08/04/15	EK	SW6010C
SPLP Metals Digestion	Completed	0.010	g/ _	•	08/04/15	U/U	SW3005A
Percent Solid	91		%		07/21/15	ı	SW846-%Solid
Soil Extraction for Pesticide	Completed		70		07/21/15	JC/H	SW3545A
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Mercury Digestion	Completed				07/23/15	1/1	SW7471B
SPLP Extraction for Metals	Completed				08/03/15	Ü	SW1312
Total Metals Digest	Completed				07/22/15	G/AG	SW3050B
Field Extraction	Completed				07/21/15		SW5035A
TPH by GC (Extractable	e Products)					
Ext. Petroleum HC	360	1 55	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates			g/i tg		01722710	OND	012111100105
% n-Pentacosane	74		%	1	07/22/15	JRB	50 - 150 %
Pesticides							
4,4' -DDD	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B

Page 1 of 37 Ver 2 Project ID: DANIELS MILL/05.0045441.00

Client ID: B-10 (0.5-2)

4,4' -DDE		PQL	Units	Dilution	Date/Time	Ву	Reference
.,	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
4,4' -DDT	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
a-BHC	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Alachlor	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Aldrin	ND	3.6	ug/Kg	2	07/22/15	CE	SW8081B
b-BHC	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Chlordane	ND	36	ug/Kg	2	07/22/15	CE	SW8081B
d-BHC	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Dieldrin	ND	3.6	ug/Kg	2	07/22/15	CE	SW8081B
Endosulfan I	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Endosulfan II	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Endosulfan sulfate	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Endrin	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Endrin aldehyde	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Endrin ketone	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
g-BHC	ND	1.5	ug/Kg	2	07/22/15	CE	SW8081B
Heptachlor	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Heptachlor epoxide	ND	7.3	ug/Kg	2	07/22/15	CE	SW8081B
Methoxychlor	ND	36	ug/Kg	2	07/22/15	CE	SW8081B
Toxaphene	ND	150	ug/Kg	2	07/22/15	CE	SW8081B
QA/QC Surrogates			0 0				
% DCBP	111		%	2	07/22/15	CE	30 - 150 %
% TCMX	97		%	2	07/22/15	CE	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.5	ug/Kg	1	07/23/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,1-Dichloroethene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	560	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
2-Chlorotoluene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
2-Hexanone	ND	29	ug/Kg	1	07/23/15	JLI	SW8260C
2-Isopropyltoluene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C

Page 2 of 37 Ver 2

Client ID: B-10 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	29	ug/Kg	1	07/23/15	JLI	SW8260C
Acetone	ND	35	ug/Kg	1	07/23/15	JLI	SW8260C
Acrylonitrile	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Benzene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Bromobenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
Bromochloromethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Bromodichloromethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Bromoform	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Bromomethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Carbon Disulfide	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Carbon tetrachloride	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Chlorobenzene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Chloroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Chloroform	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Chloromethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
sis-1,2-Dichloroethene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Dibromochloromethane	ND	3.5	ug/Kg	1	07/23/15	JLI	SW8260C
Dibromomethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
Ethylbenzene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
lexachlorobutadiene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
sopropylbenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
n&p-Xylene	7.8	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
lαρ-∧ylerie lethyl Ethyl Ketone	ND	35	ug/Kg ug/Kg	1	07/23/15	JLI	SW8260C
•	ND	12	ug/Kg ug/Kg	1	07/23/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	5.9		1	07/23/15	JLI	SW8260C
Methylene chloride		260	ug/Kg				
laphthalene	ND		ug/Kg	50 50	07/22/15	JLI	SW8260C
-Butylbenzene	ND	260	ug/Kg	50 50	07/22/15	JLI	SW8260C
-Propylbenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
-Xylene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
-Isopropyltoluene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
ec-Butylbenzene	ND	260	ug/Kg	50	07/22/15	JLI	SW8260C
Styrene	ND	5.9	ug/Kg	1	07/23/15	JLI 	SW8260C
ert-Butylbenzene	ND	260	ug/Kg	50	07/22/15	JLI 	SW8260C
etrachloroethene	15	5.9	ug/Kg	1	07/23/15	JLI 	SW8260C
etrahydrofuran (THF)	ND	12	ug/Kg	1	07/23/15	JLI	SW8260C
oluene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
otal Xylenes	7.8	5.9	ug/Kg	1	07/23/15	JLI 	SW8260C
rans-1,2-Dichloroethene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
ans-1,3-Dichloropropene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
ans-1,4-dichloro-2-butene	ND	510	ug/Kg	50	07/22/15	JLI	SW8260C
richloroethene	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
richlorofluoromethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
richlorotrifluoroethane	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
/inyl chloride	ND	5.9	ug/Kg	1	07/23/15	JLI	SW8260C
QA/QC Surrogates							
6 1,2-dichlorobenzene-d4	102		%	50	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	98		%	50	07/22/15	JLI	70 - 130 %

Page 3 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00 Phoenix I.D.: BJ61166

Client ID: B-10 (0.5-2)

		RL/										
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference					
% Dibromofluoromethane	97		%	1	07/23/15	JLI	70 - 130 %					
% Toluene-d8	87		%	1	07/23/15	JLI	70 - 130 %					
Polynuclear Aromatic HC												
2-Methylnaphthalene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Acenaphthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Acenaphthylene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Anthracene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Benz(a)anthracene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Benzo(a)pyrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Benzo(b)fluoranthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Benzo(ghi)perylene	430	260	ug/Kg	1	07/22/15	DD	SW8270D					
Benzo(k)fluoranthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Chrysene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Fluoranthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Fluorene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Naphthalene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Phenanthrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
Pyrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D					
QA/QC Surrogates												
% 2-Fluorobiphenyl	84		%	1	07/22/15	DD	30 - 130 %					
% Nitrobenzene-d5	75		%	1	07/22/15	DD	30 - 130 %					
% Terphenyl-d14	83		%	1	07/22/15	DD	30 - 130 %					

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

TPH Comment:

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 4 of 37 Ver 2

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C14 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/21/1515:15Location Code:GZACTENGReceived by:LPB07/21/1517:23

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBJ61165

Phoenix ID: BJ61167

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-11 (0.5-2)

RL/ Parameter **PQL** Result Units Dilution Date/Time By Reference % 60 07/21/15 SW846-%Solid Percent Solid Soil Extraction SVOA PAH Completed 07/21/15 JJ/VH SW3545A SW5035A Field Extraction Completed 07/21/15 Volatiles ND 10 JLI 1,1,1,2-Tetrachloroethane ug/Kg 1 08/05/15 SW8260C 1,1,1-Trichloroethane ND 10 ug/Kg 1 08/05/15 JLI SW8260C ND 6.2 ug/Kg 1 08/05/15 SW8260C 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane ND 10 ug/Kg 1 08/05/15 JLI SW8260C 1,1-Dichloroethane ND 10 ug/Kg 1 08/05/15 JLI SW8260C ND 10 1 08/05/15 JLI SW8260C ug/Kg 1,1-Dichloroethene SW8260C ND 10 ug/Kg 1 08/05/15 JLI 1,1-Dichloropropene ND 350 ug/Kg 50 08/05/15 JLI SW8260C 1,2,3-Trichlorobenzene ND 350 ug/Kg 50 08/05/15 JLI SW8260C 1,2,3-Trichloropropane SW8260C 1,2,4-Trichlorobenzene ND 350 ug/Kg 50 08/05/15 JLI ND 350 50 08/05/15 JLI SW8260C ug/Kg 1,2,4-Trimethylbenzene ND 350 50 08/05/15 JLI SW8260C ug/Kg 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane ND 10 ug/Kg 1 08/05/15 SW8260C ND 350 ug/Kg 50 08/05/15 JLI SW8260C 1.2-Dichlorobenzene ND 08/05/15 JLI SW8260C 1.2-Dichloroethane 10 ug/Kg 1 08/05/15 JLI SW8260C ND 10 ug/Kg 1 1,2-Dichloropropane ND 350 50 08/05/15 SW8260C ug/Kg JLI 1,3,5-Trimethylbenzene SW8260C 1,3-Dichlorobenzene ND 350 ug/Kg 50 08/05/15 JLI ND 08/05/15 JLI SW8260C 1,3-Dichloropropane 10 ug/Kg 1 ND 350 ug/Kg 50 08/05/15 JLI SW8260C 1,4-Dichlorobenzene 08/05/15 JLI SW8260C 2,2-Dichloropropane ND 10 ug/Kg 1 350 50 08/05/15 SW8260C 2-Chlorotoluene ND ug/Kg JLI 2-Hexanone ND 51 ug/Kg 1 08/05/15 JLI SW8260C

Page 5 of 37 Ver 2

Phoenix I.D.: BJ61167

Client ID: B-11 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Isopropyltoluene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
4-Chlorotoluene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	51	ug/Kg	1	08/05/15	JLI	SW8260C
Acetone	ND	62	ug/Kg	1	08/05/15	JLI	SW8260C
Acrylonitrile	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Benzene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Bromobenzene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
Bromochloromethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Bromodichloromethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Bromoform	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Bromomethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Carbon Disulfide	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Carbon tetrachloride	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Chlorobenzene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Chloroethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Chloroform	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Chloromethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Dibromochloromethane	ND	6.2	ug/Kg	1	08/05/15	JLI	SW8260C
Dibromomethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Dichlorodifluoromethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Ethylbenzene	29	10	ug/Kg	1	08/05/15	JLI	SW8260C
Hexachlorobutadiene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
Isopropylbenzene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
m&p-Xylene	82	10	ug/Kg	1	08/05/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	62	ug/Kg	1	08/05/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	21	ug/Kg	1	08/05/15	JLI	SW8260C
Methylene chloride	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Naphthalene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
n-Butylbenzene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
n-Propylbenzene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
o-Xylene	41	10	ug/Kg	1	08/05/15	JLI	SW8260C
p-Isopropyltoluene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
sec-Butylbenzene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
Styrene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
tert-Butylbenzene	ND	350	ug/Kg	50	08/05/15	JLI	SW8260C
Tetrachloroethene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	21	ug/Kg	1	08/05/15	JLI	SW8260C
Toluene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Total Xylenes	123	10	ug/Kg	1	08/05/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	700	ug/Kg	50	08/05/15	JLI	SW8260C
Trichloroethene	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Trichlorofluoromethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
Vinyl chloride	ND	10	ug/Kg	1	08/05/15	JLI	SW8260C
QA/QC Surrogates	מו	.0	agnig	•	33,00,10	UL1	202000

Page 6 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00 Phoenix I.D.: BJ61167

Client ID: B-11 (0.5-2)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% 1,2-dichlorobenzene-d4	99		%	50	08/05/15	JLI	70 - 130 %
% Bromofluorobenzene	93		%	50	08/05/15	JLI	70 - 130 %
% Dibromofluoromethane	95		%	1	08/05/15	JLI	70 - 130 %
% Toluene-d8	82		%	1	08/05/15	JLI	70 - 130 %
Polynuclear Aromatic I	НС						
2-Methylnaphthalene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	420	380	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	380	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	81		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	85		%	1	07/22/15	DD	30 - 130 %
% Terphenyl-d14	62		%	1	07/22/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 7 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date SOIL Collected by: 07/21/15 12:00 Matrix: **GZACTENG** Received by: LPB 07/21/15 17:23 **Location Code:** Analyzed by: see "By" below

Rush Request: Standard

P.O.#:

SDG ID: GBJ61165 **Laboratory Data**

Phoenix ID: BJ61168

Project ID: DANIELS MILL/05.0045441.00

B-12 (0.5-1.5) Client ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	94		%		07/21/15	I	SW846-%Solid
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Field Extraction	Completed				07/21/15		SW5035A
TPH by GC (Extractable	Products)					
Ext. Petroleum HC	ND	52	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	67		%	1	07/22/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.6	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C

Page 8 of 37 Ver 2

Phoenix I.D.: BJ61168

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-12 (0.5-1.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3,5-Trimethylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
2-Hexanone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
Acetone	ND	36	ug/Kg	1	07/22/15	JLI	SW8260C
Acrylonitrile	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Benzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromochloromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromoform	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chloromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	3.6	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromomethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Ethylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Isopropylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
m&p-Xylene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	36	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Naphthalene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
n-Propylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
o-Xylene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
p-Isopropyltoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Toluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Total Xylenes	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C

Page 9 of 37 Ver 2

Client ID: B-12 (0.5-1.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
trans-1,3-Dichloropropene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	92		%	1	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	98		%	1	07/22/15	JLI	70 - 130 %
Polynuclear Aromatic H	<u>IC</u>						
2-Methylnaphthalene	 ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	81		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	66		%	1	07/22/15	DD	30 - 130 %
% Terphenyl-d14	91		%	1	07/22/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 10 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/21/1512:30Location Code:GZACTENGReceived by:LPB07/21/1517:23

Rush Request: Standard Analyzed by: see "By" below

DI/

P.O.#:

Laboratory Data SDG ID: GBJ61165

Phoenix ID: BJ61169

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-13 (0.25-1)

Doromotor	Result	RL/ PQL	Units	Dilution	Date/Time	Dν	Reference
Parameter	Result	FQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.37	0.37	mg/Kg	1	07/23/15	LK	SW6010C
Arsenic	2.1	0.7	mg/Kg	1	07/23/15	LK	SW6010C
Barium	62.9	0.37	mg/Kg	1	07/23/15	LK	SW6010C
Cadmium	< 0.37	0.37	mg/Kg	1	07/23/15	LK	SW6010C
Chromium	74.3	0.37	mg/Kg	1	07/23/15	LK	SW6010C
Copper	24.2	0.37	mg/kg	1	07/23/15	LK	SW6010C
Mercury	0.15	0.03	mg/Kg	1	07/23/15	RS	SW7471B
Lead	34.6	0.37	mg/Kg	1	07/23/15	LK	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	07/23/15	LK	SW6010C
Percent Solid	92		%		07/21/15	- 1	SW846-%Solid
Soil Extraction for Pesticide	Completed				07/21/15	JC/H	SW3545A
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Mercury Digestion	Completed				07/23/15	1/1	SW7471B
Total Metals Digest	Completed				07/22/15	G/AG	SW3050B
Field Extraction	Completed				07/21/15		SW5035A
TPH by GC (Extractab	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	53	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	74		%	1	07/22/15	JRB	50 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
4,4' -DDE	ND	50	ug/Kg	10	07/23/15	CE	SW8081B
4,4' -DDT	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
a-BHC	ND	35	ug/Kg	10	07/23/15	CE	SW8081B

Page 11 of 37 Ver 2

Client ID: B-13 (0.25-1)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Alachlor	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Aldrin	ND	18	ug/Kg	10	07/23/15	CE	SW8081B
b-BHC	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Chlordane	ND	180	ug/Kg	10	07/23/15	CE	SW8081B
d-BHC	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Dieldrin	ND	50	ug/Kg	10	07/23/15	CE	SW8081B
Endosulfan I	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Endosulfan II	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Endosulfan sulfate	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Endrin	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Endrin aldehyde	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
Endrin ketone	ND	35	ug/Kg	10	07/23/15	CE	SW8081B
g-BHC	ND	7.0	ug/Kg	10	07/23/15	CE	SW8081B
Heptachlor	ND	18	ug/Kg	10	07/23/15	CE	SW8081B
Heptachlor epoxide	ND	18	ug/Kg	10	07/23/15	CE	SW8081B
Methoxychlor	ND	180	ug/Kg	10	07/23/15	CE	SW8081B
Toxaphene	ND	700	ug/Kg	10	07/23/15	CE	SW8081B
QA/QC Surrogates							
% DCBP	127		%	10	07/23/15	CE	30 - 150 %
% TCMX	88		%	10	07/23/15	CE	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.4	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
2-Hexanone	ND	28	ug/Kg	1	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	28	ug/Kg	1	07/22/15	JLI	SW8260C SW8260C
Acetone	ND	34	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C SW8260C
Acrylonitrile	ND	5.7	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C SW8260C
AG yiOilitile	ואט	5.1	ug/Ng	ı	01122110	JLI	U1102000

Page 12 of 37 Ver 2

Client ID: B-13 (0.25-1)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Benzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromochloromethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromoform	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chloromethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	3.4	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromomethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Ethylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Isopropylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
m&p-Xylene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	34	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Naphthalene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
n-Propylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
o-Xylene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
p-Isopropyltoluene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	07/22/15	JLI	SW8260C
Toluene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Total Xylenes	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	5.7	ug/Kg	1	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	93		%	1	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	83		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	100		%	1	07/22/15	JLI	70 - 130 %

Page 13 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00 Phoenix I.D.: BJ61169

Client ID: B-13 (0.25-1)

Danamatan	Danish	RL/	1.1	D:14:	D - 4 - /Ti	р	Defenses
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	85		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	74		%	1	07/22/15	DD	30 - 130 %
% Terphenyl-d14	87		%	1	07/22/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Pesticide Comment:

Due to matrix interference caused by the presence of suspected PCBs in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 14 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date SOIL Collected by: 07/21/15 12:45 Matrix: Location Code: **GZACTENG** Received by: LPB 07/21/15 17:23 Analyzed by: see "By" below

Rush Request: Standard

P.O.#:

SDG ID: GBJ61165 **Laboratory Data**

Phoenix ID: BJ61170

Project ID: DANIELS MILL/05.0045441.00

B-14 (0.5-2) Client ID:

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	85		%		07/21/15	ı	SW846-%Solid
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Field Extraction	Completed				07/21/15		SW5035A
Alcohol Analysis							
Ethanol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isobutyl alcohol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isopropyl alcohol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
Methanol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
n-Butanol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
Propanol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
Sec-Butanol	ND	10	mg/kg	1	07/28/15	JRB	SW8015D MOD
QA/QC Surrogates							
% 2-Pentanol(surr)	110		%	1	07/28/15	JRB	SW8015D MOD
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	1100	 58	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Interference		%	1	07/22/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.6	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C

Page 15 of 37 Ver 2 Client ID: B-14 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,2-Dibromo-3-chloropropane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,2-Dibromoethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,2-Dichlorobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,2-Dichloroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,2-Dichloropropane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,3,5-Trimethylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,3-Dichlorobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,3-Dichloropropane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,4-Dichlorobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
,2-Dichloropropane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
-Chlorotoluene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
-Hexanone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
-Isopropyltoluene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
-Chlorotoluene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
-Methyl-2-pentanone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
cetone	ND	36	ug/Kg	1	07/22/15	JLI	SW8260C
crylonitrile	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
enzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
romobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
romochloromethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
romodichloromethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
romoform	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Chloromethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
is-1,2-Dichloroethene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
is-1,3-Dichloropropene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	3.6	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromomethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
thylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
lexachlorobutadiene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
sopropylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
n&p-Xylene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	36	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
, laphthalene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
-Butylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C

Page 16 of 37 Ver 2

Client ID: B-14 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
o-Xylene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
p-Isopropyltoluene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Toluene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Total Xylenes	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	5.9	ug/Kg	1	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	95		%	1	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	100		%	1	07/22/15	JLI	70 - 130 %
Polynuclear Aromatic	<u>HC</u>						
2-Methylnaphthalene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	270	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	72		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	68		%	1	07/22/15	DD	30 - 130 %
/0 INITIONELIZELIE-UJ							

Page 17 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-14 (0.5-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

TPH Comment:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 18 of 37 Ver 2

Phoenix I.D.: BJ61170

^{**}Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date SOIL Collected by: 07/21/15 13:30 Matrix: **GZACTENG** Received by: LPB 07/21/15 17:23 **Location Code:** Analyzed by: see "By" below

Rush Request: Standard

P.O.#:

SDG ID: GBJ61165 **Laboratory Data**

Phoenix ID: BJ61171

Project ID: DANIELS MILL/05.0045441.00

B-15 (0.5-2) Client ID:

Demonstra	D !!	RL/	1.1	Dilection	Data/Time	Б.	Defense
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		07/21/15	I	SW846-%Solid
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Field Extraction	Completed				07/21/15		SW5035A
Alcohol Analysis							
Ethanol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isobutyl alcohol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isopropyl alcohol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
Methanol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
n-Butanol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
Propanol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
Sec-Butanol	ND	5.0	mg/kg	1	07/28/15	JRB	SW8015D MOD
QA/QC Surrogates							
% 2-Pentanol(surr)	90		%	1	07/28/15	JRB	SW8015D MOD
TPH by GC (Extractab	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	53	mg/Kg	1	07/23/15	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	07/23/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	89		%	1	07/23/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	2.8	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C

Page 19 of 37 Ver 2 Client ID: B-15 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
2-Hexanone	ND	23	ug/Kg	1	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	23	ug/Kg	1	07/22/15	JLI	SW8260C
Acetone	ND	28	ug/Kg	1	07/22/15	JLI	SW8260C
Acrylonitrile	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Benzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromochloromethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromoform	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Chloromethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	2.8	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromomethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Ethylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	4.7	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Isopropylbenzene	ND	4.7	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
	ND	4.7	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
m&p-Xylene	ND ND	4.7 28		1	07/22/15	JLI	SW8260C SW8260C
Methyl Ethyl Ketone			ug/Kg	1			
Methyl t-butyl ether (MTBE)	ND	9.4	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Naphthalene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C

Page 20 of 37 Ver 2

Client ID: B-15 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
o-Xylene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
p-Isopropyltoluene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.4	ug/Kg	1	07/22/15	JLI	SW8260C
Toluene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Total Xylenes	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.4	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	4.7	ug/Kg	1	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	94		%	1	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	101		%	1	07/22/15	JLI	70 - 130 %
Polynuclear Aromatic	HC_						
2-Methylnaphthalene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	82		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	72		%	1	07/22/15	DD	30 - 130 %
% Terphenyl-d14	95		%	1	07/22/15	DD	30 - 130 %

Page 21 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-15 (0.5-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BJ61171

Page 22 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/21/1514:10Location Code:GZACTENGReceived by:LPB07/21/1517:23

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBJ61165

Phoenix ID: BJ61172

Project ID: DANIELS MILL/05.0045441.00
Client ID: B-16 (6-6.5)

RL/ arameter Result PQL

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		07/21/15	ı	SW846-%Solid
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Field Extraction	Completed				07/21/15		SW5035A
Alcohol Analysis							
Ethanol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isobutyl alcohol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isopropyl alcohol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
Methanol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
n-Butanol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
Propanol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
Sec-Butanol	ND	5.4	mg/kg	1	07/28/15	JRB	SW8015D MOD
QA/QC Surrogates							
% 2-Pentanol(surr)	89		%	1	07/28/15	JRB	SW8015D MOD
TPH by GC (Extractab	le Products	<u>)</u>					
Ext. Petroleum HC	ND	53	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	54		%	1	07/22/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	170	ug/Kg	50	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C

Page 23 of 37 Ver 2

Phoenix I.D.: BJ61172

Client ID: B-16 (6-6.5)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloroethene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	19000	5500	ug/Kg	1000	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,3,5-Trimethylbenzene	5200	5000	ug/Kg	1000	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
2-Hexanone	ND	1400	ug/Kg	50	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	1400	ug/Kg	50	07/22/15	JLI	SW8260C
Acetone	ND	1700	ug/Kg	50	07/22/15	JLI	SW8260C
Acrylonitrile	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Benzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Bromobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Bromochloromethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Bromoform	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Bromomethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Chlorobenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Chloroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Chloroform	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Chloromethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	170	ug/Kg	50	07/22/15	JLI	SW8260C
Dibromomethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Ethylbenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Isopropylbenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
m&p-Xylene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	1700	ug/Kg	50	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	550	ug/Kg	50	07/22/15	JLI	SW8260C
Methylene chloride	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Naphthalene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
•			3 0				

Page 24 of 37 Ver 2

Client	ID.	D 16	16 G	5 \
CIICIIL	ID.	D-10	10-0.	υı

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
	2500	280		50	07/22/15	JLI	SW8260C
n-Propylbenzene o-Xylene	ND	280	ug/Kg ug/Kg	50	07/22/15	JLI	SW8260C SW8260C
p-Isopropyltoluene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Styrene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	550	ug/Kg	50	07/22/15	JLI	SW8260C
Toluene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Total Xylenes	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	550	ug/Kg	50	07/22/15	JLI	SW8260C
Trichloroethene	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
Vinyl chloride	ND	280	ug/Kg	50	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	50	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	102		%	50	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	97		%	50	07/22/15	JLI	70 - 130 %
% Toluene-d8	103		%	50	07/22/15	JLI	70 - 130 %
Polynuclear Aromatic Ho	<u>C</u>						
2-Methylnaphthalene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	240	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	81		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	68		%	1	07/22/15	DD	30 - 130 %
% Terphenyl-d14	93		%	1	07/22/15	DD	30 - 130 %

Page 25 of 37 Ver 2 Project ID: DANIELS MILL/05.0045441.00

Client ID: B-16 (6-6.5)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BJ61172

Page 26 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/21/1514:25Location Code:GZACTENGReceived by:LPB07/21/1517:23

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBJ61165

Phoenix ID: BJ61173

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-17 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92		%		07/21/15	ı	SW846-%Solid
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Field Extraction	Completed				07/21/15		SW5035A
Alcohol Analysis							
Ethanol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isobutyl alcohol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
Isopropyl alcohol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
Methanol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
n-Butanol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
Propanol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
Sec-Butanol	ND	5.3	mg/kg	1	07/28/15	JRB	SW8015D MOD
QA/QC Surrogates							
% 2-Pentanol(surr)	82		%	1	07/28/15	JRB	SW8015D MOD
TPH by GC (Extractable	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	 53	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	72		%	1	07/22/15	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C

Page 27 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00 Client ID: B-17 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethene 1,1-Dichloropropene	ND	5.1	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.1	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.1	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.1	ug/Kg ug/Kg		07/22/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.1 5.1	ug/Kg ug/Kg	1 1	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.1	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.1					SW8260C
1,4-Dichlorobenzene			ug/Kg	1	07/22/15	JLI	
2,2-Dichloropropane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
2-Hexanone	ND	25	ug/Kg	1	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	5.1	ug/Kg	1	07/22/15	JLI 	SW8260C
4-Methyl-2-pentanone	ND	25	ug/Kg	1	07/22/15	JLI 	SW8260C
Acetone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
Acrylonitrile	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Benzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Bromobenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Bromochloromethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Bromoform	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Chloromethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	3.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromomethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Ethylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Isopropylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
m&p-Xylene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Naphthalene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C

Page 28 of 37 Ver 2

Client ID: B-17 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
n-Propylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
o-Xylene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
p-Isopropyltoluene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	07/22/15	JLI	SW8260C
Toluene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Total Xylenes	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	5.1	ug/Kg	1	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	95		%	1	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	106		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	99		%	1	07/22/15	JLI	70 - 130 %
Polynuclear Aromatic	HC_						
2-Methylnaphthalene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
	ND	250	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene			~ ~ ~	•		- -	
Pyrene OA/OC Surrogates							
QA/QC Surrogates	78		%	1	07/22/15	DD	30 - 130 %
	78 69		% %	1 1	07/22/15 07/22/15	DD DD	30 - 130 % 30 - 130 %

Page 29 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-17 (0.5-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Phoenix I.D.: BJ61173

Page 30 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/21/1515:00Location Code:GZACTENGReceived by:LPB07/21/1517:23

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBJ61165

Phoenix ID: BJ61175

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-19 (0.5-3)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.38	0.38	mg/Kg	1	07/23/15	LK	SW6010C
Arsenic	1.4	8.0	mg/Kg	1	07/23/15	LK	SW6010C
Barium	1440	0.38	mg/Kg	1	07/23/15	LK	SW6010C
Cadmium	1.85	0.38	mg/Kg	1	07/23/15	LK	SW6010C
Chromium	54.9	0.38	mg/Kg	1	07/23/15	LK	SW6010C
Copper	59.0	0.38	mg/kg	1	07/23/15	LK	SW6010C
Mercury	0.11	0.03	mg/Kg	1	07/23/15	RS	SW7471B
Lead	1190	3.8	mg/Kg	10	07/24/15	LK	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	07/23/15	LK	SW6010C
SPLP Barium	0.021	0.010	mg/L	1	08/04/15	EK	SW6010C
SPLP Lead	0.029	0.010	mg/L	1	08/04/15	EK	SW6010C
SPLP Metals Digestion	Completed				08/04/15	U/U	SW3005A
Percent Solid	89		%		07/21/15	1	SW846-%Solid
Soil Extraction for Pesticide	Completed				07/21/15	JC/H	SW3545A
Soil Extraction SVOA PAH	Completed				07/21/15	JJ/VH	SW3545A
Extraction of CT ETPH	Completed				07/21/15	JC/V	SW3545A
Mercury Digestion	Completed				07/23/15	1/1	SW7471B
SPLP Extraction for Metals	Completed				08/03/15	U	SW1312
Total Metals Digest	Completed				07/22/15	G/AG	SW3050B
Field Extraction	Completed				07/21/15		SW5035A
TPH by GC (Extractable	e Products	s)					
Ext. Petroleum HC	72	56	mg/Kg	1	07/22/15	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	07/22/15	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	85		%	1	07/22/15	JRB	50 - 150 %
Copper Mercury Lead Selenium SPLP Barium SPLP Lead SPLP Metals Digestion Percent Solid Soil Extraction for Pesticide Soil Extraction SVOA PAH Extraction of CT ETPH Mercury Digestion SPLP Extraction for Metals Total Metals Digest Field Extraction TPH by GC (Extractable Ext. Petroleum HC Identification QA/QC Surrogates	59.0 0.11 1190 < 1.5 0.021 0.029 Completed 89 Completed	0.38 0.03 3.8 1.5 0.010 0.010	mg/kg mg/Kg mg/Kg mg/L mg/L %	1 10 1 1 1 1	07/23/15 07/23/15 07/24/15 07/24/15 07/23/15 08/04/15 08/04/15 07/21/15 07/21/15 07/21/15 07/21/15 07/23/15 07/22/15 07/22/15 07/22/15	LK RS LK LK EK U/U I JC/H JC/V I/I U G/AG	SW6010C SW7471B SW6010C SW6010C SW6010C SW6010C SW3005A SW846-%Solid SW3545A SW3545A SW3545A SW7471B SW1312 SW3050B SW5035A

Page 31 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00

Client ID: B-19 (0.5-3)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
<u>Pesticides</u>							
4,4' -DDD	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
4,4' -DDE	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
4,4' -DDT	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
a-BHC	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Alachlor	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Aldrin	ND	3.7	ug/Kg	2	07/22/15	CE	SW8081B
b-BHC	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Chlordane	ND	37	ug/Kg	2	07/22/15	CE	SW8081B
d-BHC	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Dieldrin	ND	25	ug/Kg	2	07/22/15	CE	SW8081B
Endosulfan I	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Endosulfan II	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Endosulfan sulfate	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Endrin	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Endrin aldehyde	ND	20	ug/Kg	2	07/22/15	CE	SW8081B
Endrin ketone	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
g-BHC	ND	1.5	ug/Kg	2	07/22/15	CE	SW8081B
Heptachlor	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Heptachlor epoxide	ND	7.4	ug/Kg	2	07/22/15	CE	SW8081B
Methoxychlor	ND	37	ug/Kg	2	07/22/15	CE	SW8081B
Toxaphene	ND	150	ug/Kg	2	07/22/15	CE	SW8081B
QA/QC Surrogates	115	100	agritg	_	01722710	0_	3110001B
% DCBP	77		%	2	07/22/15	CE	30 - 150 %
% TCMX	74		%	2	07/22/15	CE	30 - 150 %
70 TOWN	, -		70	_	01122/10	0_	00 100 70
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.6	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C

Page 32 of 37 Ver 2

Client ID: B-19 (0.5-3)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
2-Hexanone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
Acetone	ND	36	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Acrylonitrile	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Benzene	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Bromobenzene	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Bromochloromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromoform	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C SW8260C
Chloropenzene	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C SW8260C
•	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform Chloromethane	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C SW8260C
	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	6.0	ug/Kg ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	3.6			07/22/15		SW8260C
Dibromochloromethane	ND ND		ug/Kg	1		JLI	
Dibromomethane		6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Ethylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Isopropylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
m&p-Xylene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	36	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Naphthalene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
n-Propylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI 	SW8260C
o-Xylene	ND	6.0	ug/Kg	1	07/22/15	JLI 	SW8260C
p-Isopropyltoluene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
tert-Butylbenzene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrachloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	12	ug/Kg	1	07/22/15	JLI 	SW8260C
Toluene	ND	6.0	ug/Kg	1	07/22/15	JLI 	SW8260C
Total Xylenes	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	12	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorofluoromethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	6.0	ug/Kg	1	07/22/15	JLI	SW8260C

Page 33 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00 Phoenix I.D.: BJ61175

DL/

Client ID: B-19 (0.5-3)

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							_
% 1,2-dichlorobenzene-d4	104		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	91		%	1	07/22/15	JLI	70 - 130 %
% Dibromofluoromethane	101		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	100		%	1	07/22/15	JLI	70 - 130 %
Polynuclear Aromatic H	IC						
2-Methylnaphthalene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	07/22/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	79		%	1	07/22/15	DD	30 - 130 %
% Nitrobenzene-d5	68		%	1	07/22/15	DD	30 - 130 %
% Terphenyl-d14	90		%	1	07/22/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Pesticide Comment:

Due to matrix interference caused by the presence of suspected PCBs in the sample, an elevated RL was reported.

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C14 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 34 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr. James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:07/21/15Location Code:GZACTENGReceived by:LPB07/21/1517:23

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBJ61165

Phoenix ID: BJ61177

Project ID: DANIELS MILL/05.0045441.00

Client ID: TRIP BLANK LL

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				07/21/15		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloroethene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
2,2-Dichloropropane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
2-Chlorotoluene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
2-Hexanone	ND	25	ug/Kg	1	07/22/15	JLI	SW8260C
2-Isopropyltoluene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
4-Chlorotoluene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C

Page 35 of 37 Ver 2

Client ID: TRIP BLANK LL

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	ug/Kg	1	07/22/15	JLI	SW8260C
Acetone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
Acrylonitrile	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Benzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromochloromethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromodichloromethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromoform	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Bromomethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon Disulfide	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Carbon tetrachloride	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chlorobenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chloroform	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Chloromethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromochloromethane	ND	3.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dibromomethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Ethylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Hexachlorobutadiene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
sopropylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
n&p-Xylene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	ug/Kg	1	07/22/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	07/22/15	JLI	SW8260C
Methylene chloride	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Naphthalene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
n-Butylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
n-Propylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
o-Xylene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
p-Isopropyltoluene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
sec-Butylbenzene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Styrene	ND	5.0		1	07/22/15	JLI	SW8260C
tert-Butylbenzene			ug/Kg	1	07/22/15		SW8260C
Tetrachloroethene	ND	5.0	ug/Kg	1		JLI	
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	07/22/15 07/22/15	JLI	SW8260C
Toluene	ND	5.0	ug/Kg	1		JLI	SW8260C
Total Xylenes	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
rans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	07/22/15	JLI	SW8260C
Trichloroethene	ND	5.0	ug/Kg	1	07/22/15	JLI 	SW8260C
Trichlorofluoromethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
Vinyl chloride	ND	5.0	ug/Kg	1	07/22/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	07/22/15	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	07/22/15	JLI	70 - 130 %

Page 36 of 37 Ver 2

Project ID: DANIELS MILL/05.0045441.00

Client ID: TRIP BLANK LL

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	96		%	1	07/22/15	JLI	70 - 130 %
% Toluene-d8	100		%	1	07/22/15	JLI	70 - 130 %

Phoenix I.D.: BJ61177

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level Comments:

Results are reported on an "as received" basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 37 of 37 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 06, 2015

Lead

QA/QC Data

SDG I.D.: GBJ61165

103

1.9

75 - 125

20

,													
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 314672 (mg/kg),	QC Sam	ple No:	BJ61166	6 (BJ611	66, BJ6	61169, 1	BJ6117	5)					
ICP Metals - Soil													
Arsenic	BRL	0.67	2.1	2.05	NC	95.1	102	7.0	94.5	94.7	0.2	75 - 125	30
Barium	BRL	0.33	83.8	77.8	7.40	107	104	2.8	89.6	87.0	2.9	75 - 125	30
Cadmium	BRL	0.33	<0.34	<0.36	NC	93.5	101	7.7	90.8	91.9	1.2	75 - 125	30
Chromium	BRL	0.33	19.4	20.2	4.00	99.2	106	6.6	94.7	95.3	0.6	75 - 125	30
Copper	BRL	0.33	20.4	20.8	1.90	95.6	104	8.4	105	103	1.9	75 - 125	30
Lead	BRL	0.33	58.7	50.8	14.4	96.8	98.6	1.8	91.5	89.2	2.5	75 - 125	30
Selenium	BRL	1.3	<1.4	<1.4	NC	79.6	83.9	5.3	81.6	81.7	0.1	75 - 125	30
Silver	BRL	0.33	<0.34	<0.36	NC	92.8	99.3	6.8	98.2	98.2	0.0	75 - 125	30
QA/QC Batch 314715 (mg/kg),	QC Sam	ple No:	BJ61166	6 (BJ611	66, BJ6	61169, I	BJ6117	5)					
Mercury - Soil	BRL	0.06	0.06	0.05	NC	102	105	2.9	88.4	94.5	6.7	70 - 130	30
Comment:													
Additional Mercury criteria: LCS ad	cceptance	e range t	for waters	is 80-120°	% and fo	or soils is	s 70-130°	%.					
QA/QC Batch 315423 (mg/L), Q	C Samp	le No: I	BJ65150	(BJ6116	6, BJ6 ⁻	1175)							
ICP Metals - SPLP Extra				•		·							
Barium	BRL	0.010	<0.010	<0.010	NC	98.6	100	1.4	103	101	2.0	75 - 125	20

NC

105

104

1.0

105

<0.010 <0.010

BRL

0.010

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 06, 2015

QA/QC Data

SDG I.D.: GBJ61165

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 314519 (mg/Kg),	QC Sam	ple No: BJ60744 (BJ61173, BJ	61175)								
TPH by GC (Extractable		•	,								
Ext. Petroleum HC	ND	50	59	84	35.0	62	54	13.8	30 - 130	30	r
% n-Pentacosane	62	%	67	92	31.4	66	52	23.7		30	r
QA/QC Batch 314524 (mg/Kg),	OC Sam		61168				161171	B 161	172)		
TPH by GC (Extractable		•	01100,	D30110	J, DJ01	170, D.	301171	, 0001	172)		
Ext. Petroleum HC	ND	50	76	62	20.3	80	69	14.8	30 - 130	30	
% n-Pentacosane	80	%	77	61	23.2	77	69	11.0	50 - 150	30	
QA/QC Batch 314526 (ug/kg), (BJ61173, BJ61175)	QC Samp		61167, E	3J61168	s, BJ611	169, BJ	61170,			172,	
Polynuclear Aromatic H	<u> C - S</u> oi	il									
2-Methylnaphthalene	ND	230	77	79	2.6	85	71	17.9	30 - 130	30	
Acenaphthene	ND	230	73	73	0.0	77	68	12.4	30 - 130	30	
Acenaphthylene	ND	230	72	71	1.4	68	60	12.5	30 - 130	30	
Anthracene	ND	230	82	82	0.0	81	74	9.0	30 - 130	30	
Benz(a)anthracene	ND	230	84	88	4.7	74	66	11.4	30 - 130	30	
Benzo(a)pyrene	ND	230	82	84	2.4	68	60	12.5	30 - 130	30	
Benzo(b)fluoranthene	ND	230	84	87	3.5	70	58	18.8	30 - 130	30	
Benzo(ghi)perylene	ND	230	83	88	5.8	67	60	11.0	30 - 130	30	
Benzo(k)fluoranthene	ND	230	80	80	0.0	55	52	5.6	30 - 130	30	
Chrysene	ND	230	86	88	2.3	75	66	12.8	30 - 130	30	
Dibenz(a,h)anthracene	ND	230	82	86	4.8	81	74	9.0	30 - 130	30	
Fluoranthene	ND	230	82	86	4.8	72	64	11.8	30 - 130	30	
Fluorene	ND	230	75	76	1.3	77	69	11.0	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	84	90	6.9	66	60	9.5	30 - 130	30	
Naphthalene	ND	230	70	72	2.8	78	66	16.7	30 - 130	30	
Phenanthrene	ND	230	81	81	0.0	78	70	10.8	30 - 130	30	
Pyrene	ND	230	82	85	3.6	71	64	10.4	30 - 130	30	
% 2-Fluorobiphenyl	38	%	69	68	1.5	71	61	15.2	30 - 130	30	
% Nitrobenzene-d5	38	%	66	67	1.5	72	61	16.5	30 - 130	30	
% Terphenyl-d14	43	%	77	83	7.5	75	68	9.8	30 - 130	30	
QA/QC Batch 314528 (ug/Kg),	QC Samp	ole No: BJ61045 2X (BJ61166,	BJ6116	89, BJ61	175)						
<u>Pesticides - So</u> il											
4,4' -DDD	ND	1.7	97			82	84	2.4	40 - 140	30	
4,4' -DDE	ND	1.7	90			84	72	15.4	40 - 140	30	
4,4' -DDT	ND	1.7	87			76	80	5.1	40 - 140	30	
a-BHC	ND	3.3	97			78	74	5.3	40 - 140	30	
a-Chlordane	ND	3.3	98			86	82	4.8	40 - 140	30	
Alachlor	ND	3.3	NA			NA	NA	NC	40 - 140	30	
Aldrin	ND	1.0	96			78	75	3.9	40 - 140	30	
b-BHC	ND	3.3	90			79	76	3.9	40 - 140	30	
Chlordane	ND	33	100			84	82	2.4	40 - 140	30	

SDG I.D.: GBJ61165

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	i
d-BHC	ND	3.3	90			67	66	1.5	40 - 140	30	
Dieldrin	ND	1.0	96			82	79	3.7	40 - 140	30	
Endosulfan I	ND	3.3	93			86	76	12.3	40 - 140	30	
Endosulfan II	ND	3.3	100			88	88	0.0	40 - 140	30	
Endosulfan sulfate	ND	3.3	79			67	72	7.2	40 - 140	30	
Endrin	ND	3.3	91			75	73	2.7	40 - 140	30	
Endrin aldehyde	ND	3.3	89			79	85	7.3	40 - 140	30	
Endrin ketone	ND	3.3	103			80	87	8.4	40 - 140	30	
g-BHC	ND	1.0	90			76	75	1.3	40 - 140	30	
g-Chlordane	ND	3.3	100			84	82	2.4	40 - 140	30	
Heptachlor	ND	3.3	106			75	71	5.5	40 - 140	30	
Heptachlor epoxide	ND	3.3	89			74	71	4.1	40 - 140	30	
Methoxychlor	ND	3.3	86			76	81	6.4	40 - 140	30	
Toxaphene	ND	130	NA			NA	NA	NC	40 - 140	30	
% DCBP	106	%	97			83	95	13.5	30 - 150	30	
% TCMX	94	%	92			76	76	0.0	30 - 150	30	
Comment:											
The QC for this batch consists of	of a Blank, L	CS, MS	and MSD.								
QA/QC Batch 315077 (mg/kg)	OC Sam	nle No:	B.I61173 (B.I61170 B.I61171	B.I6117	2 B.I61	173)					
Alcohol Analysis - Soil		pio 1 10 .	2001170 (2001170, 2001171	, D00117	2, 5001	170)					
Ethanol	ND	1.0	107	92	15.1	85	104	20.1	70 - 130	30	
Isobutyl alcohol	ND	1.0	87	122	33.5	116	136	15.9	70 - 130	30	m,r
Isopropyl alcohol	ND	1.0	97	124	24.4	118	147	21.9	70 - 130	30	m
Methanol	ND	1.0	77	106	31.7	107	122	13.1	70 - 130	30	r
n-Butyl alcohol	ND	1.0	85	112	27.4	100	135	29.8	70 - 130	30	m
Propanol	ND	1.0	87	97	10.9	94	121	25.1	70 - 130	30	
Sec-Butanol	ND	1.0	92	119	25.6	119	141	16.9	70 - 130	30	m
% 2-Pentanol(surr)	120	%	93	130	33.2	126	145	14.0	70 - 130	30	m,r
QA/QC Batch 314644 (ug/kg), 1000X), BJ61173, BJ61175, Volatiles - Soil		ole No:	3J61175 (BJ61166 (50X) , BJ	61168, B	J61169	, BJ611	170, BJ6	61171,	BJ6117	2 (50X	1
·	ND	5 0	20	404	2.0	00	400	4.0	70 100	20	
1,1,1,2-Tetrachloroethane	ND	5.0	99	101	2.0	98	102	4.0	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	105	107	1.9	108	113	4.5	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	91	96	5.3	95	103	8.1	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	89	93	4.4	91	95 440	4.3	70 - 130	30	
1,1-Dichloroethane	ND	5.0	113	115	1.8	113	119	5.2	70 - 130	30	
1,1-Dichloroethene	ND	5.0	108	109	0.9	80	88	9.5	70 - 130	30	
1,1-Dichloropropene	ND	5.0	96	99	3.1	101	108	6.7	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	85	87	2.3	79 07	91	14.1	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	94	98	4.2	97	106	8.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	85	85	0.0	81	92	12.7	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	90	91	1.1	90	98	8.5	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	88	93	5.5	82	99	18.8	70 - 130	30	
1,2-Dibromoethane	ND	5.0	95	97 04	2.1	93	98 07	5.2	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	90	91	1.1	91	97 402	6.4	70 - 130	30	
1,2-Dichloroethane	ND	5.0	99	103	4.0	99	103	4.0	70 - 130	30	
1,2-Dichloropropane	ND	5.0	94	96	2.1	96	98	2.1	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	96	96	0.0	95	106	10.9	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	88	89	1.1	91	97	6.4	70 - 130	30	
1,3-Dichloropropane	ND	5.0	95	96	1.0	94	98	4.2	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	87	88	1.1	90	96	6.5	70 - 130	30	
2,2-Dichloropropane	ND	5.0	103	105	1.9	105	112	6.5	70 - 130	30	

SDG I.D.: GBJ61165

			QAIQO Butu	Q/I/QO Butu			0D0 1.D.: 0D001100							
Parameter	Blank	BIk RL	LCS	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits				
2-Chlorotoluene	ND	5.0	91	92	1.1	91	99	8.4	70 - 130	30				
2-Hexanone	ND	25	84	91	8.0	88	96	8.7	70 - 130	30				
2-Isopropyltoluene	ND	5.0	94	96	2.1	95	103	8.1	70 - 130	30				
4-Chlorotoluene	ND	5.0	89	89	0.0	89	96	7.6	70 - 130	30				
4-Methyl-2-pentanone	ND	25	89	94	5.5	93	100	7.3	70 - 130	30				
Acetone	ND	10	77	81	5.1	65	71	8.8	70 - 130	30	m			
Acrylonitrile	ND	5.0	95	100	5.1	97	108	10.7	70 - 130	30				
Benzene	ND	1.0	94	96	2.1	97	102	5.0	70 - 130	30				
Bromobenzene	ND	5.0	88	91	3.4	88	95	7.7	70 - 130	30				
Bromochloromethane	ND	5.0	102	103	1.0	100	102	2.0	70 - 130	30				
Bromodichloromethane	ND	5.0	104	107	2.8	104	105	1.0	70 - 130	30				
Bromoform	ND	5.0	104	106	1.9	101	106	4.8	70 - 130	30				
Bromomethane	ND	5.0	117	118	0.9	62	74	17.6	70 - 130	30	m			
Carbon Disulfide	ND	5.0	116	117	0.9	85	98	14.2	70 - 130	30	1111			
Carbon tetrachloride	ND	5.0	107	108	0.9	103	113	9.3	70 - 130	30				
Chlorobenzene	ND	5.0	93	93	0.0	95	99	4.1	70 - 130	30				
Chloroethane	ND	5.0	101	98	3.0	29	30	3.4	70 - 130	30				
Chloroform	ND	5.0	103	104	1.0	101	105	3.9	70 - 130	30	m			
Chloromethane	ND	5.0	97	98	1.0	103	109	5.7	70 - 130	30				
cis-1,2-Dichloroethene	ND	5.0	101	103	2.0	98	103	5.7	70 - 130	30				
cis-1,3-Dichloropropene	ND	5.0	101	105	2.9	103	106	2.9	70 - 130	30				
Dibromochloromethane	ND	3.0	102	105	1.0	103	103	2.9	70 - 130	30				
Dibromomethane	ND	5.0	97	99	2.0	96	98	2.1	70 - 130	30				
Dichlorodifluoromethane	ND	5.0	103	99 105	1.9	119	129	8.1	70 - 130	30				
Ethylbenzene	ND	1.0	97	97	0.0	99	106	6.8	70 - 130	30				
•		5.0	89	92					70 - 130					
Hexachlorobutadiene	ND	1.0	93		3.3 3.2	93	103	10.2 9.1		30				
Isopropylbenzene	ND	2.0	93 97	96 07		94	103	6.8	70 - 130	30				
m&p-Xylene	ND		79	97 05	0.0	99	106		70 - 130 70 - 130	30				
Methyl ethyl ketone	ND	5.0		85 400	7.3	82	90	9.3		30				
Methyl t-butyl ether (MTBE)	ND	1.0 5.0	106 97	109	2.8	103	106	2.9 4.2	70 - 130	30				
Methylene chloride	ND			98	1.0	94	98		70 - 130	30				
Naphthalene	ND	5.0	95	99	4.1	86	101	16.0	70 - 130	30				
n-Butylbenzene	ND	1.0	91	92	1.1	94	104	10.1	70 - 130	30				
n-Propylbenzene	ND	1.0	86	89	3.4	88	96	8.7		30				
o-Xylene	ND	2.0	96	97	1.0	98	104	5.9	70 - 130	30				
p-Isopropyltoluene	ND	1.0	94	95	1.1	94	105	11.1	70 - 130	30				
sec-Butylbenzene	ND	1.0	96	98	2.1	100	108	7.7	70 - 130	30				
Styrene	ND	5.0	95	96	1.0	97	102	5.0	70 - 130	30				
tert-Butylbenzene	ND	1.0	95	96	1.0	96	105	9.0	70 - 130	30				
Tetrachloroethene	ND	5.0	91	93	2.2	97	104	7.0	70 - 130	30				
Tetrahydrofuran (THF)	ND	5.0	93	99	6.3	96	105	9.0	70 - 130	30				
Toluene	ND	1.0	93	95	2.1	98	101	3.0	70 - 130	30				
trans-1,2-Dichloroethene	ND	5.0	107	108	0.9	106	112	5.5	70 - 130	30				
trans-1,3-Dichloropropene	ND	5.0	105	108	2.8	105	108	2.8	70 - 130	30				
trans-1,4-dichloro-2-butene	ND	5.0	98	103	5.0	97	106	8.9	70 - 130	30				
Trichloroethene	ND	5.0	98	99	1.0	100	105	4.9	70 - 130	30				
Trichlorofluoromethane	ND	5.0	110	109	0.9	21	23	9.1	70 - 130	30	m			
Trichlorotrifluoroethane	ND	5.0	101	103	2.0	82	92	11.5	70 - 130	30				
Vinyl chloride	ND	5.0	111	112	0.9	124	133	7.0	70 - 130	30	m			
% 1,2-dichlorobenzene-d4	100	%	101	101	0.0	102	102	0.0	70 - 130	30				
% Bromofluorobenzene	96	%	103	105	1.9	104	104	0.0	70 - 130	30				
% Dibromofluoromethane	100	%	101	102	1.0	99	98	1.0	70 - 130	30				

100

100 0.0 100 99

1.0 70 - 130 30

99

% Toluene-d8

%

SDG I.D.: GBJ61165 **LCSD** RPD Blk LCS LCS MS MSD MS Rec Blank RL % % **RPD** % % **RPD Limits Limits Parameter** Comment: Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%. QA/QC Batch 314780 (ug/kg), QC Sample No: BJ61609 (BJ61166) Volatiles - Soil 1,1,1,2-Tetrachloroethane ND 5.0 95 93 2.1 94 101 7.2 70 - 130 30 ND 5.0 106 100 106 6.8 1.1.1-Trichloroethane 5.8 99 70 - 130 30 1,1,2,2-Tetrachloroethane ND 3.0 95 91 4.3 91 99 8.4 70 - 130 30 ND 5.0 90 88 2.2 87 92 1,1,2-Trichloroethane 5.6 70 - 13030 ND 5.0 111 107 3.7 105 113 1,1-Dichloroethane 7.3 70 - 130 30 1,1-Dichloroethene ND 5.0 110 104 5.6 62 65 4.7 70 - 130 30 m 1,1-Dichloropropene ND 5.0 97 89 8.6 94 100 6.2 70 - 130 30 92 ND 5.0 1,2-Dibromoethane 93 1.1 90 97 7.5 70 - 13030 1.2-Dichloroethane ND 5.0 99 95 4.1 95 100 5.1 70 - 130 30 ND 89 1,2-Dichloropropane 5.0 95 6.5 90 96 6.5 70 - 130 30 1,3-Dichloropropane ND 5.0 93 91 2.2 89 98 9.6 70 - 13030 2,2-Dichloropropane ND 5.0 103 96 7.0 101 111 9.4 70 - 130 30 ND 25 86 87 1.2 2-Hexanone 86 93 7.8 70 - 130 30 4-Methyl-2-pentanone ND 25 92 91 1.1 90 95 70 - 130 5.4 30 ND 10 81 82 1.2 56 62 Acetone 10.2 70 - 13030 Acrylonitrile ND 5.0 97 97 0.0 92 98 6.3 70 - 13030 ND 95 89 70 - 130 1.0 6.5 91 97 6.4 Benzene 30 Bromochloromethane ND 5.0 102 95 7.1 95 102 7.1 70 - 130 30 Bromodichloromethane ND 5.0 105 99 5.9 97 105 7.9 70 - 130 30 Bromoform ND 5.0 103 100 3.0 96 105 9.0 70 - 130 30 Bromomethane ND 5.0 129 118 8.9 55 68 21.1 70 - 130 30 m Carbon Disulfide ND 5.0 122 114 6.8 72 76 70 - 130 5.4 30 Carbon tetrachloride ND 5.0 104 99 4.9 97 102 5.0 70 - 130 30 Chlorobenzene ND 90 86 5.0 4.5 91 98 7.4 70 - 13030 Chloroethane ND 5.0 105 99 5.9 25 28 11.3 70 - 130 30 m Chloroform ND 5.0 102 96 6.1 87 94 7.7 70 - 13030 Chloromethane ND 5.0 101 96 5.1 102 109 6.6 70 - 13030 cis-1,2-Dichloroethene ND 5.0 102 95 7.1 92 99 7.3 70 - 130 30 ND 103 97 6.0 99 106 cis-1,3-Dichloropropene 5.0 6.8 70 - 130 30 ND 102 98 Dibromochloromethane 3.0 4.0 96 104 8.0 70 - 130 30 Dibromomethane ND 5.0 100 92 8.3 90 96 6.5 70 - 130 30 ND 5.0 118 Dichlorodifluoromethane 110 7.0 117 128 9.0 70 - 130 30 Ethylbenzene ND 1.0 92 89 3.3 93 101 8.2 70 - 130 30 88 m&p-Xylene ND 2.0 93 5.5 95 103 8.1 70 - 130 30 ND 5.0 78 80 2.5 78 81 3.8 70 - 130 30 Methyl ethyl ketone Methyl t-butyl ether (MTBE) ND 1.0 111 107 3.7 94 102 8.2 70 - 130 30 Methylene chloride ND 5.0 100 95 5.1 83 90 8 1 70 - 130 30 ND 2.0 95 90 5.4 94 102 8.2 70 - 130 30 o-Xylene ND 5.0 93 88 5.5 93 102 9.2 70 - 130Styrene 30 ND 91 83 9.2 95 70 - 130 Tetrachloroethene 5.0 98 3.1 30 Tetrahydrofuran (THF) ND 5.0 95 94 91 98 7.4 70 - 13030 1.1 Toluene ND 1.0 93 87 6.7 93 98 5.2 70 - 13030 ND 5.0 112 103 93 102 70 - 130 trans-1,2-Dichloroethene 8.4 9.2 30 trans-1,3-Dichloropropene ND 5.0 106 100 5.8 103 110 6.6 70 - 130 30 Trichloroethene ND 5.0 94 88 6.6 94 98 4.2 70 - 130 30

114

103

119

107

98

110

6.3

5.0

7.9

18

65

118

20

69

128

10.5

6.0

8.1

70 - 130

70 - 130

70 - 130

30

30

30

m

m

Trichlorofluoromethane

Trichlorotrifluoroethane

Vinyl chloride

ND

ND

ND

5.0

5.0

5.0

			QA/QC Data				SDG I.	D.: G	BJ6116	35	
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	S
% Dibromofluoromethane	100	%	100	101	1.0	95	100	5.1	70 - 130	30	
% Toluene-d8	100	%	101	101	0.0	99	98	1.0	70 - 130	30	
Comment:											
Additional 8260 criteria: 10% c	of LCS/LCSD	compounds	can be outside of acceptance of	riteria as	long as	recover	y is 40-1	60%.			
QA/QC Batch 316169 (ug/kg					Ü		,				
	j), QC Sairi	ile No. Dac	77 190 (0301107)								
Volatiles - Soil			440	440		40=	440				
1,1,1,2-Tetrachloroethane	ND	5.0	113	112	0.9	105	112	6.5	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	105	103	1.9	96	104	8.0	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	106	105	0.9	100	110	9.5	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	107	106	0.9	98	108	9.7	70 - 130	30	
1,1-Dichloroethane	ND	5.0	104	102	1.9	94	104	10.1	70 - 130	30	
1,1-Dichloroethene	ND	5.0	110	106	3.7	67	67	0.0	70 - 130	30	m
1,1-Dichloropropene	ND	5.0	108	107	0.9	103	110	6.6	70 - 130	30	
1,2-Dibromoethane	ND	5.0	110	110	0.0	101	111	9.4	70 - 130	30	
1,2-Dichloroethane	ND	5.0	107	105	1.9	96	104	8.0	70 - 130	30	
1,2-Dichloropropane	ND	5.0	109	107	1.9	102	109	6.6	70 - 130	30	
1,3-Dichloropropane	ND	5.0	109	109	0.0	102	110	7.5	70 - 130	30	
2,2-Dichloropropane	ND	5.0	78	81	3.8	94	105	11.1	70 - 130	30	
2-Hexanone	ND	25	89	90	1.1	80	88	9.5	70 - 130	30	
4-Methyl-2-pentanone	ND	25	103	101	2.0	90	101	11.5	70 - 130	30	
Acetone	ND	10	71	69	2.9	18	18	0.0	70 - 130	30	l,m
Acrylonitrile	ND	5.0	107	105	1.9	92	104	12.2	70 - 130	30	
Benzene	ND	1.0	111	109	1.8	105	111	5.6	70 - 130	30	
Bromochloromethane	ND	5.0	100	99	1.0	88	99	11.8	70 - 130	30	
Bromodichloromethane	ND	5.0	117	115	1.7	103	112	8.4	70 - 130	30	
Bromoform	ND	5.0	117	116	0.9	97	105	7.9	70 - 130	30	
Bromomethane	ND	5.0	107	107	0.0	68	84	21.1	70 - 130	30	m
Carbon Disulfide	ND	5.0	114	112	1.8	67	69	2.9	70 - 130	30	m
Carbon tetrachloride	ND	5.0	104	102	1.9	90	99	9.5	70 - 130	30	
Chlorobenzene	ND	5.0	106	105	0.9	101	108	6.7	70 - 130	30	
Chloroethane	ND	5.0	109	108	0.9	47	32	38.0	70 - 130	30	m,r
Chloroform	ND	5.0	101	100	1.0	93	95	2.1	70 - 130	30	
Chloromethane	ND	5.0	95	96	1.0	89	99	10.6	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	103	103	0.0	96	105	9.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	111	110	0.9	103	112	8.4	70 - 130	30	
Dibromochloromethane	ND	3.0	125	122	2.4	110	117	6.2	70 - 130	30	
Dibromomethane	ND	5.0	108	106	1.9	96	106	9.9	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	114	112	1.8	101	40	86.5	70 - 130	30	m,r
Ethylbenzene	ND	1.0	108	107	0.9	105	110	4.7	70 - 130	30	
m&p-Xylene	ND	2.0	104	102	1.9	101	108	6.7	70 - 130	30	
Methyl ethyl ketone	ND	5.0	76	76	0.0	69	78	12.2	70 - 130	30	m
Methyl t-butyl ether (MTBE)	ND	1.0	101	102	1.0	99	108	8.7	70 - 130	30	
Methylene chloride	ND	5.0	96	98	2.1	68	70	2.9	70 - 130	30	m
o-Xylene	ND	2.0	105	105	0.0	101	108	6.7	70 - 130	30	
Styrene	ND	5.0	103	102	1.0	99	105	5.9	70 - 130	30	
Tetrachloroethene	ND	5.0	105	103	1.9	103	110	6.6	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	98	97	1.0	87	98	11.9	70 - 130	30	
Toluene	ND	1.0	106	105	0.9	100	108	7.7	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	106	104	1.9	92	99	7.3	70 - 130	30	
turns 4.0 Disklamana	ND		444	440	• •	400	444		70 400	00	

111

114

102

110

111

99

0.9

2.7

3.0

102

103

36

111

111

40

8.5 70 - 130

7.5 70 - 130

10.5 70 - 130 30

30

30

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

ND

ND

ND

5.0

5.0

5.0

QA/QC Data

% RPD Blk LCSD LCS LCS MS **MSD** MS Rec RL RPD Blank % % % % **RPD Limits Limits Parameter** ND Trichlorotrifluoroethane 111 105 71 5.0 5.6 67 5.8 70 - 130 30 Vinyl chloride ND 5.0 108 107 0.9 37 37 70 - 130 30 0.0 m % Dibromofluoromethane 87 91 % 89 90 88 1.1 70 - 130 30 1.1 % Toluene-d8 95 % 98 99 1.0 97 99 2.0 70 - 130 30 Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 316171 (ug/kg), QC Sample No: BJ68047 (BJ61167 (50X))

art ao Baton o ro rr r (agring),	QO Cuili	DIG 110. D0000 17 (D00 110	,, (00,1)								
<u>Volatiles - So</u> il											
1,2,3-Trichlorobenzene	ND	5.0	84	91	8.0	95	93	2.1	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0	91	100	9.4	106	102	3.8	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	74	85	13.8	92	88	4.4	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	81	89	9.4	90	84	6.9	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	93	111	17.6	110	108	1.8	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	88	94	6.6	99	98	1.0	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	85	92	7.9	99	98	1.0	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	85	94	10.1	99	97	2.0	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	82	89	8.2	98	95	3.1	70 - 130	30	
2-Chlorotoluene	ND	5.0	87	96	9.8	101	98	3.0	70 - 130	30	
2-Isopropyltoluene	ND	5.0	90	98	8.5	104	103	1.0	70 - 130	30	
4-Chlorotoluene	ND	5.0	84	90	6.9	100	96	4.1	70 - 130	30	
Bromobenzene	ND	5.0	92	101	9.3	104	103	1.0	70 - 130	30	
Hexachlorobutadiene	ND	5.0	92	102	10.3	107	104	2.8	70 - 130	30	
Isopropylbenzene	ND	1.0	93	99	6.3	107	107	0.0	70 - 130	30	
Naphthalene	ND	5.0	91	100	9.4	93	82	12.6	70 - 130	30	
n-Butylbenzene	ND	1.0	80	89	10.7	98	94	4.2	70 - 130	30	
n-Propylbenzene	ND	1.0	85	92	7.9	101	97	4.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	85	94	10.1	101	99	2.0	70 - 130	30	
sec-Butylbenzene	ND	1.0	90	98	8.5	104	102	1.9	70 - 130	30	
tert-Butylbenzene	ND	1.0	91	99	8.4	105	104	1.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	87	96	9.8	102	97	5.0	70 - 130	30	
% 1,2-dichlorobenzene-d4	96	%	103	102	1.0	104	103	1.0	70 - 130	30	
% Bromofluorobenzene	91	%	98	97	1.0	99	96	3.1	70 - 130	30	
•											

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director August 06, 2015

SDG I.D.: GBJ61165

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

r = This parameter is outside laboratory rpd specified recovery limits.

Page 1 of 2

Thursday, August 06, 2015 Criteria: CT: GAM, RC

Sample Criteria Exceedences Report GBJ61165 - GZACTENG

State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
BJ61167	\$8260MAR	1.2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / RES DEC (mg/	ND	10	7	7	ug/Kg
	,	,						
BJ61169	\$PEST_SMR	Chlordane	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	180	66	66	ug/Kg
BJ61169	\$PEST_SMR	Dieldrin	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	50	7	7	ug/Kg
BJ61169	\$PEST_SMR	Heptachlor -	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	18	13	13	ug/Kg
BJ61169	\$PEST_SMR	Toxaphene	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	700	330	330	ug/Kg
BJ61169	\$PEST_SMR	Dieldrin	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	50	38	38	ug/Kg
BJ61169	\$PEST_SMR	Toxaphene	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	700	560	560	ug/Kg
BJ61170	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	1100	58	500	500	mg/Kg
BJ61170	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	1100	58	500	500	mg/Kg
BJ61172	\$8260MAR	1,2-Dichloroethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	20	20	ug/Kg
BJ61172	\$8260MAR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	10	10	ug/Kg
BJ61172	\$8260MAR	1,2,4-Trimethylbenzene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	19000	5500	7000	7000	ug/Kg
BJ61172	\$8260MAR	1,1-Dichloroethene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	140	140	ug/Kg
BJ61172	\$8260MAR	1,1,2-Trichloroethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	100	100	ug/Kg
BJ61172	\$8260MAR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	10	10	ug/Kg
BJ61172	\$8260MAR	1,1,2-Tetrachloroethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	20	20	ug/Kg
BJ61172	\$8260MAR	Benzene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	20	20	ug/Kg
BJ61172	\$8260MAR	1,1,2,2-Tetrachloroethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	170	10	10	ug/Kg
BJ61172	\$8260MAR	cis-1,3-Dichloropropene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	10	10	ug/Kg
BJ61172	\$8260MAR	Vinyl chloride	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	40	40	ug/Kg
BJ61172	\$8260MAR	Trichloroethene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	100	100	ug/Kg
BJ61172	\$8260MAR	trans-1,3-Dichloropropene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	10	10	ug/Kg
BJ61172	\$8260MAR	Tetrachloroethene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	100	100	ug/Kg
BJ61172	\$8260MAR	n-Propylbenzene	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	2500	280	1400	1400	ug/Kg
BJ61172	\$8260MAR	1,2-Dichloropropane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	100	100	ug/Kg
BJ61172	\$8260MAR	Dibromochloromethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	170	10	10	ug/Kg
BJ61172	\$8260MAR	Chloromethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	54	54	ug/Kg
BJ61172	\$8260MAR	Chloroform	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	120	120	ug/Kg
BJ61172	\$8260MAR	Carbon tetrachloride	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	100	100	ug/Kg
BJ61172	\$8260MAR	Bromomethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	200	200	ug/Kg
BJ61172	\$8260MAR	Bromoform	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	80	80	ug/Kg
BJ61172	\$8260MAR	Bromodichloromethane	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	11	11	ug/Kg
BJ61172	\$8260MAR	Methylene chloride	CT / VOLATILE ORGANIC COMPOUND / GA/GAA PMC	ND	280	100	100	ug/Kg
BJ61172	\$8260MAR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / RES DEC (mg/	ND	280	7	7	ug/Kg
BJ61175	\$PEST_SMR	Dieldrin	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	25	7	7	ug/Kg
BJ61175	PB-SM	Lead	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	1190	3.8	400	400	mg/Kg
BJ61175	SPLP-PB	SPLP Lead	CT / INORGANIC SUBSTANCES / GA/GAA PMC (mg/l)**	0.029	0.010	0.015	0.015	mg/L

Thursday, August 06, 2015 Criteria: CT: GAM, RC

Sample Criteria Exceedences Report GBJ61165 - GZACTENG

State: CT

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 2 of 2

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	ratory Na	ame: P	hoenix Enviro	nmental Labs,	Inc. Client	: GZ	A GeoEnvir	onmenta	I, Inc.			
Proje	ect Locat	ion: D	ANIELS MILL	05.0045441.0	0 Projec	t Number:						
Labo	ratory Sa	ample IC		6, BJ61167, B 5, BJ61177	J61168, BJ6 ²	1169, BJ61170, E	3J61171, BJ	61172, E	3J61173,			
Samı	oling Dat	e(s): 7	/21/2015									
RCP	Methods	Used:										
✓ 13	311/1312	✓ 6010	7000	7196	7470/7471	✓ 8081	☐ EPH		TO15			
<u> </u>	82	8151	✓ 8260	✓ 8270	✓ ETPH	9010/9012	☐ VPH					
	specified any criteri	QA/QC po a falling o	erformance crite outside of accep		cluding the rec s, as specified	ackage, were all uirement to explain in the CT DEP	Yes	□No				
1a.	Were the	method s	pecified preser	vation and holdi	ng time requir	ements met?	□ Yes	✓ No				
				the VPH or EP on 11.3 of respe			□ Yes	□No	☑ NA			
	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)? ✓ Yes □ No											
3.	Were sam	nples rece	eived at an appi	opriate tempera	ture (< 6 Deg	rees C)?	✓ Yes	□No	□NA			
		locument		ria specified in t e Sections: ALC		le Confidence Narration, VOA	☐ Yes	✓ No				
5a.	Were repo	orting limi	ts specified or r	eferenced on th	e chain-of-cus	stody?	✓ Yes	□No				
5b.	Were thes	se reporti	ng limits met?				☐ Yes	✓ No	□NA			
	results rep	oorted for	all constituents	nced in this labo identified in the idence Protocol	method-spec	ackage, were ific analyte lists	☐ Yes	✓ No	□NA			
7.	Are projec	ct-specific	matrix spikes a	and laboratory d	uplicates inclu	ded in the data se	? Yes	□No	□NA			
Note:	be provide	ed in an a		e. If the answer		ion of question #5a, #1A or 1B is "No", t						
and	belief an	d based	l upon my pe	rsonal inquiry	of those re	perjury that, to t sponsible for pr urate and comp	oviding the					
				-L		Date: Thu	rsday, Augu	st 06. 20	15			
	norized nature:		Mala	(N)	Pri	nted Name: Mar		-, -0				
'ق	= •		71/40/140			Position: Proj	-	r				

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list.

8270 Semi-volatile Organics:

Only the PAH constituents are reported as requested on the chain-of-custody.

Sample(s) required a dilution for Volatiles due to the presence of target and/or non-target compounds. This resulted in elevated reporting limits that exceed the requested criteria for one or more analytes.

Sample(s) required a dilution for Pesticides due to the presence of target and/or non-target compounds. This resulted in elevated reporting limits that exceed the requested criteria for one or more analytes.

BJ61167 - The holding time limit was exceeded for Volatiles. A low bias can not be ruled out.

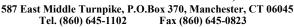
ALCOHOL

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 315077 (Samples: BJ61170, BJ61171, BJ61172, BJ61173): -----

One or more surrogates is outside of criteria. (% 2-Pentanol(surr))

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Isobutyl alcohol, Methanol)


The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% 2-Pentanol(surr))

The MS and/or the MSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Isobutyl alcohol, Isopropyl alcohol, n-Butyl alcohol, Sec-Butanol)

Instrument: Headspace 07/27/15-1 (BJ61170, BJ61171, BJ61172, BJ61173)

Printed Name Jeff Bucko **Position:** Chemist **Date:** 7/27/2015

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

QC (Batch Specific)

----- Sample No: BJ61173, QA/QC Batch: 315077 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: % 2-Pentanol(surr)(33.2%), Isobutyl alcohol(33.5%), Methanol(31.7%)

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 314519 (Samples: BJ61173, BJ61175): ----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, therefore there may be variability in the reported result. (Ext. Petroleum HC)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates. Both recoveries are within limits. No significant ias is suspected. (% n-Pentacosane)

Instrument: Au-fid11 07/22/15-1 (BJ61166, BJ61168, BJ61169, BJ61170)

The initial calibration (ETPH6251) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (722A003_1) and contained the following outliers: None.

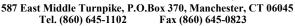
The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko
Position: Chemist
Date: 7/22/2015

Instrument: Au-fid11 07/23/15-1 (BJ61171)

The initial calibration (ETPH6251) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (723A003 1) and contained the following outliers: None.


The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko Position: Chemist Date: 7/23/2015

Instrument: Au-fid84 07/22/15-1 (BJ61172)

Initial Calibration (FID84 - ETPH 413) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: none

The initial calibration (ETPH709I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (722A003 1) and contained the following outliers: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko
Position: Chemist
Date: 7/22/2015

Instrument: Aufid-d1 07/22/15-1 (BJ61173, BJ61175)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

The initial calibration (ETPH711I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (722B003 1) and contained the following outliers: None.

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko
Position: Chemist
Date: 7/22/2015

QC (Batch Specific)

Sample No: BJ60744, QA/QC Batch: 314519
All LCS recoveries were within 60 - 120 with the following exceptions: None.
All LCSD recoveries were within 60 - 120 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: % n-Pentacosane(31.4%), Ext. Petroleum HC(35.0%)
Sample No: BJ60899, QA/QC Batch: 314524
All LCS recoveries were within 60 - 120 with the following exceptions: None.
All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 07/23/15-1 (BJ61166, BJ61169, BJ61175)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name Rick Schweitzer

Position: Chemist **Date:** 7/23/2015

QC (Batch Specific)

----- Sample No: BJ61166, QA/QC Batch: 314715 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 07/22/15-1 (BJ61166, BJ61169, BJ61175)

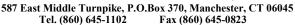
The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist 7/22/2015


Instrument: Arcos 07/23/15-1 (BJ61166, BJ61169, BJ61175)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist Date: 7/23/2015

Instrument: Arcos 07/24/15-1 (BJ61175)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

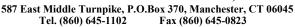
The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin
Position: Chemist
Date: 7/24/2015

Instrument: Arcos 08/04/15-1 (BJ61166, BJ61175)

The initial calibration met criteria.


The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist **Date:** 8/4/2015

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

QC (Batch Specific)

----- Sample No: BJ61166, QA/QC Batch: 314672 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

----- Sample No: BJ65150, QA/QC Batch: 315423 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd13 07/22/15-1 (BJ61166, BJ61169, BJ61175)

8081 Narration:

Endrin and DDT breakdown was evaluated and does not exceed 15%.

The initial calibration (PS722AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS722BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Carol Eddy Position: Chemist 7/22/2015

QC Comments: QC Batch 314528 07/21/15 (BJ61166, BJ61169, BJ61175)

The QC for this batch consists of a Blank, LCS, MS, and MSD.

QC (Batch Specific)

----- Sample No: BJ61045, QA/QC Batch: 314528 -----

All LCS recoveries were within 40 - 140 with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem19 07/21/15-2 (BJ61166, BJ61167, BJ61168, BJ61169, BJ61170, BJ61171,

BJ61172, BJ61173, BJ61175)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM19/SV 0720):

97% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol (56%), 4,6-Dinitro-2-methylphenol (28%), Pentachlorophenol (27%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM19/0721 22-SV 0720):

99% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: 4-nitrophenol (44%H)[30%]

The following compounds did not meet maximum % deviations: 4-nitrophenol (44%H)[40%]

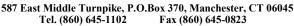
The following compounds did not meet recommended response factors: 2-nitrophenol (.056)[0.1], Hexachlorobenzene (.086)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 7/21/2015

QC (Batch Specific)


----- Sample No: BJ60983, QA/QC Batch: 314526 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. OC Batch 314644 (Samples: BJ61166, BJ61168, BJ61169, BJ61170, BJ61171, BJ61172, BJ61173, BJ61175, BJ61177): ----

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Acetone, Bromomethane, Chloroethane, Trichlorofluoromethane)

The MS and/or the MSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Vinyl chloride)

QC Batch 316169 (Sample: BJ61167) ----

The QC recoveries for one or more analytes are below the method criteria. A low bias is possible. (Acetone)

Instrument: Chem03 07/22/15-1 (BJ61166, BJ61168, BJ61169, BJ61170, BJ61171, BJ61172,

BJ61173, BJ61175, BJ61177)

Initial Calibration Verification (CHEM03/VT-L0622):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone (27%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM03/0722L02-VT-L0622):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li
Position: Chemist
Date: 7/22/2015

Instrument: Chem03 07/23/15-1 (BJ61166)

Initial Calibration Verification (CHEM03/VT-L0622):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone (27%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM03/0723L02-VT-L0622):

99% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: Bromomethane (31%L)[30%]

The following compounds did not meet maximum % deviations: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li
Position: Chemist
Date: 7/23/2015

Instrument: Chem15 08/05/15-1 (BJ61167)

Initial Calibration Verification (CHEM15/VT-B0803):

95% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone (26%), Chloroethane (23%), Methylacetate (33%), Methylacetate (33%), Methylacetate (33%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM15/0805B03-VT-B0803):

98% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: 2,2-dichloropropane (34%L)[30%], Acrolein (54%H)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li Position: Chemist Date: 8/5/2015

Instrument: Chem18 08/05/15-1 (BJ61167)

Initial Calibration Verification (CHEM18/VT-M0729):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-Chloropropane (23%), Acrolein (31%)

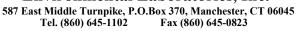
The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM18/0805M03-VT-M0729):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.


The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li **Position:** Chemist **Date:** 8/5/2015

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ61165

QC (Batch Specific)
Sample No: BJ61175, QA/QC Batch: 314644
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Sample No: BJ61609, QA/QC Batch: 314780
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Sample No: BJ67196, QA/QC Batch: 316169
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: Acetone(69%)
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Sample No: BJ68047, QA/QC Batch: 316171
All LCS recoveries were within 70 - 130 with the following exceptions: None.
All LCSD recoveries were within 70 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None

		/	Coolant: IPK	Yes No
	CHAIN OF CUSTODY RECORD	RECORD	Temp 🕂 °C	Pg / of >
587 East	Middle Tumpike, P.O. Box 370		Fax: Phone: Ray 2 M. VEC.	ions:
tories, Inc.	(09			-Open
Customer:	Project: 🏻 🎝 u v z lu	10:14 /05:00 5441.03	Project P.O:	
Address: (5) William Brat Dive	Report to:		This se	This section MUST be
my when	Invoice to:		COU	completed with
				Bottle Quantities.
Client Saprate - Information - Identification				
Sampler's Sampler's Signature Sampler's Sampler's Sampler's Signature Sampler's Sample	Analysis		O. S.	140001 \$050
Matrix Code:	= Kednest			1400, 14, 10
Description of the Community of the Comm	A STATE OF THE STA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		65 (165)
			1 3 4 9 1 50 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PHOENIX USE ONLY Customer Sample Sample Time Identification Matrix Sampled Sampled			200000000000000000000000000000000000000	181088 NA 18
8-4 (0.5-2) S H2110F		X 2 2		
1 (-2-2-0) 91	XX XXX	32		
1/107 8-11 (0.5-2)	X	3		
1/108 8-12 (0.5-1.5) 1200	× ×	~ ~		
01/69 18-13 (0.25-1) 1230	× × × × ×	ers		
7/170 6-14(0.5-2) 1245	メメメ	×		
	メメア	× ×		
2	イメメ	X &		
7//73 8-17(0.5-2) 1125	メメメ	×		
0.5-2)	6	3		
1/75 18-(9(0,5-3), 1, 1,500	XXX XXX	3 (,	
1/176 Bucacas (5) V V 1550		X		
Relinguished by:	Date: Time: RI	150		Data Format
- Se-Gole TTOUNTUM	#2115 17:23 L	Direct Exposure RCP Cert Residential)	MCP Certification	Excel
		☐ SW Protection ☐	☐ Gw-2	☐ GIS/Key
		Other SKGA Mobility	☐ GW-3	☐ EQuIS
is or Regula $^\prime$	Turnaround:	GB Mobility	S-1	Data Package
in any oring soil for possion oringsis.	l Day □ 2 Days*	Residential DEC	. S-3	Full Data Package*
	☐ 3 Days*	Other	☐ MWRA eSMART ☐ Other	☐ Phoenix Std Report ☐ Other
	E APPI IFS	State where samples were collected:	ed: CT	* SURCHARGE APPLIES
	SOUCHARGE ALT FIES			

Cooler: Yes No I	2,c Pg ZofZ	Contact Options:	6 BEND Hutton (Greenen	,	This section MUST be completed with Bottle Quantities.	→	14001 20507	LADOS AGE	OF SONIT						Data Cormat	Excel PDF	☐ GIS/Key ☐ EQUIS	☐ Other Data Package ☐ Tier II Checklist ☐ Full Data Package* ☐ Phoenix Std Report	Other SURCHARGE APPLIES
Coolant: II	7 dwa L	Contact Contact	ie: 860 28	Project P.O.	This	*		\$ 50 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Col so live los los livellos live						- V		tion		collected: CT
	ECORD	anchester, CT 06040	Fax (860) 645-0823 645-8726	9	Harten					27						☐ Direct Exposure ☐ GCP Cert ☐ GW Protection	GW SW Protection Other State Mobility		State where samples were collected:
	CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040	ail: info@phoenixlabs.com Fax (860) 64 Client Services (860) 645-8726	Project: Language M.M.	Invoice to:		Analysis	Service .	The state of the s	X	X				Dafe:	111511123		Turnaround: 1 Day* 2 Days*	Standard Other Surcharge Applies
	5	587 East Mid	Email: i		CT Chair		ntification Date: $2/2\iota l/S$	• Water ww =Waste Water •D=Solid W =Wipe	Date	<	1					WYNNOU'M -			5
3			Environmental Laboratories, Inc.	CARA	(Jasta bury		Client Sample - graffmation - Identification D	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water WW=Surface Water WW=Waste Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe	ustomer Sample	3	IND BLUK HIX MIKEN				Accepted by:			Comments, Special Requirements or Regulations: **RECEIVENT 3 LOW LEVEL VIOLS W/CUSTEDY **REALS For Trip Blanks. No High level VIOL **REALS For Trip Blanks. No High level VIOL	
			Environmenta	Customer:	Addless:		Sampler's Signature	Matrix Code: DW=Drinking Water A RW=Raw Water SE=6	PHOENIX USE ONLY CAMADLE #	7 77 10)	61178 7				Relinguished by:	Den Galle		Comments, Special Re A PECE, USA 3 SEALS PEN 1	received. E

GB J 61165

Shannon - Phoenixlabs

From: Bobbi - Phoenixlabs [bobbi@phoenixlabs.com]

Sent: Monday, August 03, 2015 11:45 AM

To: 'Shannon - Phoenixlabs'; 'Lori - Phoenixlabs' **Subject:** FW: Danielles Mill Additional SPLP Analysis

can you add? thanks

Bobbi Aloisa
Vice President
Director of Client Services
Phoenix Environmental Laboratories
587 East Middle Turnpike
Manchester, CT 06040
Ph: 860-645-8728

From: Anthony Trani [mailto:Anthony.Trani@gza.com]

Sent: Monday, August 03, 2015 11:29 AM

To: 'bobbi@phoenixlabs.com'

Subject: Danielles Mill Additional SPLP Analysis

Bobbi,

Could we please have the following samples run for SPLP analysis.

Date Sampled	GZA ID	Phoenix ID	Analysis Requested
7/20/2015	B-2 (0.5-2)	BJ59684	SPLP Lead
7/22/2015	B-7 (3-5)	BJ62589	SPLP Lead, SPLP Arsenic
7/21/2015	B-10 (0.5-2)	BJ61166	SPLP Lead
7/21/2015	B-19 (0.5-3)	BJ61175	SPLP Lead, SPLP Barium

We would like a 3 day TOT.

Thanks
Anthony
Anthony Trani
Assistant Project Manager

GZA | 655 Winding Brook Drive, Suite 402 | Glastonbury, CT 06033

o: 860.858.3121 | c: 860.990.5404 | <u>anthony.trani@gza.com</u> | <u>www.gza.com</u>

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Proactive by Design. Since 1964.

Linda - Phoenixlabs

From: Anthony Trani [Anthony.Trani@gza.com]

Sent: Tuesday, August 04, 2015 2:33 PM

To: Linda - Phoenixlabs; bobbi@phoenixlabs.com

Cc: James Hutton

Subject: RE: Daniel's Mill Additional Analysis We would like to run it for VOCs anyways.

Thanks Anthony

From: Linda - Phoenixlabs [mailto:linda@phoenixlabs.com]

Sent: Tuesday, August 04, 2015 2:32 PM

To: Anthony Trani <Anthony.Trani@gza.com>; bobbi@phoenixlabs.com

Cc: James Hutton < james.hutton@gza.com> Subject: RE: Daniel's Mill Additional Analysis

Anthony

It looks like that sample was taken on 7/20, it is past hold for VOC. Please let me know what you would like to do.

thanks Linda

-Linda Chapman

Client Services Representative
Phoenix Environmental Laboratories
587 East Middle Turnpike
Manchester, CT 06040

Ph: 1-860-645-1102

This message is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, and exempt from disclosure under applicable law.

From: Anthony Trani [mailto:Anthony.Trani@gza.com]

Sent: Tuesday, August 04, 2015 2:28 PM

To: 'bobbi@phoenixlabs.com'

Cc: 'linda@phoenixlabs.com'; James Hutton Subject: Daniel's Mill Additional Analysis

Bobbi,

We would like to have sample B-11 (0.5-2) with Phoenix ID #61167 run for VOCs. We would like a 3 day TOT.

Please confirm that you still have the sample and can run the VOC analysis for us.

Thank Anthony

Anthony Trani Assistant Project Manager

GZA | 655 Winding Brook Drive, Suite 402 | Glastonbury, CT 06033 o: 860.858.3121 | c: 860.990.5404 | anthony.trani@gza.com | www.gza.com

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Proactive by Design. Since 1964.

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.gza.com.

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.qza.com.

Thursday, August 06, 2015

Attn: Mr James Hutton GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: DANIELS MILL Sample ID#s: BJ59683 - BJ59688

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date **SOLID** Collected by: BG 07/20/15 8:45 Matrix: Location Code: **GZACTENG** Received by: SW 07/20/15 13:44

Rush Request: Standard Analyzed by: see "By" below

DI/

P.O.#: Laboratory Data

SDG ID: GBJ59683

Phoenix ID: BJ59683

Project ID: DANIELS MILL Client ID: B-1 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.36	0.36	mg/Kg	1	07/21/15	LK	SW6010C	
Arsenic	1.9	0.7	mg/Kg	1	07/21/15	LK	SW6010C	
Barium	39.2	0.36	mg/Kg	1	07/21/15	LK	SW6010C	
Cadmium	< 0.36	0.36	mg/Kg	1	07/21/15	LK	SW6010C	
Chromium	30.9	0.36	mg/Kg	1	07/21/15	LK	SW6010C	
Copper	12.5	0.36	mg/kg	1	07/21/15	EK	SW6010C	В
Mercury	< 0.03	0.03	mg/Kg	1	07/21/15	RS	SW7471B	
Lead	19.3	0.36	mg/Kg	1	07/21/15	LK	SW6010C	
Selenium	< 1.4	1.4	mg/Kg	1	07/21/15	LK	SW6010C	
Percent Solid	91		%		07/20/15	I	SW846-%Solid	
Soil Extraction for PCB	Completed				07/20/15	ВС	SW3545A	
Soil Extraction for Pesticide	Completed				07/20/15	BC/H	SW3545A	
Soil Extraction SVOA PAH	Completed				07/20/15	BJ/VH	SW3545A	
Extraction of CT ETPH	Completed				07/20/15	BC/V	SW3545A	
Mercury Digestion	Completed				07/21/15	1/1	SW7471B	
Total Metals Digest	Completed				07/20/15	G/AG	SW3050B	
Field Extraction	Completed				07/20/15		SW5035A	
TPH by GC (Extractab	le Products	<u>s)</u>						
Ext. Petroleum HC	ND	 54	mg/Kg	1	07/21/15	JRB	CTETPH 8015D	
Identification	ND		mg/Kg	1	07/21/15	JRB	CTETPH 8015D	
QA/QC Surrogates								
% n-Pentacosane	73		%	1	07/21/15	JRB	50 - 150 %	
Polychlorinated Biphe	enyls							
PCB-1016	ND	360	ug/Kg	10	07/21/15	AW	SW8082A	
PCB-1221	ND	360	ug/Kg	10	07/21/15	AW	SW8082A	
PCB-1232	ND	360	ug/Kg	10	07/21/15	AW	SW8082A	

Page 1 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-1 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1242	ND	360	ug/Kg	10	07/21/15	AW	SW8082A
PCB-1248	ND	360	ug/Kg	10	07/21/15	AW	SW8082A
PCB-1254	ND	360	ug/Kg	10	07/21/15	AW	SW8082A
PCB-1260	ND	360	ug/Kg	10	07/21/15	AW	SW8082A
PCB-1262	ND	360	ug/Kg	10	07/21/15	AW	SW8082A
PCB-1268	ND	360	ug/Kg	10	07/21/15	AW	SW8082A
QA/QC Surrogates	440		۰,	40	07/04/45		00 450 0/
% DCBP	113		%	10	07/21/15	AW	30 - 150 %
% TCMX	88		%	10	07/21/15	AW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
4,4' -DDE	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
4,4' -DDT	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
a-BHC	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Alachlor	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Aldrin	ND	3.6	ug/Kg	2	07/21/15	CE	SW8081B
b-BHC	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Chlordane	ND	36	ug/Kg	2	07/21/15	CE	SW8081B
d-BHC	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Dieldrin	ND	3.6	ug/Kg	2	07/21/15	CE	SW8081B
Endosulfan I	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Endosulfan II	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Endosulfan sulfate	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Endrin	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Endrin aldehyde	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Endrin ketone	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
g-BHC	ND	1.5	ug/Kg	2	07/21/15	CE	SW8081B
Heptachlor	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Heptachlor epoxide	ND	7.3	ug/Kg	2	07/21/15	CE	SW8081B
Methoxychlor	ND	36	ug/Kg	2	07/21/15	CE	SW8081B
Toxaphene	ND	150	ug/Kg	2	07/21/15	CE	SW8081B
QA/QC Surrogates							
% DCBP	74		%	2	07/21/15	CE	30 - 150 %
% TCMX	70		%	2	07/21/15	CE	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloroethene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloropropene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.9	ug/Kg ug/Kg	1	07/21/15	JLI	SW8260C SW8260C
1,2,3-Trichloropropane				1			
1,2,4-Trichlorobenzene	ND	4.9	ug/Kg	•	07/21/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dibromoethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C

Page 2 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-1 (0.5-2)

Oliciti ID. D 1 (0.0 2)		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichloroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichloropropane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichloropropane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
2,2-Dichloropropane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
2-Chlorotoluene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
2-Hexanone	ND	25	ug/Kg	1	07/21/15	JLI	SW8260C
2-Isopropyltoluene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
4-Chlorotoluene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	25	ug/Kg	1	07/21/15	JLI	SW8260C
Acetone	ND	30	ug/Kg	1	07/21/15	JLI	SW8260C
Acrylonitrile	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Benzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Bromobenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Bromochloromethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Bromodichloromethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Bromoform	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Bromomethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon Disulfide	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon tetrachloride	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Chlorobenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroform	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Chloromethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromochloromethane	ND	3.0	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromomethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Dichlorodifluoromethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Ethylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Hexachlorobutadiene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Isopropylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
m&p-Xylene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	30	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.9	ug/Kg	1	07/21/15	JLI	SW8260C
Methylene chloride	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Naphthalene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
n-Butylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
n-Propylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
o-Xylene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
p-Isopropyltoluene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
sec-Butylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Styrene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
tert-Butylbenzene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrachloroethene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.9	ug/Kg	1	07/21/15	JLI	SW8260C

Page 3 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-1 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Total Xylenes	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.9	ug/Kg	1	07/21/15	JLI	SW8260C
Trichloroethene	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorofluoromethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
Vinyl chloride	ND	4.9	ug/Kg	1	07/21/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	96		%	1	07/21/15	JLI	70 - 130 %
% Bromofluorobenzene	89		%	1	07/21/15	JLI	70 - 130 %
% Dibromofluoromethane	98		%	1	07/21/15	JLI	70 - 130 %
% Toluene-d8	87		%	1	07/21/15	JLI	70 - 130 %
Client MS/MSD	Completed				07/21/15		
Polynuclear Aromatic	HC_						
2-Methylnaphthalene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
QA/QC Surrogates			J. J				
% 2-Fluorobiphenyl	53		%	1	07/20/15	DD	30 - 130 %
% Nitrobenzene-d5	53		%	1	07/20/15	DD	30 - 130 %
% Terphenyl-d14	65		%	1	07/20/15	DD	30 - 130 %

Page 4 of 22 Ver 3

Project ID: DANIELS MILL Phoenix I.D.: BJ59683

Client ID: B-1 (0.5-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

B = Present in blank, no bias suspected.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 5 of 22 Ver 3

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date **SOLID** Collected by: BG 07/20/15 9:15 Matrix: Location Code: **GZACTENG** Received by: SW 07/20/15 13:44

Rush Request: 72 Hour Analyzed by: see "By" below

Laboratory Data

SDG ID: GBJ59683

Phoenix ID: BJ59684

Project ID: DANIELS MILL Client ID: B-2 (0.5-2)

P.O.#:

		RL/							
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference		
Silver	< 0.34	0.34	mg/Kg	1	07/22/15	EK	SW6010C		
Arsenic	3.1	0.7	mg/Kg	1	07/22/15	EK	SW6010C		
Barium	179	0.34	mg/Kg	1	07/22/15	EK	SW6010C		
Cadmium	< 0.34	0.34	mg/Kg	1	07/22/15	EK	SW6010C		
Chromium	16.9	0.34	mg/Kg	1	07/22/15	EK	SW6010C		
Copper	50.5	0.34	mg/kg	1	07/22/15	EK	SW6010C		
Mercury	0.20	0.03	mg/Kg	1	07/21/15	RS	SW7471B		
Lead	173	3.4	mg/Kg	10	07/22/15	EK	SW6010C		
Selenium	< 1.4	1.4	mg/Kg	1	07/22/15	EK	SW6010C		
SPLP Lead	0.015	0.010	mg/L	1	08/04/15	EK	SW6010C		
SPLP Metals Digestion	Completed				08/04/15	U/U	SW3005A		
Percent Solid	93		%		07/20/15	1	SW846-%Solid		
Soil Extraction for PCB	Completed				07/20/15	ВС	SW3545A		
Soil Extraction for Pesticide	Completed				07/20/15	BC/H	SW3545A		
Soil Extraction SVOA PAH	Completed				07/20/15	BJ/VH	SW3545A		
Extraction of CT ETPH	Completed				07/20/15	BC/V	SW3545A		
Mercury Digestion	Completed				07/21/15	1/1	SW7471B		
SPLP Extraction for Metals	Completed				08/03/15	U	SW1312		
Total Metals Digest	Completed				07/21/15	G/AG	SW3050B		
Field Extraction	Completed				07/20/15		SW5035A		
TPH by GC (Extractable Products)									
Ext. Petroleum HC	ND	53	mg/Kg	1	07/21/15	JRB	CTETPH 8015D		
Identification	ND		mg/Kg	1	07/21/15	JRB	CTETPH 8015D		
QA/QC Surrogates									
% n-Pentacosane	67		%	1	07/21/15	JRB	50 - 150 %		

Page 6 of 22 Ver 3

Phoenix I.D.: BJ59684

Project ID: DANIELS MILL Client ID: B-2 (0.5-2)

Polychlorinated Biphenyls PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262	ND ND ND ND 6000 ND	1700 1700 1700 1700 1700 1700 1700 1700	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	50 50 50 50 50 50 50	07/23/15 07/23/15 07/23/15 07/23/15 07/23/15 07/23/15	AW AW AW AW	SW8082A SW8082A SW8082A SW8082A SW8082A
PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262	ND ND ND 6000 ND ND ND ND ND ND ND	1700 1700 1700 1700 1700 1700 1700	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	50 50 50 50 50 50	07/23/15 07/23/15 07/23/15 07/23/15 07/23/15	AW AW AW	SW8082A SW8082A SW8082A
PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262	ND ND 6000 ND ND ND ND	1700 1700 1700 1700 1700 1700	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	50 50 50 50 50	07/23/15 07/23/15 07/23/15 07/23/15	AW AW AW	SW8082A SW8082A
PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1262	ND ND 6000 ND ND ND ND	1700 1700 1700 1700 1700	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	50 50 50 50	07/23/15 07/23/15 07/23/15	AW AW	SW8082A
PCB-1248 PCB-1254 PCB-1260 PCB-1262	ND 6000 ND ND ND	1700 1700 1700 1700	ug/Kg ug/Kg ug/Kg ug/Kg	50 50 50	07/23/15 07/23/15	AW	
PCB-1254 PCB-1260 PCB-1262	6000 ND ND ND ND	1700 1700 1700	ug/Kg ug/Kg ug/Kg	50 50	07/23/15		SW8082A
PCB-1260 PCB-1262	ND ND ND luted Out	1700 1700	ug/Kg ug/Kg	50		AW	
PCB-1262	ND ND luted Out	1700	ug/Kg		07/23/15		SW8082A
	ND luted Out			ΕO	- · · · · ·	AW	SW8082A
DOD 4000	luted Out	1700	ug/Kq	50	07/23/15	AW	SW8082A
PCB-1268			J. J	50	07/23/15	AW	SW8082A
QA/QC Surrogates							
			%	50	07/23/15	AW	30 - 150 %
% TCMX Di	luted Out		%	50	07/23/15	AW	30 - 150 %
<u>Pesticides</u>							
4,4' -DDD	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
4,4' -DDE	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
4,4' -DDT	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
a-BHC	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Alachlor	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Aldrin	ND	35	ug/Kg	20	07/23/15	CE	SW8081B
b-BHC	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Chlordane	ND	350	ug/Kg	20	07/23/15	CE	SW8081B
d-BHC	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Dieldrin	ND	75	ug/Kg	20	07/23/15	CE	SW8081B
Endosulfan I	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Endosulfan II	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Endosulfan sulfate	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Endrin	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Endrin aldehyde	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
Endrin ketone	ND	70	ug/Kg	20	07/23/15	CE	SW8081B
g-BHC	ND	14	ug/Kg	20	07/23/15	CE	SW8081B
Heptachlor	ND	35	ug/Kg	20	07/23/15	CE	SW8081B
Heptachlor epoxide	ND	35	ug/Kg	20	07/23/15	CE	SW8081B
Methoxychlor	ND	350	ug/Kg	20	07/23/15	CE	SW8081B
Toxaphene	ND	1400	ug/Kg	20	07/23/15	CE	SW8081B
QA/QC Surrogates							
	luted Out		%	20	07/23/15	CE	30 - 150 %
% TCMX Di	luted Out		%	20	07/23/15	CE	30 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	2.6	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloroethene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloropropene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C

Page 7 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-2 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2,3-Trichloropropane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dibromoethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichloroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichloropropane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichloropropane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
2,2-Dichloropropane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
2-Chlorotoluene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
2-Hexanone	ND	22	ug/Kg	1	07/21/15	JLI	SW8260C
2-Isopropyltoluene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
4-Chlorotoluene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	22	ug/Kg	1	07/21/15	JLI	SW8260C
Acetone	ND	26	ug/Kg	1	07/21/15	JLI	SW8260C
Acrylonitrile	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Benzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Bromobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Bromochloromethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Bromodichloromethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Bromoform	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Bromomethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon Disulfide	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon tetrachloride	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Chlorobenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroform	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Chloromethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromochloromethane	ND	2.6	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromomethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Dichlorodifluoromethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Ethylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Hexachlorobutadiene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Isopropylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
m&p-Xylene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	8.8	ug/Kg	1	07/21/15	JLI	SW8260C
Methylene chloride	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Naphthalene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
n-Butylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
n-Propylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
o-Xylene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
p-Isopropyltoluene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
. 1 17			5 5				

Page 8 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-2 (0.5-2)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
sec-Butylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Styrene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
tert-Butylbenzene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrachloroethene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.8	ug/Kg	1	07/21/15	JLI	SW8260C
Toluene	5.7	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Total Xylenes	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	8.8	ug/Kg	1	07/21/15	JLI	SW8260C
Trichloroethene	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorofluoromethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
Vinyl chloride	ND	4.4	ug/Kg	1	07/21/15	JLI	SW8260C
QA/QC Surrogates			0 0				
% 1,2-dichlorobenzene-d4	100		%	1	07/21/15	JLI	70 - 130 %
% Bromofluorobenzene	87		%	1	07/21/15	JLI	70 - 130 %
% Dibromofluoromethane	100		%	1	07/21/15	JLI	70 - 130 %
% Toluene-d8	89		%	1	07/21/15	JLI	70 - 130 %
Polynuclear Aromatic H							
2-Methylnaphthalene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	63		%	1	07/20/15	DD	30 - 130 %
% Nitrobenzene-d5	60		%	1	07/20/15	DD	30 - 130 %
% Terphenyl-d14	76		%	1	07/20/15	DD	30 - 130 %

Page 9 of 22 Ver 3

Project ID: DANIELS MILL Phoenix I.D.: BJ59684

Client ID: B-2 (0.5-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Pesticide Comment:

Due to matrix interference caused by the presence of PCBs in the sample, an elevated RL was reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 10 of 22 Ver 3

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr James Hutton

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

> > SDG ID: GBJ59683

Phoenix ID: BJ59685

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** Date Time 07/20/15 10:05 Matrix: SOLID Collected by: BG **GZACTENG** Received by: Location Code: SW 07/20/15 13:44

Laboratory Data

Rush Request: Standard Analyzed by: see "By" below

DANIELS MILL

Project ID: Client ID: B-3 (8-9)

P.O.#:

RL/ Parameter **PQL** Result Units Dilution Date/Time By Reference % 92 07/20/15 SW846-%Solid Percent Solid Soil Extraction SVOA PAH Completed 07/20/15 BJ/VH SW3545A 07/20/15 BC/V SW3545A Completed Extraction of CT ETPH Field Extraction Completed 07/20/15 SW5035A TPH by GC (Extractable Products) Ext. Petroleum HC 54 mg/Kg 1 07/21/15 CTETPH 8015D Identification ND mg/Kg 1 07/21/15 JRB CTETPH 8015D **QA/QC Surrogates** 1 % n-Pentacosane 65 % 07/21/15 JRB 50 - 150 % Volatiles ND 4 1 1 07/21/15 JLI SW8260C 1,1,1,2-Tetrachloroethane ug/Kg 07/21/15 SW8260C ND 4.1 ug/Kg 1 JLI 1,1,1-Trichloroethane ND 2.5 07/21/15 JLI SW8260C ug/Kg 1 1,1,2,2-Tetrachloroethane SW8260C 1,1,2-Trichloroethane ND 4.1 ug/Kg 1 07/21/15 JLI ND 07/21/15 JLI SW8260C 4.1 ug/Kg 1 1,1-Dichloroethane 07/21/15 SW8260C ND 4.1 1 JLI ug/Kg 1,1-Dichloroethene ND 4 1 ug/Kg 1 07/21/15 JH SW8260C 1,1-Dichloropropene SW8260C ND 4.1 ug/Kg 1 07/21/15 JLI 1,2,3-Trichlorobenzene ND 4.1 07/21/15 JLI SW8260C 1,2,3-Trichloropropane ug/Kg 1 SW8260C 1,2,4-Trichlorobenzene ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C ND 4.1 1 07/21/15 JLI 1,2,4-Trimethylbenzene ug/Kg SW8260C ND 4.1 ug/Kg 1 07/21/15 JLI 1,2-Dibromo-3-chloropropane ND 4 1 1 07/21/15 JLL SW8260C 1,2-Dibromoethane ug/Kg SW8260C ND 4.1 ug/Kg 1 07/21/15 JLI 1.2-Dichlorobenzene ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C 1,2-Dichloroethane SW8260C 1,2-Dichloropropane ND 4.1 ug/Kg 1 07/21/15 JLI

> Page 11 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-3 (8-9)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3,5-Trimethylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichloropropane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
2,2-Dichloropropane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
2-Chlorotoluene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
2-Hexanone	ND	21	ug/Kg	1	07/21/15	JLI	SW8260C
2-Isopropyltoluene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
4-Chlorotoluene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	21	ug/Kg	1	07/21/15	JLI	SW8260C
Acetone	ND	25	ug/Kg	1	07/21/15	JLI	SW8260C
Acrylonitrile	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Benzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Bromobenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Bromochloromethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Bromodichloromethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Bromoform	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Bromomethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon Disulfide	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon tetrachloride	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Chlorobenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroform	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Chloromethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromochloromethane	ND	2.5	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromomethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Dichlorodifluoromethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Ethylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Hexachlorobutadiene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Isopropylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
m&p-Xylene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	25	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	8.3	ug/Kg	1	07/21/15	JLI	SW8260C
Methylene chloride	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Naphthalene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
n-Butylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
n-Propylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
o-Xylene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
p-Isopropyltoluene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
sec-Butylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Styrene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
tert-Butylbenzene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrachloroethene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	8.3	ug/Kg	1	07/21/15	JLI	SW8260C
Toluene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Total Xylenes	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C

Page 12 of 22 Ver 3

Client ID: B-3 (8-9)

trans-1,4-dichloro-2-butene ND 8.3 ug/Kg 1 07/21/15 JLI SW8260C Trichloroethene ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Trichloroftuoromethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Trichlorotiflorobethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Cyrichlorobethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C QA/QC Surrogates W 1.2-dichlorobenzene-d4 96 % 1 07/21/15 JLI 70 - 130 % % 12-dichlorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % 12-dichlorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % 12-dichlorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % 12-dichlorobenzene 93 % 1 07/21/15	Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Trichloroethene ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Trichloroffuoromethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Trichlorotifluoroethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Vinyl chloride ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Vinyl chloride ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C OXOC Surrogates % 1.2-dichlorobenzene-044 96 % 1 07/21/15 JLI 70 - 130 % % Bromofluorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % Bromofluoromethane 99 % 1 07/21/15 JLI 70 - 130 % % Toluene-d8 89 % 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 JLI 70 - 130 % Acenaphthylen ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benza(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benza(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene	trans-1,3-Dichloropropene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorofluoromethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Trichlorotrifluoroethane ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C Vinyl chloride ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C QAVQC Surrogates W 1 0.7/21/15 JLI 70 - 130 % % Bibromofluorobenzene 93 % 1 0.7/21/15 JLI 70 - 130 % % Dibromofluoromethane 99 % % 1 0.7/21/15 JLI 70 - 130 % Polynuclear Aromatic HC W 1 0.7/21/15 JLI 70 - 130 % Polynuclear Aromatic HC W 1 0.7/21/15 JLI 70 - 130 % Polynuclear Aromatic HC W 2 Ug/Kg 1 0.7/21/15 JLI 70 - 130 % Polynuclear Aromatic HC W 2 Ug/Kg 1 0.7/20/15 DD SW8270D 2-Methylnaphthalene ND	trans-1,4-dichloro-2-butene	ND	8.3	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorotrifluoroethane	Trichloroethene	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
Vinyl chloride ND 4.1 ug/Kg 1 07/21/15 JLI SW8260C QA/QC Surrogates W 1 07/21/15 JLI 70 - 130 % % Bromofluorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % Dibromofluoromethane 99 % 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC 2 W 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC V V V 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC V V V V 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC V V V V 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC V V V V D D V D D SW8270D D SW8270D D SW8270D D SW8270D D SW8270D	Trichlorofluoromethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
QA/QC Surrogates % 1,2-dichlorobenzene-d4 96 % 1 07/21/15 JLI 70 - 130 % % Bromofluorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % Dibromofluoromethane 99 % 1 07/21/15 JLI 70 - 130 % % Toluene-d8 89 % 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg	Trichlorotrifluoroethane	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
% 1,2-dichlorobenzene-d4 96 % 1 07/21/15 JLI 70 - 130 % % Bromofluorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % Dibromofluoromethane 99 % 1 07/21/15 JLI 70 - 130 % % Toluene-d8 89 % 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz/a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz/a)aphthalene ND 250 ug/Kg 1 07/20/15 DD SW	Vinyl chloride	ND	4.1	ug/Kg	1	07/21/15	JLI	SW8260C
% Bromofluorobenzene 93 % 1 07/21/15 JLI 70 - 130 % % Dibromofluoromethane 99 % 1 07/21/15 JLI 70 - 130 % % Toluene-d8 89 % 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC 2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD	QA/QC Surrogates							
% Dibromofluoromethane 99 % 1 07/21/15 JLI 70 - 130 % % Toluene-d8 89 % 1 07/21/15 JLI 70 - 130 % Polynuclear Aromatic HC Polynuclear Aromatic HC V V 1 07/20/15 JLI 70 - 130 % Polynuclear Aromatic HC V V V 1 07/20/15 JLI 70 - 130 % Polynuclear Aromatic HC V V V V V V 2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)phrene ND 250 ug/Kg 1 07/20/15 DD SW8270D B	% 1,2-dichlorobenzene-d4	96		%	1	07/21/15	JLI	70 - 130 %
Mathematic Mat	% Bromofluorobenzene	93		%	1	07/21/15	JLI	70 - 130 %
Polynuclear Aromatic HC 2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a, h)anthracene ND 250 ug/Kg	% Dibromofluoromethane	99		%	1	07/21/15	JLI	70 - 130 %
2-Methylnaphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene	% Toluene-d8	89		%	1	07/21/15	JLI	70 - 130 %
Acenaphthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D	Polynuclear Aromatic	HC_						
Acenaphthylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D	2-Methylnaphthalene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD 30 - 130 % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Acenaphthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benz(a)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD 30 - 130 % Pyrene S-Fluorobiphenyl 66 % 1 07/20/15 DD 30 - 130 %	Acenaphthylene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8	· · ·	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(a)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(b)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D </td <td>Benz(a)anthracene</td> <td>ND</td> <td>250</td> <td>ug/Kg</td> <td>1</td> <td>07/20/15</td> <td>DD</td> <td>SW8270D</td>	Benz(a)anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(ghi)perylene ND 250 ug/Kg 1 07/20/15 DD SW8270D Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D </td <td>Benzo(a)pyrene</td> <td>ND</td> <td>250</td> <td>ug/Kg</td> <td>1</td> <td>07/20/15</td> <td>DD</td> <td>SW8270D</td>	Benzo(a)pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(k)fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates S 2-Fluorobiphenyl 66 % 1 07/20/15 DD	Benzo(b)fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Chrysene ND 250 ug/Kg 1 07/20/15 DD SW8270D Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates 8 2-Fluorobiphenyl 66 % 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Benzo(ghi)perylene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Dibenz(a,h)anthracene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates	Benzo(k)fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Fluoranthene ND 250 ug/Kg 1 07/20/15 DD SW8270D Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates Surrogates % 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Chrysene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Fluorene ND 250 ug/Kg 1 07/20/15 DD SW8270D Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D OX	Dibenz(a,h)anthracene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates Surrogates <t< td=""><td>Fluoranthene</td><td>ND</td><td>250</td><td>ug/Kg</td><td>1</td><td>07/20/15</td><td>DD</td><td>SW8270D</td></t<>	Fluoranthene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Naphthalene ND 250 ug/Kg 1 07/20/15 DD SW8270D Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates Surrogates W 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Fluorene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Phenanthrene ND 250 ug/Kg 1 07/20/15 DD SW8270D Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates ** 2-Fluorobiphenyl 66 % 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
Pyrene ND 250 ug/Kg 1 07/20/15 DD SW8270D QA/QC Surrogates % 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Naphthalene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
QA/QC Surrogates % 2-Fluorobiphenyl 66 % 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Phenanthrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
% 2-Fluorobiphenyl 66 % 1 07/20/15 DD 30 - 130 % % Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	Pyrene	ND	250	ug/Kg	1	07/20/15	DD	SW8270D
% Nitrobenzene-d5 65 % 1 07/20/15 DD 30 - 130 %	QA/QC Surrogates							
	% 2-Fluorobiphenyl	66		%	1	07/20/15	DD	30 - 130 %
% Terphenyl-d14 71 % 1 07/20/15 DD 30 - 130 %	% Nitrobenzene-d5	65		%	1	07/20/15	DD	30 - 130 %
	% Terphenyl-d14	71		%	1	07/20/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 13 of 22 Ver 3

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date **SOLID** Collected by: BG 07/20/15 10:35 Matrix: Location Code: **GZACTENG** Received by: SW 07/20/15 13:44

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBJ59683

Phoenix ID: BJ59686

Project ID: DANIELS MILL Client ID: B-4 (8-9)

P.O.#:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference				
Percent Solid	89		%		07/20/15	ı	SW846-%Solid				
Soil Extraction SVOA PAH	Completed				07/20/15	BJ/VH	SW3545A				
Extraction of CT ETPH	Completed				07/20/15	BC/V	SW3545A				
Field Extraction	Completed				07/20/15		SW5035A				
TPH by GC (Extractable Products)											
Ext. Petroleum HC	ND	56	mg/Kg	1	07/23/15	JRB	CTETPH 8015D				
Identification	ND		mg/Kg	1	07/23/15	JRB	CTETPH 8015D				
QA/QC Surrogates											
% n-Pentacosane	62		%	1	07/23/15	JRB	50 - 150 %				
<u>Volatiles</u>											
1,1,1,2-Tetrachloroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,1,1-Trichloroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,1,2,2-Tetrachloroethane	ND	2.7	ug/Kg	1	07/21/15	JLI	SW8260C				
1,1,2-Trichloroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,1-Dichloroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,1-Dichloroethene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,1-Dichloropropene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2,3-Trichlorobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2,3-Trichloropropane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2,4-Trichlorobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2,4-Trimethylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2-Dibromo-3-chloropropane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2-Dibromoethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2-Dichlorobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2-Dichloroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				
1,2-Dichloropropane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C				

Page 14 of 22 Ver 3

Project ID: DANIELS MILL Client ID: B-4 (8-9)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,3,5-Trimethylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichloropropane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
2,2-Dichloropropane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
2-Chlorotoluene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
2-Hexanone	ND	23	ug/Kg	1	07/21/15	JLI	SW8260C
2-Isopropyltoluene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
4-Chlorotoluene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
4-Methyl-2-pentanone	ND	23	ug/Kg	1	07/21/15	JLI	SW8260C
Acetone	ND	27	ug/Kg	1	07/21/15	JLI	SW8260C
Acrylonitrile	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Benzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Bromobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Bromochloromethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Bromodichloromethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Bromoform	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Bromomethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon Disulfide	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon tetrachloride	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Chlorobenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroform	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Chloromethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromochloromethane	ND	2.7	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromomethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Dichlorodifluoromethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Ethylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Hexachlorobutadiene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Isopropylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
m&p-Xylene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	27	ug/Kg	1	07/21/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.1	ug/Kg	1	07/21/15	JLI	SW8260C
Methylene chloride	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Naphthalene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
n-Butylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
n-Propylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
o-Xylene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
p-Isopropyltoluene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
sec-Butylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Styrene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
tert-Butylbenzene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrachloroethene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	9.1	ug/Kg	1	07/21/15	JLI	SW8260C
Toluene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Total Xylenes	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C

Page 15 of 22 Ver 3

Client ID: B-4 (8-9)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
trans-1,3-Dichloropropene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.1	ug/Kg	1	07/21/15	JLI	SW8260C
Trichloroethene	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorofluoromethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
Vinyl chloride	ND	4.6	ug/Kg	1	07/21/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	96		%	1	07/21/15	JLI	70 - 130 %
% Bromofluorobenzene	92		%	1	07/21/15	JLI	70 - 130 %
% Dibromofluoromethane	96		%	1	07/21/15	JLI	70 - 130 %
% Toluene-d8	87		%	1	07/21/15	JLI	70 - 130 %
Polynuclear Aromatic H	IC						
2-Methylnaphthalene	 ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	07/20/15	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	64		%	1	07/20/15	DD	30 - 130 %
% Nitrobenzene-d5	60		%	1	07/20/15	DD	30 - 130 %
% Terphenyl-d14	78		%	1	07/20/15	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 16 of 22 Ver 3

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:BG07/20/15Location Code:GZACTENGReceived by:SW07/20/1513:44

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBJ59683

Phoenix ID: BJ59687

Project ID: DANIELS MILL
Client ID: TRIP BLANK LOW

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				07/20/15		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloroethene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,1-Dichloropropene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dibromoethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichloroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,2-Dichloropropane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,3-Dichloropropane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
2,2-Dichloropropane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
2-Chlorotoluene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
2-Hexanone	ND	25	ug/Kg	1	07/21/15	JLI	SW8260C
2-Isopropyltoluene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
4-Chlorotoluene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C

Page 17 of 22 Ver 3

Project ID: DANIELS MILL Client ID: TRIP BLANK LOW

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	ug/Kg	1	07/21/15	JLI	SW8260C
Acetone	ND	30	ug/Kg	1	07/21/15	JLI	SW8260C
Acrylonitrile	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Benzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Bromobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Bromochloromethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Bromodichloromethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Bromoform	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Bromomethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon Disulfide	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Carbon tetrachloride	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Chlorobenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Chloroform	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Chloromethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromochloromethane	ND	3.0	ug/Kg	1	07/21/15	JLI	SW8260C
Dibromomethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Ethylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Hexachlorobutadiene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
sopropylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
n&p-Xylene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
· · ·	ND	30	ug/Kg ug/Kg	1	07/21/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	10			07/21/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)		5.0	ug/Kg	1			
Methylene chloride	ND		ug/Kg	1	07/21/15	JLI	SW8260C
Naphthalene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
n-Butylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
n-Propylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
o-Xylene	ND	5.0	ug/Kg	1	07/21/15	JLI 	SW8260C
o-Isopropyltoluene	ND	5.0	ug/Kg	1	07/21/15	JLI 	SW8260C
sec-Butylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Styrene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
ert-Butylbenzene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Γetrachloroethene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Гetrahydrofuran (THF)	ND	10	ug/Kg	1	07/21/15	JLI	SW8260C
Гoluene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Γotal Xylenes	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
rans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
rans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
rans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	07/21/15	JLI	SW8260C
Trichloroethene	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Frichlorofluoromethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
Frichlorotrifluoroethane	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
/inyl chloride	ND	5.0	ug/Kg	1	07/21/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	93		%	1	07/21/15	JLI	70 - 130 %
% Bromofluorobenzene	94		%	1	07/21/15	JLI	70 - 130 %

Page 18 of 22 Ver 3

Project ID: DANIELS MILL Phoenix I.D.: BJ59687

Client ID: TRIP BLANK LOW

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	97		%	1	07/21/15	JLI	70 - 130 %
% Toluene-d8	87		%	1	07/21/15	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight. TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 19 of 22 Ver 3

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

August 06, 2015

FOR: Attn: Mr James Hutton

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOLID Collected by: BG 07/20/15

Location Code: GZACTENG Received by: SW 07/20/15 13:44

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBJ59683

Phoenix ID: BJ59688

Project ID: DANIELS MILL
Client ID: TRIP BLANK HIGH

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				07/20/15		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,1,1-Trichloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,1,2-Trichloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,1-Dichloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,1-Dichloroethene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,1-Dichloropropene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2,3-Trichloropropane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2-Dibromoethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2-Dichlorobenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2-Dichloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,2-Dichloropropane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,3-Dichlorobenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,3-Dichloropropane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
1,4-Dichlorobenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
2,2-Dichloropropane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
2-Chlorotoluene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
2-Hexanone	ND	1300	ug/Kg	50	07/21/15	JLI	SW8260C
2-Isopropyltoluene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
4-Chlorotoluene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C

Page 20 of 22 Ver 3

Project ID: DANIELS MILL Client ID: TRIP BLANK HIGH

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND ND	1300 5000	ug/Kg ug/Kg	50 50	07/21/15 07/21/15	JLI JLI	SW8260C SW8260C
Acetone	ND	5000		50 50	07/21/15	JLI	SW8260C
Acrylonitrile	ND	250	ug/Kg ug/Kg	50 50	07/21/15	JLI	SW8260C SW8260C
Benzene		250					
Bromobenzene	ND		ug/Kg	50 50	07/21/15	JLI	SW8260C
Bromochloromethane	ND	250	ug/Kg	50 50	07/21/15 07/21/15	JLI	SW8260C
Bromodichloromethane	ND	250	ug/Kg	50		JLI	SW8260C
Bromoform	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Bromomethane	ND	250	ug/Kg	50 50	07/21/15	JLI	SW8260C
Carbon Disulfide	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Carbon tetrachloride	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Chlorobenzene	ND	250	ug/Kg	50 50	07/21/15	JLI	SW8260C
Chloroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Chloroform	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Chloromethane	ND	250	ug/Kg	50	07/21/15	JLI 	SW8260C
cis-1,2-Dichloroethene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
cis-1,3-Dichloropropene	ND	250	ug/Kg	50	07/21/15	JLI 	SW8260C
Dibromochloromethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Dibromomethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Dichlorodifluoromethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Ethylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Hexachlorobutadiene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Isopropylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
m&p-Xylene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Methyl Ethyl Ketone	ND	3000	ug/Kg	50	07/21/15	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Methylene chloride	ND	500	ug/Kg	50	07/21/15	JLI	SW8260C
Naphthalene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
n-Butylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
n-Propylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
o-Xylene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
p-Isopropyltoluene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
sec-Butylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Styrene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
tert-Butylbenzene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Tetrachloroethene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Tetrahydrofuran (THF)	ND	500	ug/Kg	50	07/21/15	JLI	SW8260C
Toluene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Total Xylenes	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
trans-1,2-Dichloroethene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
trans-1,3-Dichloropropene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	07/21/15	JLI	SW8260C
Trichloroethene	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Trichlorofluoromethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Trichlorotrifluoroethane	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
Vinyl chloride	ND	250	ug/Kg	50	07/21/15	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	50	07/21/15	JLI	70 - 130 %
% Bromofluorobenzene	94		%	50	07/21/15	JLI	70 - 130 %

Page 21 of 22 Ver 3

Project ID: DANIELS MILL Phoenix I.D.: BJ59688

Client ID: TRIP BLANK HIGH

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	94		%	50	07/21/15	JLI	70 - 130 %
% Toluene-d8	89		%	50	07/21/15	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight. TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

August 06, 2015

Reviewed and Released by: Ethan Lee, Project Manager

Page 22 of 22 Ver 3

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 06, 2015

QA/QC Data

SDG I.D.: GBJ59683

RPD Blk Sample Dup Dup LCS **LCSD** LCS MS MSD MS Rec Blank Result Result RPD % % **RPD** % % **RPD Limits Limits Parameter** QA/QC Batch 314400 (mg/kg), QC Sample No: BJ59683 (BJ59683) ICP Metals - Soil Arsenic **BRL** 0.67 1.9 2.24 NC 91.8 92.1 0.3 87.5 88.8 1.5 75 - 125 30 **BRL** 0.33 39.2 40.0 2.00 102 103 103 1.0 100 3.0 75 - 125 Barium 30 0.33 < 0.36 < 0.34 89.9 91.5 Cadmium **BRL** NC 1.8 89.9 91.4 1.7 75 - 125 30 **BRL** 0.33 30.9 32.6 98.5 102 3.5 97.9 99.0 1.1 Chromium 5.40 75 - 125 30 0.39 0.33 12.5 13.2 5.40 97.7 101 3.3 101 101 0.0 75 - 125 30 Copper Lead **BRL** 0.33 19.3 19.8 2.60 91.1 94.2 3.3 88.0 90.3 2.6 75 - 125 30 **BRL** 1.3 <1.4 <1.4 NC 80.5 77.8 3.4 75.2 76.9 2.2 75 - 125 30 Selenium NC Silver **BRL** 0.33 < 0.36 < 0.34 94.4 93.9 0.5 92.6 93.5 1.0 75 - 125 30 QA/QC Batch 314447 (mg/kg), QC Sample No: BJ59683 (BJ59683, BJ59684) **BRL** 0.06 < 0.03 < 0.03 NC 102 104 125 116 70 - 130 30 Mercury - Soil 1.9 Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. QA/QC Batch 314518 (mg/kg), QC Sample No: BJ59684 (BJ59684) ICP Metals - Soil Arsenic **BRL** 0.66 3.1 3.58 NC 93.9 94.2 0.3 89.0 89.5 0.6 75 - 125 30 **BRL** 0.33 179 20.3 Barium 146 99 5 104 4.4 >130 97.0 NC 75 - 125 30 **BRL** 0.33 < 0.34 <0.35 NC 91.6 90.9 0.8 87.9 88.5 Cadmium 0.7 75 - 125 30 0.33 2.1 **BRL** 16.9 15.4 9.30 96.1 100 4.0 93.3 95.3 Chromium 75 - 125 30 0.33 97.1 97.3 Copper **BRL** 50.5 58.9 15.4 0.2 95.5 101 5.6 75 - 125 30 Lead **BRL** 0.33 173 185 6.70 91.2 91.3 0.1 84.4 82.9 1.8 75 - 12530 81.0 Selenium **BRL** 1.3 <1.4 <1.4 NC 79.0 2.5 96.0 94.2 1.9 75 - 125 30 **BRL** NC 93.1 0.6 94.3 75 - 125 Silver 0.33 <0.34 < 0.35 92.5 94.2 0.1 30 QA/QC Batch 315423 (mg/L), QC Sample No: BJ65150 (BJ59684) **ICP Metals - SPLP Extraction**

BRL

0.010

<0.010

< 0.010

NC

105

104

1.0

105

103

1.9

75 - 125

20

Lead

m = This parameter is outside laboratory ms/msd specified recovery limits.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

August 06, 2015

QA/QC Data

SDG I.D.: GBJ59683

, to guest co, _c . c										
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 314379 (ug/Kg)	, QC Sam	ole No: BJ59	683 2X (BJ59683, BJ596	84)						
Pesticides - Solid			·	ŕ						
4,4' -DDD	ND	1.7	79	91	14.1	79	83	4.9	40 - 140	30
4,4' -DDE	ND	1.7	75	87	14.8	72	74	2.7	40 - 140	30
4,4' -DDT	ND	1.7	75	85	12.5	73	77	5.3	40 - 140	30
a-BHC	ND	3.3	74	81	9.0	67	68	1.5	40 - 140	30
a-Chlordane	ND	3.3	75	85	12.5	71	72	1.4	40 - 140	30
Alachlor	ND	3.3	NA	NA	NC	NA	NA	NC	40 - 140	30
Aldrin	ND	1.0	71	79	10.7	65	63	3.1	40 - 140	30
b-BHC	ND	3.3	75	88	16.0	72	71	1.4	40 - 140	30
Chlordane	ND	33	74	82	10.3	70	71	1.4	40 - 140	30
d-BHC	ND	3.3	61	69	12.3	58	58	0.0	40 - 140	30
Dieldrin	ND	1.0	75	86	13.7	72	73	1.4	40 - 140	30
Endosulfan I	ND	3.3	77	86	11.0	71	73	2.8	40 - 140	30
Endosulfan II	ND	3.3	76	89	15.8	76	79	3.9	40 - 140	30
Endosulfan sulfate	ND	3.3	65	75	14.3	67	71	5.8	40 - 140	30
Endrin	ND	3.3	75	86	13.7	72	74	2.7	40 - 140	30
Endrin aldehyde	ND	3.3	63	74	16.1	69	68	1.5	40 - 140	30
Endrin ketone	ND	3.3	73	85	15.2	76	79	3.9	40 - 140	30
g-BHC	ND	1.0	70	78	10.8	64	64	0.0	40 - 140	30
g-Chlordane	ND	3.3	74	82	10.3	70	71	1.4	40 - 140	30
Heptachlor	ND	3.3	71	78	9.4	65	64	1.6	40 - 140	30
Heptachlor epoxide	ND	3.3	75	83	10.1	70	70	0.0	40 - 140	30
Methoxychlor	ND	3.3	80	91	12.9	81	84	3.6	40 - 140	30
Toxaphene	ND	130	NA	NA	NC	NA	NA	NC	40 - 140	30
% DCBP	82	%	73	83	12.8	71	77	8.1	30 - 150	30
% TCMX	84	%	79	83	4.9	69	70	1.4	30 - 150	30
QA/QC Batch 314366 (ug/Kg)	, QC Sam	ole No: BJ59	683 2X (BJ59683, BJ596	84)						
Polychlorinated Bipher	nvis - Se	olid								
PCB-1016	ND	33	92	96	4.3	41	80	64.5	40 - 140	30
PCB-1221	ND	33	02	00	4.0	71	00	04.0	40 - 140	30
PCB-1232	ND	33							40 - 140	30
PCB-1242	ND	33							40 - 140	30
PCB-1248	ND	33							40 - 140	30
PCB-1254	ND	33							40 - 140	30
PCB-1260	ND	33	89	91	2.2	42	87	69.8	40 - 140	30
PCB-1262	ND	33		٠.	-		٠.		40 - 140	30
PCB-1268	ND	33							40 - 140	30
- · · · · · · · · · · · · · · · · · · ·										
% DCBP (Surrogate Rec)	116	%	105	106	0.9	53	104	65.0	30 - 150	30

QA/QC Data

SDG I.D.: GBJ59683

LCSD RPD Blk LCS LCS MS MSD MS Rec Blank RL % **RPD** % % **RPD Limits Limits** % **Parameter** QA/QC Batch 314380 (mg/Kg), QC Sample No: BJ59683 (BJ59683, BJ59684, BJ59685, BJ59686) TPH by GC (Extractable Products) - Solid 72 Ext. Petroleum HC 71 1.4 78 83 6.2 30 - 130 30 72 74 % n-Pentacosane 63 69 4.3 83 11.5 50 - 150 30 QA/QC Batch 314618 (ug/kg), QC Sample No: BJ59683 (BJ59683, BJ59684, BJ59685, BJ59686, BJ59687, BJ59688 (50X)) **Volatiles - Solid** 1.1.1.2-Tetrachloroethane ND 5.0 92 103 11.3 101 106 4.8 70 - 130 30 1.1.1-Trichloroethane ND 5.0 87 97 10.9 96 101 5.1 70 - 13030 ND 91 103 12.4 1,1,2,2-Tetrachloroethane 3.0 101 106 4.8 70 - 13030 101 ND 12.6 2.9 1,1,2-Trichloroethane 5.0 89 103 106 70 - 130 30 1,1-Dichloroethane ND 5.0 89 98 9.6 99 101 2.0 70 - 130 30 1,1-Dichloroethene ND 5.0 93 106 13.1 101 104 2.9 70 - 130 30 1.1-Dichloropropene ND 5.0 88 101 13.8 101 104 2.9 70 - 130 30 1,2,3-Trichlorobenzene ND 5.0 89 101 12.6 101 106 4.8 70 - 130 30 1,2,3-Trichloropropane ND 5.0 81 95 15.9 97 70 - 130 94 3.1 30 99 1,2,4-Trichlorobenzene ND 5.0 87 12.9 97 103 6.0 70 - 130 30 ND 1.0 84 94 11.2 96 99 3.1 1,2,4-Trimethylbenzene 70 - 13030 1,2-Dibromo-3-chloropropane ND 5.0 97 113 15.2 99 107 7.8 70 - 130 30 ND 106 1.2-Dibromoethane 5.0 93 13 1 103 110 6.6 70 - 13030 ND 5.0 86 98 13.0 101 102 1,2-Dichlorobenzene 1.0 70 - 13030 ND 5.0 87 96 9.8 101 102 1,2-Dichloroethane 1.0 70 - 130 30 ND 89 99 10.6 107 1,2-Dichloropropane 5.0 104 2.8 70 - 130 30 1,3,5-Trimethylbenzene ND 85 97 13.2 97 102 1.0 5.0 70 - 130 30 1,3-Dichlorobenzene ND 5.0 87 99 12.9 99 104 4.9 70 - 130 30 ND 5.0 102 14.7 1.9 1,3-Dichloropropane 88 102 104 70 - 130 30 1,4-Dichlorobenzene ND 5.0 86 97 12.0 97 102 5.0 70 - 130 30 2,2-Dichloropropane ND 5.0 88 97 9.7 92 95 3.2 70 - 130 30 2-Chlorotoluene ND 5.0 86 98 13.0 99 103 4.0 70 - 130 30 2-Hexanone ND 25 91 108 17.1 87 96 9.8 70 - 130 30 ND 103 12.4 70 - 130 2-Isopropyltoluene 5.0 91 103 110 66 30 ND 5.0 92 105 13.2 100 106 5.8 70 - 130 30 4-Chlorotoluene ND 25 92 108 16.0 96 0.0 70 - 1304-Methyl-2-pentanone 96 30 Acetone ND 10 62 69 10.7 71 70 1.4 70 - 130 30 88 99 ND 5.0 105 17.6 101 2.0 70 - 13030 Acrylonitrile Benzene ND 1.0 88 101 13.8 104 106 1.9 70 - 130 30 ND 5.0 90 103 13.5 110 Bromobenzene 101 8.5 70 - 130 30 87 14.9 104 Bromochloromethane ND 5.0 101 100 3.9 70 - 130 30 ND 107 Bromodichloromethane 5.0 93 14.0 108 110 1.8 70 - 130 30 **Bromoform** ND 5.0 95 109 13.7 98 106 7.8 70 - 130 30 16.0 73 ND 5.0 92 108 Bromomethane 82 11.6 70 - 130 30 Carbon Disulfide ND 5.0 101 113 11.2 102 109 6.6 70 - 130 30 104 Carbon tetrachloride ND 5.0 93 11.2 102 106 3.8 70 - 130 30 Chlorobenzene ND 5.0 89 99 10.6 101 106 4.8 70 - 13030 Chloroethane ND 5.0 94 104 10.1 25 23 8.3 70 - 130 30 m Chloroform ND 83 92 10.3 95 5.0 97 2.1 70 - 13030 Chloromethane ND 5.0 89 101 12.6 96 99 70 - 130 3.1 30 ND cis-1,2-Dichloroethene 5.0 92 101 9.3 104 108 3.8 70 - 13030 ND 93 108 14.9 108 cis-1,3-Dichloropropene 5.0 112 3.6 70 - 13030 Dibromochloromethane ND 3.0 101 116 13.8 109 115 70 - 130 5.4 30 Dibromomethane ND 5.0 90 103 13.5 104 108 3.8 70 - 130 30 5.0 105 Dichlorodifluoromethane ND 115 9.1 104 110 5.6 70 - 130 30 Ethylbenzene ND 1.0 90 102 12.5 102 108 5.7 70 - 130 30

QA/QC Data

SDG I.D.: GBJ59683

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Hexachlorobutadiene	ND	5.0	89	100	11.6	100	106	5.8	70 - 130	30	
Isopropylbenzene	ND	1.0	88	101	13.8	103	108	4.7	70 - 130	30	
m&p-Xylene	ND	2.0	90	100	10.5	102	107	4.8	70 - 130	30	
Methyl ethyl ketone	ND	5.0	78	95	19.7	84	89	5.8	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	90	102	12.5	102	104	1.9	70 - 130	30	
Methylene chloride	ND	5.0	81	91	11.6	94	100	6.2	70 - 130	30	
Naphthalene	ND	5.0	93	107	14.0	102	109	6.6	70 - 130	30	
n-Butylbenzene	ND	1.0	87	97	10.9	99	102	3.0	70 - 130	30	
n-Propylbenzene	ND	1.0	85	95	11.1	100	103	3.0	70 - 130	30	
o-Xylene	ND	2.0	89	100	11.6	103	107	3.8	70 - 130	30	
p-Isopropyltoluene	ND	1.0	88	98	10.8	99	103	4.0	70 - 130	30	
sec-Butylbenzene	ND	1.0	88	99	11.8	101	105	3.9	70 - 130	30	
Styrene	ND	5.0	90	101	11.5	102	106	3.8	70 - 130	30	
tert-Butylbenzene	ND	1.0	88	99	11.8	102	106	3.8	70 - 130	30	
Tetrachloroethene	ND	5.0	94	106	12.0	107	116	8.1	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	89	100	11.6	95	99	4.1	70 - 130	30	
Toluene	ND	1.0	91	103	12.4	106	111	4.6	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	93	102	9.2	102	107	4.8	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	98	113	14.2	112	114	1.8	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	96	109	12.7	98	102	4.0	70 - 130	30	
Trichloroethene	ND	5.0	90	101	11.5	104	107	2.8	70 - 130	30	
Trichlorofluoromethane	ND	5.0	88	96	8.7	19	20	5.1	70 - 130	30	m
Trichlorotrifluoroethane	ND	5.0	94	100	6.2	96	105	9.0	70 - 130	30	
Vinyl chloride	ND	5.0	95	107	11.9	112	119	6.1	70 - 130	30	
% 1,2-dichlorobenzene-d4	97	%	102	102	0.0	101	104	2.9	70 - 130	30	
% Bromofluorobenzene	95	%	100	101	1.0	100	101	1.0	70 - 130	30	
% Dibromofluoromethane	100	%	99	97	2.0	97	95	2.1	70 - 130	30	
% Toluene-d8	89	%	101	100	1.0	102	102	0.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 314365 (ug/kg), QC Sample No: BJ59683 (BJ59683, BJ59684, BJ59685, BJ59686)

Polynuclear Aromatic HC - Solid 2-Methylnaphthalene 69 84 19.6 68 66 3.0 30 - 130 30 ND 230 71 84 16.8 67 Acenaphthene 64 4.6 30 - 130 30 Acenaphthylene ND 230 68 79 15.0 61 64 4.8 30 - 130 30 ND 230 81 87 7.1 68 68 0.0 Anthracene 30 - 130 30 ND 230 82 90 9.3 68 Benz(a)anthracene 69 1.5 30 - 130 30 ND 230 82 88 7.1 68 67 Benzo(a)pyrene 1.5 30 - 130 30 ND 230 Benzo(b)fluoranthene 84 92 9.1 71 69 2.9 30 - 130 30 Benzo(ghi)perylene ND 230 84 87 3.5 66 67 1.5 30 - 130 30 Benzo(k)fluoranthene ND 230 85 85 0.0 67 69 2.9 30 - 130 30 Chrysene ND 230 85 90 5.7 71 71 0.0 30 - 130 30 ND 230 0.0 Dibenz(a,h)anthracene 84 89 5.8 68 68 30 - 130 30 Fluoranthene ND 230 84 89 5.8 69 68 1.5 30 - 130 30 230 Fluorene ND 78 89 13.2 68 69 1.5 30 - 130 30 Indeno(1,2,3-cd)pyrene ND 230 85 89 4.6 68 67 1.5 30 - 130 30 Naphthalene ND 230 61 80 27.0 65 63 3.1 30 - 130 30 ND 230 80 88 9.5 68 1.5 30 - 130 30 Phenanthrene 67 ND 230 84 89 5.8 69 69 0.0 30 - 130 30 Pyrene 63 76 % 2-Fluorobiphenyl % 65 15.6 60 62 3.3 30 - 130 30 % Nitrobenzene-d5 61 % 55 71 25.4 63 55 13.6 30 - 130 30 77 81 86 % Terphenyl-d14 % 6.0 67 67 0.0 30 - 130 30

% RPD Blk LCS LCSD LCS MS MSD MS Rec Blank RL % % **RPD** % % **RPD Limits Limits Parameter**

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

r = This parameter is outside laboratory rpd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBJ59683

August 06, 2015

Page 1 of 1

Thursday, August 06, 2015 Criteria: CT: GAM, RC

Sample Criteria Exceedences Report GBJ59683 - GZACTENG

State: CT

State:	СТ						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BJ59684	\$PCB_SMR	PCB-1268	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1221	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1232	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1242	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1248	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1254	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	6000	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1016	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1262	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PCB_SMR	PCB-1260	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1700	1000	1000	ug/Kg
BJ59684	\$PEST_SMR	Chlordane	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	350	66	66	ug/Kg
BJ59684	\$PEST_SMR	Dieldrin	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	75	7	7	ug/Kg
BJ59684	\$PEST_SMR	Heptachlor	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	35	13	13	ug/Kg
BJ59684	\$PEST_SMR	Heptachlor epoxide	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	35	20	20	ug/Kg
BJ59684	\$PEST_SMR	Toxaphene	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	ND	1400	330	330	ug/Kg
BJ59684	\$PEST_SMR	Toxaphene	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	1400	560	560	ug/Kg
BJ59684	\$PEST_SMR	Dieldrin	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	75	38	38	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

GZA GeoEnvironmental, Inc.

Laboratory Name: Phoenix Environmental Labs, Inc. Client:

Project Location: DANIELS MILL Project Number:													
Labo	ratory Sa	ample ID(s)	: BJ59683	, BJ59684, B	J59685, BJ596	86, BJ59687, BJ	59688						
Samp	oling Dat	e(s): 7/20/	2015										
RCP	Methods	Used:											
√ 13	11/1312	✓ 6010	7000	7196	7 470/7471	✓ 8081	EPH		TO15				
✓ 80	82	8151	✓ 8260	✓ 8270	✓ ETPH	9010/9012	☐ VPH						
	specified (any criteri	QA/QC perfoi a falling outsi	rmance criter ide of accept	ia followed, in	s, as specified in	rement to explain	✓ Yes	□No					
1a.	▼ Yes □ NO												
	b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) ☐ Yes ☐ No ☑ NA												
	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)? ✓ Yes □ No												
3.	Were samples received at an appropriate temperature (< 6 Degrees C)? ☐ Yes ✔ No ☐ NA												
					the Reasonable B Narration, VOA		□Yes	✓ No					
5a.	Were repo	orting limits s	pecified or re	ferenced on th	ne chain-of-custo	ody?	✓ Yes	□No					
5b.	Were thes	se reporting li	mits met?				☐ Yes	✓ No	\square NA				
	results rep	orted for all	constituents i		oratory report page e method-specifi I documents?		☐ Yes	✓ No	□NA				
7.	Are projec	t-specific ma	ıtrix spikes ar	nd laboratory d	luplicates include	ed in the data set?	✓ Yes	□No	\square NA				
Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.													
						.							
	norized	4	V	See	Drint	Date: Thursoled Name: Ethan		st 06, 20	15				
Sigr	nature:		mm.			ed Name. Eman Position: Projec		r					

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-of-custody.

BJ59684 - Sample(s) required a dilution for Pesticides due to a matrix interference caused by the presence of PCBs in the sample. This resulted in elevated reporting limits that exceed the requested criteria for one or more analytes.

Temperature above 6C:

The samples were received in a cooler with ice packs. The samples were delivered to the Laboratory within a short period of time after sample collection. Therefore no bias is suspected.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: <u>Au-fid1 07/21/15-1 (BJ59683)</u>

The initial calibration (ETPH620I) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (721A003 2) and contained the following outliers: None.

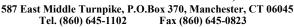
The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko Position: Chemist **Date:** 7/21/2015

Instrument: Au-fid11 07/21/15-1 (BJ59683, BJ59684, BJ59685)

As per section 7.2.3, a discrimination check standard was run (721A003 1) and contained the following outliers: None.

The initial calibration (ETPH6251) RSD for the compound list was less than 30% except for the following compounds: None.


The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko **Position:** Chemist **Date:** 7/21/2015

Instrument: Aufid-d1 07/23/15-1 (BJ59686)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

The initial calibration (ETPH7111) RSD for the compound list was less than 30% except for the following compounds: None.

As per section 7.2.3, a discrimination check standard was run (723B003_1) and contained the following outliers: C36 (57.8%L)

The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

Printed Name Jeff Bucko Position: Chemist Date: 7/23/2015

QC (Site Specific)

----- Sample No: BJ59683, QA/QC Batch: 314380 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 50 - 150 with the following exceptions: None.

All MSD recoveries were within 50 - 150 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

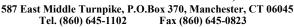
Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 07/21/15-1 (BJ59683, BJ59684)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.


All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name Rick Schweitzer

Position: Chemist **Date:** 7/21/2015

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

QC (Site Specific)

----- Sample No: BJ59683, QA/QC Batch: 314447 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

All MSD recoveries were within 75 - 125 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 07/20/15-1 (BJ59683)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist 7/20/2015

Instrument: Arcos 07/21/15-1 (BJ59683)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin
Position: Chemist
Date: 7/21/2015

Instrument: Arcos 07/22/15-1 (BJ59684)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

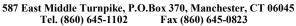
SDG I.D.: GBJ59683

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist Date: 7/22/2015

Instrument: <u>Arcos 08/04/15-1 (BJ59684)</u>

The initial calibration met criteria.


The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin
Position: Chemist
Date: 8/4/2015

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

Sample No: BJ59683, QA/QC Batch: 314400
All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
All MS recoveries were within 75 - 125 with the following exceptions: None.
All MSD recoveries were within 75 - 125 with the following exceptions: None.
All MS/MSD RPDs were less than 30% with the following exceptions: None.
QC (Batch Specific) Sample No: BJ59684, QA/QC Batch: 314518
All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
Sample No: BJ65150, QA/QC Batch: 315423
All LCS recoveries were within 75 - 125 with the following exceptions: None.
All LCSD recoveries were within 75 - 125 with the following exceptions: None. All LCSD recoveries were within 75 - 125 with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem05 07/20/15-1 (BJ59683, BJ59684, BJ59685, BJ59686)

Initial Calibration Verification (CHEM05/BN 0713):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM05/0720_06-BN_0713):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 7/20/2015

QC (Site Specific)

----- Sample No: BJ59683, QA/QC Batch: 314365 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 30 - 130 with the following exceptions: None.

All MSD recoveries were within 30 - 130 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 314366 (Samples: BJ59683, BJ59684) ----

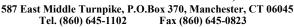
The MS/MSD RPD exceeds the method criteria for one or more analytes, therefore there may be variability in the reported result. (PCB-1016, PCB-1260)

The MS/MSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (%DCBP, %TCMX)

Instrument: Au-ecd1 07/21/15-1 (BJ59683, BJ59684)

The initial calibration (PC713AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC713BI) RSD for the compound list was less than 20% except for the following compounds: None.


The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Adam Werner Position: Chemist 7/21/2015

Instrument: Au-ecd24 07/22/15-1 (BJ59684)

The initial calibration (PC706AI) RSD for the compound list was less than 20% except for the following compounds: None.

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

The initial calibration (PC706BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Adam Werner Position: Chemist 7/22/2015

Instrument: <u>Au-ecdcart1 07/21/15-1 (BJ59683)</u>

The initial calibration (PC625AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PC625BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Adam Werner Position: Chemist Date: 7/21/2015

QC (Site Specific)

----- Sample No: BJ59683, QA/QC Batch: 314366 -----

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: % DCBP (Surrogate Rec)(65.0%), % TCMX (Surrogate Rec)(63.6%), PCB-1016(64.5%), PCB-1260(69.8%)

PEST Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-ecd13 07/22/15-1 (BJ59684)

8081 Narration:

Endrin and DDT breakdown was evaluated and does not exceed 15%.

The initial calibration (PS722AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS722BI) RSD for the compound list was less than 20% except for the following compounds: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Carol Eddy Position: Chemist Date: 7/22/2015

Instrument: <u>Au-ecd35 07/21/15-1 (BJ59683)</u>

8081 Narration:

Endrin and DDT breakdown was evaluated and does not exceed 15%.

The initial calibration (PS713AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS713BI) RSD for the compound list was less than 20% except for the following compounds: None.

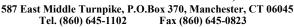
The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Carol Eddy **Position:** Chemist **Date:** 7/21/2015

Instrument: Au-ecd4 07/21/15-1 (BJ59684)

8081 Narration:

Endrin and DDT breakdown was evaluated and does not exceed 15%.


The initial calibration (PS716AI) RSD for the compound list was less than 20% except for the following compounds: None.

The initial calibration (PS716BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds: None.

Printed Name Carol Eddy **Position:** Chemist **Date:** 7/21/2015

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

QC (Site Specific)

----- Sample No: BJ59683, QA/QC Batch: 314379 -----

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 30 - 150 with the following exceptions: None.

All MSD recoveries were within 30 - 150 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 314618 (Samples: BJ59683, BJ59684, BJ59685, BJ59686, BJ59687, BJ59688): -----

The LCS and/or LCSD recoveries for one or more analytes is below the method criteria. A low bias for these analytes is possible. (Acetone)

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Chloroethane, Trichlorofluoromethane)

Instrument: Chem18 07/21/15-2 (BJ59683, BJ59684, BJ59685, BJ59686, BJ59687, BJ59688)

Initial Calibration Verification (CHEM18/VT-M0717):

94% of target compounds met criteria.

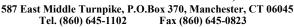
The following compounds had %RSDs >20%: 1,2-Dibromo-3-Chloropropane (27%), 2-Hexanone (22%), Acetone (21%), Acrolein (33%), trans-1,4-Dichloro-2-butene (21%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM18/0721M33-VT-M0717):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.


The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li **Position:** Chemist **Date:** 7/21/2015

Instrument: Chem18 07/22/15-1 (BJ59684)

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

Initial Calibration Verification (CHEM18/VT-M0717):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-Chloropropane (27%), 2-Hexanone (22%), Acetone (21%), Acrolein (33%), trans-1,4-Dichloro-2-butene (21%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM18/0722M13-VT-M0717):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the continuing calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Jane Li
Position: Chemist
Date: 7/22/2015

QC (Site Specific)

----- Sample No: BJ59683, QA/QC Batch: 314618 -----

All LCS recoveries were within 70 - 130 with the following exceptions: Acetone(62%)

All LCSD recoveries were within 70 - 130 with the following exceptions: Acetone(69%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 70 - 130 with the following exceptions: Chloroethane(25%), Trichlorofluoromethane(19%)

All MSD recoveries were within 70 - 130 with the following exceptions: Chloroethane(23%), Trichlorofluoromethane(20%)

All MS/MSD RPDs were less than 30% with the following exceptions: None.

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Temperature Narration

The samples were received at 8C with cooling initiated. (Note acceptance criteria is above freezing up to 6°C)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

August 06, 2015

SDG I.D.: GBJ59683

Cooler: Yes X No	°C Pg/L of	Contact Options:		This section MUST be	Bottles, *	100		O. 1		241624624			2107224741			Miles had filled enteres and open surjects to	Data Format K Excel	PDF GIS/Key	Other Other	Data Package Ter II Checklist Tull Data Package*	Phoenix Std Report	* SURCHARGE APPLIES
Coolant: 1	Temp	Fax: Phone: Email:	Project D.O.		, g			is quity									MCP Certification		GW-3		☐ WWRA eSMART	cted; Cf
		C 06040	\$ 55/4/20}				Siz.		5		<u>~</u>	801	(4)	C	NUMBER AND ADDRESS OF BRANCHES		re Krop Cert	☐ GW Protection ☐ SW Protection	KAGA Mobility	☐ GB Mobility XResidential DEC ☐ I/C DEC	TOTAL	State where samples were collected:
	2 2 2	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Daile Mill DS. "	Can Dat			\$5.50 E		×××	X								(Residential)		RAN ANA FURMINISM VINCE	Amen soonween fan werde weste op op ste	
	HAIN OF CESTORY	East Middle Turnpike, P.O. Boy Email: info@phoenixlabs.com Client Services (8)		Report to:	}	Analysis	La C		アメメメ	メメ	XXX	Z Z ,	~				Date:	 		furnaround: 1 Day* 2 Days*	3 Days* Standard	SURCHARGE APPLIES
	J	587 East Mid Email: ir	inningenentalelist in elektristeristeristeristeristeristeristerist	3		na 7 (20) (5)	WW=Waste Water W=Wipe	Date Time Sampled Sampled	i ì	7/20/15 0415	5001 5/102/2	7/20/15 6035	~ 1,520,7							ehel (Re		
		ies, Inc.		Soot Link	Cosa Cosa Cosa Cosa Cosa Cosa Cosa Cosa	Client Sample - Information - Identification	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe ONL=Oil B=Bulk L=Liquid	Sample	S	-2) S		\(\sigma\)	し し し	2			VA Pr. C. M. O. L. O.		an in the same of	7/21 Per Ben Graham Cencel Alcohol		en een er voorscheid en de en een een en een en een en en en en e
		Emvironmental Laboratories,	420	(655 Noing)	78-X 24-	Client Sample - Info		Customer Sample Identification	6-1 605-2	8-2 605	(2-12) CB	DI (8)		る一样多					Comments, Special Requirements of Repulations	Ben Graham		
		San Trong	Customer:	Address:	TOPA TRIBUTER FOR STREET AND STRE	Sampler's Signature	Matrix Code: DW=Drinking Water GW= RW=Raw Water SE=Sedin OR_Oil B=Bulk L=Liquid	PHOENIX USE ONLY SAMPLE #	28085	78965	59085	54686	7268	2468			Refinguished by		Comments Speci	7	VILLETH HE GENT (STEEL	

GBJ 59683

Shannon - Phoenixlabs

From:

Bobbi - Phoenixlabs [bobbi@phoenixlabs.com]

Sent:

Monday, August 03, 2015 11:45 AM

To: Subject: 'Shannon - Phoenixlabs'; 'Lori - Phoenixlabs' FW: Danielles Mill Additional SPLP Analysis

can you add? thanks

Bobbi Aloisa
Vice President
Director of Client Services
Phoenix Environmental Laboratories
587 East Middle Turnpike
Manchester, CT 06040
Ph: 860-645-8728

From: Anthony Trani [mailto:Anthony.Trani@gza.com]

Sent: Monday, August 03, 2015 11:29 AM

To: 'bobbi@phoenixlabs.com'

Subject: Danielles Mill Additional SPLP Analysis

Bobbi,

Could we please have the following samples run for SPLP analysis.

Date Sampled	GZA ID	Phoenix ID	Analysis Requested
7/20/2015	B-2 (0.5-2)	BJ59684	SPLP Lead
7/22/2015	B-7 (3-5)	BJ62589	SPLP Lead, SPLP Arsenic
7/21/2015	B-10 (0.5-2)	BJ61166	SPLP Lead
7/21/2015	B-19 (0.5-3)	BJ61175	SPLP Lead, SPLP Barium

We would like a 3 day TOT.

Thanks
Anthony
Anthony Trani
Assistant Project Manager

GZA | 655 Winding Brook Drive, Suite 402 | Glastonbury, CT 06033

o: 860.858.3121 | c: 860.990.5404 | anthony.trani@gza.com | www.gza.com

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Proactive by Design. Since 1964.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Benjamin Rach GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Daniels Mill (05.0045441.06)

ESS Laboratory Work Order Number: 1708472

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 12:50 pm, Aug 25, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

SAMPLE RECEIPT

The following samples were received on August 18, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

Question 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane regulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

This sample was originally received on hold on August 9, 2017.

Lab NumberSample NameMatrixAnalysis1708472-01B-22 (4-6)Soil8082A

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

Laboratory Analysis

t RCP M	Sample ID(s): 1708472-01 Tethods Used () 8260B () 8151A () ETPH () 6010B () 8270C () 8081A () VPH () 6020 () X) 8082 () 8021B () EPH () 7000 S	() 7470A/1A () 9014M () 7196A
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes (X) No ()
1A	Were the method specified preservation and holding time requirements met?	Yes (X) No ()
1B	<u>VPH and EPH Methods only:</u> Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes () No () N/A (X)
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes (X) No ()
3	Were samples received at an appropriate temperature (<6° °C)?	Yes (X) No () N/A ()
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes (X) No ()
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?	Yes (X) No () Yes (X) No ()
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes (X) No ()
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes () No (x)

N

I, the undersigned, attest under the pains and penalties of perjury that, to the be personal inquiry of those responsible for providing the information contained in	
and complete. Laure 1 Singularies 1 Singula	
Authorized Signature:	Position: <u>Laboratory Director</u>
Printed Name: <u>Laurel Stoddard</u>	Date: August 25, 2017
Name of Laboratory: <u>ESS Laboratory</u>	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-22 (4-6) Date Sampled: 08/07/17 09:50

Percent Solids: 93 Initial Volume: 19.8 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708472 ESS Laboratory Sample ID: 1708472-01

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 8/18/17 18:00

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1221	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1232	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1242	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1248	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1254	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1260	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1262	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
Aroclor 1268	ND (0.05)		8082A		1	08/22/17 2:11		CH71814
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		54 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		47 %		30-150				
Surrogate: Tetrachloro-m-xylene		52 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		<i>57</i> %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CH71814 - 3540C									
Blank									
Aroclor 1016	ND	0.05	mg/kg wet						
Aroclor 1016 [2C]	ND	0.05	mg/kg wet						
Aroclor 1221	ND	0.05	mg/kg wet						
Aroclor 1221 [2C]	ND	0.05	mg/kg wet						
Aroclor 1232	ND	0.05	mg/kg wet						
Aroclor 1232 [2C]	ND	0.05	mg/kg wet						
Aroclor 1242	ND	0.05	mg/kg wet						
Aroclor 1242 [2C]	ND	0.05	mg/kg wet						
Aroclor 1248	ND	0.05	mg/kg wet						
Aroclor 1248 [2C]	ND	0.05	mg/kg wet						
Aroclor 1254	ND	0.05	mg/kg wet						
Aroclor 1254 [2C]	ND	0.05	mg/kg wet						
Aroclor 1260	ND	0.05	mg/kg wet						
Aroclor 1260 [2C]	ND	0.05	mg/kg wet						
Aroclor 1262	ND	0.05	mg/kg wet						
Aroclor 1262 [2C]	ND	0.05	mg/kg wet						
Aroclor 1268	ND	0.05	mg/kg wet						
Aroclor 1268 [2C]	ND	0.05	mg/kg wet						
			3, 3						
Surrogate: Decachlorobiphenyl	0.0267		mg/kg wet	0.02500	107	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0239		mg/kg wet	0.02500	95	30-150			
Gurrogate: Tetrachloro-m-xylene	0.0266		mg/kg wet	0.02500	106	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0268		mg/kg wet	0.02500	107	30-150			
.cs									
Aroclor 1016	0.4	0.05	mg/kg wet	0.5000	85	40-140			
Aroclor 1016 [2C]	0.4	0.05	mg/kg wet	0.5000	87	40-140			
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	84	40-140			
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	77	40-140			
	0.0200			0.03500	112	20.150			
Surrogate: Decachlorobiphenyl	0.0280		mg/kg wet	0.02500	112	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0256		mg/kg wet	0.02500 0.02500	103 108	30-150			
Surrogate: Tetrachloro-m-xylene	0.0270 0.0267		mg/kg wet mg/kg wet	0.02500	107	<i>30-150</i> <i>30-150</i>			
Surrogate: Tetrachloro-m-xylene [2C]	0.0207		mg/kg wet	0.02300	107	30-130			
.CS Dup									
Aroclor 1016	0.4	0.05	mg/kg wet	0.5000	87	40-140	2	30	
roclor 1016 [2C]	0.4	0.05	mg/kg wet	0.5000	89	40-140	3	30	
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	88	40-140	5	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	81	40-140	6	30	
Surrogate: Decachlorobiphenyl	0.0299		mg/kg wet	0.02500	120	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0266		mg/kg wet	0.02500	106	30-150			
Surrogate: Tetrachloro-m-xylene	0.0270		mg/kg wet	0.02500	108	30-150			
	0.0268		mg/kg wet	0.02500	107	30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

Notes and Definitions

U Analyte included in the analysis, but not detected

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume
F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708472

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA -	Glastonbury CT - G	ZA/MM		ESS Project	t ID:	1708472 8/18/2017	_
Shipped/Delivered Via:	ESS Cou	rier		Project Due D Days for Proj	ate:	8/25/2017 5 Day	_
Air bill manifest presen		No		6. Does COC match		3 Day	Yes
Air No.:	NA						
2. Were custody seals pre	esent?	No		7. Is COC complete	and correct?		Yes
3. Is radiation count <100	CPM?	Yes		8. Were samples re	ceived intact?		Yes
4. Is a Cooler Present? Temp:4.4	Iced with: Ice_	Yes		9. Were labs infor			Yes / No (NA
5. Was COC signed and		Yes		10. Were any analy	yses received outs	ide of hold time?	Yes (No)
11. Any Subcontracting ne ESS Sample IDs: Analysis:	eeded? Y	es (No)		12. Were VOAs rec a. Air bubbles in ac b. Does methanol of	queous VOAs?	ely?	Yes No Yes / No Yes / No NA
13. Are the samples prop a. If metals preserved up b. Low Level VOA vials fr	on receipt:	Yes / No Date: Date:		Time:	By		=
Sample Receiving Notes:	felos o	A 170	たわしと	- 3	GA.	8/18/17	
14. Was there a need to co a. Was there a need to co Who was contacted?			Yes No Yes No	Time:	Ву	r	_
Sample Container Number ID	Proper Air Bubble Container Preser		Contain	er Type	Preservative	Record pH (Cyar Pesticio	
01 155804	Yes NA	Yes	4 oz. Jar	- Unpres	NP		
2nd Review Are barcode labels on cor	resticontaine/s?		Yes/ No		./		
Completed By:	WWW		Date & Time:	0/18/17	<u>/C</u>	51	_
Reviewed By:	1-1		Date & Time:	8/8/7	14	=38	_
Delivered By:	To the		to the	8/18/0		.38	

ESC I abandon				ESS I	AR PROI	RCT ID		
ESS Laboratory	CHAIN OF CUSTODY				AB PROJ -) (3218	170	8472
Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-	Turn Time X Standard Rush Approved By:			Repor	ting Limit	s -		
2211 Tel. (401) 461-7181 Fax (401) 461-4486	State where samples were collected: MA RI ET NH NJ NY ME C				5/6		_	
www.esslaboratory.com	Is this project for any of the following: (please circle)				Yes			
^	MA-MCP CC-RCP RGP Other Forms	t: Exc	el 🔼	Acces	SS PD.	Ctl	ner	
GZA Project Manager: A Kac / [we Kenseyk Project# 45441-86	-,]]
GZA GeoEnvironmental, In 655 Winding Brook Drive, Suite		5	. उ					#
Glastonbury, CT 06033	Project Name: 402 Project Name: Aniels Mill	4						l e
(860) 286-8900 REASONABLE CONFIDENCE PROTOCOI	Contract Pricing		1	ভ	g			Comment#
ESS Lab Date Collection Grab-G	S REQUIRED Special Pricing: Matrix Sample Identification # of				1 4			
Sample ID Time Composite-C	Contain	H	<u> </u>					
8717 - 6	Try Bkell	- X	4		+	1 +		
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S B-21 (65-2) 4	$\sqrt{\chi}$	1x			1-1-	17	
0425	1 8-21(4-6)			X	_	╁┼	+	-
			+		+ +	 	╂╌┤	
2 0935	13-21 (8-10)		1			 		
DYUS	1 0-72 (0.5-2)	$\rightarrow \times$						
3 000	1 B-22 (4-6) 4	1		X	×	1		
4 0455	B-22 (8/e)			 				
1015	13-23 (2-4) 4		IX.	╀╌┼╴	_}-	╪╼┿╸		
\$ /020	A-1 (5-2)		\	lx l	- -	 		
	1 9 23 (60)		╅	X	-	╅╌╂╴	+	
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3 5-NaOH	6 MOU 7 Acceptio Acid 9 70 Acc 0		+	\vdash	++	+ +	+	
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V			+	╁╌┼	╼╁╼╁╌	╂╼╂╴	╌	
	undwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter			<u> </u>		1 1		
Cooler Present Yes No	Sampled by: 60-	"	·					
Seals Intact YesNo NA:	Comments: yGC 8320				3 - i - · · · · · · · · · · · ·	···.		· ·
Cooler Temperature: 3.7-4.41								
Retinquished by: (Signature) Date/Time	Received by: (Signature) Reproduction (Reproduction) Reproduction of the Reproductio	5	Date/∏ Çic*1	me R	eceived by: (Sk	nat(xe)	7	
Relinquished by: (Signature)	Received by: (Signature) Relinquished by: (Signature)		Dale/T		sceived by: (Sig	nature)		- ***
7 7 814164	Please E-mail all changes to Chain of Custody in writing.					··		

Page ___ of ____

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Benjamin Rach GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Daniels Mill (05.0045441.06)

ESS Laboratory Work Order Number: 1708275

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 5:11 pm, Aug 18, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

SAMPLE RECEIPT

The following samples were received on August 11, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

Question 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane regulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question 6: All samples for Metals and SVOA were analyzed for a subset of the required RCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
1708275-01	B-25A (0-1)	Soil	6010C, 8082A, 8270D PAH
1708275-02	B-26 (5-6)	Soil	6010C, 8082A, 8270D PAH

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

PROJECT NARRATIVE

8082A Polychlorinated Biphenyls (PCB)

1708275-01 Surrogate recovery(ies) diluted below the MRL (SD).

Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene

(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)

CH71103-MS1 Matrix Spike recovery is outside of control limits due to coelution.

Aroclor 1260 (345% @ 40-140%), Aroclor 1260 [2C] (298% @ 40-140%)

CH71103-MS1 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

Decachlorobiphenyl [2C] (608% @ 30-150%)

CH71103-MSD1 Matrix Spike recovery is outside of control limits due to coelution.

Aroclor 1260 (371% @ 40-140%), Aroclor 1260 [2C] (310% @ 40-140%)

CH71103-MSD1 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

Decachlorobiphenyl [2C] (452% @ 30-150%)

8270D Polynuclear Aromatic Hydrocarbons

C7H0159-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Fluoranthene (21% @ 20%)

CH71108-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Fluorene (33% @ 30%)

CH71108-MS1

CH71108-MSD1

Due to high target values, matrix spike analyte(s) is masked (MT).

Due to high target values, matrix spike analyte(s) is masked (MT).

Total Metals

CH71642-DUP1 Relative percent difference for duplicate is outside of criteria (D+).

Arsenic (83% @ 35%)

CH71642-MS1 Due to high target values, matrix spike analyte(s) is masked (MT).

Lead (485% @ 75-125%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211 Tel: 401-461-7181 Fax: 401-461-4486 http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Laboratory Analysis

OA/OC Certification Form

		Ç	A/QC Certific	ation Form		
Sampling D	nber: <u>05.0045441.</u> 0 ate(s): <u>8/9/2017</u> Sample ID(s): 170	<u>06</u> 08275-01 through 170	8275-02			
-	ethods Used	() 8260B (X) 8270C (X) 8082	() 8151A () 8081A () 8021B	() ETPH () VPH () EPH	(X) 6010B () 6020 () 7000 S	() 7470A/1A () 9014M () 7196A
1	-	teria followed, includi elines, as specified i	in this laboratory reporng the requirement to exn the CTDEP method-s	xplain any criteria faili	ng outside of	Yes (X) No ()
1A	Were the metho	d specified preservation	on and holding time requ	irements met?		Yes (X) No ()
1B			e VPH or EPH method pective RCP methods)?	conducted without sign	nificant	Yes () No () N/A (X)
2	_	s received by the labo	ratory in a condition core(s)?	nsistent with that descr	ibed on the	Yes (X) No ()
3	Were samples re	eceived at an appropria	ate temperature (<6° C°)	?		Yes (X) No () N/A ()
4	Were all QA/QO documents achie	•	specified in the CTDEF	Reasonable Confiden	ce Protocol	Yes () No (X)
5		porting limits specified ese reporting limits me	or referenced on the chet?	nain-of-custody?		Yes (X) No () Yes (X) No ()
6	for all constitue		l in this laboratory repore ethod-specific analyte li		•	Yes () No (X)
7	Are project-spec	cific matrix spikes and	laboratory duplicates in	ncluded in this data set	?	Yes (X) No ()
Notes: Fo	or all questions to w	which the response was	s "No" (with the exception	on of question #7), add	litional information m	ust be

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence." This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate									
and complete.									
Authorized Signature:	Position: <u>Laboratory Director</u>								
Printed Name: <u>Laurel Stoddard</u>	Date: August 18, 2017								
Name of Laboratory: ESS Laboratory									

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-25A (0-1) Date Sampled: 08/09/17 10:45

Percent Solids: 86

ESS Laboratory Work Order: 1708275 ESS Laboratory Sample ID: 1708275-01

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	3.50 (2.73)		6010C		1	KJK	08/16/17 22:33	2.14	100	CH71642
Lead	425 (5.46)		6010C		1	KJK	08/16/17 22:33	2.14	100	CH71642

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-25A (0-1) Date Sampled: 08/09/17 10:45

Percent Solids: 86 Initial Volume: 19.6 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708275 ESS Laboratory Sample ID: 1708275-01

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 8/11/17 16:25

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1221	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1232	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1242	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1248	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1254	8.4 (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1260	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1262	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
Aroclor 1268	ND (1.2)		8082A		20	08/16/17 16:32		CH71103
	Ģ	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-25A (0-1) Date Sampled: 08/09/17 10:45

Percent Solids: 86 Initial Volume: 14.3 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1708275 ESS Laboratory Sample ID: 1708275-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 8/11/17 11:15

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u> <u>R</u>	Results (MRL)	MDL Metho	<u>d Limit DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene 2.2	22 (1.63)	8270D PA		08/11/17 19:10	C7H0159	CH71108
Acenaphthene 7.0	08 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Acenaphthylene NI	D (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Anthracene 14.	4.8 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Benzo(a)anthracene 43.	3.2 (16.3)	8270D PA	H 20	08/15/17 18:13	C7H0159	CH71108
Benzo(a)pyrene 37.	7.0 (0.819)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Benzo(b)fluoranthene 35.	5.8 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Benzo(g,h,i)perylene 16.	6.3 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Benzo(k)fluoranthene 37.	7.9 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Chrysene 37.	7.6 (0.819)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Dibenzo(a,h)Anthracene 10.	0.3 (0.819)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Fluoranthene 92.	2.4 (16.3)	8270D PA	H 20	08/15/17 18:13	C7H0159	CH71108
Fluorene 7.0	07 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Indeno(1,2,3-cd)Pyrene 15.	5.9 (1.63)	8270D PA	H 2	08/11/17 19:10	C7H0159	CH71108
Naphthalene 5.2	26 (1.63)	8270D PA	Н 2	08/11/17 19:10	C7H0159	CH71108
Phenanthrene 67.	7.2 (16.3)	8270D PA	H 20	08/15/17 18:13	C7H0159	CH71108
Pyrene 78.	3.1 (16.3)	8270D PA	H 20	08/15/17 18:13	C7H0159	CH71108

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	40 %		30-130
Surrogate: 2-Fluorobiphenyl	54 %		30-130
Surrogate: Nitrobenzene-d5	45 %		30-130
Surrogate: p-Terphenyl-d14	70 %		30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-26 (5-6) Date Sampled: 08/09/17 11:20

Percent Solids: 86

Extraction Method: 3050B

ESS Laboratory Work Order: 1708275 ESS Laboratory Sample ID: 1708275-02

Sample Matrix: Soil Units: mg/kg dry

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (2.27)		6010C		1	KJK	08/16/17 10:34	2.57	100	CH71550
Lead	67.9 (4.55)		6010C		1	BJV	08/16/17 1:19	2.57	100	CH71550

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-26 (5-6)

Date Sampled: 08/09/17 11:20 Percent Solids: 86 Initial Volume: 19.5

Final Volume: 10

Extraction Method: 3540C

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1708275 ESS Laboratory Sample ID: 1708275-02

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 8/11/17 16:25

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1221	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1232	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1242	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1248	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1254 [2C]	0.6 (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1260	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1262	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
Aroclor 1268	ND (0.06)		8082A		1	08/15/17 15:14		CH71103
	9/	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		110 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		128 %		30-150				
Surrogate: Tetrachloro-m-xylene		78 %		30-150				

87 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-26 (5-6) Date Sampled: 08/09/17 11:20

Percent Solids: 86 Initial Volume: 15.7 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1708275 ESS Laboratory Sample ID: 1708275-02

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 8/11/17 11:15

8270D Polynuclear Aromatic Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	Method	Limi	<u>t</u> <u>D</u>	F	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Acenaphthene	ND (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Acenaphthylene	ND (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Anthracene	0.412 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Benzo(a)anthracene	1.14 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Benzo(a)pyrene	0.983 (0.186)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Benzo(b)fluoranthene	1.04 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Benzo(g,h,i)perylene	0.456 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Benzo(k)fluoranthene	0.899 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Chrysene	1.06 (0.186)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Dibenzo(a,h)Anthracene	0.233 (0.186)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Fluoranthene	3.04 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Fluorene	ND (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Indeno(1,2,3-cd)Pyrene	0.420 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Naphthalene	ND (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Phenanthrene	1.90 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108
Pyrene	2.26 (0.372)		8270D PAH			1	08/11/17 20:52	C7H0159	CH71108

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	54 %		30-130
Surrogate: 2-Fluorobiphenyl	56 %		30-130
Surrogate: Nitrobenzene-d5	56 %		30-130
Surrogate: p-Terphenyl-d14	64 %		30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Quality Control Data

Analyte		Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
				Total Meta	ıls						
Satch CH71550 - 30	D50B										
Blank											
Arsenic		ND	2.50	mg/kg wet							
Lead		ND	5.00	mg/kg wet							
LCS											
Arsenic		110	8.33	mg/kg wet	123.0		89	80-120			
Lead		136	16.7	mg/kg wet	145.0		94	80-120			
LCS Dup											
Arsenic		115	7.94	mg/kg wet	123.0		93	80-120	4	20	
Lead		141	15.9	mg/kg wet	145.0		98	80-120	4	20	
Duplicate	Source: 1708275-01			3, 3							
Arsenic	Juice, 17002/3-01	2.33	2.63	mg/kg dry		3.50			40	35	
Lead		315	5.27	mg/kg dry		425			30	35	
	Causes 170027F 04	J1J	J.L/	9/1/9 4/1		.23					
Matrix Spike	Source: 1708275-01	22.3	2.19	ma/ka day	21.00	3 EU	96	75-125			
Arsenic Lead		381	4.38	mg/kg dry mg/kg dry	21.90 21.90	3.50 425	86 NR	75-125 75-125			
Leau		361	4.30	mg/kg dry	21.90	425	INK	75-125			
Batch CH71642 - 30	050B										
Blank											
Arsenic 		ND	2.50	mg/kg wet							
Lead		ND	5.00	mg/kg wet							
LCS											
Arsenic		110	8.06	mg/kg wet	123.0		89	80-120			
Lead		130	16.1	mg/kg wet	145.0		90	80-120			
LCS Dup											
Arsenic		113	9.80	mg/kg wet	123.0		92	80-120	3	20	
Lead		136	19.6	mg/kg wet	145.0		94	80-120	4	20	
Duplicate	Source: 1708275-01										
Arsenic		1.45	2.49	mg/kg dry		3.50			83	35	D+
Lead		417	4.98	mg/kg dry		425			2	35	
Matrix Spike	Source: 1708275-01										
Arsenic		28.9	2.73	mg/kg dry	27.32	3.50	93	75-125			
Lead		558	5.46	mg/kg dry	27.32	425	485	75-125			MT
			8082A Poly	chlorinated E	Biphenyls	(PCB)					
Batch CH71103 - 35	540C										
Blank											
Aroclor 1016		ND	0.05	mg/kg wet							
Aroclor 1016 [2C]		ND	0.05	mg/kg wet							
Aroclor 1221		ND	0.05	mg/kg wet							
Aroclor 1221 [2C]		ND	0.05	mg/kg wet							
Aroclor 1232		ND	0.05	mg/kg wet							
Aroclor 1232 [2C]		ND	0.05	mg/kg wet							
Aroclor 1242		ND	0.05	mg/kg wet							

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8082A Poly	chlorinated E	Biphenyls	(PCB)					
Batch CH71103 - 3540C										
Aroclor 1242 [2C]	ND	0.05	mg/kg wet							
Aroclor 1248	ND	0.05	mg/kg wet							
Aroclor 1248 [2C]	ND	0.05	mg/kg wet							
Aroclor 1254	ND	0.05	mg/kg wet							
Aroclor 1254 [2C]	ND	0.05	mg/kg wet							
Aroclor 1260	ND	0.05	mg/kg wet							
Aroclor 1260 [2C]	ND	0.05	mg/kg wet							
Aroclor 1262	ND	0.05	mg/kg wet							
Aroclor 1262 [2C]	ND	0.05	mg/kg wet							
Aroclor 1268	ND	0.05	mg/kg wet							
Aroclor 1268 [2C]	ND	0.05	mg/kg wet							
Surrogate: Decachlorobiphenyl	0.0251		mg/kg wet	0.02500		100	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0244		mg/kg wet	0.02500		98	30-150			
Surrogate: Tetrachloro-m-xylene	0.0263		mg/kg wet	0.02500		105	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0300		mg/kg wet	0.02500		120	30-150			
LCS										
Aroclor 1016	0.6	0.05	mg/kg wet	0.5000		119	40-140			
Aroclor 1016 [2C]	0.6	0.05	mg/kg wet	0.5000		117	40-140			
Aroclor 1260	0.6	0.05	mg/kg wet	0.5000		116	40-140			
Aroclor 1260 [2C]	0.5	0.05	mg/kg wet	0.5000		108	40-140			
Surrogate: Decachlorobiphenyl	0.0260		mg/kg wet	0.02500		104	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0255		mg/kg wet	0.02500		102	30-150			
Surrogate: Tetrachloro-m-xylene	0.0276		mg/kg wet	0.02500		111	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0303		mg/kg wet	0.02500		121	30-150			
LCS Dup										
Aroclor 1016	0.6	0.05	mg/kg wet	0.5000		124	40-140	4	30	
Aroclor 1016 [2C]	0.6	0.05	mg/kg wet	0.5000		117	40-140	0.02	30	
Aroclor 1260	0.6	0.05	mg/kg wet	0.5000		118	40-140	2	30	
Aroclor 1260 [2C]	0.6	0.05	mg/kg wet	0.5000		111	40-140	3	30	
	0.0257		mg/kg wet	0.02500		103	30-150			
Surrogate: Decachlorobiphenyl	0.0249		mg/kg wet	0.02500		100	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0275		mg/kg wet	0.02500		110	30-150 30-150			
Surrogate: Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene [2C]	0.0299		mg/kg wet	0.02500		120	30-150			
Matrix Spike Source: 1708275-01			5,							
Aroclor 1016	0.7	0.06	mg/kg dry	0.6059	ND	109	40-140			
Aroclor 1016 [2C]	0.7	0.06	mg/kg dry	0.6059	ND	121	40-140			
Aroclor 1260	2.1	0.3	mg/kg dry	0.6059	ND	345	40-140			MC
Aroclor 1260 [2C]	1.8	0.3	mg/kg dry	0.6059	ND	298	40-140			MC
Commenter Describeration /	0.0324		mg/kg dry	0.03030		107	30-150			
Surrogate: Decachlorobiphenyl	0.0324		mg/kg dry	0.03030		608	30-150 30-150			<i>S+</i>
Surrogate: Decachlorobiphenyl [2C]	0.184		mg/kg dry	0.03030		77	<i>30-150</i> <i>30-150</i>			JŦ
Surrogate: Tetrachloro-m-xylene	0.0257		mg/kg ury	0.03030		//	50-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CH71103 - 3540C												
Matrix Spike Dup Source: 1708275-01												
Aroclor 1016	0.5	0.06	mg/kg dry	0.5966	ND	88	40-140	24	30			
Aroclor 1016 [2C]	0.6	0.06	mg/kg dry	0.5966	ND	100	40-140	21	30			
Aroclor 1260	2.2	0.3	mg/kg dry	0.5966	ND	371	40-140	6	30	MC		
Aroclor 1260 [2C]	1.8	0.3	mg/kg dry	0.5966	ND	310	40-140	2	30	MC		
Surrogate: Decachlorobiphenyl	0.0266		mg/kg dry	0.02983		89	30-150					
Surrogate: Decachlorobiphenyl [2C]	0.135		mg/kg dry	0.02983		452	30-150			<i>S+</i>		
Surrogate: Tetrachloro-m-xylene	0.0185		mg/kg dry	0.02983		62	30-150					
Surrogate: Tetrachloro-m-xylene [2C]	0.0194		mg/kg dry	0.02983		65	30-150					

8270D Polynuclear Aromatic Hydrocarbons

Batch CH71108 - 3546						
Blank						
2-Methylnaphthalene	ND	0.333	mg/kg wet			
Acenaphthene	ND	0.333	mg/kg wet			
Acenaphthylene	ND	0.333	mg/kg wet			
Anthracene	ND	0.333	mg/kg wet			
Benzo(a)anthracene	ND	0.333	mg/kg wet			
Benzo(a)pyrene	ND	0.167	mg/kg wet			
Benzo(b)fluoranthene	ND	0.333	mg/kg wet			
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet			
Benzo(k)fluoranthene	ND	0.333	mg/kg wet			
Chrysene	ND	0.167	mg/kg wet			
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet			
Fluoranthene	ND	0.333	mg/kg wet			
Fluorene	ND	0.333	mg/kg wet			
Indeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet			
Naphthalene	ND	0.333	mg/kg wet			
Phenanthrene	ND	0.333	mg/kg wet			
Pyrene	ND	0.333	mg/kg wet			
Surrogate: 1,2-Dichlorobenzene-d4	1.92		mg/kg wet	3.333	57	30-130
Surrogate: 2-Fluorobiphenyl	2.05		mg/kg wet	3.333	61	30-130
Surrogate: Nitrobenzene-d5	2.07		mg/kg wet	3.333	62	30-130
Surrogate: p-Terphenyl-d14	2.19		mg/kg wet	3.333	66	30-130
LCS						
2-Methylnaphthalene	2.82	0.333	mg/kg wet	3.333	85	40-140
Acenaphthene	2.83	0.333	mg/kg wet	3.333	85	40-140
Acenaphthylene	3.13	0.333	mg/kg wet	3.333	94	40-140
Anthracene	3.01	0.333	mg/kg wet	3.333	90	40-140
Benzo(a)anthracene	3.06	0.333	mg/kg wet	3.333	92	40-140
Benzo(a)pyrene	2.98	0.167	mg/kg wet	3.333	89	40-140
Benzo(b)fluoranthene	3.02	0.333	mg/kg wet	3.333	91	40-140
Benzo(g,h,i)perylene	3.10	0.333	mg/kg wet	3.333	93	40-140
Benzo(k)fluoranthene	2.86	0.333	mg/kg wet	3.333	86	40-140

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ♦ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	8	270D Polynı	uclear Aroma	itic Hydro	carbons					
Batch CH71108 - 3546										
Chrysene	3.00	0.167	mg/kg wet	3.333		90	40-140			
Dibenzo(a,h)Anthracene	3.11	0.167	mg/kg wet	3.333		93	40-140			
luoranthene	3.23	0.333	mg/kg wet	3.333		97	40-140			
luorene	3.26	0.333	mg/kg wet	3.333		98	40-140			
ndeno(1,2,3-cd)Pyrene	3.10	0.333	mg/kg wet	3.333		93	40-140			
aphthalene	2.85	0.333	mg/kg wet	3.333		85	40-140			
nenanthrene	2.84	0.333	mg/kg wet	3.333		85	40-140			
rrene	2.85	0.333	mg/kg wet	3.333		86	40-140			
urrogate: 1,2-Dichlorobenzene-d4	2.05		mg/kg wet	3.333		62	30-130			
ırrogate: 2-Fluorobiphenyl	2.12		mg/kg wet	3.333		64	30-130			
urrogate: Nitrobenzene-d5	2.22		mg/kg wet	3.333		66	30-130			
urrogate: p-Terphenyl-d14	2.21		mg/kg wet	3.333		66	30-130			
CS Dup										
Methylnaphthalene	2.25	0.333	mg/kg wet	3.333		67	40-140	23	30	
cenaphthene	2.19	0.333	mg/kg wet	3.333		66	40-140	26	30	
enaphthylene	2.42	0.333	mg/kg wet	3.333		73	40-140	26	30	
uthracene	2.37	0.333	mg/kg wet	3.333		71	40-140	24	30	
	2.38			3.333		71	40-140	25	30	
nzo(a)anthracene	2.36	0.333	mg/kg wet			71 71		23	30	
enzo(a)pyrene		0.167	mg/kg wet	3.333		69	40-140		30	
enzo(b)fluoranthene	2.29	0.333	mg/kg wet	3.333			40-140	28		
enzo(g,h,i)perylene	2.47	0.333	mg/kg wet	3.333		74	40-140	23	30	
enzo(k)fluoranthene	2.34	0.333	mg/kg wet	3.333		70	40-140	20	30	
irysene	2.34	0.167	mg/kg wet	3.333		70	40-140	25	30	
benzo(a,h)Anthracene	2.50	0.167	mg/kg wet	3.333		75 	40-140	22	30	
uoranthene	2.61	0.333	mg/kg wet	3.333		78	40-140	21	30	
uorene	2.35	0.333	mg/kg wet	3.333		70	40-140	33	30	D+
deno(1,2,3-cd)Pyrene	2.48	0.333	mg/kg wet	3.333		74	40-140	22	30	
aphthalene	2.22	0.333	mg/kg wet	3.333		67	40-140	25	30	
nenanthrene	2.20	0.333	mg/kg wet	3.333		66	40-140	25	30	
rrene	2.31	0.333	mg/kg wet	3.333		69	40-140	21	30	
urrogate: 1,2-Dichlorobenzene-d4	1.53		mg/kg wet	3.333		46	30-130			
urrogate: 2-Fluorobiphenyl	1.69		mg/kg wet	3.333		51	30-130			
urrogate: Nitrobenzene-d5	1.68		mg/kg wet	3.333		50	30-130			
urrogate: p-Terphenyl-d14	1.74		mg/kg wet	3.333		52	30-130			
atrix Spike Source: 1708275-01										
Methylnaphthalene	5.43	1.58	mg/kg dry	3.951	2.22	81	40-140			
enaphthene	12.2	1.58	mg/kg dry	3.951	7.08	130	40-140			
cenaphthylene	5.16	1.58	mg/kg dry	3.951	1.14	102	40-140			
nthracene	20.4	1.58	mg/kg dry	3.951	14.8	142	40-140			
enzo(a)anthracene	54.2	15.8	mg/kg dry	3.951	43.2	278	40-140			
enzo(a)pyrene	47.7	7.92	mg/kg dry	3.951	37.0	270	40-140			
enzo(b)fluoranthene	45.2	15.8	mg/kg dry	3.951	35.8	237	40-140			
enzo(g,h,i)perylene	23.0	1.58	mg/kg dry	3.951	16.3	171	40-140			
enzo(k)fluoranthene	46.9	15.8	mg/kg dry	3.951	37.9	229	40-140			
nrysene	51.7	7.92	mg/kg dry	3.951	37.6	359	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
<u> </u>			ıclear Aroma						-	
	0	Z/UD FUIYIIL	icicai AlUIIId	ide Hydre	JCai DUIIS					
Batch CH71108 - 3546										
Dibenzo(a,h)Anthracene	14.8	0.792	mg/kg dry	3.951	10.3	115	40-140			
Fluoranthene	138	15.8	mg/kg dry	3.951	92.4	NR	40-140			
Fluorene	12.4	1.58	mg/kg dry	3.951	7.07	134	40-140			
Indeno(1,2,3-cd)Pyrene	22.0	1.58	mg/kg dry	3.951	15.9	154	40-140			
Naphthalene	6.82	1.58	mg/kg dry	3.951	5.26	40	40-140			
Phenanthrene	87.3	15.8	mg/kg dry	3.951	67.2	507	40-140			
Pyrene	103	15.8	mg/kg dry	3.951	78.1	624	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.67		mg/kg dry	3.951		42	30-130			
Surrogate: 2-Fluorobiphenyl	2.11		mg/kg dry	3.951		53	30-130			
Surrogate: Nitrobenzene-d5	1.91		mg/kg dry	3.951		48	30-130			
Surrogate: p-Terphenyl-d14	3.14		mg/kg dry	3.951		<i>79</i>	30-130			
Matrix Spike Dup Source: 1708275-01										
2-Methylnaphthalene	4.57	1.54	mg/kg dry	3.847	2.22	61	40-140	17	30	
Acenaphthene	10.7	1.54	mg/kg dry	3.847	7.08	94	40-140	13	30	
Acenaphthylene	5.03	1.54	mg/kg dry	3.847	1.14	101	40-140	3	30	
Anthracene	21.2	1.54	mg/kg dry	3.847	14.8	169	40-140	4	30	
Benzo(a)anthracene	59.6	15.4	mg/kg dry	3.847	43.2	426	40-140	10	30	
Benzo(a)pyrene	51.8	7.71	mg/kg dry	3.847	37.0	384	40-140	8	30	
Benzo(b)fluoranthene	55.9	15.4	mg/kg dry	3.847	35.8	522	40-140	21	30	
Benzo(g,h,i)perylene	23.9	1.54	mg/kg dry	3.847	16.3	199	40-140	4	30	
Benzo(k)fluoranthene	38.3	1.54	mg/kg dry	3.847	37.9	11	40-140	20	30	
Chrysene	56.0	7.71	mg/kg dry	3.847	37.6	478	40-140	8	30	
Dibenzo(a,h)Anthracene	15.3	0.771	mg/kg dry	3.847	10.3	132	40-140	3	30	
Fluoranthene	155	15.4	mg/kg dry	3.847	92.4	NR	40-140	11	30	
Fluorene	11.3	1.54	mg/kg dry	3.847	7.07	110	40-140	9	30	
Indeno(1,2,3-cd)Pyrene	22.9	1.54	mg/kg dry	3.847	15.9	182	40-140	4	30	
Naphthalene	6.21	1.54	mg/kg dry	3.847	5.26	25	40-140	9	30	
Phenanthrene	91.1	15.4	mg/kg dry	3.847	67.2	621	40-140	4	30	
Pyrene	108	15.4	mg/kg dry	3.847	78.1	775	40-140	5	30	
Surrogate: 1,2-Dichlorobenzene-d4	1.60		mg/kg dry	3.847		41	30-130			
Surrogate: 2-Fluorobiphenyl	2.01		mg/kg dry	3.847		52	30-130			
Surrogate: Nitrobenzene-d5	1.85		mg/kg dry	3.847		48	30-130			
Surrogate: p-Terphenyl-d14	2.98		mg/kg dry	3.847		<i>77</i>	30-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

Notes and Definitions

U	Analyte included in the analysis, but not detected
SD	Surrogate recovery(ies) diluted below the MRL (SD).
S+	Surrogate recovery(ies) above upper control limit (S+).
MT	Due to high target values, matrix spike analyte(s) is masked (MT).
MC	Matrix Spike recovery is outside of control limits due to coelution.
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
ï	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
•	

2 Range result excludes concentrations of target analytes eluting in that range.

3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery [CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RLReporting Limit

EDL **Estimated Detection Limit**

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708275

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

ESS Laboratory Sample and Cooler Receipt Checklist

Clie	nt:G	ZA - Glaston	bury CT - G	ZA/MM		ESS	Project ID:		708275	
Shipped	l/Delivered Vi	a:	ESS Cour	rier	_	Date	e Received:	8/	10/2017	
						Projec Days	t Due Date: for Project:		18/2017 5 Day	
1. Air bill Air No	I manifest pre	esent? NA		No			C match bottles?			Yes
2. Were	custody seals	s present?		No		7. Is COC co	omplete and corre	ect?		Yes
3. Is radi	ation count <	100 CPM?		Yes		8. Were sam	ples received int	act?		Yes
	ooler Present p:0.3		ı: lce	Yes			s informed abou		ds & rushes?	Yes / No / NA
	OC signed a	_		Yes		10. Were an	y analyses recei	ved outside	of hold time?	Yes No
				_	-					
	subcontracting S Sample IDs Analysis TAT	s: s:	Yes	s (No	-	 a. Air bubble 	As received? s in aqueous VC	As? completely?		Yes (No. Yes / No. Yes / No. (NA.)
a. If meta b. Low Le	ne samples produced sevel VOA vials	upon receipt s frozen:	erved? :	Yes / No Date: Date:	:	_ Time: _ Time: _		By: By:		_
14. Was the Who was d	here a need to ere a need to contacted?	to contact Pr	oject Manag client?	er? Date;	Yes (No Yes / No	Time:		Ву:		
Sample Number	Container ID	Proper Container	Air Bubbles	Sufficient Volume	Containe	r Type	Preservative		Record pH (Cya	
01	153955	Yes	Present NA	Yes					Pesticio	des)
01	153956	Y#S	NA	Yes	8 oz. Jar - 8 oz. Jar -		N P NP			
02	153957	//es	NA	Yes	8 oz. Jar -	Unpres	NP			
2nd Review	_/	n //.			_					
Are barcode		rgeldt <i>fede</i> tlafig	egs?		Yes /No	1				
Completed	/ N	WW // MM ////				W/1/	$\overline{}$	10/10		
By: Reviewed	<u> </u>	HHYVV	<u> </u>		Date & Time:	<i>0][0][</i>	1_/	890		
By:		K	-X-		Date & Time:	8/101	10	33_		_
Delivered By:			1		_	8/10	1			_
•						0//0	'(' 	853_	 	_

										E	SS LA	B PROJE	CT ID		
	boratory					HAIN OF C			-						
	Thielsch Eng			Turn Time		Standard Rush_	Approved By			- 11	_	g Limits			
	s Avenue, Cra			State whe	re samples v	vere collected: MA	RICT NH NJ NY	Y ME Othe	r		LDE	C/GH	+ PMC		
	401) 461-718		461-4486	Is this pro	ject for any	of the following: (please circle)	Electonic	Deli			Yes	No_		
www.esslai	boratory.com			MA-MC	P CT-RC	P RGP Other_		Format:	Excel		Access	PDF	✓ Oth	er	
GZ	ZA Project Ma	nager: Ren	Rach Di	e Ruc	ey K	Project# 4544	1.06				2				
	GZA	GeoEnviro	nmental, Inc		/	Project Name:		/sis		1	20				# **
		nding Brook		402		Danvel's	Mill	Analysis			25				Comment#
	G	lastonbury, ((860) 286				Contract Pricing		4	7	3	7				Imo
RI	EASONABLE C			S REQUIR	ED	Special Pricing:			4	2	13				Ü
ESS Lab	Date	Collection	Grab -G	Matrix		Sample Identif	ication	# of Containers	9	1	105				
Sample ID	8/9/17	Time 1045	Composite-C	5	B-25	A (0-1)		2	X	X	XX				
	7/0/1			5	0-25			1	V	1	7	1	+	+-	
0	8/9/17	1120	6)	B-26	(5-6)			\wedge	/ · /	_	+-	+	+	-
													$\bot \bot$	\bot	
				-	-				+		\dashv	+	+-+	+	
									_	\vdash	-	+-+	+-+	+	
				+	+		P		\top						
					-				+-	+	-	+-+	++	+	
									_	\vdash	_	+-+	+		
1	Code: 1-NP, 2-HC				Ascorbic Acid	, 8-ZnAce 9			+	\vdash	-	+-+	+-+	+	-
Container Typ	e: P-Poly G-Glass	s AG-Amber Gl	ass S-Sterile V	-VOA	W.C. C. W	- DW Drinking Water	O Oil W. Wines E-Filter								
				Sampled		er Dw-Drinking water	O-Oil W-Wipes F-Filter								
Cooler Pres		es	_No	Commer		- Orac									
Seals Intact		Not	Le V	Comme	115.		1 1					/			
Cooler Ten		0.07	Date/Time	Received by	(Signature)	JRE	inquished by: (Signature)	27.1.	1	Date/Tin	ne Re	lived by: (Sig	plature	17	345
1 50	- Water		Date/Time	40 62	M. Fr	Je St	inquished by: (Signature)	13.45		Date/Tin		eived by: (Sig		1	しアム
Reinquished by:	(Signature)	17:36	Date/Time	Received	Signature	8/10/85	inquished by: (Signature)			Daterin	ie like	J., (d)	,		
7	7141)	11,00			Please E-	mail all changes to	Chain of Custody in	n writing.			-	t			
				Y									Page	1	of \

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Benjamin Rach GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Daniels Mill (05.0045441.06)

ESS Laboratory Work Order Number: 1708217

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 4:39 pm, Aug 17, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

SAMPLE RECEIPT

The following samples were received on August 09, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

Question 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane regulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). The regulatory standards may not be achieved due to these limitations. In addition, for all methods, interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Low Level VOA vials were frozen by Client on August 9, 2017 at 07:00.

Question 6: All samples for Metals, VOA and SVOA were analyzed for a subset of the required RCP list per the client's request.

Lab Number	Sample Name	<u>Matrix</u>	<u>Analysis</u>
1708217-01	B-21 (0.5-2)	Soil	8082A, 8260B Low
1708217-02	B-22 (0.5-2)	Soil	8082A, 8260B Low
1708217-03	B-23 (2-4)	Soil	8082A, 8260B Low
1708217-04	B-24 (0.5-2)	Soil	8082A, 8260B Low
1708217-05	B-27 (0-2)	Soil	6010C, 8082A, 8270D PAH
1708217-06	B-27 (3-5)	Soil	6010C, 8082A, 8270D PAH, CT ETPH
1708217-07	Trip Blank	Soil	8260B Low

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

PROJECT NARRATIVE

8082A Polychlorinated Biphenyls (PCB)

1708217-05 <u>Surrogate recovery(ies) above upper control limit (S+).</u>

Decachlorobiphenyl [2C] (1150% @ 30-150%)

CH71016-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Aroclor 1016 (44% @ 30%), Aroclor 1016 [2C] (44% @ 30%)

8270D Polynuclear Aromatic Hydrocarbons

C7H0159-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Fluoranthene (21% @ 20%)

CH71108-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Fluorene (33% @ 30%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

ESS Laboratory Work Order: 1708217 Client Project ID: Daniels Mill

Laboratory Analysis

er: <u>05.0045441</u> e(s): <u>8/7/2017</u> umple ID(s): <u>17</u> hods Used	<u>.06</u> 08217-01 through 170						
mple ID(s): <u>1</u> 7	08217-01 through 170						
	UXZI/-UI INTOHON I/U	9217 07					
	(X) 8260B	() 8151A	(Х) ЕТРН	(X) 6010B) 7470A/1A	
	(X) 8270C (X) 8082	() 8081A () 8021B	() VPH () EPH	() 6020 () 7000 S) 9014M) 7196A	
performance cr acceptable guid	riteria followed, includi delines, as specified i	ng the requirement to ex	plain any criteria failin	g outside of		Yes (X) No ()	
Were the method	od specified preservation	on and holding time requ	irements met?			Yes (X) No ()	
<u>VPH and EPH Methods only:</u> Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?							
Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?							
Were samples	received at an appropri	ate temperature (<6° C°)	?			Yes (X) No () N/A ()	
		specified in the CTDEP	Reasonable Confidenc	e Protocol		Yes () No (X)	
			ain-of-custody?			Yes (X) No () Yes (X) No ()	
For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?							
Are project-spe	ecific matrix spikes and	l laboratory duplicates in	cluded in this data set?			Yes () No (X)	
	performance or acceptable guid Protocol docum Were the method Were the method Were all sample associated chain Were all QA/Q documents ach a) Were refer b) Were the For each analytic for all constitute Confidence Productions to all questions to a all questions to a and a constitute confidence Productions to a and a constitute confidence and a constitute and a constitute and a constitute and a consti	For each analytical method referenced performance criteria followed, including acceptable guidelines, as specified in Protocol documents? Were the method specified preservation of the modifications (see Section 11.3 of reservations). Were all samples received by the laborassociated chain-of-custody documents. Were samples received at an appropriate were all QA/QC performance criterial documents achieved? a) Were reporting limits specified b) Were these reporting limits method referenced for all constituents identified in the method confidence Protocol documents? Are project-specific matrix spikes and all questions to which the response was all questions to the properties of	For each analytical method referenced in this laboratory report performance criteria followed, including the requirement to ex acceptable guidelines, as specified in the CTDEP method-sp. Protocol documents? Were the method specified preservation and holding time requirement to expect the method specified preservation and holding time requirement modifications (see Section 11.3 of respective RCP methods)? Were all samples received by the laboratory in a condition contassociated chain-of-custody document(s)? Were samples received at an appropriate temperature (<6° C°)? Were all QA/QC performance criteria specified in the CTDEP documents achieved? a) Were reporting limits specified or referenced on the chab) Were these reporting limits met? For each analytical method referenced in this laboratory report for all constituents identified in the method-specific analyte list Confidence Protocol documents? Are project-specific matrix spikes and laboratory duplicates in all questions to which the response was "No" (with the exception of the exception of the contact of the	For each analytical method referenced in this laboratory report package, were all spec performance criteria followed, including the requirement to explain any criteria failin acceptable guidelines, as specified in the CTDEP method-specific Reasonable Con Protocol documents? Were the method specified preservation and holding time requirements met? VPH and EPH Methods only: Was the VPH or EPH method conducted without signimodifications (see Section 11.3 of respective RCP methods)? Were all samples received by the laboratory in a condition consistent with that describe associated chain-of-custody document(s)? Were samples received at an appropriate temperature (<6° C°)? Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence documents achieved? a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met? For each analytical method referenced in this laboratory report package, were results for all constituents identified in the method-specific analyte lists presented in the Rea Confidence Protocol documents? Are project-specific matrix spikes and laboratory duplicates included in this data set? all questions to which the response was "No" (with the exception of question #7), additional and the properties of the exception of question #7), additional and the properties of the exception of question #7), additional and the properties of the exception of question #7), additional and the exception of question #7).	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents? Were the method specified preservation and holding time requirements met? VPH and EPH Methods only: Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)? Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)? Were samples received at an appropriate temperature (<6° C°)? Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved? a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met? For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents? Are project-specific matrix spikes and laboratory duplicates included in this data set?	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents? Were the method specified preservation and holding time requirements met? Where the methods only: Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)? Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)? Were samples received at an appropriate temperature (<6° C°)? Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved? a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met? For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents? Are project-specific matrix spikes and laboratory duplicates included in this data set? all questions to which the response was "No" (with the exception of question #7), additional information must be	

provided in an attached narrative. If the answer to question #1, #1 A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence." This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.								
Authorized Signature:	Position: <u>Laboratory Director</u>							
Printed Name: <u>Laurel Stoddard</u>	Date: <u>August 17, 2017</u>							
Name of Laboratory: ESS Laboratory								

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-21 (0.5-2) Date Sampled: 08/07/17 09:20

Percent Solids: 91 Initial Volume: 5.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Aromatic Compounds / Low Level

Analyte 1,2,3-Trichlorobenzene	Results (MRL)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 08/10/17 19:39	Sequence C7H0154	Batch CH71028
, ,	ND (0.0048)				-			
1,2,4-Trichlorobenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
1,2,4-Trimethylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
1,2-Dichlorobenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
1,3,5-Trimethylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
1,3-Dichlorobenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
1,4-Dichlorobenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
2-Chlorotoluene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
4-Chlorotoluene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
4-Isopropyltoluene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Benzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Bromobenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Chlorobenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Ethylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Isopropylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Naphthalene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
n-Butylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
n-Propylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
sec-Butylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Styrene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
tert-Butylbenzene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Toluene	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Xylene O	ND (0.0048)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Xylene P,M	ND (0.0097)		8260B Low		1	08/10/17 19:39	C7H0154	CH71028
Xylenes (Total)	ND (0.0097)		8260B Low		1	08/10/17 19:39		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		78 %		70-130				
Surrogate: 4-Bromofluorohenzene		22.24		70.400				

 Surrogate: 1,2-Dichloroethane-d4
 78 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 89 %
 70-130

 Surrogate: Dibromofluoromethane
 80 %
 70-130

 Surrogate: Toluene-d8
 89 %
 70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-21 (0.5-2) Date Sampled: 08/07/17 09:20

Percent Solids: 91 Initial Volume: 19.5 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-01

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1254	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 5:10		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		86 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		81 %		30-150				
Surrogate: Tetrachloro-m-xylene		85 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		91 %		30-150				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-22 (0.5-2) Date Sampled: 08/07/17 09:45

Percent Solids: 91 Initial Volume: 6.5 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Aromatic Compounds / Low Level

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2,3-Trichlorobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
1,2,4-Trichlorobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
1,2,4-Trimethylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
1,2-Dichlorobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
1,3,5-Trimethylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
1,3-Dichlorobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
1,4-Dichlorobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
2-Chlorotoluene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
4-Chlorotoluene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
4-Isopropyltoluene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Benzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Bromobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Chlorobenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Ethylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Isopropylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Naphthalene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
n-Butylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
n-Propylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
sec-Butylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Styrene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
tert-Butylbenzene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Toluene	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Xylene O	ND (0.0042)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Xylene P,M	ND (0.0085)		8260B Low		1	08/10/17 20:04	C7H0154	CH71028
Xylenes (Total)	ND (0.0085)		8260B Low		1	08/10/17 20:04		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		80 %		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 80 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 87 %
 70-130

 Surrogate: Dibromofluoromethane
 82 %
 70-130

 Surrogate: Toluene-d8
 91 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-22 (0.5-2) Date Sampled: 08/07/17 09:45

Percent Solids: 91 Initial Volume: 19.4 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-02

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1254	3.1 (0.3)		8082A		5	08/15/17 3:56		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 5:29		CH71016
-		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		82 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		81 %		30-150				
Surrogate: Tetrachloro-m-xylene		79 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		84 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-23 (2-4) Date Sampled: 08/07/17 10:15

Percent Solids: 93 Initial Volume: 5.2 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Aromatic Compounds / Low Level

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2,3-Trichlorobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
1,2,4-Trichlorobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
1,2,4-Trimethylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
1,2-Dichlorobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
1,3,5-Trimethylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
1,3-Dichlorobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
1,4-Dichlorobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
2-Chlorotoluene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
4-Chlorotoluene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
4-Isopropyltoluene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Benzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Bromobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Chlorobenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Ethylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Isopropylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Naphthalene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
n-Butylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
n-Propylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
sec-Butylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Styrene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
tert-Butylbenzene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Toluene	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Xylene O	ND (0.0052)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Xylene P,M	ND (0.0104)		8260B Low		1	08/10/17 20:30	C7H0154	CH71028
Xylenes (Total)	ND (0.0104)		8260B Low		1	08/10/17 20:30		[CALC]
-		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		80 %		70-130				

 Surrogate: 1,2-Dichloroethane-d4
 80 %
 70-130

 Surrogate: 4-Bromofluorobenzene
 89 %
 70-130

 Surrogate: Dibromofluoromethane
 81 %
 70-130

 Surrogate: Toluene-d8
 89 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-23 (2-4) Date Sampled: 08/07/17 10:15

Percent Solids: 93 Initial Volume: 19.4 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-03

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1254	0.3 (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 5:49)	CH71016
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		92 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		91 %		30-150				
Surrogate: Tetrachloro-m-xylene		86 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		92 %		30-150				

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-24 (0.5-2) Date Sampled: 08/07/17 10:35

Percent Solids: 88 Initial Volume: 5.5 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Aromatic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,2,3-Trichlorobenzene	ND (0.0051)		8260B Low	<u> </u>	1	08/10/17 20:55	C7H0154	CH71028
1,2,4-Trichlorobenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
1,2,4-Trimethylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
1,2-Dichlorobenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
1,3,5-Trimethylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
1,3-Dichlorobenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
1,4-Dichlorobenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
2-Chlorotoluene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
4-Chlorotoluene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
4-Isopropyltoluene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Benzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Bromobenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Chlorobenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Ethylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Isopropylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Naphthalene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
n-Butylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
n-Propylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
sec-Butylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Styrene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
tert-Butylbenzene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Toluene	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Xylene O	ND (0.0051)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Xylene P,M	ND (0.0103)		8260B Low		1	08/10/17 20:55	C7H0154	CH71028
Xylenes (Total)	ND (0.0103)		8260B Low		1	08/10/17 20:55		[CALC]
	0/	•	01:6	1 ! !4				

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	83 %		70-130
Surrogate: 4-Bromofluorobenzene	90 %		70-130
Surrogate: Dibromofluoromethane	82 %		70-130
Surrogate: Toluene-d8	89 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-24 (0.5-2) Date Sampled: 08/07/17 10:35

Percent Solids: 88 Initial Volume: 19.8 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-04

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyz e	ed Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1254	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 6	5:07	CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		84 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		82 %		30-150				
Surrogate: Tetrachloro-m-xylene		87 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		96 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (0-2) Date Sampled: 08/07/17 12:03

Percent Solids: 88 ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-05

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	ND (2.74)		6010C		1	KJK	08/11/17 13:10	2.06	100	CH70939
Lead	150 (5.49)		6010C		1	KJK	08/11/17 13:10	2.06	100	CH70939

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (0-2) Date Sampled: 08/07/17 12:03

Percent Solids: 88 Initial Volume: 19.7 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-05

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1254	4.8 (0.6)		8082A		10	08/15/17 12:37		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 6:26		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		67 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		1150 %	S+	30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		81 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (0-2) Date Sampled: 08/07/17 12:03

Percent Solids: 88 Initial Volume: 14.1 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-05

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 8/11/17 11:15

8270D Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Acenaphthene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Acenaphthylene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Anthracene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Benzo(a)anthracene	1.35 (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Benzo(a)pyrene	1.47 (0.402)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Benzo(b)fluoranthene	1.81 (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Benzo(g,h,i)perylene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Benzo(k)fluoranthene	1.33 (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Chrysene	1.38 (0.402)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Dibenzo(a,h)Anthracene	ND (0.402)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Fluoranthene	3.06 (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Fluorene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Indeno(1,2,3-cd)Pyrene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Naphthalene	ND (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Phenanthrene	1.36 (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
Pyrene	1.93 (0.801)	8270D PAH		2	08/11/17 16:53	C7H0159	CH71108
	%	SRecovery Qualifier	Limits				

	MCCOVCIY	Qualifici	LIIIICS
Surrogate: 1,2-Dichlorobenzene-d4	34 %		30-130
Surrogate: 2-Fluorobiphenyl	43 %		30-130
Surrogate: Nitrobenzene-d5	40 %		30-130
Surrogate: p-Terphenyl-d14	46 %		30-130

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (3-5) Date Sampled: 08/07/17 12:05

Percent Solids: 85

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-06

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Arsenic	15.9 (2.22)		6010C		1	KJK	08/11/17 13:27	2.66	100	CH70939
Lead	323 (4.45)		6010C		1	KJK	08/11/17 13:27	2.66	100	CH70939

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (3-5) Date Sampled: 08/07/17 12:05

Percent Solids: 85 Initial Volume: 19.4 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-06

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1254	0.3 (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1260	0.06 (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 6:45		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		92 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		126 %		30-150				
Surrogate: Tetrachloro-m-xylene		69 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		<i>75 %</i>		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (3-5) Date Sampled: 08/07/17 12:05

Percent Solids: 85 Initial Volume: 14.1 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-06

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 8/11/17 11:15

8270D Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Acenaphthene	ND (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Acenaphthylene	ND (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Anthracene	1.20 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Benzo(a)anthracene	4.71 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Benzo(a)pyrene	4.39 (0.420)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Benzo(b)fluoranthene	5.74 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Benzo(g,h,i)perylene	1.83 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Benzo(k)fluoranthene	3.82 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Chrysene	5.30 (0.420)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Dibenzo(a,h)Anthracene	1.11 (0.420)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Fluoranthene	13.0 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Fluorene	ND (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Indeno(1,2,3-cd)Pyrene	1.79 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Naphthalene	ND (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Phenanthrene	7.79 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108
Pyrene	7.83 (0.838)	8270D PAH	2	08/11/17 17:27	C7H0159	CH71108

Oualifier

I imits

	70710007017	Quarci	2
Surrogate: 1,2-Dichlorobenzene-d4	38 %		30-130
Surrogate: 2-Fluorobiphenyl	45 %		30-130
Surrogate: Nitrobenzene-d5	42 %		30-130
Surrogate: p-Terphenyl-d14	52 %		30-130

%Recovery

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-27 (3-5) Date Sampled: 08/07/17 12:05

Percent Solids: 85 Initial Volume: 19.6 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-06

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 12:00

CT ETPH Extractable Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 398 (24.2)	<u>MDL</u>	Method CT ETPH	<u>Limit</u>	<u>DF</u>	Analyst SMR	Analyzed 08/10/17 23:59	Sequence C7H0157	<u>Batch</u> CH71019
	%	Recovery	Qualifier	Limits					
Surrogate: O-Terphenyl		83 %		50-150					

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: Trip Blank Date Sampled: 08/07/17 00:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 10

Surrogate: Toluene-d8

Extraction Method: 5035

ESS Laboratory Work Order: 1708217 ESS Laboratory Sample ID: 1708217-07

Sample Matrix: Soil Units: mg/kg wet Analyst: MEK

5035/8260B Volatile Aromatic Compounds / Low Level

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence 67H9154	Batch
1,2,3-Trichlorobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
1,2,4-Trichlorobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
1,2,4-Trimethylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
1,2-Dichlorobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
1,3,5-Trimethylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
1,3-Dichlorobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
1,4-Dichlorobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
2-Chlorotoluene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
4-Chlorotoluene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
4-Isopropyltoluene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Benzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Bromobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Chlorobenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Ethylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Isopropylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Naphthalene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
n-Butylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
n-Propylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
sec-Butylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Styrene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
tert-Butylbenzene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Toluene	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Xylene O	ND (0.0050)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Xylene P,M	ND (0.0100)		8260B Low		1	08/10/17 15:52	C7H0154	CH71028
Xylenes (Total)	ND (0.0100)		8260B Low		1	08/10/17 15:52		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		79 %		70-130				
Surrogate: 4-Bromofluorobenzene		90 %		70-130				
Surrogate: Dibromofluoromethane		81 %		70-130				

Quality

90 %

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total Metals

Batch CH70939 - 3050B									
Blank									
Arsenic	ND	2.50	mg/kg wet						
Lead	ND	5.00	mg/kg wet						
LCS									
Arsenic	110	9.62	mg/kg wet	123.0	89	80-120			
Lead	134	19.2	mg/kg wet	145.0	93	80-120			
LCS Dup									
Arsenic	113	9.43	mg/kg wet	123.0	92	80-120	2	20	
Lead	132	18.9	mg/kg wet	145.0	91	80-120	2	20	

5035/8260B Volatile Aromatic Compounds / Low Level

Blank 1,2,3-Trichlorobenzene ND 1,2,4-Trichlorobenzene ND 1,2,4-Trimethylbenzene ND 1,2-Dichlorobenzene ND 1,3-5-Trimethylbenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 2-Chlorotoluene ND 4-Chlorotoluene ND 4-Isopropyltoluene ND Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	mg/kg wet				
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 1,3-Frimethylbenzene 1,3-Frimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chlorotoluene 4-Chlorotoluene 4-Isopropyltoluene 8-Benzene 8-Bromobenzene ND Bromobenzene ND Ethylbenzene ND Isopropylbenzene ND Isopropylbenzene ND Isopropylbenzene ND Isopropylbenzene ND Isopropylbenzene ND ND Naphthalene ND ND NP NP-Propylbenzene ND Sec-Butylbenzene ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	mg/kg wet				
1,2,4-Trimethylbenzene ND 1,2-Dichlorobenzene ND 1,3,5-Trimethylbenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 2-Chlorotoluene ND 4-Chlorotoluene ND 4-Isopropyltoluene ND Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	mg/kg wet				
1,2-Dichlorobenzene 1,3,5-Trimethylbenzene 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chlorotoluene 4-Chlorotoluene 4-Isopropyltoluene 8DBenzene 8DCHlorobenzene ND Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet				
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 2-Chlorotoluene ND 4-Chlorotoluene ND Benzene ND Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet				
1,3-Dichlorobenzene 1,4-Dichlorobenzene ND 2-Chlorotoluene ND 4-Chlorotoluene ND Benzene ND Benzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND ND Naphthalene ND ND Naphtplenzene ND	0.0050 0.0050 0.0050 0.0050 0.0050	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet				
1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Chlorotoluene 4-Chlorotoluene 4-Isopropyltoluene 8DBenzene 8DBenzene 8DChlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND ND Naphthalene ND ND NP	0.0050 0.0050 0.0050 0.0050	mg/kg wet mg/kg wet mg/kg wet mg/kg wet				
2-Chlorotoluene ND 4-Chlorotoluene ND 4-Isopropyltoluene ND Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND n-Propylbenzene ND sec-Butylbenzene ND	0.0050 0.0050 0.0050	mg/kg wet mg/kg wet mg/kg wet				
4-Chlorotoluene ND 4-Isopropyltoluene ND 8-enzene ND 6-ormobenzene ND Ethylbenzene ND 6-orpopylbenzene ND 8-batylbenzene ND 6-batylbenzene ND 6-batylbenzene ND 6-batylbenzene ND 6-batylbenzene ND 6-batylbenzene ND 6-batylbenzene ND 6-cec-Butylbenzene ND	0.0050 0.0050	mg/kg wet mg/kg wet				
A-Isopropyltoluene ND Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Aspropylbenzene ND Aspropylbenzene ND Apphthalene ND A-Propylbenzene ND Bec-Butylbenzene ND A-Propylbenzene ND	0.0050	mg/kg wet				
Benzene ND Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND						
Bromobenzene ND Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND	0.0050	ma/ka wet				
Chlorobenzene ND Ethylbenzene ND Isopropylbenzene ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND N		mg/kg wet				
Ethylbenzene ND Sopropylbenzene ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND ND ND ND ND ND ND ND	0.0050	mg/kg wet				
ND Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND necec-Butylbenzene ND	0.0050	mg/kg wet				
Naphthalene ND n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND	0.0050	mg/kg wet				
n-Butylbenzene ND n-Propylbenzene ND sec-Butylbenzene ND	0.0050	mg/kg wet				
n-Propylbenzene ND sec-Butylbenzene ND	0.0050	mg/kg wet				
sec-Butylbenzene ND	0.0050	mg/kg wet				
•	0.0050	mg/kg wet				
_	0.0050	mg/kg wet				
Styrene ND	0.0050	mg/kg wet				
ert-Butylbenzene ND	0.0050	mg/kg wet				
Foluene ND	0.0050	mg/kg wet				
(ylene O ND	0.0050	mg/kg wet				
(ylene P,M ND	0.0100	mg/kg wet				
(ylenes (Total) ND	0.0100	mg/kg wet				
Surrogate: 1,2-Dichloroethane-d4 0.0391		mg/kg wet	0.05000	78	70-130	
Surrogate: 4-Bromofluorobenzene 0.0446		mg/kg wet	0.05000	89	70-130	
Surrogate: Dibromofluoromethane 0.0401		mg/kg wet	0.05000	80	70-130	
Surrogate: Toluene-d8 0.0449		mg/kg wet	0.05000	90	70-130	
LCS						
1,2,3-Trichlorobenzene 0.0596	0.0050	mg/kg wet	0.05000	119	70-130	

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Batch CH71028 - 5035

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Aromatic Compounds / Low Level

1,2,4-Trichlorobenzene	0.0590	0.0050	mg/kg wet	0.05000	118	70-130		
1,2,4-Trimethylbenzene	0.0627	0.0050	mg/kg wet	0.05000	125	70-130		
1,2-Dichlorobenzene	0.0591	0.0050	mg/kg wet	0.05000	118	70-130		
1,3,5-Trimethylbenzene	0.0623	0.0050	mg/kg wet	0.05000	125	70-130		
1,3-Dichlorobenzene	0.0584	0.0050	mg/kg wet	0.05000	117	70-130		
1,4-Dichlorobenzene	0.0590	0.0050	mg/kg wet	0.05000	118	70-130		
2-Chlorotoluene	0.0595	0.0050	mg/kg wet	0.05000	119	70-130		
4-Chlorotoluene	0.0607	0.0050	mg/kg wet	0.05000	121	70-130		
4-Isopropyltoluene	0.0606	0.0050	mg/kg wet	0.05000	121	70-130		
Benzene	0.0547	0.0050	mg/kg wet	0.05000	109	70-130		
Bromobenzene	0.0597	0.0050	mg/kg wet	0.05000	119	70-130		
Chlorobenzene	0.0587	0.0050	mg/kg wet	0.05000	117	70-130		
Ethylbenzene	0.0626	0.0050	mg/kg wet	0.05000	125	70-130		
Isopropylbenzene	0.0598	0.0050	mg/kg wet	0.05000	120	70-130		
Naphthalene	0.0567	0.0050	mg/kg wet	0.05000	113	70-130		
n-Butylbenzene	0.0629	0.0050	mg/kg wet	0.05000	126	70-130		
n-Propylbenzene	0.0634	0.0050	mg/kg wet	0.05000	127	70-130		
sec-Butylbenzene	0.0614	0.0050	mg/kg wet	0.05000	123	70-130		
Styrene	0.0620	0.0050	mg/kg wet	0.05000	124	70-130		
tert-Butylbenzene	0.0627	0.0050	mg/kg wet	0.05000	125	70-130		
Toluene	0.0557	0.0050	mg/kg wet	0.05000	111	70-130		
Xylene O	0.0637	0.0050	mg/kg wet	0.05000	127	70-130		
Xylene P,M	0.129	0.0100	mg/kg wet	0.1000	129	70-130		
Xylenes (Total)	0.192	0.0100	mg/kg wet					
Surrogate: 1,2-Dichloroethane-d4	0.0438		mg/kg wet	0.05000	88	70-130		
Surrogate: 4-Bromofluorobenzene	0.0503		mg/kg wet	0.05000	101	70-130		
Surrogate: Dibromofluoromethane	0.0445		mg/kg wet	0.05000	89	70-130		
Surrogate: Toluene-d8	0.0516		mg/kg wet	0.05000	103	70-130		
LCS Dup								
1,2,3-Trichlorobenzene	0.0517	0.0050	mg/kg wet	0.05000	103	70-130	14	25
1,2,4-Trichlorobenzene	0.0512	0.0050	mg/kg wet	0.05000	102	70-130	14	25
1,2,4-Trimethylbenzene	0.0549	0.0050	mg/kg wet	0.05000	110	70-130	13	25
1,2-Dichlorobenzene	0.0514	0.0050	mg/kg wet	0.05000	103	70-130	14	25
1,3,5-Trimethylbenzene	0.0541	0.0050	mg/kg wet	0.05000	108	70-130	14	25
1,3-Dichlorobenzene	0.0510	0.0050	mg/kg wet	0.05000	102	70-130	14	25
1,4-Dichlorobenzene	0.0510	0.0050	mg/kg wet	0.05000	102	70-130	14	25
2-Chlorotoluene	0.0522	0.0050	mg/kg wet	0.05000	104	70-130	13	25
4-Chlorotoluene	0.0530	0.0050	mg/kg wet	0.05000	106	70-130	14	25
4-Isopropyltoluene	0.0529	0.0050	mg/kg wet	0.05000	106	70-130	13	25
Benzene	0.0473	0.0050	mg/kg wet	0.05000	95	70-130	14	25
Bromobenzene	0.0516	0.0050	mg/kg wet	0.05000	103	70-130	14	25
Chlorobenzene			mg/kg wet	0.05000	96	70-130	20	25
Chlorobenzene	0.0482	0.0050						
Ethylbenzene	0.0482 0.0514	0.0050 0.0050		0.05000	103	70-130	20	25
Ethylbenzene		0.0050	mg/kg wet					25
	0.0514			0.05000	103	70-130	20	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Aromatic Compounds / Low Level

atch CH71028 - 5035									
-Butylbenzene	0.0544	0.0050	mg/kg wet	0.05000	109	70-130	14	25	
-Propylbenzene	0.0555	0.0050	mg/kg wet	0.05000	111	70-130	13	25	
ec-Butylbenzene	0.0534	0.0050	mg/kg wet	0.05000	107	70-130	14	25	
yrene	0.0503	0.0050	mg/kg wet	0.05000	101	70-130	21	25	
rt-Butylbenzene	0.0549	0.0050	mg/kg wet	0.05000	110	70-130	13	25	
bluene	0.0487	0.0050	mg/kg wet	0.05000	97	70-130	13	25	
ylene O	0.0525	0.0050	mg/kg wet	0.05000	105	70-130	19	25	
rlene P,M	0.106	0.0100	mg/kg wet	0.1000	106	70-130	20	25	
rlenes (Total)	0.158	0.0100	mg/kg wet						
urrogate: 1,2-Dichloroethane-d4	0.0436		mg/kg wet	0.05000	87	70-130			
urrogate: 4-Bromofluorobenzene	0.0474		mg/kg wet	0.05000	95	70-130			
urrogate: Dibromofluoromethane	0.0454		mg/kg wet	0.05000	91	70-130			
urrogate: Toluene-d8	0.0492		mg/kg wet	0.05000	98	70-130			

8082A Polychlorinated Biphenyls (PCB)

Batch CH71016 - 3540C						
Blank						
Aroclor 1016	ND	0.05	mg/kg wet			
Aroclor 1016 [2C]	ND	0.05	mg/kg wet			
Aroclor 1221	ND	0.05	mg/kg wet			
Aroclor 1221 [2C]	ND	0.05	mg/kg wet			
Aroclor 1232	ND	0.05	mg/kg wet			
Aroclor 1232 [2C]	ND	0.05	mg/kg wet			
Aroclor 1242	ND	0.05	mg/kg wet			
Aroclor 1242 [2C]	ND	0.05	mg/kg wet			
Aroclor 1248	ND	0.05	mg/kg wet			
Aroclor 1248 [2C]	ND	0.05	mg/kg wet			
Aroclor 1254	ND	0.05	mg/kg wet			
Aroclor 1254 [2C]	ND	0.05	mg/kg wet			
Aroclor 1260	ND	0.05	mg/kg wet			
Aroclor 1260 [2C]	ND	0.05	mg/kg wet			
Aroclor 1262	ND	0.05	mg/kg wet			
Aroclor 1262 [2C]	ND	0.05	mg/kg wet			
Aroclor 1268	ND	0.05	mg/kg wet			
Aroclor 1268 [2C]	ND	0.05	mg/kg wet			
Surrogate: Decachlorobiphenyl	0.0222		mg/kg wet	0.02500	89	30-150
Surrogate: Decachlorobiphenyl [2C]	0.0213		mg/kg wet	0.02500	85	30-150
Surrogate: Tetrachloro-m-xylene	0.0117		mg/kg wet	0.02500	47	30-150
Surrogate: Tetrachloro-m-xylene [2C]	0.0128		mg/kg wet	0.02500	51	30-150
LCS						
Aroclor 1016	0.3	0.05	mg/kg wet	0.5000	60	40-140
Aroclor 1016 [2C]	0.3	0.05	mg/kg wet	0.5000	60	40-140
Aroclor 1260	0.5	0.05	mg/kg wet	0.5000	90	40-140
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	83	40-140
105 F	ue Cranston RI 029	10 2211	Tel· 401-461-71	0.1)1-461-4486	http://www.FSSI.aboratory.com

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CH71016 - 3540C	<u> </u>								
Surrogate: Decachlorobiphenyl	0.0224		mg/kg wet	0.02500	89	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0216		mg/kg wet	0.02500	86	30-150			
Surrogate: Tetrachloro-m-xylene	0.00961		mg/kg wet	0.02500	38	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.00979		mg/kg wet	0.02500	39	30-150			
LCS Dup									
Aroclor 1016	0.5	0.05	mg/kg wet	0.5000	93	40-140	44	30	D+
Aroclor 1016 [2C]	0.5	0.05	mg/kg wet	0.5000	94	40-140	44	30	D+
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	87	40-140	4	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	81	40-140	2	30	
Surrogate: Decachlorobiphenyl	0.0205		mg/kg wet	0.02500	82	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0202		mg/kg wet	0.02500	81	30-150			
Surrogate: Tetrachloro-m-xylene	0.0213		mg/kg wet	0.02500	85	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0214		mg/kg wet	0.02500	86	30-150			

8270D Polynuclear Aromatic Hydrocarbons

Batch CH71108 - 3546							
Blank							
2-Methylnaphthalene	ND	0.333	mg/kg wet				
Acenaphthene	ND	0.333	mg/kg wet				
Acenaphthylene	ND	0.333	mg/kg wet				
Anthracene	ND	0.333	mg/kg wet				
Benzo(a)anthracene	ND	0.333	mg/kg wet				
Benzo(a)pyrene	ND	0.167	mg/kg wet				
Benzo(b)fluoranthene	ND	0.333	mg/kg wet				
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet				
Benzo(k)fluoranthene	ND	0.333	mg/kg wet				
Chrysene	ND	0.167	mg/kg wet				
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet				
Fluoranthene	ND	0.333	mg/kg wet				
Fluorene	ND	0.333	mg/kg wet				
Indeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet				
Naphthalene	ND	0.333	mg/kg wet				
Phenanthrene	ND	0.333	mg/kg wet				
Pyrene	ND	0.333	mg/kg wet				
Surrogate: 1,2-Dichlorobenzene-d4	1.92		mg/kg wet	3.333	<i>57</i>	30-130	
Surrogate: 2-Fluorobiphenyl	2.05		mg/kg wet	3.333	61	30-130	
Surrogate: Nitrobenzene-d5	2.07		mg/kg wet	3.333	62	30-130	
Surrogate: p-Terphenyl-d14	2.19		mg/kg wet	3.333	66	30-130	
LCS							
2-Methylnaphthalene	2.82	0.333	mg/kg wet	3.333	85	40-140	
Acenaphthene	2.83	0.333	mg/kg wet	3.333	85	40-140	
Acenaphthylene	3.13	0.333	mg/kg wet	3.333	94	40-140	
Anthracene	3.01	0.333	mg/kg wet	3.333	90	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Polynuclear Aromatic Hydrocarbons

Batch CH71108 - 3546									
Benzo(a)anthracene	3.06	0.333	mg/kg wet	3.333	92	40-140			
Benzo(a)pyrene	2.98	0.167	mg/kg wet	3.333	89	40-140			
Benzo(b)fluoranthene	3.02	0.333	mg/kg wet	3.333	91	40-140			
Benzo(g,h,i)perylene	3.10	0.333	mg/kg wet	3.333	93	40-140			
Benzo(k)fluoranthene	2.86	0.333	mg/kg wet	3.333	86	40-140			
Chrysene	3.00	0.167	mg/kg wet	3.333	90	40-140			
Dibenzo(a,h)Anthracene	3.11	0.167	mg/kg wet	3.333	93	40-140			
Fluoranthene	3.23	0.333	mg/kg wet	3.333	97	40-140			
Fluorene	3.26	0.333	mg/kg wet	3.333	98	40-140			
Indeno(1,2,3-cd)Pyrene	3.10	0.333	mg/kg wet	3.333	93	40-140			
Naphthalene	2.85	0.333	mg/kg wet	3.333	85	40-140			
Phenanthrene	2.84	0.333	mg/kg wet	3.333	85	40-140			
Pyrene	2.85	0.333	mg/kg wet	3.333	86	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	2.05		mg/kg wet	3.333	62	30-130			
Surrogate: 2-Fluorobiphenyl	2.12		mg/kg wet	3.333	64	30-130			
Surrogate: Nitrobenzene-d5	2.22		mg/kg wet	3.333	66	30-130			
- Surrogate: p-Terphenyl-d14	2.21		mg/kg wet	3.333	66	30-130			
LCS Dup									
2-Methylnaphthalene	2.25	0.333	mg/kg wet	3.333	67	40-140	23	30	
Acenaphthene	2.19	0.333	mg/kg wet	3.333	66	40-140	26	30	
cenaphthylene	2.42	0.333	mg/kg wet	3.333	73	40-140	26	30	
Anthracene	2.37	0.333	mg/kg wet	3.333	71	40-140	24	30	
Benzo(a)anthracene	2.38	0.333	mg/kg wet	3.333	71	40-140	25	30	
Benzo(a)pyrene	2.37	0.167	mg/kg wet	3.333	71	40-140	23	30	
Benzo(b)fluoranthene	2.29	0.333	mg/kg wet	3.333	69	40-140	28	30	
Benzo(g,h,i)perylene	2.47	0.333	mg/kg wet	3.333	74	40-140	23	30	
Benzo(k)fluoranthene	2.34	0.333	mg/kg wet	3.333	70	40-140	20	30	
Chrysene	2.34	0.167	mg/kg wet	3.333	70	40-140	25	30	
Dibenzo(a,h)Anthracene	2.50	0.167	mg/kg wet	3.333	75	40-140	22	30	
Fluoranthene	2.61	0.333	mg/kg wet	3.333	78	40-140	21	30	
Fluorene	2.35	0.333	mg/kg wet	3.333	70	40-140	33	30	D+
Indeno(1,2,3-cd)Pyrene	2.48	0.333	mg/kg wet	3.333	74	40-140	22	30	
Naphthalene	2.22	0.333	mg/kg wet	3.333	67	40-140	25	30	
Phenanthrene	2.20	0.333	mg/kg wet	3.333	66	40-140	25	30	
Pyrene	2.31	0.333	mg/kg wet	3.333	69	40-140	21	30	
Surrogate: 1,2-Dichlorobenzene-d4	1.53		mg/kg wet	3.333	46	30-130			
Surrogate: 2-Fluorobiphenyl	1.69		mg/kg wet	3.333	51	30-130			
Surrogate: Nitrobenzene-d5	1.68		mg/kg wet	3.333	50	30-130			
Surrogate: p-Terphenyl-d14	1.74		mg/kg wet	3.333	52	30-130			

CT ETPH Extractable Total Petroleum Hydrocarbons

Batch CH71019 - 3546

Blank
Total Petroleum Hydrocarbons ND 20.0 mg/kg wet

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Surrogate: O-Terphenyl

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Allalyte							LIIIIUS	RPD	LITTIL	Qualifier
	CT ET	PH Extracta	ble Total Pet	roleum F	Hydrocarb	ons				
Batch CH71019 - 3546										
Surrogate: O-Terphenyl	4.71		mg/kg wet	5.000		94	50-150			
LCS										
Total Petroleum Hydrocarbons	27.8	20.0	mg/kg wet	35.00		80	60-120			
Surrogate: O-Terphenyl	4.42		mg/kg wet	5.000		88	50-150			
LCS Dup										
Total Petroleum Hydrocarbons	28.5	20.0	mg/kg wet	35.00		81	60-120	2	30	
Surrogate: O-Terphenyl	4.49		mg/kg wet	5.000		90	50-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

Notes and Definitions

U	Analyte included in the analysis, but not detected
S+	Surrogate recovery(ies) above upper control limit (S+).

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit Limit of Detection LOD Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery
[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708217

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

$\label{lem:condition} Q:\\ \mbox{$\tt VOA\GC9_GK\DATA\GK0817\081017\GK021144.D}$

CCV EVALUATION FOR COMPLIANCE WITH CT ETPH LIMITS

Data File Name GK021144.D

Data File Path Q:\SVOA\GC9_GK\DATA\GK0817\081017\

Date Acquired #VALUE! Sample Name TPH-50

Misc Info

Target Response	Target RF 50	Target RF 100	20%< 50%
1740845	34817	17408	
1700911	34018	17009	
1753327	35067	17533	
1781155	35623	17812	
1821944	36439	18219	
1846143	36923	18461	
1911518	38230	19115	
1837567	36751	18376	
1851357	37027	18514	
1836309	36726	18363	
1844378	36888	18444	
1854357	37087	18544	
1840059	36801	18401	
1585005	31700	15850	
	36007	18003	
	28806	14403	
	43208	21604	
	18003	9002	
	54010	27005	
	1836309 1844378 1854357 1840059	1836309 36726 1844378 36888 1854357 37087 1840059 36801 1585005 31700 36007 28806 43208	1836309 36726 18363 1844378 36888 18444 1854357 37087 18544 1840059 36801 18401 1585005 31700 15850 36007 18003 28806 14403 43208 21604 18003 9002

$\tt Q:\SVOA\GC9_GK\DATA\GK0817\081017\GK021157.D$

CCV EVALUATION FOR COMPLIANCE WITH CT ETPH LIMITS

Data File Name GK021157.D

Data File Path Q:\SVOA\GC9_GK\DATA\GK0817\081017\

Date Acquired 8/10/2017 22:49

Sample Name TPH-50

Misc Info

Name	t RF 1	0 T	RF 50	50 Target RF 100	20%< 50%
C9	7517		35	17517	
C10	7132		64	17132	
C12	7667		33	17667	
C14	7925		50	17925	
C16	8475		51	18475	
C18	8609		8	18609	
C19	9275		50	19275	
C20	8617		33	18617	
C22	8712		23	18712	
C24	8500		00	18500	
C26	8625		50	18625	
C28	8679		57	18679	
C30	8578		57	18578	
C36	5706		11	15706	
Average	8144		88	18144	
AVG-20%	4515		31	14515	
AVG+20%	21773		16	21773	
AVG-50%	9072		14	9072	
AVG+50%	?7216		32	27216	
			-	***-	

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Glastonbury CT - GZA/MM Shipped/Delivered Via: ESS Courier	ESS Project ID: 1708217 Date Received: 8/9/2017 Project Due Date: 8/17/2017	<u> </u>
Air bill manifest present? No NA NA	Days for Project: 5 Day 6. Does COC match bottles?	Yes
Were custody seals present?	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes	9. Were labs informed about short holds & rushes?	Yes / No (NA
Temp: 4.4 lced with: lce 5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No)
11. Any Subcontracting needed? Yes No ESS Sample iDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes No Yes No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Sample Receiving Notes:	## Time:	<u>-</u>
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Yes (No Yes) No Time: By:	

Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	153428	Yes	NA	Yes	4 oz. Jar - Unpres	NP	
01	153433	Yes	NA	Yes	VOA Vial - Methanol	MeOH	
01	153440	Yes	NA	Yes	VOA Vial - Other	Other	
01	153441	Yes	NA	Yes	VOA Vial - Other	Other	
02	153427	Yes	NA	Yes	4 oz. Jar - Unpres	NP	
02	153432	Yes	NA	Yes	VOA Vial - Methanol	MeOH	
02	153438	Yes	NA	Yes	VOA Vial - Other	Other	
02	153439	Yes	NA	Yes	VOA Vial - Other	Other	
03	153426	Yes	NA	Yes	4 oz. Jar - Unpres	NP	
03	153431	Yes	NA	Yes	VOA Vial - Methanol	MeOH	
03	153436	Yes	NA	Yes	VOA Vial - Other	Other	
03	153437	Yes	NA	Yes	VOA Vial - Other	Other	
03	153425	Yes	NΑ	Yes	4 oz. Jar - Unpres	NP	
04	153430	Yes	NA.	Yes	VOA Vial - Methanol	MeOH	
04	153434	Yes	NA.	Yes	VOA Vial - Other	Other	
-	153434	Yes	NA	Yes	VOA Vial - Other	Other	
04 05	153424	Yes	NA	Yes	8 oz. Jar - Unpres	NP	
	153424	Yes	NA	Yes	8 oz. Jar - Unpres	NP	
06		Yes	NA	Yes	VOA Vial - Methanol	MeOH	
07 07	153429 153442	Yes	NA NA	Yes	VOA Vial - Other	Other	

2nd Review Are barcode labels on correct containers?

Completed By: Date & Time: Serviced By: Delivered By:

ESS Laboratory CHAIN OF CUSTODY			E	ESS LAI	PROJECT 1768			
Division of Thielsch Engineering, Inc. Turn Time Standard Rush Approved By:			F	Reportin	g Limits -			
185 Frances Avenue, Cranston, RI 02910- State where samples were collected: MA RI CTNH NJ NY		r			_/6H			
2211 Tel. (401) 461-7181 Fax (401) 461-4486 State where samples were conected: WA RI CLIVII NO NI	Electonic	Dalis		THE REAL PROPERTY.	Yes	No		
www.esslaboratory.com MA-MCP CC-RCP RGP Other	Format:						r	
GZA Floject Maliagel. The New March 1941.00	- 0	+	4					
GZA GeoEnvironmental, Inc. Project Name: 655 Winding Brook Drive, Suite 402	Analysis	8	32					nt#
655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033 Daniels Mill	na	4	300					mei
(860) 286-8900 Contract Pricing	- <	8	2	3				Comment
REASONABLE CONFIDENCE PROTOCOLS REQUIRED Special Pricing:		3	0	0				0
ESS Lab Date Collection Grab -G Matrix Sample Identification Sample ID Time Composite-C	# of Containers	5	Pl	1				
7 8.7.17 - G Brow Try Blank	2	X						
1 0520 1 5 B-21 (0.5-2)	4	X	X					
(0925 B-21(4-6)	4			X				
0935 B-21 (8-10)	1			X				
2 0945 B-22 (0.5-2)	4	X	X					
09KU D-22 (4-6)	4			X				
0955 12-22 (8-10)	1/			X			T	
3 1015 10-23 (2-4)	4	X	X	-				
	4			X	++		1	
1020 B-23 (5-7)		+-	\vdash	X	++-	-	+	_
1025 100 (8-10)	/	_		/	+-	-	+	
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Ascorbic Acid, 8-ZnAce 9		_			+-	\vdash	+	
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA								
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	Colored to the colored			A CENTRAL PROPERTY OF THE				
Cooler PresentNo Sampled by : 640-								
Seals Intact Yes No NA: 1 Comments: VOCs 8020								
Cooler Temperature: 3.7-4-4: C		7	Date/Tir	me Rec	eived by: (Sigr	ature))	
Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)		8	90	302 <	7	_		`
Relinquished by: (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)			Date/Tir	me Rec	eived by: (Sign	nature)		
Please E-mail all changes to Chain of Custody in	writing.							

ESS Laboratory	CHAIN OF CUSTODY	1708217
Division of Thielsch Engineering, Inc.	Turn Time Standard Rush Approved By:	Reporting Limits -
185 Frances Avenue, Cranston, RI 02910-	State where samples were collected: MA RICT NH NJ NY ME C	OtherRXC/GAPMC
2211 Tel. (401) 461-7181 Fax (401) 461-4486	Is this project for any of the following: (please circle) Elector	onic Deliverable Yes No
www.esslaboratory.com	MA-MCP CT-RCP RGP OtherForma	at: Excel X Access PDF Other
	INITA-INICA CA-ACC AGA	
GZA Project Manager: Kach	Dave Rusczyk Project # 45 441.06	. 53 29 #
GZA GeoEnvironmental, In	100	As Porker
655 Winding Brook Drive, Suite	Danieli Mill	
Glastonbury, CT 06033 (860) 286-8900	Contract Pricing	4334
REASONABLE CONFIDENCE PROTOCOL	LS REQUIRED Special Pricing:	- 108 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ESS Lab Date Collection Grab -G	Matrix Sample Identification # Conta	
Sample ID Time Composite-C	3 B-24(0.5-2)	
9 0.7.17	1 B-24 (4-6) 4	/ X X
1040	1	
1045	D-24 (8-60)	
5 /203	b-27 (0-Z) 1	
6 1205	V/ B-27 (3-5)	
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaO	H. 6-MeOH, 7-Ascorbic Acid, 8-ZnAce 9-	
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile		
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-G	roundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	
Cooler Present Yes No	Sampled by:	
Seals Intact Yes No NA:	Comments:	
Cooler Temperature: 3.7-4.41 com		Date/Time Received by: (Signature)
Relinquished by (Signature) Date/Time 8 9 1/2 0	Received by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)	Pate/Time Received by: (Signature)
Relinquished by: (Signature) Supple/Time	Received by: (Signature)	Date/Time Received by: (Signature)
01470	Please E-mail all changes to Chain of Custody in writin	ng.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Benjamin Rach GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Daniels Mill (05.0045441.06)

ESS Laboratory Work Order Number: 1708215

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 5:15 pm, Aug 17, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

SAMPLE RECEIPT

The following samples were received on August 09, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

Question 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane regulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Lab Number	Sample Name	Matrix	Analysis
1708215-01	B-16A (6-6.5')	Soil	1312, 1312/8260B
1708215-02	B-28 (0-3")	Soil	8082A
1708215-03	B-15A (0-3")	Soil	8082A
1708215-04	B-29 (0-3")	Soil	8082A
1708215-05	B-31 (0-3")	Soil	8082A
1708215-06	B-11A (24-274")	Soil	8082A
1708215-07	B-32 (0-3")	Soil	8082A
1708215-08	B-13A (0-3")	Soil	8082A
1708215-09	B-33 (0-3")	Soil	8082A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

PROJECT NARRATIVE

1312/8260B Volatile SPLP Compounds

CH71622-BSD1 Blank Spike recovery is below lower control limit (B-).

Chloroethane (66% @ 70-130%)

8082A Polychlorinated Biphenyls (PCB)

CH71016-BSD1 Relative percent difference for duplicate is outside of criteria (D+).

Aroclor 1016 (44% @ 30%), Aroclor 1016 [2C] (44% @ 30%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

 $5030\mbox{C}$ - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

Laboratory Analysis QA/QC Certification Form

	QA/QC Certification Form							
Project Nur	nber: <u>05.0045441.06</u>							
	vate(s): 8/8/2017							
List RCP M	() 8270C () 8081A () VPH () 6020 () 7470A/1A) 9014M) 7196A						
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes (X) No ()						
1A	Were the method specified preservation and holding time requirements met?	Yes (X) No ()						
1B	1B <u>VPH and EPH Methods only:</u> Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?							
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?							
3	Were samples received at an appropriate temperature (<6° °C°)?							
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?							
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?							
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?							
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes () No (X)						
provided in	or all questions to which the response was "No" (with the exception of question #7), additional information must be an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the s for "Reasonable Confidence." This form may not be altered and all questions must be answered.							
personal in and compl	ersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon a nequiry of those responsible for providing the information contained in this analytical report, such information is accete. d Signature: Position: Laboratory Director							

185 Frances Avenue, Cranston, RI 02910-2211

Printed Name: <u>Laurel Stoddard</u>

Name of Laboratory: ESS Laboratory

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

August 17, 2017

Date:

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-16A (6-6.5') Date Sampled: 08/08/17 10:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-01

Sample Matrix: Soil

Units: ug/L Analyst: MD

1312/8260B Volatile SPLP Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1,1-Trichloroethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1,2,2-Tetrachloroethane	ND (0.5)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1,2-Trichloro-1,2,2-trifluoroethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1,2-Trichloroethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1-Dichloroethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1-Dichloroethene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,1-Dichloropropene	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2,3-Trichlorobenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2,3-Trichloropropane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2,4-Trichlorobenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2,4-Trimethylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2-Dibromo-3-Chloropropane	ND (5.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2-Dibromoethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2-Dichlorobenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2-Dichloroethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,2-Dichloropropane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,3,5-Trimethylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,3-Dichlorobenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,3-Dichloropropane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
1,4-Dichlorobenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
2,2-Dichloropropane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
2-Butanone	ND (25.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
2-Chlorotoluene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
2-Hexanone	ND (10.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
4-Chlorotoluene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
4-Isopropyltoluene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
4-Methyl-2-Pentanone	ND (25.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Acetone	ND (25.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Acrylonitrile	ND (0.4)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Benzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Bromobenzene	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-16A (6-6.5') Date Sampled: 08/08/17 10:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-01

Sample Matrix: Soil

Units: ug/L Analyst: MD

1312/8260B Volatile SPLP Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Bromodichloromethane	ND (0.6)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Bromoform	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Bromomethane	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Carbon Disulfide	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Carbon Tetrachloride	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Chlorobenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Chloroethane	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Chloroform	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Chloromethane	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
cis-1,2-Dichloroethene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
cis-1,3-Dichloropropene	ND (0.4)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Dibromochloromethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Dibromomethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Dichlorodifluoromethane	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Ethylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Hexachlorobutadiene	ND (0.6)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Isopropylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Methyl tert-Butyl Ether	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Methylene Chloride	ND (4.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Naphthalene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
n-Butylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
n-Propylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
sec-Butylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Styrene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
tert-Butylbenzene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Tetrachloroethene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Tetrahydrofuran	ND (5.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Toluene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
trans-1,2-Dichloroethene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
trans-1,3-Dichloropropene	ND (0.5)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Trans-1,4-Dichloro-2-Butene	ND (5.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Trichloroethene	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-16A (6-6.5') Date Sampled: 08/08/17 10:20

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-01

Sample Matrix: Soil

Units: ug/L Analyst: MD

1312/8260B Volatile SPLP Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Trichlorofluoromethane	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Vinyl Chloride	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Xylene O	ND (1.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
Xylene P,M	ND (2.0)		1312/8260B		1	08/16/17 12:52	C7H0221	CH71622
		4/5	0 "5					
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		89 %		70-130				
Surrogate: 4-Bromofluorobenzene		93 %		70-130				
Surrogate: Dibromofluoromethane		93 %		70-130				
Surrogate: Toluene-d8		102 %		70-130				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-16A (6-6.5') Date Sampled: 08/08/17 10:20

Percent Solids: N/A Initial Volume: 100 Final Volume: 2000

Extraction Method: 1312/ZHE

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-01

Sample Matrix: Soil

Units: °C Analyst: MD

Prepared: 8/11/17 16:48

ZHE Extraction by 1312

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	Batch
Temperature (Min C)	20.5 (N/A)		1312		1	MD	08/12/17 9:32	CH71703
Temperature (Max C)	21.5 (N/A)		1312		1	MD	08/12/17 9:32	CH71703

Temperature (Range)

Temperature is not within 23 +/-2 $^{\circ}C$. (N/A)

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-28 (0-3") Date Sampled: 08/08/17 10:50

Percent Solids: 82 Initial Volume: 19.2 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-02

Sample Matrix: Soil Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1254	0.2 (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/15/17 3:37		CH71016
-		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		73 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		66 %		30-150				
Surrogate: Tetrachloro-m-xylene		77 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		78 %		30-150				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-15A (0-3") Date Sampled: 08/08/17 11:18

Percent Solids: 89 Initial Volume: 19.2 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-03

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyze</u>	d Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1254	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 1:0	05	CH71016
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		83 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		79 %		30-150				
Surrogate: Tetrachloro-m-xylene		83 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		91 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-29 (0-3") Date Sampled: 08/08/17 11:35

Percent Solids: 84 Initial Volume: 19.5 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-04

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1254	0.2 (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 1:23		CH71016
-		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		75 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		73 %		30-150				
Surrogate: Tetrachloro-m-xylene		88 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		94 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-31 (0-3") Date Sampled: 08/08/17 11:45

Percent Solids: 84 Initial Volume: 19.9 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-05

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1254	0.2 (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 3:36		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		81 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		78 %		30-150				
Surrogate: Tetrachloro-m-xylene		85 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		92 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-11A (24-274") Date Sampled: 08/08/17 12:06

Percent Solids: 93 Initial Volume: 19.2 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-06

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	\mathbf{DF}	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1254	0.5 (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1260	0.07 (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 3:55		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		114 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		103 %		30-150				
Surrogate: Tetrachloro-m-xylene		84 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		90 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-32 (0-3") Date Sampled: 08/08/17 12:15

Percent Solids: 87 Initial Volume: 19.3 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-07

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyz</u>	ed Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1254	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 4	1:14	CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		87 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		80 %		30-150				
Surrogate: Tetrachloro-m-xylene		87 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		93 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-13A (0-3") Date Sampled: 08/08/17 12:45

Percent Solids: 88 Initial Volume: 19.2 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-08

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1254	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 4:33		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		87 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		84 %		30-150				
Surrogate: Tetrachloro-m-xylene		84 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		92 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: B-33 (0-3") Date Sampled: 08/08/17 12:55

Percent Solids: 85 Initial Volume: 19.4 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708215 ESS Laboratory Sample ID: 1708215-09

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1221	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1232	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1242	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1248	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1254	0.1 (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1260	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1262	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
Aroclor 1268	ND (0.06)		8082A		1	08/12/17 4:52		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		79 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		79 %		30-150				
Surrogate: Tetrachloro-m-xylene		90 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		98 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CH71016 - 3540C									
Blank									
Aroclor 1016	ND	0.05	mg/kg wet						
Aroclor 1016 [2C]	ND	0.05	mg/kg wet						
Aroclor 1221	ND	0.05	mg/kg wet						
Aroclor 1221 [2C]	ND	0.05	mg/kg wet						
Aroclor 1232	ND	0.05	mg/kg wet						
Aroclor 1232 [2C]	ND	0.05	mg/kg wet						
Aroclor 1242	ND	0.05	mg/kg wet						
Aroclor 1242 [2C]	ND	0.05	mg/kg wet						
Aroclor 1248	ND	0.05	mg/kg wet						
Aroclor 1248 [2C]	ND	0.05	mg/kg wet						
Aroclor 1254	ND	0.05	mg/kg wet						
Aroclor 1254 [2C]	ND	0.05	mg/kg wet						
Aroclor 1260	ND	0.05	mg/kg wet						
Aroclor 1260 [2C]	ND	0.05	mg/kg wet						
Aroclor 1262	ND	0.05	mg/kg wet						
Aroclor 1262 [2C]	ND	0.05	mg/kg wet						
Aroclor 1268	ND	0.05	mg/kg wet						
Aroclor 1268 [2C]	ND	0.05	mg/kg wet						
			_						
Surrogate: Decachlorobiphenyl	0.0222		mg/kg wet	0.02500	89	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0213		mg/kg wet	0.02500	85	30-150			
Surrogate: Tetrachloro-m-xylene	0.0117		mg/kg wet	0.02500	47	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0128		mg/kg wet	0.02500	51	30-150			
LCS									
Aroclor 1016	0.3	0.05	mg/kg wet	0.5000	60	40-140			
Aroclor 1016 [2C]	0.3	0.05	mg/kg wet	0.5000	60	40-140			
Aroclor 1260	0.5	0.05	mg/kg wet	0.5000	90	40-140			
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	83	40-140			
Surrogate: Decachlorobiphenyl	0.0224		mg/kg wet	0.02500	89	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0216		mg/kg wet	0.02500	86	30-150			
Surrogate: Tetrachloro-m-xylene	0.00961		mg/kg wet	0.02500	38	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.00979		mg/kg wet	0.02500	39	30-150			
LCS Dup									
Aroclor 1016	0.5	0.05	mg/kg wet	0.5000	93	40-140	44	30	D+
Aroclor 1016 [2C]	0.5	0.05	mg/kg wet	0.5000	94	40-140	44	30	D+
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	87	40-140	4	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	81	40-140	2	30	
	···						=		
Surrogate: Decachlorobiphenyl	0.0205		mg/kg wet	0.02500	82	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0202		mg/kg wet	0.02500	81	30-150			
Surrogate: Tetrachloro-m-xylene	0.0213		mg/kg wet	0.02500	85	30-150			

1312/8260B Volatile SPLP Compounds

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

1312/8260B Volatile SPLP Compounds

Batch CH71622 - 5030B			
Blank			
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L
1,1,1-Trichloroethane	ND	1.0	ug/L
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L
1,1,2-Trichloroethane	ND	1.0	ug/L
1,1-Dichloroethane	ND	1.0	ug/L
1,1-Dichloroethene	ND	1.0	ug/L
1,1-Dichloropropene	ND	2.0	ug/L
1,2,3-Trichlorobenzene	ND	1.0	ug/L
1,2,3-Trichloropropane	ND	1.0	ug/L
1,2,4-Trichlorobenzene	ND	1.0	ug/L
1,2,4-Trimethylbenzene	ND	1.0	ug/L
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L
1,2-Dibromoethane	ND	1.0	ug/L
1,2-Dichlorobenzene	ND	1.0	ug/L
1,2-Dichloroethane	ND ND	1.0	ug/L
1,2-Dichloropropane	ND ND	1.0	ug/L ug/L
1,3,5-Trimethylbenzene	ND	1.0	ug/L
1,3-Dichlorobenzene	ND	1.0	ug/L
1,3-Dichloropropane	ND	1.0	ug/L
1,4-Dichlorobenzene	ND	1.0	ug/L
2,2-Dichloropropane	ND	1.0	ug/L
2-Butanone	ND	25.0	ug/L
2-Chlorotoluene	ND	1.0	ug/L
2-Hexanone	ND	10.0	ug/L
4-Chlorotoluene	ND	1.0	ug/L
4-Isopropyltoluene	ND	1.0	ug/L
4-Methyl-2-Pentanone	ND	25.0	ug/L
Acetone	ND	25.0	ug/L
Acrylonitrile	ND	0.4	ug/L
Benzene	ND	1.0	ug/L
Bromobenzene	ND	2.0	ug/L
Bromodichloromethane	ND	0.6	ug/L
Bromoform	ND	1.0	ug/L
Bromomethane	ND	2.0	ug/L
Carbon Disulfide	ND	1.0	ug/L
Carbon Tetrachloride	ND	1.0	ug/L
Chlorobenzene	ND	1.0	ug/L
Chloroethane	ND	2.0	ug/L
Chloroform	ND	1.0	ug/L
Chloromethane	ND	2.0	ug/L
cis-1,2-Dichloroethene	ND	1.0	ug/L
cis-1,3-Dichloropropene	ND	0.4	ug/L
Dibromochloromethane	ND	1.0	ug/L
	110	0	~9/ L

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Batch CH71622 - 5030B

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

1312/8260B Volatile SPLP Compounds

Datcii C11/ 1022 - 3030B							
Dibromomethane	ND	1.0	ug/L				
Dichlorodifluoromethane	ND	2.0	ug/L				
Ethylbenzene	ND	1.0	ug/L				
Hexachlorobutadiene	ND	0.6	ug/L				
Isopropylbenzene	ND	1.0	ug/L				
Methyl tert-Butyl Ether	ND	1.0	ug/L				
Methylene Chloride	ND	4.0	ug/L				
, Naphthalene	ND	1.0	ug/L				
n-Butylbenzene	ND	1.0	ug/L				
n-Propylbenzene	ND	1.0	ug/L				
sec-Butylbenzene	ND	1.0	ug/L				
Styrene	ND	1.0	ug/L				
tert-Butylbenzene	ND	1.0	ug/L				
Tetrachloroethene	ND	1.0	ug/L				
Tetrahydrofuran	ND	5.0	ug/L ug/L				
Toluene	ND ND	1.0	ug/L ug/L				
trans-1,2-Dichloroethene	ND ND	1.0					
			ug/L				
trans-1,3-Dichloropropene	ND	0.5	ug/L				
Trans-1,4-Dichloro-2-Butene	ND	5.0	ug/L				
Trichloroethene	ND	1.0	ug/L				
Trichlorofluoromethane	ND	1.0	ug/L				
Vinyl Chloride	ND	1.0	ug/L				
Xylene O	ND	1.0	ug/L				
Xylene P,M	ND	2.0	ug/L				
Surrogate: 1,2-Dichloroethane-d4	21.3		ug/L	25.00	85	70-130	
Surrogate: 4-Bromofluorobenzene	23.9		ug/L	25.00	96	70-130	
Surrogate: Dibromofluoromethane	22.9		ug/L	25.00	91	70-130	
Surrogate: Toluene-d8	25.3		ug/L	25.00	101	70-130	
LCS							
1,1,1,2-Tetrachloroethane	10.6		ug/L	10.00	106	70-130	
1,1,1-Trichloroethane	10.1		ug/L	10.00	101	70-130	
1,1,2,2-Tetrachloroethane	11.5		ug/L	10.00	115	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane							
-/-//-/	9.6		ug/L	10.00	96	70-130	
	9.6 9.7		ug/L ug/L	10.00 10.00	96 97	70-130 70-130	
1,1,2-Trichloroethane							
1,1,2-Trichloroethane 1,1-Dichloroethane	9.7		ug/L	10.00	97	70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene	9.7 9.6		ug/L ug/L	10.00 10.00	97 96	70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	9.7 9.6 11.1		ug/L ug/L ug/L	10.00 10.00 10.00	97 96 111	70-130 70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene	9.7 9.6 11.1 9.7		ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00	97 96 111 97	70-130 70-130 70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	9.7 9.6 11.1 9.7 11.1		ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00	97 96 111 97 111	70-130 70-130 70-130 70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	9.7 9.6 11.1 9.7 11.1 11.5		ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 10.00	97 96 111 97 111 115	70-130 70-130 70-130 70-130 70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	9.7 9.6 11.1 9.7 11.1 11.5		ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 10.00 10.00	97 96 111 97 111 115 106	70-130 70-130 70-130 70-130 70-130 70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	9.7 9.6 11.1 9.7 11.1 11.5 10.6		ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 10.00 10.00	97 96 111 97 111 115 106	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	9.7 9.6 11.1 9.7 11.1 11.5 10.6 10.8 13.0		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	97 96 111 97 111 115 106 108	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Batch CH71622 - 5030B

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

l312/8260B	Volatile SPLP	Compounds
------------	---------------	-----------

Batch CH/1622 - 5030B					
1,2-Dichloropropane	9.9	ug/L	10.00	99	70-130
1,3,5-Trimethylbenzene	10.4	ug/L	10.00	104	70-130
1,3-Dichlorobenzene	10.2	ug/L	10.00	102	70-130
1,3-Dichloropropane	10.9	ug/L	10.00	109	70-130
,4-Dichlorobenzene	10.0	ug/L	10.00	100	70-130
2,2-Dichloropropane	9.8	ug/L	10.00	98	70-130
2-Butanone	51.8	ug/L	50.00	104	70-130
2-Chlorotoluene	10.1	ug/L	10.00	101	70-130
2-Hexanone	52.2	ug/L	50.00	104	70-130
1-Chlorotoluene	10.0	ug/L	10.00	100	70-130
1-Isopropyltoluene	10.8	ug/L	10.00	108	70-130
1-Methyl-2-Pentanone	51.3	ug/L	50.00	103	70-130
Acetone	51.7	ug/L	50.00	103	70-130
Acrylonitrile	10.4	ug/L	10.00	104	70-130
Benzene	9.9	ug/L	10.00	99	70-130
Bromobenzene	10.5	ug/L	10.00	105	70-130
Bromodichloromethane	9.7	ug/L	10.00	97	70-130
Bromoform	10.4	ug/L	10.00	104	70-130
Bromomethane	12.4	ug/L	10.00	124	70-130
Carbon Disulfide	10.8	ug/L	10.00	108	70-130
Carbon Tetrachloride	9.7	ug/L	10.00	97	70-130
Chlorobenzene	10.0		10.00	100	70-130
Chloroethane	7.6	ug/L	10.00	76	70-130
Chloroform	9.9	ug/L	10.00	99	70-130
Chloromethane	9.9	ug/L	10.00	99	70-130
:is-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130
is-1,3-Dichloropropene	10.2	ug/L	10.00	102	70-130
Dibromochloromethane	10.6	ug/L	10.00	106	70-130
Dibromomethane	10.4	ug/L	10.00	104	70-130
Dichlorodifluoromethane	9.1	ug/L	10.00	91	70-130
ithylbenzene	10.5	ug/L	10.00	105	70-130
lexachlorobutadiene	12.5		10.00	125	70-130
sopropylbenzene	9.8	ug/L	10.00	98	70-130
Nethyl tert-Butyl Ether	10.2	ug/L	10.00	102	70-130
1ethylene Chloride	10.6		10.00	106	70-130
laphthalene	10.9	ug/L	10.00	109	70-130
-Butylbenzene	10.4		10.00	104	70-130
ı-Propylbenzene	10.1	ug/L	10.00	101	70-130
ec-Butylbenzene	10.6	ug/L	10.00	106	70-130
ityrene	8.8	- -	10.00	88	70-130
ert-Butylbenzene	9.8		10.00	98	70-130
etrachloroethene	9.0		10.00	90	70-130
- etrahydrofuran	10.1	- -	10.00	101	70-130
Foluene	10.5		10.00	105	70-130
rans-1,2-Dichloroethene	10.2	ug/L	-		•

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Batch CH71622 - 5030B

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

1312/8260B Volatile SPI	LP Compounds
-------------------------	--------------

Batch CH71622 - 5030B								
trans-1,3-Dichloropropene	9.4	ug/L	10.00	94	70-130			
Frans-1,4-Dichloro-2-Butene	8.0	ug/L	10.00	80	70-130			
richloroethene	9.6	ug/L	10.00	96	70-130			
richlorofluoromethane	9.6	ug/L	10.00	96	70-130			
/inyl Chloride	10.7	ug/L	10.00	107	70-130			
Kylene O	10.8	ug/L	10.00	108	70-130			
Kylene P,M	18.5	ug/L	20.00	92	70-130			
Surrogate: 1,2-Dichloroethane-d4	24.3	ug/L	25.00	97	70-130			
Surrogate: 4-Bromofluorobenzene	27.8	ug/L	25.00	111	70-130			
Surrogate: Dibromofluoromethane	25.1	ug/L	25.00	100	70-130			
Surrogate: Toluene-d8	27.2	ug/L	25.00	109	70-130			
LCS Dup								
,1,1,2-Tetrachloroethane	10.0	ug/L	10.00	100	70-130	5	25	
,1,1-Trichloroethane	9.4	ug/L	10.00	94	70-130	8	25	
,1,2,2-Tetrachloroethane	11.4	ug/L	10.00	114	70-130	0.4	25	
,1,2-Trichloro-1,2,2-trifluoroethane	10.1	ug/L	10.00	101	70-130	5	25	
,1,2-Trichloroethane	8.9	ug/L	10.00	89	70-130	9	25	
,1-Dichloroethane	9.2	ug/L	10.00	92	70-130	4	25	
,1-Dichloroethene	11.0	ug/L	10.00	110	70-130	1	25	
1-Dichloropropene	9.9	ug/L	10.00	99	70-130	2	25	
,2,3-Trichlorobenzene	10.5	ug/L	10.00	105	70-130	5	25	
,2,3-Trichloropropane	11.0	ug/L	10.00	110	70-130	4	25	
,2,4-Trichlorobenzene	10.4	ug/L	10.00	104	70-130	2	25	
,2,4-Trimethylbenzene	10.7	ug/L	10.00	107	70-130	1	25	
,2-Dibromo-3-Chloropropane	11.4	ug/L	10.00	114	70-130	13	25	
,2-Dibromoethane	10.1	ug/L	10.00	101	70-130	7	25	
,2-Dichlorobenzene	10.0	ug/L	10.00	100	70-130	2	25	
,2-Dichloroethane	9.0	ug/L	10.00	90	70-130	4	25	
,2-Dichloropropane	10.3	ug/L	10.00	103	70-130	4	25	
,3,5-Trimethylbenzene	10.6	ug/L	10.00	106	70-130	2	25	
,3-Dichlorobenzene	10.1	ug/L	10.00	101	70-130	1	25	
,3-Dichloropropane	10.4	ug/L	10.00	104	70-130	5	25	
,4-Dichlorobenzene	10.0	ug/L	10.00	100	70-130	0.5	25	
,2-Dichloropropane	9.2	ug/L	10.00	92	70-130	6	25	
-Butanone	43.6	ug/L	50.00	87	70-130	17	25	
-Chlorotoluene	10.1	ug/L	10.00	101	70-130	0.4	25	
-Hexanone	47.2	ug/L	50.00	94	70-130	10	25	
-Chlorotoluene	10.1	ug/L	10.00	101	70-130	1	25	
-Isopropyltoluene	10.5	ug/L	10.00	105	70-130	3	25	
-Methyl-2-Pentanone	48.4	ug/L	50.00	97	70-130	6	25	
cetone	59.7	ug/L	50.00	119	70-130	14	25	
crylonitrile	9.6	ug/L	10.00	96	70-130	8	25	
enzene	9.6	ug/L	10.00	96	70-130	3	25	
Bromobenzene	10.7	ug/L	10.00	107	70-130	2	25	
Bromodichloromethane	9.4	ug/L	10.00	94	70-130	3	25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

1312/8260B Volatile SPLP	Compounds
--------------------------	-----------

Batch CH71622 - 5030B								
Bromoform	10.3	ug/L	10.00	103	70-130	1	25	
Bromomethane	11.7	ug/L	10.00	117	70-130	5	25	
Carbon Disulfide	10.7	ug/L	10.00	107	70-130	0.7	25	
Carbon Tetrachloride	9.6	ug/L	10.00	96	70-130	2	25	
Chlorobenzene	9.9	ug/L	10.00	99	70-130	0.5	25	
Chloroethane	6.6	ug/L	10.00	66	70-130	14	25	B-
Chloroform	9.7	ug/L	10.00	97	70-130	2	25	
Chloromethane	10.5	ug/L	10.00	105	70-130	6	25	
cis-1,2-Dichloroethene	9.8	ug/L	10.00	98	70-130	2	25	
cis-1,3-Dichloropropene	9.8	ug/L	10.00	98	70-130	4	25	
Dibromochloromethane	10.4	ug/L	10.00	104	70-130	1	25	
Dibromomethane	9.6	ug/L	10.00	96	70-130	8	25	
Dichlorodifluoromethane	9.0	ug/L	10.00	90	70-130	0.9	25	
Ethylbenzene	10.3	ug/L	10.00	103	70-130	2	25	
Hexachlorobutadiene	12.7	ug/L	10.00	127	70-130	2	25	
Isopropylbenzene	9.8	ug/L	10.00	98	70-130	0.3	25	
Methyl tert-Butyl Ether	9.8	ug/L	10.00	98	70-130	4	25	
Methylene Chloride	10.4	ug/L	10.00	104	70-130	2	25	
Naphthalene	10.6	ug/L	10.00	106	70-130	4	25	
n-Butylbenzene	9.7	ug/L	10.00	97	70-130	7	25	
n-Propylbenzene	10.2	ug/L	10.00	102	70-130	0.8	25	
sec-Butylbenzene	10.6	ug/L	10.00	106	70-130	0.09	25	
Styrene	8.6	ug/L	10.00	86	70-130	2	25	
tert-Butylbenzene	9.9	ug/L	10.00	99	70-130	1	25	
Tetrachloroethene	8.3	ug/L	10.00	83	70-130	8	25	
Tetrahydrofuran	9.9	ug/L	10.00	99	70-130	2	25	
Toluene	10.1	ug/L	10.00	101	70-130	4	25	
trans-1,2-Dichloroethene	10.1	ug/L	10.00	101	70-130	0.6	25	
trans-1,3-Dichloropropene	9.0	ug/L	10.00	90	70-130	4	25	
Trans-1,4-Dichloro-2-Butene	8.8	ug/L	10.00	88	70-130	9	25	
Trichloroethene	9.3	ug/L	10.00	93	70-130	4	25	
Trichlorofluoromethane	10.6	ug/L	10.00	106	70-130	10	25	
Vinyl Chloride	10.5	ug/L	10.00	105	70-130	2	25	
Xylene O	10.6	ug/L	10.00	106	70-130	2	25	
Xylene P,M	18.5	ug/L	20.00	93	70-130	0.4	25	
Surrogate: 1,2-Dichloroethane-d4	22.6	ug/L	25.00	90	70-130			
Surrogate: 4-Bromofluorobenzene	26.9	ug/L	25.00	108	70-130			
Surrogate: Dibromofluoromethane	24.5	ug/L	25.00	98	70-130			
Surrogate: Toluene-d8	27.4	ug/L	25.00	110	70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

ESS Laboratory Work Order: 1708215 Client Project ID: Daniels Mill

	Notes and Definitions
Z18	Temperature is not within 23 +/-2 °C.
U	Analyte included in the analysis, but not detected
D+	Relative percent difference for duplicate is outside of criteria (D+).
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RLReporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708215

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GZA - Glastonbury CT - GZA/MM	ESS Projec		
Chinad Delivered View ESS Courier	Date Recei Project Due I	ived: 8/9/2017 Date: 8/17/2017	
Shipped/Delivered Via: ESS Courier		oject: 5 Day	
1. Air bill manifest present? No No NA	6. Does COC matc	h bottles?	Yes
Were custody seals present? No	7. Is COC complete	e and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples re	eceived intact?	Yes
4. Is a Cooler Present? Yes Temp: 4.4 Iced with: Ice		rmed about <u>short holds & rushes</u> ?	
Was COC signed and dated by client? Yes	10. Were any ana	lyses received outside of hold time?	Yes (No
			
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs re a. Air bubbles in a b. Does methanol		Yes (No) Yes / No (NA)
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes No Date: Date:	Time:	By: By:	
Sample Receiving Notes:			
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Yes No Yes No Time:	Ву:	
Sample Container Proper Bubbles Volume Number ID Container Present	Container Type		(Cyanide and 608 esticides)
01 153402 Yes NA Yes	4 oz. Jar - Unpres	NP	
01 153403 Yes NA Yes	Encore Sampler	NP	
02 153411 Yes NA Yes	4 oz. Jar - Unpres 4 oz. Jar - Unpres	NP NP	
03 153410 Yes NA Yes 04 153409 Yes NA Yes	4 oz. Jar - Unpres	NP	
04 153409 Yes NA Yes 05 153408 Yes NA Yes	4 oz. Jar - Unpres	NP	
06 153407 Yes NA Yes	4 oz. Jar - Unpres	NP	•
07 153406 Yes NA Yes	4 oz. Jar - Unpres	NP	
08 153405 Yes NA Yes	4 oz. Jar - Unpres	NP	
09 153404 Yes NA Yes	4 oz. Jar - Unpres	NP	
2nd Review Are barcode labels on correct containers?	Yes)/ No		
Completed By:	&RID	17/1	
	Date & Time: U/ 1/1	<u> </u>	
By: Reviewed By:	Date & Time: VG	1744	

		ESS LAB PROJECT ID
ESS Laboratory	CHAIN OF CUSTODY	Reporting Limits -
Di in af Thiologh Engineering Inc.	Turn Time Standard Rush Approved By:	RDEC (GAPMC
185 Frances Avenue, Cranston, RI 02910-	State where samples were collected: MA RICT NH NJ NY ME Other	
2211 Tel. (401) 461-7181 Fax (401) 461-4480	Is this project for any of the following: (please circle)	Clubic
www.esslaboratory.com	MA-MCP CT-RCP RGP OtherFormat. Excer	Y Access 131
GZA Project Manager: Benkal	Eve Ruczyk Project # 45441.06	
GZA Project Manager	Designat Name:	J #
655 Winding Brook Drive, Suite	Daniel Mil En	Comment
Glastonbury, CT 06033	Contract Pricing	7 1 0 m
(860) 286-8900		
REASONABLE CONFIDENCE PROTOCOL	Sample Identification # of	
ESS Lab Date Collection Grab -G Sample ID Time Composite-C	Containers	
1 8/8/17 620 0-	5 B-16A (6-65) 2	/
7	1 R-28 (0-3")	
2 1250		
1053	B-28 (12-15")	
	B-15A (6-3")	
	B-154 (12-15")	
1120		
4 1135	B-29 (0-3-)	
	B-29 (12-15")	
1138	0 2/ (8 2")	
5 1145	15-31 6-37	
1147	B-31 (12.15")	
	1 (B-114 CO-3")	
1200	(1)	1
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOF	I, 6-MeOH, 7-Ascorbic Acid, 8-ZhAce 9	E
Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile	oundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter	
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Gr	Sampled by :	
Cooler Present Yes No		
Seals Intact Yes No NA: Cooler Temperature: 3774.	Comments: (. Include, Encore Samples	
		Date/Time Received by: (Signature)
Relinquished by: (Signature)	AT A THE COURT OF THE PARTY OF	Date/Time Received by: (Signature)
Relinquished by: (Signature)	Received by: (Signature)	Daterrine
87+16	Please E-mail all changes to Chain of Custody in writing.	di O
	Please E-mail all changes to Chain of Custou, in Williams	Page 1 of 3
		(he)

	CHIATALOE CHICTORY	E	ESS LAB PROJECT ID 1708215	
ESS Laboratory	CHAIN OF CUSTODY	- II	Reporting Limits -	
Division of Thielsch Engineering, Inc.	Turn Time Standard Rush Approved By:		RDEC/GAPML	
185 Frances Avenue, Cranston, RI 02910-	State where samples were collected: MA RICPNH NJ NY M	IE Other		
2211 Tel. (401) 461-7181 Fax (401) 461-448		lectonic Deliverab	Access PDF Other	
www.esslaboratory.com	MA-MCP CF-RCP RGP Other Fe	ormat: Excel	AccessTDI/ Calci	
GZA Project Manager: Sen Res	Inc. Project # 4 7441, 06 Project Name: Danch Mil	5		#
GZA GeoEnvironmental,	Inc. Project Name:	Analysis Many		ınt
655 Winding Brook Drive, Sui	ite 402 Panel, MI	na Na		Comment
Glastonbury, CT 06033	Contract Pricing	× 117		l om
(860) 286-8900 REASONABLE CONFIDENCE PROTOCO		20		
ESS Lab Date Collection Grab -G	Matrix Sample Identification	# of		T-0
Sample ID Time Composite	C C	Containers		
18/8/17 1203 C) B-11A (12-15")	X		_
6 1206	B-114 (24-27")			-
7 1/2/5	B-32 (0-3")"	X		
1218	B-32 (12-15")			
1230	B-14A (0-3")			
/233	B-14A (12-15")	X		
	A-(3A (D-3")	X		
8 124)	D-13A (12-15")	X		
1279	0-33 (0-31)	X		
9 125	b-33 (12-15")	X		
1/2501	4 8	4		
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-Na	aOH, 6-MeOH, 7-Ascorbic Acid, 8-ZnAce 9			
Container Type: P-Poly G-Glass AG-Amber Glass S-Steril	le V-VOA			
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-	-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter			
Cooler Present Yes No	Sampled by:			
Seals IntactYesNo NA:	Comments:			_
Cooler Temperature: 3-7-4-4 rce n	ime Received by: (Signature) Refinquished by: (Signature)	Date	Time Received by: (Signature)	
Relinquished by: (Signature) Date/Ti S-9/15	The GEVA Tribe Belinquisher the (Signature)	8 (9) Date/		
Relinquished by: (Signature)	ime Received by (Signature)			(1)
	Please E-mail all changes to Chain of Custody in w	riting.	T.	0

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Benjamin Rach GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Daniels Mill (05.0045441.06)

ESS Laboratory Work Order Number: 1708211

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 3:52 pm, Aug 17, 2017

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

SAMPLE RECEIPT

The following samples were received on August 09, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

Question 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane regulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Lab Number 1708211-01	Sample Name PCB-1-1-20	Matrix Solid	Analysis 8082A
1708211-02	PCB-1-1-21	Solid	8082A
1708211-03	PCB-1-1-22	Solid	8082A
1708211-04	PCB-1-1-23	Solid	8082A
1708211-05	PCB-1-B-24	Solid	8082A
1708211-06	PCB-1-B-25	Solid	8082A
1708211-07	PCB-1-B-26	Solid	8082A
1708211-08	PCB-1-B-27	Solid	8082A
1708211-09	PCB-1-B-28	Solid	8082A
1708211-10	PCB-1-B-29	Solid	8082A
1708211-11	PCB-1-B-30	Solid	8082A
1708211-12	PCB-1-B-31	Solid	8082A
1708211-13	PCB-1-B11-32	Solid	8082A
1708211-14	PCB-1-B15-33	Solid	8082A

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

PROJECT NARRATIVE

8082A Polychlorinated Biphenyls (PCB)

0002A I OLYCHIOLII	lated Diplicity is (1 CD)
1708211-01	Surrogate recovery(ies) diluted below the MRL (SD).
	Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene
	(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)
1708211-02	Surrogate recovery(ies) diluted below the MRL (SD).
	Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene
	(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)
1708211-03	Surrogate recovery(ies) diluted below the MRL (SD).
	Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene
	(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)
1708211-05	Surrogate recovery(ies) diluted below the MRL (SD).
	Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene
	(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)
1708211-13	Surrogate recovery(ies) diluted below the MRL (SD).
	Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene
	(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)
1708211-14	Surrogate recovery(ies) diluted below the MRL (SD).
	Decachlorobiphenyl (% @ 30-150%), Decachlorobiphenyl [2C] (% @ 30-150%), Tetrachloro-m-xylene
	(% @ 30-150%), Tetrachloro-m-xylene [2C] (% @ 30-150%)
CH71016 DSD1	Polative persent difference for duplicate is outside of evitoric (D+)

CH71016-BSD1 Relative

Relative percent difference for duplicate is outside of criteria (D+).

Aroclor 1016 (44% @ 30%), Aroclor 1016 [2C] (44% @ 30%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

Laboratory Analysis QA/QC Certification Form

	QA/QC Certification Form	
	mber: <u>05.0045441.06</u>	
	Date(s): 8/7/2017	
	() 8270C () 8081A () VPH () 6020 () 7470A/1A) 9014M) 7196A
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes (X) No ()
1A	Were the method specified preservation and holding time requirements met?	Yes (X) No ()
1B	<u>VPH and EPH Methods only:</u> Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes () No () N/A (X)
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes (X) No ()
3	Were samples received at an appropriate temperature (<6° C°)?	Yes (X) No () N/A ()
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes () No (X)
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?	Yes (X) No () Yes () No (X)
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes (X) No ()
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes () No (X)
rovided in	For all questions to which the response was "No" (with the exception of question #7), additional information must be an attached narrative. If the answer to question #1, #1 A or #1B is "No", the data package does not meet the atts for "Reasonable Confidence." This form may not be altered and all questions must be answered.	
	ersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon inquiry of those responsible for providing the information contained in this analytical report, such information is accollete.	

Printed Name: Laurel Stoddard

Name of Laboratory: ESS Laboratory

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-1-20 Date Sampled: 08/07/17 13:40

Percent Solids: N/A Initial Volume: 10 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-01

Sample Matrix: Solid Units: mg/kg wet Analyst: CAD

Prepared: 8/10/17 16:30

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1221	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1232	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1242	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1248	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1254	26.9 (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1260	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1262	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
Aroclor 1268	ND (5.0)		8082A		50	08/15/17 0:26		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-1-21 Date Sampled: 08/07/17 14:00

Percent Solids: N/A Initial Volume: 10.1 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-02

Sample Matrix: Solid Units: mg/kg wet Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1221	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1232	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1242	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1248	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1254	58.6 (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1260	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1262	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
Aroclor 1268	ND (5.0)		8082A		50	08/15/17 0:45		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-1-22 Date Sampled: 08/07/17 14:05

Percent Solids: N/A Initial Volume: 10.2 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-03

Sample Matrix: Solid Units: mg/kg wet Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1221	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1232	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1242	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1248	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1254	67.6 (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1260	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1262	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
Aroclor 1268	ND (9.8)		8082A		100	08/15/17 1:04		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-1-23 Date Sampled: 08/07/17 14:10

Percent Solids: 99 Initial Volume: 5.13 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-04

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1254	18.6 (2.0)		8082A		10	08/15/17 1:23		CH71015
Aroclor 1260	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/11/17 20:20		CH71015
-		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		109 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		79 %		30-150				
Surrogate: Tetrachloro-m-xylene		87 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		93 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-24 Date Sampled: 08/07/17 14:23

Percent Solids: 92 Initial Volume: 5.08 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-05

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1221	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1232	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1242	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1248	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1254	39.3 (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1260	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1262	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
Aroclor 1268	ND (4.3)		8082A		20	08/15/17 1:42		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-25 Date Sampled: 08/07/17 14:26

Percent Solids: 97 Initial Volume: 5.01 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-06

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
Aroclor 1254 [2C]	5.9 (1.0)		8082A		5	08/17/17 9:48		CH71015
Aroclor 1260	1.8 (1.0)		8082A		5	08/17/17 9:48		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/16/17 20:59		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		65 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		65 %		30-150				
Surrogate: Tetrachloro-m-xylene		48 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		51 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-26 Date Sampled: 08/07/17 14:30

Percent Solids: 96 Initial Volume: 5.08 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-07

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
Aroclor 1254 [2C]	9.4 (1.0)		8082A		5	08/17/17 10:06		CH71015
Aroclor 1260	3.1 (1.0)		8082A		5	08/17/17 10:05		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/16/17 21:18		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		111 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		124 %		30-150				
Surrogate: Tetrachloro-m-xylene		73 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		77 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-27 Date Sampled: 08/07/17 14:32

Percent Solids: 97 Initial Volume: 5.04 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-08

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1254	0.8 (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1260	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/11/17 21:36		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		55 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		50 %		30-150				
Surrogate: Tetrachloro-m-xylene		51 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		<i>55 %</i>		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-28 Date Sampled: 08/07/17 14:35

Percent Solids: 95 Initial Volume: 5.04 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-09

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1254	9.2 (1.0)		8082A		5	08/15/17 2:01		CH71015
Aroclor 1260	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/11/17 21:55		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		68 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		68 %		30-150				
Surrogate: Tetrachloro-m-xylene		70 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		<i>75 %</i>		30-150				

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-29 Date Sampled: 08/07/17 14:37

Percent Solids: 96 Initial Volume: 5.03 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-10

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1254	1.9 (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1260	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/11/17 22:14		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		36 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		41 %		30-150				
Surrogate: Tetrachloro-m-xylene		32 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		35 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-30 Date Sampled: 08/07/17 14:39

Percent Solids: 95 Initial Volume: 5.03 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-11

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
Aroclor 1254	7.8 (1.0)		8082A		5	08/15/17 2:20		CH71015
Aroclor 1260 [2C]	3.3 (1.0)		8082A		5	08/15/17 2:20		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/11/17 22:33		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		92 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		89 %		30-150				
Surrogate: Tetrachloro-m-xylene		80 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		87 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B-31 Date Sampled: 08/07/17 14:41

Percent Solids: 98 Initial Volume: 5.04 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-12

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:30

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1221	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1232	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1242	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1248	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1254	0.8 (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1260	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1262	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
Aroclor 1268	ND (0.2)		8082A		1	08/15/17 2:39		CH71015
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		58 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		49 %		30-150				
Surrogate: Tetrachloro-m-xylene		53 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		57 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B11-32 Date Sampled: 08/07/17 14:45

Percent Solids: 95 Initial Volume: 5.11 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-13

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1221	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1232	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1242	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1248	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1254	50.9 (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1260	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1262	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
Aroclor 1268	ND (4.1)		8082A		20	08/15/17 2:58		CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill Client Sample ID: PCB-1-B15-33 Date Sampled: 08/07/17 14:48

Percent Solids: 94 Initial Volume: 5.05 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1708211 ESS Laboratory Sample ID: 1708211-14

Sample Matrix: Solid Units: mg/kg dry Analyst: CAD

Prepared: 8/10/17 16:45

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1221	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1232	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1242	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1248	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1254	38.3 (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1260	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1262	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
Aroclor 1268	ND (4.2)		8082A		20	08/15/17 3:17	7	CH71016
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		%	SD	30-150				
Surrogate: Decachlorobiphenyl [2C]		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene		%	SD	30-150				
Surrogate: Tetrachloro-m-xylene [2C]		%	SD	30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8082A Polychlorinated Biphenyls (PCB)

Batch CH71015 - 3540C									
Blank									
Aroclor 1016	ND	0.05	mg/kg wet						
Aroclor 1016 [2C]	ND	0.05	mg/kg wet						
Aroclor 1221	ND	0.05	mg/kg wet						
Aroclor 1221 [2C]	ND	0.05	mg/kg wet						
Aroclor 1232	ND	0.05	mg/kg wet						
Aroclor 1232 [2C]	ND	0.05	mg/kg wet						
roclor 1242	ND	0.05	mg/kg wet						
roclor 1242 [2C]	ND	0.05	mg/kg wet						
Aroclor 1248	ND	0.05	mg/kg wet						
Aroclor 1248 [2C]	ND	0.05	mg/kg wet						
roclor 1254	ND	0.05	mg/kg wet						
Aroclor 1254 [2C]	ND	0.05	mg/kg wet						
Aroclor 1260	ND	0.05	mg/kg wet						
Aroclor 1260 [2C]	ND	0.05	mg/kg wet						
Aroclor 1262	ND	0.05	mg/kg wet						
Aroclor 1262 [2C]	ND	0.05	mg/kg wet						
Aroclor 1268	ND	0.05	mg/kg wet						
Aroclor 1268 [2C]	ND	0.05	mg/kg wet						
Surrogate: Decachlorobiphenyl	0.0196		mg/kg wet	0.02500	<i>78</i>	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0194		mg/kg wet	0.02500	<i>78</i>	30-150			
Surrogate: Tetrachloro-m-xylene	0.0183		mg/kg wet	0.02500	<i>73</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0200		mg/kg wet	0.02500	80	30-150			
cs									
roclor 1016	0.5	0.05	mg/kg wet	0.5000	95	40-140			
Aroclor 1016 [2C]	0.5	0.05	mg/kg wet	0.5000	96	40-140			
Aroclor 1260	0.5	0.05	mg/kg wet	0.5000	93	40-140			
roclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	86	40-140			
Surrogate: Decachlorobiphenyl	0.0227		mg/kg wet	0.02500	91	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0224		mg/kg wet	0.02500	90	30-150			
Surrogate: Tetrachloro-m-xylene	0.0218		mg/kg wet	0.02500	87	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0218		mg/kg wet	0.02500	87	30-150			
.CS Dup									
vroclor 1016	0.5	0.05	mg/kg wet	0.5000	98	40-140	3	30	
Aroclor 1016 [2C]	0.5	0.05	mg/kg wet	0.5000	99	40-140	3	30	
roclor 1260	0.5	0.05	mg/kg wet	0.5000	96	40-140	3	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	89	40-140	3	30	
Surrogate: Decachlorobiphenyl	0.0232		mg/kg wet	0.02500	93	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0232		mg/kg wet	0.02500	93	30-150			
Surrogate: Tetrachloro-m-xylene	0.0222		mg/kg wet	0.02500	89	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0224		mg/kg wet	0.02500	90	30-150			
Batch CH71016 - 3540C									

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CH71016 - 3540C									
Blank									
Aroclor 1016	ND	0.05	mg/kg wet						
Aroclor 1016 [2C]	ND	0.05	mg/kg wet						
Aroclor 1221	ND	0.05	mg/kg wet						
Aroclor 1221 [2C]	ND	0.05	mg/kg wet						
Aroclor 1232	ND	0.05	mg/kg wet						
Aroclor 1232 [2C]	ND	0.05	mg/kg wet						
Aroclor 1242	ND	0.05	mg/kg wet						
Aroclor 1242 [2C]	ND	0.05	mg/kg wet						
Aroclor 1248	ND	0.05	mg/kg wet						
Aroclor 1248 [2C]	ND	0.05	mg/kg wet						
Aroclor 1254	ND	0.05	mg/kg wet						
Aroclor 1254 [2C]	ND	0.05	mg/kg wet						
Aroclor 1260	ND	0.05	mg/kg wet						
Aroclor 1260 [2C]	ND	0.05	mg/kg wet						
Aroclor 1262	ND	0.05	mg/kg wet						
Aroclor 1262 [2C]	ND	0.05	mg/kg wet						
Aroclor 1268	ND	0.05	mg/kg wet						
Aroclor 1268 [2C]	ND	0.05	mg/kg wet						
Surrogate: Decachlorobiphenyl	0.0222		mg/kg wet	0.02500	89	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0213		mg/kg wet	0.02500	85	30-150			
Surrogate: Tetrachloro-m-xylene	0.0117		mg/kg wet	0.02500	47	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0128		mg/kg wet	0.02500	51	30-150			
.cs									
Aroclor 1016	0.3	0.05	mg/kg wet	0.5000	60	40-140			
Aroclor 1016 [2C]	0.3	0.05	mg/kg wet	0.5000	60	40-140			
Aroclor 1260	0.5	0.05	mg/kg wet	0.5000	90	40-140			
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	83	40-140			
	0.0224		mg/kg wet	0.02500	89	30-150			
Surrogate: Decachlorobiphenyl	0.0216		mg/kg wet	0.02500	86	30-150 30-150			
Surrogate: Decachlorobiphenyl [2C]	0.00961		mg/kg wet	0.02500	38	<i>30-150</i>			
Surrogate: Tetrachloro-m-xylene	0.00979		mg/kg wet	0.02500	<i>39</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.00373		mg/kg wet	0.02300		30 130			
LCS Dup		0.05	, ,	0.5000		40.440		20	
Aroclor 1016	0.5	0.05	mg/kg wet	0.5000	93	40-140	44	30	D+
Aroclor 1016 [2C]	0.5	0.05	mg/kg wet	0.5000	94	40-140	44	30	D+
Aroclor 1260	0.4	0.05	mg/kg wet	0.5000	87	40-140	4	30	
Aroclor 1260 [2C]	0.4	0.05	mg/kg wet	0.5000	81	40-140	2	30	
Surrogate: Decachlorobiphenyl	0.0205		mg/kg wet	0.02500	82	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0202		mg/kg wet	0.02500	81	30-150			
Surrogate: Tetrachloro-m-xylene	0.0213		mg/kg wet	0.02500	85	30-150			
	0.0214		mg/kg wet	0.02500	86	30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

Notes and Definitions

U	Analyte included in the analysis, but not detected
SD	Surrogate recovery(ies) diluted below the MRL (SD).
D+	Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference Method Detection Limit **MDL** MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DLInitial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.
3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GZA GeoEnvironmental, Inc.

Client Project ID: Daniels Mill ESS Laboratory Work Order: 1708211

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GZA	- Glastonbi	Jry CT - GZA	MM		SS Project ID:	1708211	
Shipped/D	elivered Via:		ESS Courier			ate Received:ect Due Date:	8/9/2017 8/17/2017	
p.			200 Obditor			ys for Project:	5 Day	<u> </u>
	nanifest prese		[No	6. Does C	OC match bottles?		Yes
2. Were cu	ıstody seals p	resent?	[No	7. Is COC	complete and correct?		Yes
3. Is radiat	ion count <10	00 CPM?	[Yes	8. Were sa	amples received intact?		Yes
	eler Present?	Iced with:	lce [Yes	9. Were la	bs informed about sho	ort holds & rushes?	Yes / No /NA
	C signed and			Yes	10. Were	any analyses received o	outside of hold time?	Yes (No
	bcontracting (Sample IDs: Analysis: TAT:		Yes	€	a. Air bub	VOAs received? bles in aqueous VOAs? nethanol cover soil comp		Yes / No Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	pon receipt:		(es) No Date: Date:	Time	e:	By: By:	_
Sample Re	ceiving Notes	s :						
								
	ere a need to		oject Manage client?	r? Date:	Yes No Yes No Time	e:	Ву:	
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cy.	
01	153348	Yes	NA	Yes	4 oz. Jar - Unpres	NP		
02 03	153347 153346	Yes Yes	NA NA	Yes Yes	4 oz. Jar - Unpres 4 oz. Jar - Unpres	NP NB		
04	153345	Yes	NA	Yes	4 oz. Jar - Unpres	NP NP		
05	153542	Yes	NA	Yes	2 oz. Jar - Unpres	NP		
06 07	153541	Yes	NA	Yes	2 oz. Jar - Unpres	NP		
07 08	153540 153539	Yes Yes	NA NA	Yes Yes	2 oz. Jar - Unpres 2 oz. Jar - Unpres	NP NP		
09	153538	Yes	NA NA	Yes	2 oz. Jar - Unpres 2 oz. Jar - Unpres	NP NP		
10	153537	Yes	NA	Yes	2 oz. Jar - Unpres	NP NP		
11	153536	Yes	NA	Yes	2 oz. Jar - Unpres	NP		
12	153535	Yes	NA	Yes	2 oz. Jar - Unpres	NP		
13 14	153534 153533	Yes Yes	NA NA	Yes Yes	2 oz. Jar - Unpres 2 oz. Jar - Unpres	NP NP		
2nd Review	·	م آر	. 1	103		ME		
Are barcode	e labels on c		rs?		Yes //No	i		
Completed By:		MAKE			Date & Time:	[17 /	619	
Reviewed By:	\ ييو	¥ [—	H		Date & Time: 8	aln n	18	

ESS Laboratory Sample and Cooler Receipt Checklist

Client: _	GZA - Glastonbury CT - GZA/N	<u>/M</u>	ESS Project ID: Date Received:	1708211 8/9/2017
By: _	- / / / /	8/9/17	1718	

ESS La	boratory	7			CHAIN OF C	USTODY				PROJECT ID		
	Thielsch Eng		c.	Turn Time		Approved By:			Reporting Limits -			
	s Avenue, Cra		2010 2211	State where samples were collected: MA RI(CT) NH NJ NY ME Other								
Tel. (401)	461-7181 Fax	(401) 461-4			s this project for any of the following: (please circle) Electonic Deliverable Yes No							
www.essla	boratory.com				CT-RCP RGP Other_	please circle)			Access	PDF X O	her	
				WIA-WICI		40					$\overline{}$	$\overline{}$
G.	ZA Project Ma				Project # YSYY1, (06			111	\perp	11	
			nmental, Inc.	02	Project Name:	(T) 1	Analysis		111	\perp	11	nt #
		lastonbury, C	Drive, Suite 4	02	DANZELS M	MIL	ına	Sokila	I I I	\perp	11	l ie
	U	(860) 286			Contract Pricing	_	1 ~	Eg		IIII		Comment
RI	EASONABLE C	CONFIDENCE	PROTOCOLS	REQUIRE	D Special Pricing:		, , , , , , , , , , , , , , , , , , ,	5		\perp	11	~
ESS Lab	Date	Collection Time	Grab -G Composite-C	Matrix	Sample Identifi	ication	# of Containers	PCB				
Sample ID	8/7/17	1340		F/00/	PCB-1-1-20		1	X				
2		1400	Ĭ	Macy	PCB-1-1-21							
3		1405		(100°)	PCB-1-1-22							
4		1410		COMINA	PCB-1-1-23		0					
\ \ \ \		1423		1	PCO-1-8-24							
		1426			PCB-1-8-25							
5		1430			PCB-1-8-26							
8		1432			PCB-1-8-27							
9		1435			PCB-1-B-18							
10	1	1437		V	PCB-1-B-29		V	\bigvee				
Preservation C	ode: 1-NP, 2-HCl	, 3-H2SO4, 4-H	NO3, 5-NaOH, 6	-MeOH, 7-A	scorbic Acid, 8-ZnAce 9			-				
Container Type	e: P-Poly G-Glass	AG-Amber Gla	ss S-Sterile V-V	/OA				6				
Matrix: S-Soil	SD-Solid D-Slud	lge WW-Waster			Surface Water DW-Drinking Water (
Cooler Pres	ent Y	es	No A	Sampled	by: ANTHONY TRANZ	SEPN CONNOLLY						
Seals Intact	Yes	No N	IA: N	Comment								
	perature: 3.			RFOR	- MATERIANY							
Relinquished by:			Date/Time 8/7/17 1600	Received by: (FRANCE	ip qu ished by: (Signature)		8 90	1902 -	ed by: (Signature)		\leq
Relinquished by:	(Signature)	7	Date/Time	Received by	Signature) Reli	inquistied by: (Signature)		Date/	Time Receive	ed by: (Signature)		
	1/1		P 19-10-3	· ~	Please E-mail all changes to	Chain of Custody in w	riting.			Page	3 of-	The Real
					i lease E man an enanges to		8				1	26 of 27

	CHAIN OF CUSTODY	ESS LAB PROJECT ID
ESS Laboratory		Reporting Limits -
Division of Thielsch Engineering, Inc.	Time time	- 00 0 - 1/09
185 Frances Avenue, Cranston, RI 02910-2	State where samples were collected: MA RI CT NH NJ NY M	Electonic Deliverable Yes X No
Tel. (401) 461-7181 Fax (401) 461-4486	Is this project for any of the following: (please circle)	Format: Excel X Access PDF X Other
www.esslaboratory.com	MA-MCP CT-RCR RGP Other	Tomata Sarah
GZA Project Manager: Ben Rac	Project # 45441.06	
GZA GeoEnvironment	, Inc.	en t
655 Winding Brook Drive,	uite 402	Analysis Doly (c) Comment #
Glastonbury, CT 060	Contract Pricing	` 44 5
(860) 286-8900 REASONABLE CONFIDENCE PROT	COLS REQUIRED Special Pricing:	# of 3
Date Collection Gra	G Matrix	Containers
Sample ID Time Compo	Congrete PCB-1-B-30	1 X
11 8/7/17 1439 G	Thin PCB-7 3	
12 1 1-141	PCB-1-B-31 PCB-1-B11-32 VI FCB-1-B15-33	
11.115	RB-1-BU-32	
	VI 600 1-615-33	
14 1448 1	JU FCB-1	
		+
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3,	NaOH, 6-MeOH, 7-Ascorbic Acid, 8-ZnAce 9	6
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater	W-Groundwater SW-Surface Water DW Driming	
Cooler Present Yes No	Sampled by . ANTLONY TON	
Seals Intact Yes No NA:	Comments: Bldg, Material	
Cooler Temperature: 3.7-4.4100	Religguisted by: (Signature)	Date/Time Received by (Signature)
Could (Circulus)	e/Time Received by: (Signature)	8HITIR T

1547 Please E-mail all changes to Chain of Custody in writing.

Relinquished by: (Signature)

Received by: (Signature)

Sold as

Monday, June 24, 2019

Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Project ID: DANIELS MILL SDG ID: GCD26852

Sample ID#s: CD26852 - CD26855, CD26858 - CD26862, CD26864, CD26866, CD26868,

CD26870, CD26872 - CD26876, CD26878 - CD26880, CD26882, CD26884 -

CD26888, CD26890 - CD26894, CD26896 - CD26898

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

June 24, 2019

SDG I.D.: GCD26852

Project ID: DANIELS MILL

Client Id	Lab Id	Matrix	
B-23A (6-9``)	CD26852	SOIL	
B-23A (12-15``)	CD26853	SOIL	
B-23A (21-24``)	CD26854	SOIL	
B-22A (6-9``)	CD26855	SOIL	
B-22A (30-33``)	CD26858	SOIL	
B-22A (36-39``)	CD26859	SOIL	
B-35 (6-9``)	CD26860	SOIL	
B-35 (10.5-13.5``)	CD26861	SOIL	
B-38 (7-10``)	CD26862	SOIL	
B-39 (6-9``)	CD26864	SOIL	
B-40 (4-7``)	CD26866	SOIL	
B-41 (1-4``)	CD26868	SOIL	
B-42 (7-10``)	CD26870	SOIL	
B-43 (3-6``)	CD26872	SOIL	
B-44 (0-3``)	CD26873	SOIL	
B-43 (15-18``)	CD26874	SOIL	
B-44 (12.5-15.5``)	CD26875	SOIL	
B-45 (5.5-8.5``)	CD26876	SOIL	
B-46 (4-7``)	CD26878	SOIL	
B-46 (16-19``)	CD26879	SOIL	
B-47 (8-11`)	CD26880	SOIL	
B-48 (4-7``)	CD26882	SOIL	
B-49 (4-7``)	CD26884	SOIL	
B-49 (16-19``)	CD26885	SOIL	
B-56 (8-10``)	CD26886	SOIL	
GZ-99	CD26887	SOIL	
B-50 (4-7``)	CD26888	SOIL	
B-51 (1-4``)	CD26890	SOIL	
B-51 (13-16``)	CD26891	SOIL	
B-52 (6-9``)	CD26892	SOIL	

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

June 24, 2019

SDG I.D.: GCD26852

Project ID: DANIELS MILL

Client Id	Lab Id	Matrix
B-52 (13-16``)	CD26893	SOIL
B-53 (7-10``)	CD26894	SOIL
B-54 (18-21``)	CD26896	SOIL
B-54 (30-33``)	CD26897	SOIL
B-55 (8-11``)	CD26898	SOIL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 10:00 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26852

DANIELS MILL Project ID: Client ID: B-23A (6-9``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/05/19	Q/X/ML/k	(LSW3540C
PCB (Soxhlet SW3540	(C)						
PCB-1016	ND	71	ug/Kg	2	06/07/19	sc	SW8082A
PCB-1221	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	107		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	86		%	2	06/07/19	SC	30 - 150 %
% TCMX	82		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	78		%	2	06/07/19	SC	30 - 150 %

Client ID: B-23A (6-9")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 10:15 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26853

Project ID: DANIELS MILL Client ID: B-23A (12-15``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	96		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/05/19	J/X/ML/ŀ	(LSW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1221	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1232	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1242	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1248	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1254	2800	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1260	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1262	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1268	ND	340	ug/Kg	10	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	88		%	10	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	145		%	10	06/07/19	SC	30 - 150 %
% TCMX	96		%	10	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	102		%	10	06/07/19	SC	30 - 150 %

Client ID: B-23A (12-15")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 10:30 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26854

Project ID: DANIELS MILL Client ID: B-23A (21-24``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	94		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/19/19	XX/KL/S	_B SW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1221	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1232	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1242	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1248	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1254	1700	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1260	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1262	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
PCB-1268	ND	560	ug/Kg	5	06/21/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	96		%	5	06/21/19	SC	30 - 150 %
% DCBP (Confirmation)	88		%	5	06/21/19	SC	30 - 150 %
% TCMX	98		%	5	06/21/19	SC	30 - 150 %
% TCMX (Confirmation)	92		%	5	06/21/19	SC	30 - 150 %

Client ID: B-23A (21-24``)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information		Custody Inform	nation	<u>Date</u> <u>Time</u>			
Matrix:	SOIL	Collected by:	SC	06/03/19	10:45		
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50		
Decale Decayage	C4ll	A I I I	WB W L L				

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26855

Project ID: DANIELS MILL Client ID: B-22A (6-9``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/05/19	Q/X/ML/F	KLSW3540C
PCB (Soxhlet SW3540)C)						
PCB-1016	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1221	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	570	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	71	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	69		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	64		%	2	06/07/19	SC	30 - 150 %
% TCMX	66		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	67		%	2	06/07/19	SC	30 - 150 %

Client ID: B-22A (6-9")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 11:30 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26858

Project ID: DANIELS MILL Client ID: B-22A (30-33``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/05/19	Q/X/ML/ŀ	KLSW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1221	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1232	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1242	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1248	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1254	1200	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1260	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1262	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
PCB-1268	ND	360	ug/Kg	10	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	72		%	10	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	85		%	10	06/07/19	SC	30 - 150 %
% TCMX	56		%	10	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	61		%	10	06/07/19	SC	30 - 150 %

Client ID: B-22A (30-33'')

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 11:45 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request: Standard

Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26859

DANIELS MILL Project ID: Client ID: B-22A (36-39``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/17/19	K/KL/SB	/NSW3540C
PCB (Soxhlet SW3540)C)						
PCB-1016	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1221	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1232	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1242	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1248	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1254	2400	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1260	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1262	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1268	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	89		%	10	06/18/19	SC	30 - 150 %
% DCBP (Confirmation)	87		%	10	06/18/19	SC	30 - 150 %
% TCMX	86		%	10	06/18/19	SC	30 - 150 %
% TCMX (Confirmation)	85		%	10	06/18/19	SC	30 - 150 %

Client ID: B-22A (36-39")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 12:00 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26860

Project ID: DANIELS MILL Client ID: B-35 (6-9``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/05/19	Q/X/ML/k	KLSW3540C
PCB (Soxhlet SW3540	C)						
PCB-1016	 ND	72	ug/Kg	2	06/07/19	sc	SW8082A
PCB-1221	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	130	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	72	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	83		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	85		%	2	06/07/19	SC	30 - 150 %
% TCMX	70		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	75		%	2	06/07/19	SC	30 - 150 %

Client ID: B-35 (6-9")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 12:15 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26861

Project ID: DANIELS MILL Client ID: B-35 (10.5-13.5``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	95		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/05/19	X/KL/JR	/ _N SW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1221	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1232	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1242	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1248	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1254	26000	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1260	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1262	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
PCB-1268	ND	6800	ug/Kg	200	06/08/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	200	06/08/19	SC	30 - 150 %
% DCBP (Confirmation)	Diluted Out		%	200	06/08/19	SC	30 - 150 %
% TCMX	Diluted Out		%	200	06/08/19	SC	30 - 150 %
% TCMX (Confirmation)	Diluted Out		%	200	06/08/19	SC	30 - 150 %

Client ID: B-35 (10.5-13.5")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u> <u>Time</u>			
Matrix:	SOIL	Collected by:	SC	06/03/19	15:45		
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50		
Rush Request:	Standard	Analyzed by:	see "By" below				

Analyzed by: Standard see "By" below

_aboratory Data

SDG ID: GCD26852

Phoenix ID: CD26862

DANIELS MILL Project ID: Client ID: B-38 (7-10``)

45441.06

P.O.#:

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference Βv Percent Solid 89 % 06/04/19 SW846-%Solid X/ML/SB/、SW3540C Extraction for PCB Completed 06/06/19 PCB (Soxhlet SW3540C) PCB-1016 ND 74 ug/Kg 2 06/07/19 SC SW8082A 2 PCB-1221 ND 74 06/07/19 SC SW8082A ug/Kg 2 PCB-1232 ND 74 ug/Kg 06/07/19 SW8082A ND 74 2 06/07/19 SW8082A PCB-1242 ug/Kg SC ND 2 06/07/19 SW8082A PCB-1248 74 ug/Kg SC PCB-1254 ND 74 2 06/07/19 SC SW8082A ug/Kg SW8082A 2 PCB-1260 ND 74 ug/Kg 06/07/19 SC 2 SW8082A PCB-1262 ND 74 ug/Kg 06/07/19 SC SW8082A ND 74 2 06/07/19 SC PCB-1268 ug/Kg **QA/QC Surrogates** % DCBP 73 % 2 06/07/19 SC 30 - 150 % % DCBP (Confirmation) 66 % 2 06/07/19 SC 30 - 150 % % TCMX 54 % 2 06/07/19 SC 30 - 150 % 2 51 % 06/07/19 SC 30 - 150 % % TCMX (Confirmation)

Client ID: B-38 (7-10")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information <u>Time</u> Date Collected by: SC 06/03/19 16:15 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26864

Project ID: DANIELS MILL Client ID: B-39 (6-9``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/10/19	XX/KL/J	R SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1221	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1232	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1242	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1248	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1254	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1260	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1262	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1268	ND	72	ug/Kg	2	06/11/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	45		%	2	06/11/19	SC	30 - 150 %
% DCBP (Confirmation)	52		%	2	06/11/19	SC	30 - 150 %
% TCMX	32		%	2	06/11/19	SC	30 - 150 %
% TCMX (Confirmation)	34		%	2	06/11/19	SC	30 - 150 %

Client ID: B-39 (6-9")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 16:30 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26866

Project ID: DANIELS MILL Client ID: B-40 (4-7``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	89		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	X/ML/SE	3/、SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1221	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1232	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1242	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1248	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1254	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1260	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1262	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
PCB-1268	ND	73	ug/Kg	2	06/11/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	75		%	2	06/11/19	SC	30 - 150 %
% DCBP (Confirmation)	73		%	2	06/11/19	SC	30 - 150 %
% TCMX	60		%	2	06/11/19	SC	30 - 150 %
% TCMX (Confirmation)	60		%	2	06/11/19	SC	30 - 150 %

Client ID: B-40 (4-7")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/03/19 16:50 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26868

DANIELS MILL Project ID: Client ID: B-41 (1-4``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	84		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	(/ML/SE	3/ _s SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1221	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	290	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	78	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	67		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	63		%	2	06/07/19	SC	30 - 150 %
% TCMX	64		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	61		%	2	06/07/19	SC	30 - 150 %

Client ID: B-41 (1-4``)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information		Custody Inform	ation	<u>Date</u>			
Matrix:	SOIL	Collected by:	SC	06/03/19	17:10		
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50		
	04 1 1	A 1 11					

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26870

Project ID: DANIELS MILL Client ID: B-42 (7-10``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	X/ML/SB	,(SW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1221	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	79		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	73		%	2	06/07/19	SC	30 - 150 %
% TCMX	69		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	67		%	2	06/07/19	SC	30 - 150 %

Client ID: B-42 (7-10")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information <u>Date</u> <u>Time</u> 06/04/19 Matrix: SOIL Collected by: SC 9:35 **GZACTENG** Received by: 06/04/19 **Location Code:** В 18:50 Analyzed by: Rush Request: Standard see "By" below

_aboratory Data

SDG ID: GCD26852

Phoenix ID: CD26872

DANIELS MILL Project ID: Client ID: B-43 (3-6``)

45441.06

P.O.#:

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference Βv Percent Solid 90 % 06/04/19 SW846-%Solid X/ML/SB/、SW3540C Extraction for PCB Completed 06/06/19 PCB (Soxhlet SW3540C) PCB-1016 ND 370 ug/Kg 10 06/08/19 SC SW8082A ND 370 ug/Kg 10 06/08/19 SC SW8082A PCB-1221 00100140 014100004

PCB-1232	ND	370	ug/Kg	10	06/08/19	SC	SW8082A	
PCB-1242	ND	370	ug/Kg	10	06/08/19	SC	SW8082A	
PCB-1248	ND	370	ug/Kg	10	06/08/19	SC	SW8082A	
PCB-1254	1800	370	ug/Kg	10	06/08/19	SC	SW8082A	
PCB-1260	ND	370	ug/Kg	10	06/08/19	SC	SW8082A	
PCB-1262	ND	370	ug/Kg	10	06/08/19	SC	SW8082A	
PCB-1268	ND	370	ug/Kg	10	06/08/19	SC	SW8082A	
QA/QC Surrogates								
% DCBP	75		%	10	06/08/19	SC	30 - 150 %	
% DCBP (Confirmation)	85		%	10	06/08/19	SC	30 - 150 %	
% TCMX	65		%	10	06/08/19	SC	30 - 150 %	
% TCMX (Confirmation)	66		%	10	06/08/19	SC	30 - 150 %	

Client ID: B-43 (3-6")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 10:10 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26873

DANIELS MILL Project ID: Client ID: B-44 (0-3``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	88		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	K/ML/SE	3/ _s SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1221	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1232	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1242	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1248	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1254	1800	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1260	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1262	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1268	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	80		%	10	06/10/19	SC	30 - 150 %
% DCBP (Confirmation)	97		%	10	06/10/19	SC	30 - 150 %
% TCMX	84		%	10	06/10/19	SC	30 - 150 %
% TCMX (Confirmation)	84		%	10	06/10/19	SC	30 - 150 %

Client ID: B-44 (0-3")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/04/19 9:40 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852
Phoenix ID: CD26874

Project ID: DANIELS MILL Client ID: B-43 (15-18``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/17/19	(/KL/SB	/NSW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1221	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1232	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1242	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1248	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1254	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1260	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1262	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1268	ND	350	ug/Kg	10	06/18/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	76		%	10	06/18/19	SC	30 - 150 %
% DCBP (Confirmation)	81		%	10	06/18/19	SC	30 - 150 %
% TCMX	71		%	10	06/18/19	SC	30 - 150 %
% TCMX (Confirmation)	72		%	10	06/18/19	SC	30 - 150 %

Client ID: B-43 (15-18")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

> 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/04/19 10:15 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26875

DANIELS MILL Project ID: Client ID: B-44 (12.5-15.5``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	86		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/17/19 x	/KL/SB	/NSW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1221	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1232	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1242	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1248	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1254	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1260	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1262	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1268	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	88		%	10	06/18/19	SC	30 - 150 %
% DCBP (Confirmation)	92		%	10	06/18/19	SC	30 - 150 %
% TCMX	88		%	10	06/18/19	SC	30 - 150 %
% TCMX (Confirmation)	91		%	10	06/18/19	SC	30 - 150 %

Client ID: B-44 (12.5-15.5")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/04/19 10:25 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26876

DANIELS MILL Project ID: Client ID: B-45 (5.5-8.5``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	X/ML/SE	3/ ₂ SW3540C
PCB (Soxhlet SW3540)C)						
PCB-1016	ND	74	ug/Kg	2	06/07/19	sc	SW8082A
PCB-1221	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	74	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	113		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	68		%	2	06/07/19	SC	30 - 150 %
% TCMX	69		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	67		%	2	06/07/19	SC	30 - 150 %

Client ID: B-45 (5.5-8.5")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Informa	<u>ition</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	SC	06/04/19	10:45
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50
Decale Decayage	C4	A I I I	UD U		

Rush Request: Analyzed by: Standard see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26878

DANIELS MILL Project ID: B-46 (4-7``) Client ID:

P.O.#:

RL/

45441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	X/ML/SE	s/、SW3540C
PCB (Soxhlet SW3540	<u>)C)</u>						
PCB-1016	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1221	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1232	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1242	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1248	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1254	2100	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1260	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1262	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1268	ND	370	ug/Kg	10	06/10/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	118		%	10	06/10/19	SC	30 - 150 %
% DCBP (Confirmation)	138		%	10	06/10/19	SC	30 - 150 %
% TCMX	104		%	10	06/10/19	SC	30 - 150 %
% TCMX (Confirmation)	106		%	10	06/10/19	SC	30 - 150 %

Client ID: B-46 (4-7")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 10:50 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26879

Project ID: DANIELS MILL Client ID: B-46 (16-19``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	97		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/17/19 x	/KL/SB	_N SW3540C
PCB (Soxhlet SW3540)	<u>C)</u>						
PCB-1016	 ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1221	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1232	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1242	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1248	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1254	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1260	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1262	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1268	ND	340	ug/Kg	10	06/18/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	85		%	10	06/18/19	SC	30 - 150 %
% DCBP (Confirmation)	88		%	10	06/18/19	SC	30 - 150 %
% TCMX	82		%	10	06/18/19	SC	30 - 150 %
% TCMX (Confirmation)	84		%	10	06/18/19	SC	30 - 150 %

Client ID: B-46 (16-19")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 10:55 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26880

Project ID: DANIELS MILL Client ID: B-47 (8-11')

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	85		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	X/ML/SE	3/ ₂ SW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1221	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1232	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1242	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1248	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1254	2000	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1260	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1262	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
PCB-1268	ND	380	ug/Kg	10	06/08/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	73		%	10	06/08/19	SC	30 - 150 %
% DCBP (Confirmation)	95		%	10	06/08/19	SC	30 - 150 %
% TCMX	55		%	10	06/08/19	SC	30 - 150 %
% TCMX (Confirmation)	58		%	10	06/08/19	SC	30 - 150 %

Client ID: B-47 (8-11')

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 12:15 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26882

Project ID: DANIELS MILL Client ID: B-48 (4-7``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	nLSW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1221	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1232	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1242	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1248	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1254	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1260	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1262	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
PCB-1268	ND	70	ug/Kg	2	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	44		%	2	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	43		%	2	06/07/19	SC	30 - 150 %
% TCMX	30		%	2	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	30		%	2	06/07/19	SC	30 - 150 %

Client ID: B-48 (4-7")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

Sample was evaluated against an external standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 13:05 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26884

DANIELS MILL Project ID: Client ID: B-49 (4-7``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	84		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	nLSW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	 ND	390	ug/Kg	10	06/10/19	sc	SW8082A
PCB-1221	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1232	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1242	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1248	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1254	1400	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1260	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1262	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1268	ND	390	ug/Kg	10	06/10/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	116		%	10	06/10/19	SC	30 - 150 %
% DCBP (Confirmation)	131		%	10	06/10/19	SC	30 - 150 %
% TCMX	127		%	10	06/10/19	SC	30 - 150 %
% TCMX (Confirmation)	120		%	10	06/10/19	SC	30 - 150 %

Client ID: B-49 (4-7")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Informa	ation_	Custody Inform	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	SC	06/04/19	13:15
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50
D 1 D 1	0, 1, 1	A 1 11			

Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GCD26852 Phoenix ID: CD26885

DANIELS MILL Project ID: Client ID: B-49 (16-19``)

45441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/17/19 x	/KL/SB	_N SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	 ND	380	ug/Kg	10	06/18/19	sc	SW8082A
PCB-1221	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1232	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1242	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1248	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1254	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1260	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1262	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1268	ND	380	ug/Kg	10	06/18/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	88		%	10	06/18/19	SC	30 - 150 %
% DCBP (Confirmation)	88		%	10	06/18/19	SC	30 - 150 %
% TCMX	87		%	10	06/18/19	SC	30 - 150 %
% TCMX (Confirmation)	87		%	10	06/18/19	SC	30 - 150 %

Client ID: B-49 (16-19")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information		Custody Inform	<u>ation</u>	<u>Date</u>		
Matrix:	SOIL	Collected by:	SC	06/04/19	17:10	
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50	
D I. D	01	A 1 11				

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26886

Project ID: DANIELS MILL Client ID: B-56 (8-10``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	nLSW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	410	ug/Kg	5	06/07/19	sc	SW8082A
PCB-1221	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1232	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1242	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1248	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1254	2100	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1260	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1262	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1268	ND	410	ug/Kg	5	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	128		%	5	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	137		%	5	06/07/19	SC	30 - 150 %
% TCMX	115		%	5	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	116		%	5	06/07/19	SC	30 - 150 %

Client ID: B-56 (8-10")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

<u>Sample Information</u> <u>Custody Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: SC 06/04/19

Location Code: GZACTENG Received by: B 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 45441.06 Laboratory Data SDG ID: GCD26852

Phoenix ID: CD26887

Project ID: DANIELS MILL

Client ID: GZ-99

RL/ Parameter Result **PQL** Units Dilution Date/Time Reference Βv Percent Solid 90 % 06/04/19 SW846-%Solid Extraction for PCB Completed 06/07/19 XX/KL/SB SW3540C PCB (Soxhlet SW3540C) PCB-1016 ND 360 ug/Kg 10 06/10/19 SC SW8082A PCB-1221 ND 360 10 06/10/19 SC SW8082A ug/Kg SW8082A PCB-1232 ND 360 ug/Kg 10 06/10/19 SC ND 360 10 06/10/19 SC SW8082A PCB-1242 ug/Kg ND 10 06/10/19 SW8082A PCB-1248 360 ug/Kg SC PCB-1254 2200 360 ug/Kg 10 06/10/19 SC SW8082A 06/10/19 SC SW8082A PCB-1260 ND 360 ug/Kg 10

PCB-1262	ND	360	ug/Kg	10	06/10/19	SC	SW8082A
PCB-1268	ND	360	ug/Kg	10	06/10/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Interference		%	10	06/10/19	SC	30 - 150 %
% DCBP (Confirmation)	Interference		%	10	06/10/19	SC	30 - 150 %
% TCMX	97		%	10	06/10/19	SC	30 - 150 %
% TCMX (Confirmation)	92		%	10	06/10/19	SC	30 - 150 %
Client MS/MSD	Completed				06/10/19		

Client ID: GZ-99

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

Due to matrix interference from non target compounds in the sample, surrogate could not be reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u> <u>Tim</u>			
Matrix:	SOIL	Collected by:	SC	06/04/19	13:25		
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50		
Durala Danissati	Ota al a al	A I I I	UD U				

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26888

Project ID: DANIELS MILL Client ID: B-50 (4-7``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	nLSW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1221	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1232	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1242	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1248	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1254	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1260	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1262	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
PCB-1268	ND	77	ug/Kg	1	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	42		%	1	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	56		%	1	06/07/19	SC	30 - 150 %
% TCMX	43		%	1	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	40		%	1	06/07/19	SC	30 - 150 %

Client ID: B-50 (4-7")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 14:15 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26890

Project ID: DANIELS MILL Client ID: B-51 (1-4``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	84		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed					Q/X/KL/N	лLSW3540C
PCB (Soxhlet SW354	0C)						
PCB-1016	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1221	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1232	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1242	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1248	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1254	11000	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1260	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1262	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
PCB-1268	ND	5900	ug/Kg	100	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	100	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	Diluted Out		%	100	06/07/19	SC	30 - 150 %
% TCMX	Diluted Out		%	100	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	Diluted Out		%	100	06/07/19	SC	30 - 150 %

Client ID: B-51 (1-4")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Informa	<u>ition</u>	Custody Informa	ation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	SC	06/04/19	14:20
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50
D 1 D 1	04 1 1	A 1 11			

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26891

Project ID: DANIELS MILL Client ID: B-51 (13-16``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	74		%		06/17/19	ML	SW846-%Solid	
Extraction for PCB	Completed					06/17/19 x/KL/SB/NSW3540C		
PCB (Soxhlet SW3540	<u>(C)</u>							
PCB-1016	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1221	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1232	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1242	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1248	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1254	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1260	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1262	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
PCB-1268	ND	450	ug/Kg	10	06/19/19	SC	SW8082A	
QA/QC Surrogates								
% DCBP	116		%	10	06/19/19	SC	30 - 150 %	
% DCBP (Confirmation)	113		%	10	06/19/19	SC	30 - 150 %	
% TCMX	97		%	10	06/19/19	SC	30 - 150 %	
% TCMX (Confirmation)	99		%	10	06/19/19	SC	30 - 150 %	

Client ID: B-51 (13-16")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach GZA GeoEnvironmental, Inc.

95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 14:25 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26892

Project ID: DANIELS MILL Client ID: B-52 (6-9``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	лLSW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1221	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1232	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1242	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1248	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1254	3700	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1260	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1262	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
PCB-1268	ND	540	ug/Kg	5	06/07/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	91		%	5	06/07/19	SC	30 - 150 %
% DCBP (Confirmation)	101		%	5	06/07/19	SC	30 - 150 %
% TCMX	64		%	5	06/07/19	SC	30 - 150 %
% TCMX (Confirmation)	66		%	5	06/07/19	SC	30 - 150 %

Client ID: B-52 (6-9")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/04/19 14:30 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26893

Project ID: DANIELS MILL Client ID: B-52 (13-16``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		06/17/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/19/19	XX/KL/S	B SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	 ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1221	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1232	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1242	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1248	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1254	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1260	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1262	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
PCB-1268	ND	360	ug/Kg	10	06/20/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	115		%	10	06/20/19	SC	30 - 150 %
% DCBP (Confirmation)	123		%	10	06/20/19	SC	30 - 150 %
% TCMX	114		%	10	06/20/19	SC	30 - 150 %
% TCMX (Confirmation)	117		%	10	06/20/19	SC	30 - 150 %

Client ID: B-52 (13-16")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Informa	<u>ition</u>	Custody Informa	ation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	SC	06/04/19	15:25
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50
D 1 D 1	0	A 1 11			

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26894

Project ID: DANIELS MILL Client ID: B-53 (7-10``)

45441.06

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	nLSW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1221	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1232	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1242	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1248	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1254	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1260	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1262	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1268	ND	78	ug/Kg	1	06/11/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	77		%	1	06/11/19	SC	30 - 150 %
% DCBP (Confirmation)	67		%	1	06/11/19	SC	30 - 150 %
% TCMX	72		%	1	06/11/19	SC	30 - 150 %
% TCMX (Confirmation)	61		%	1	06/11/19	SC	30 - 150 %

Project ID: DANIELS MILL Phoenix I.D.: CD26894

Client ID: B-53 (7-10")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: SC 06/04/19 15:35 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26896

DANIELS MILL Project ID: Client ID: B-54 (18-21``)

45441.06

P.O.#:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		06/04/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/10/19	XX/KL/J	R SW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1221	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1232	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1242	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1248	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1254	1300	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1260	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1262	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
PCB-1268	ND	330	ug/Kg	5	06/11/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	109		%	5	06/11/19	SC	30 - 150 %
% DCBP (Confirmation)	100		%	5	06/11/19	SC	30 - 150 %
% TCMX	89		%	5	06/11/19	SC	30 - 150 %
% TCMX (Confirmation)	83		%	5	06/11/19	SC	30 - 150 %

Project ID: DANIELS MILL Phoenix I.D.: CD26896

Client ID: B-54 (18-21")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

For PCBs, in order to reach the desired RL, multiple cleanup steps were performed. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Informa	<u>ation</u>	Custody Inform	ation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	SC	06/04/19	15:40
Location Code:	GZACTENG	Received by:	В	06/04/19	18:50
Durale Danissati	Ctll	A l l	WD W.L. I		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD26852

Phoenix ID: CD26897

Project ID: DANIELS MILL Client ID: B-54 (30-33``)

45441.06

P.O.#:

 Parameter
 Result
 PQL
 Units
 Dilution
 Date/Time
 By
 Reference

 Percent Solid
 92
 %
 06/17/19
 ML
 SW846-%Solid

 Extraction for PCB
 Completed
 06/17/19
 x/kL/SB/N/SW3540C

 PCB (Soxhlet SW3540C)
 PCB-1016
 ND
 360
 ug/Kg
 10
 06/18/19
 SC
 SW8082A

Extraction for PCB	Completed				06/17/19	X/KL/SB/	_N SW3540C
PCB (Soxhlet SW3540C)						
PCB-1016	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1221	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1232	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1242	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1248	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1254	520	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1260	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1262	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
PCB-1268	ND	360	ug/Kg	10	06/18/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	83		%	10	06/18/19	SC	30 - 150 %
% DCBP (Confirmation)	85		%	10	06/18/19	SC	30 - 150 %
% TCMX	77		%	10	06/18/19	SC	30 - 150 %
% TCMX (Confirmation)	80		%	10	06/18/19	SC	30 - 150 %

Project ID: DANIELS MILL Phoenix I.D.: CD26897

Client ID: B-54 (30-33")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 24, 2019

FOR: Attn: Mr. Benjamin Rach

> GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> 06/04/19 Collected by: SC 16:50 Matrix: SOIL Received by: Location Code: **GZACTENG** В 06/04/19 18:50 Rush Request:

Standard Analyzed by: see "By" below

> **Laboratory Data** SDG ID: GCD26852 Phoenix ID: CD26898

DANIELS MILL Project ID: Client ID: B-55 (8-11``)

45441.06

P.O.#:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Extraction for PCB	Completed				06/06/19	Q/X/KL/N	nLSW3540C
PCB (Soxhlet SW3540)C)						
PCB-1016	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1221	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1232	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1242	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1248	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1254	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1260	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1262	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
PCB-1268	ND	57	ug/Kg	1	06/11/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	56		%	1	06/11/19	SC	30 - 150 %
% DCBP (Confirmation)	52		%	1	06/11/19	SC	30 - 150 %
% TCMX	41		%	1	06/11/19	SC	30 - 150 %
% TCMX (Confirmation)	41		%	1	06/11/19	SC	30 - 150 %

Project ID: DANIELS MILL Phoenix I.D.: CD26898

Client ID: B-55 (8-11")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 24, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 24, 2019

QA/QC Data

SDG I.D.: GCD26852

04110 2 1, 2010								ODGI	.D C	100200	JUZ	
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 482080 (ug/Kg), CCD26876, CD26878, CD26880)	QC Sam	ple No: CD25154	1 10X (CD26862	2, CD26	6866, C	D26868	, CD26	870, CI	D26872	2, CD26	873,	
Polychlorinated Biphenyls	Soil											
		170		00			00	70	0.0	10 110	00	
PCB-1016	ND	170		99			80	73	9.2	40 - 140	30	
PCB-1221	ND	170								40 - 140	30	
PCB-1232	ND	170								40 - 140	30	
PCB-1242 PCB-1248	ND ND	170 170								40 - 140	30	
PCB-1254	ND	170								40 - 140 40 - 140	30 30	
PCB-1254 PCB-1260	ND	170		106			84	80	4.9	40 - 140	30	
PCB-1262	ND	170		100			04	80	4.3	40 - 140	30	
PCB-1268	ND	170								40 - 140	30	
% DCBP (Surrogate Rec)	113	%		112			76	72	5.4	30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	110	%		109			73	71	2.8	30 - 150	30	
% TCMX (Surrogate Rec)	108	%		109			69	63	9.1	30 - 150	30	
% TCMX (Surrogate Rec) (Confirm	102	%		107			68	60	12.5	30 - 150	30	
Comment:												
This batch consists of a Blank, LCS	S, MS ar	nd MSD.										
QA/QC Batch 482564 (ug/Kg), C	C Sam	ple No: CD25883	3 10X (CD26864	I, CD26	6896)							
Polychlorinated Biphenyls			`		,							
PCB-1016	ND	170		46	129	94.9	91	56	47.6	40 - 140	30	r
PCB-1221	ND	170		-10	125	54.5	01	00	47.0	40 - 140	30	'
PCB-1232	ND	170								40 - 140	30	
PCB-1242	ND	170								40 - 140	30	
PCB-1248	ND	170								40 - 140	30	
PCB-1254	ND	170								40 - 140	30	
PCB-1260	ND	170		60	143	81.8	114	63	57.6	40 - 140	30	l,r
PCB-1262	ND	170								40 - 140	30	,
PCB-1268	ND	170								40 - 140	30	
% DCBP (Surrogate Rec)	66	%		63	162	88.0	108	64	51.2	30 - 150	30	l,r
% DCBP (Surrogate Rec) (Confirm	70	%		68	161	81.2	113	69	48.4	30 - 150	30	l,r
% TCMX (Surrogate Rec)	80	%		34	114	108.1	89	55	47.2	30 - 150	30	r
% TCMX (Surrogate Rec) (Confirm	77	%		36	108	100.0	93	58	46.4	30 - 150	30	r
QA/QC Batch 481904 (ug/Kg), C	C Sam	ple No: CD25902	2 10X (CD26861	1)								
Polychlorinated Biphenyls	- Soil											
PCB-1016	ND	170		90	86	4.5	38	85	76.4	40 - 140	30	m,r
PCB-1221	ND	170								40 - 140	30	
PCB-1232	ND	170								40 - 140	30	
PCB-1242	ND	170								40 - 140	30	
PCB-1248	ND	170								40 - 140	30	
PCB-1254	ND	170								40 - 140	30	
PCB-1260	ND	170		93	92	1.1	48	96	66.7	40 - 140	30	r

QA/QC Data

SDG I.D.: GCD26852

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
PCB-1262	ND	170							40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	92	%	91	89	2.2	40	85	72.0	30 - 150	30	r
% DCBP (Surrogate Rec) (Confirm	104	%	102	101	1.0	51	96	61.2	30 - 150	30	r
% TCMX (Surrogate Rec)	95	%	89	89	0.0	37	86	79.7	30 - 150	30	r
% TCMX (Surrogate Rec) (Confirm	96	%	90	91	1.1	39	89	78.1	30 - 150	30	r
QA/QC Batch 483699 (ug/Kg), CCD26897)			9, CD2	6874, C	D26875	, CD26	8879, CI	D2688	5, CD26	891,	
Polychlorinated Biphenyls	- Soil										
PCB-1016	ND	170	89			52	70	29.5	40 - 140	30	
PCB-1221	ND	170							40 - 140	30	
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	106			79	93	16.3	40 - 140	30	
PCB-1262	ND	170							40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	86	%	94			72	88	20.0	30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	80	%	111			84	101	18.4	30 - 150	30	
% TCMX (Surrogate Rec)	72	%	89			31	76	84.1	30 - 150	30	r
% TCMX (Surrogate Rec) (Confirm	69	%	96			35	82	80.3	30 - 150	30	r
Comment:											•
The Batch consists of a Blank, LCS	MSan	d MSD									
QA/QC Batch 482099 (ug/Kg), C CD26894, CD26898)		ple No: CD26882 10X (CD2688.	2, CD2	6884, C	D26886	, CD26	888, CI	D26890), CD26	892,	
Polychlorinated Biphenyls											
PCB-1016	ND	170	65	75	14.3	77			40 - 140	30	
PCB-1221	ND	170							40 - 140	30	
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	66	92	32.9	89			40 - 140	30	r
PCB-1262	ND	170							40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	128	%	77	94	19.9	101			30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	155	%	75	115	42.1	102			30 - 150	30	r,s
% TCMX (Surrogate Rec)	114	%	68	86	23.4	67			30 - 150	30	
% TCMX (Surrogate Rec) (Confirm Comment:	140	%	67	93	32.5	67			30 - 150	30	r
This batch consists of a Blank, LCS	S, LCSD	and MS.									
QA/QC Batch 481772 (ug/Kg), C	C Sam	ple No: CD26887 10X (CD2685	2, CD2	6853, C	D26855	, CD26	8858, CI	D26860	0)		
Polychlorinated Biphenyls	- Soil										
PCB-1016	ND	170	65	70	7.4	79	66	17.9	40 - 140	30	
PCB-1221	ND	170							40 - 140	30	
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	84	89	5.8	134	112	17.9	40 - 140	30	

QA/QC Data

SDG I.D.: GCD26852

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD
Parameter	Blank		%	%	RPD	%	%	RPD	Limits	Limits
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	102	%	92	95	3.2	90	82	9.3	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	117	%	106	111	4.6	103	86	18.0	30 - 150	30
% TCMX (Surrogate Rec)	75	%	60	67	11.0	90	72	22.2	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	77	%	63	70	10.5	96	78	20.7	30 - 150	30
QA/QC Batch 482279 (ug/Kg), C	C Sam	ole No: CD26887 10X (CD268	387)							
Polychlorinated Biphenyls	- Soil									
PCB-1016	ND	170	65	70	7.4	79	66	17.9	40 - 140	30
PCB-1221	ND	170							40 - 140	30
PCB-1232	ND	170							40 - 140	30
PCB-1242	ND	170							40 - 140	30
PCB-1248	ND	170							40 - 140	30
PCB-1254	ND	170							40 - 140	30
PCB-1260	ND	170	84	89	5.8	134	112	17.9	40 - 140	30
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	102	%	92	95	3.2	90	82	9.3	30 - 150	30
% DCBP (Surrogate Rec) (Confirm	117	%	106	111	4.6	103	86	18.0	30 - 150	30
% TCMX (Surrogate Rec)	75	%	60	67	11.0	90	72	22.2	30 - 150	30
% TCMX (Surrogate Rec) (Confirm	77	%	63	70	10.5	96	78	20.7	30 - 150	30
QA/QC Batch 484095 (ug/Kg), C	C Sam	ole No: CD36927 10X (CD268	354, CD2	6893)						
Polychlorinated Biphenyls	- Soil									
PCB-1016	ND	170	100	89	11.6				40 - 140	30
PCB-1221	ND	170							40 - 140	30
PCB-1232	ND	170							40 - 140	30
PCB-1242	ND	170							40 - 140	30
PCB-1248	ND	170							40 - 140	30
PCB-1254	ND	170							40 - 140	30
PCB-1260	ND	170	103	98	5.0				40 - 140	30
PCB-1262	ND	170							40 - 140	30
PCB-1268	ND	170							40 - 140	30
% DCBP (Surrogate Rec)	107	%	113	107	5.5				30 - 150	30
% DCBP (Surrogate Rec) (Confirm	104	%	107	113	5.5				30 - 150	30
% TCMX (Surrogate Rec)	105	%	110	104	5.6				30 - 150	30
% TCMX (Surrogate Rec) (Confirm	99	%	106	109	2.8				30 - 150	30
Comment:										

Due to PCB in the unspiked sample, MS/MSD could not be reported.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director June 24, 2019

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits. s = This parameter is outside laboratory Blank Surrogate specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

Sample Criteria Exceedances Report GCD26852 - GZACTENG

Criteria: None State: CT

State:	CT		GCD20032 - GZACTENG				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CD26853	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	2800	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26853	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	340	100	100	ug/Kg
CD26854	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1700	560	1000	1000	ug/Kg
CD26855	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	570	71	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1200	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26858	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26859	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	2400	360	1000	1000	ug/Kg
CD26860	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	130	72	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	26000	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26861	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	6800	100	100	ug/Kg
CD26868	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	290	78	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	370	100	100	ug/Kg

Sample Criteria Exceedances Report GCD26852 - GZACTENG

Criteria: None State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
CD26872	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26872	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1800	370	100	100	ug/Kg
CD26873	\$PCB SOXR	PCB-1254	CT / Requested PCB RL /	1800	370	100	100	ug/Kg
CD26873	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26873	\$PCB SOXR	PCB-1262	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26873	\$PCB SOXR	PCB-1260	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26873	\$PCB SOXR	PCB-1268	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26873	\$PCB SOXR	PCB-1248	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26873	\$PCB SOXR	PCB-1232	CT / Requested PCB RL /	ND	370	100	100	ug/Kg ug/Kg
CD26873	\$PCB SOXR	PCB-1016	CT / Requested PCB RL /	ND	370	100	100	ug/Kg ug/Kg
CD26873	\$PCB_SOXR	PCB-1242	CT / Requested FCB RL /	ND	370	100	100	ug/Kg ug/Kg
GD20073	φFCB_3OAR	FGD-1242	CT / Nequested FOBINE /	ND	370	100	100	ug/rtg
CD26878	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB SOXR	PCB-1242	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB SOXR	PCB-1254	CT / Requested PCB RL /	2100	370	100	100	ug/Kg
CD26878	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB SOXR	PCB-1262	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
CD26878	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	370	100	100	ug/Kg
	_	DOD 4004	OT / D	ND	200	400	400	
CD26880	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	2000	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26880	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	380	100	100	ug/Kg
CD26884	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26884	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26884	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1400	390	100	100	ug/Kg
CD26884	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26884	\$PCB SOXR	PCB-1232	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26884	\$PCB SOXR	PCB-1016	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26884	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
	,=,							

RL

Analysis

Sample Criteria Exceedances Report GCD26852 - GZACTENG

Criteria: None State: CT

State:	CT		CODECOUL SERVICIO				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CD26884	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26884	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	390	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	410	100	100	ug/Kg
CD26886	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	2100	410	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	2200	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26887	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	360	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	5900	100	100	ug/Kg
CD26890	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	11000	5900	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	3700	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	540	100	100	ug/Kg
CD26892	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	540	100	100	ug/Kg

Sample Criteria Exceedances Report

Criteria: None State: CT

GCD26852 - GZACTENG

State:	CI						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CD26896	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1300	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	330	100	100	ug/Kg
CD26896	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	330	100	100	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: GZA GeoEnvironmental, Inc.

Project Location: DANIELS MILL Project Number:

Laboratory Sample ID(s): CD26852, CD26853, **Sampling Date(s):** 6/3/2019, 6/4/2019

CD26855, CD26858, CD26860-CD26862, CD26864, CD26866, CD26868, CD26870, CD26872, CD26873, CD26876, CD26878, CD26880, CD26882, CD26884, CD26886-CD26888, CD26890, CD26892, CD26894, CD26898

List RCP Methods Used (e.g., 8260, 8270, et cetera) 8082

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: PCB Narration.	☐ Yes 🗹 No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	☐ Yes 🗹 No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	✓ Yes □ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of knowledge and belief and based upon my personal inquiry information contained in this analytical report, such infor	of those responsible for providing the
Authorized Signature: Roshui Wakol Posit	ion: Project Manager
Printed Name: Rashmi Makol D	ate: Monday, June 24, 2019
Name of Laboratory Phoenix Environmental Labs, Inc.	

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

June 24, 2019 SDG I.D.: GCD26852

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 482099 (Samples: CD26882, CD26884, CD26886, CD26888, CD26890, CD26892, CD26894, CD26898): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (PCB-1260)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% DCBP (Surrogate Rec) (Confirmation), % TCMX (Surrogate Rec) (Confirmation))

QC Batch 482564 (Samples: CD26864, CD26896): -----

One or more surrogates is outside of criteria. (% DCBP (Surrogate Rec), % DCBP (Surrogate Rec) (Confirmation))

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (PCB-1260)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (PCB-1016, PCB-1260)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% DCBP (Surrogate Rec), % DCBP (Surrogate Rec) (Confirmation), % TCMX (Surrogate Rec), % TCMX (Surrogate Rec) (Confirmation))

QC Batch 483699 (Samples: CD26859, CD26874, CD26875, CD26879, CD26885, CD26891, CD26897): -----

The MS/MSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% TCMX (Surrogate Rec), % TCMX (Surrogate Rec) (Confirmation)) Instrument:

AU-ECD1 06/06/19-1

Saadia Chudary, Chemist 06/06/19

CD26860

The initial calibration (PC531Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC531Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD1 06/11/19-1

Saadia Chudary, Chemist 06/11/19

CD26896

The initial calibration (PC531Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC531Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD24 06/20/19-1

Saadia Chudary, Chemist 06/20/19

CD26854

The initial calibration (PC617AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC617BI) RSD for the compound list was less than 20% except for the following compounds: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

June 24, 2019 SDG I.D.: GCD26852

PCB Narration

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD3 06/07/19-1

Saadia Chudary, Chemist 06/07/19

CD26882

The initial calibration (PC423Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC423Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD3 06/18/19-1

Saadia Chudary, Chemist 06/18/19

CD26891

The initial calibration (PC423Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC423Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD48 06/06/19-1

Saadia Chudary, Chemist 06/06/19

CD26853

The initial calibration (PC603Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC603Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds: Samples: CD26853

Preceding CC 606B038 - None.

Succeeding CC 606B051 - TCMX SURR -18%L (15%)

AU-ECD48 06/07/19-1

Saadia Chudary, Chemist 06/07/19

CD26852, CD26855, CD26858, CD26861, CD26872, CD26880

The initial calibration (PC603Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC603Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD48 06/10/19-1

Saadia Chudary, Chemist 06/10/19

CD26873, CD26878, CD26884, CD26887

The initial calibration (PC603Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC603Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD48 06/11/19-1

Saadia Chudary, Chemist 06/11/19

CD26864

The initial calibration (PC603Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC603Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 06/07/19-1

Saadia Chudary, Chemist 06/07/19

CD26862, CD26868, CD26870, CD26876

The initial calibration (PC524Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC524Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 06/10/19-1

Saadia Chudary, Chemist 06/10/19

CD26866, CD26894, CD26898

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

June 24, 2019 SDG I.D.: GCD26852

PCB Narration

The initial calibration (PC524Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC524Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 06/18/19-1 Saadia Chudary, Chemist 06/18/19

CD26859, CD26874, CD26875, CD26879, CD26885, CD26897

The initial calibration (PC614Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC614Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 06/20/19-1

Saadia Chudary, Chemist 06/20/19

CD26893

The initial calibration (PC614Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC614Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD8 06/07/19-1

Saadia Chudary, Chemist 06/07/19

CD26886, CD26888, CD26890, CD26892

The initial calibration (PC513AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC513BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 481904 (CD25902)

CD26861

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 482080 (CD25154)

CD26862, CD26866, CD26868, CD26870, CD26872, CD26873, CD26876, CD26878, CD26880

All LCS recoveries were within 40 - 140 with the following exceptions: None.

This batch consists of a Blank, LCS, MS and MSD.

Batch 482564 (CD25883)

CD26864, CD26896

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: % DCBP (Surrogate Rec)(162%), % DCBP (Surrogate Rec)(161%), PCB-1260(143%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: % DCBP (Surrogate Rec)(88.0%), % DCBP (Surrogate Rec) (Confirmation)(81.2%), % TCMX (Surrogate Rec) (Confirmation)(100.0%), PCB-1016(94.9%), PCB-1260(81.8%)

Batch 484095 (CD36927)

CD26854, CD26893

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

June 24, 2019 SDG I.D.: GCD26852

PCB Narration

Due to PCB in the unspiked sample, MS/MSD could not be reported.

QC (Site Specific):

Batch 481772 (CD26887)

CD26852, CD26853, CD26855, CD26858, CD26860

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Batch 482099 (CD26882)

CD26882, CD26884, CD26886, CD26888, CD26890, CD26892, CD26894, CD26898

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: % DCBP (Surrogate Rec) (Confirmation)(42.1%), %

TCMX (Surrogate Rec) (Confirmation)(32.5%), PCB-1260(32.9%)

All MS recoveries were within 40 - 140 with the following exceptions: None.

This batch consists of a Blank, LCS, LCSD and MS.

Batch 482279 (CD26887)

CD26887

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Batch 483699 (CD26874)

CD26859, CD26874, CD26875, CD26879, CD26885, CD26891, CD26897

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: % TCMX (Surrogate Rec)(84.1%), % TCMX (Surrogate Rec) (Confirmation)(80.3%)

The Batch consists of a Blank, LCS, MS and MSD

Temperature Narration

The samples were received at 4.1C with cooling initiated.

(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Cooler: Yes No Data Delivery/Contact Options: An Denjeuning, rach @g zo.co	Project P.O: イSイゲイ. ひ & This section MUST be completed with Bottle Quantities.	001 100 100 100 100 100 100 100 100 100	100 8 8 8 10 80 10 10 10 10 10 10 10 10 10 10 10 10 10								<u>Data Format</u>	Excel	GIS/Key EQuIS	Other S-1 GW-2 S-1 GW-3 Data Package S-2 GW-2 S-2 GW-3 Tier II Checklist S-2 GW-2 S-2 GW-3 Tier II Checklist S-2 GW-2 S-2 GW-3 Tier II Data Package*	Other	* SURCHARGE APPLIES
Fax: Phone	en els Mill en Rach en Rach en Rach	\$\\\ \bar{\chi_{\text{to}}}\\ \chi_{\text	0 10 10 10 10 10 10 10 10 10 10 10 10 10			-					CI	bosure RCP Cert ial) GW Boothoodisc	SW Protection GW-2	7 7 7	I/C DEC S-3 GW-1 S-3 GW-1	State where samples were collected:
CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: D.6 Project Project	Analysis Request Says	E .	× ×	× ×		× ×	×	*>	X J O	Time: RI	07 18:50 Direct Exposure (Residential)	MS .	Turnaround Time: 1 Day*	3 Days* Standard Other	* SURCHARGE APPLIES
STORM.	Thursmarental mbung Blub my G 06033	matton - Identification Date: 6/3// SW=Surface Water WW=Waste Water ge S=Soil SD=Solid W=Wipe OIL=Oil ar)	Sample Date Matrix Sampled	1 5 6/3/19 1000	5 6/3/	6/3/19	S 6/3/19 1115 5 6/3/19 1130	3/11/9/15/3 S	8 6/1/19	13		Lo-some			Stands	* surc
PHOENIX Environmental Laboratories, Inc.	674 (3to) 95 Clasto	lient Sample - Information (Other Sediment SL=Sludge)	Customer Sa Identificati	3 13-234 (12-5") S 13-234 (12-15")	1 B-234(21-24")	┦┷┪	1 B-2014 (211-24") S B-2014 (30-33")	9 3-234 (36-24") 0 13-35 (6-9")	1 B-35 (10,5-13,5")	B-38	by: Accepted by:			Comments, Special Requirements or Regulations; 1		
PH	Customer: Address:	Sampler's Signature Matrix Code: DW=Drinking Water RW=Raw Water SE= B=Bulk L=Liquid X =	Oi \	2685		26851	36858	26856 26856	36861	36863	Relinguished by	And 2		Comments, Sp		

Coolent: IPK ICE No Temp 4 C Pg 2 of 6 V	1. rach @ 929.6 pm		This section MUST be	completed with	Bottle Quantities.		NOON POST	toos intos	THIS ELECTION TO SECONDATE OF S												Data Format	Excel	GIS/Key	EQUIS			. Other	* SURCHARGE APPLIES
Coolant: Temp 4	Fax: Phone: Email: heap.comh., ruch	Project P.O.					Car		A THO IN OF		-	7		7	7	<u>-</u>		-).	4-	4		MCP Certification	GW-1	GW-3	3-1 GW-2	3W-2 3W-2	MWRA eSMART Other	re collected:
RECORD	J, Manchester, CT 06040 Fax (860) 645-0823 645-8726	ch, M:[/	Rach	σZ	# 45 v 41,06																CT	□ RCP Cert	GW Protection] 🗆 5	GA Mobility GB Mobility		M Other Remote	State where samples were collected:
CHAIN OF CUSTODY RECORD	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: Jamel	Report to:	Invoice to:	QUOTE # Joh		Analysis Request	A COMPANY	TO SECOND	×.	*	X	×	×	*	×	×	×	×	< ×	Time: RI	18:50 Direct Exposure	(Residential)	w ₀ □	Time: Other		75	SE APPLIES
5	587 East Mic Email: i	Fuc.				uo	Date: 1014-06-03	ww =Waste Water W =Wipe OIL =Oil	Date Time Sampled Sampled	77	14/11	13/14 IC 30	3/13 16.45	05:31 4/6	13/19 17 00	0/3/19 17 10	-1	1/1/19 9 35	1/1/27 10 10		╬┷╅	2018-06-09	/		Turnaround Time:		X Standard	Other *SURCHARGE APPLIES
	boratories, Inc.	seo Euriconmandal	studenty buleward	Floor 1	2my, GT 04.053	plg - Information - Identification	1 WM	nd Water SW=Surface Water I SL=Sludge S=Soil SD=Solid (Other)	Customer Sample Sample Identification Matrix	5	(TENT 18-10-1) S		5	$(1-4^{11})$ 5 6	(13.16") 5 6	(7-10") \$ ((11-13") 5 ((0-54)	7	Accepted by:	\ \ ≤)	-	and the O.1 my/Wg	5		
VaOria	Environmental Laboratories, Inc.	Customer: $G2k$	`~	The	Gierland	Client	Sampler's Signature	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid X =(Other)	PHOENIX USE ONLY Custo SAMPLE #	8-9 4020C	36805 13	36866 B-40	5	36868 11	20869 8-41	0.		-	2/02/3	21.875 8-14	heg by:	A 4 WAR			Comments, Special Requirements or Regulations:			

iler: Yes No	C Pg 3 of 14	ontact Options:	prismy (ach OGZZ, COM			completed with	Bottle Quantities.	Tugger FOSCE	doos indos	The sieve Strong Strong	\$												Data Format	Excel	GIS/Key	EQUIS	Data Package	Full Data Package* □ Phoenix Std Report	* SURCHARGE APPLIES
Cooler: Coolant: IPK ☐	Temp	Data Delivery/Contact Options:	≘ ∺	Pro						ON IN OF		4	7	7	-t	=+	4	4	4	- +	-1	3	МА	MCP Certification	□ Gw-1	5.W-2 GW-3	7 7	3-2 GW-1	s were collected:
	CUSTODY RECORD	587 East Middle Turnnike P.O. Box 370 Manchester. CT 06040	info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Mill How	7. 0	A. Dan	170 # 454 il. 06																히	Direct Exposure RCP Cert	(Residential)	GW SW Protection	Other GA Mobility GB Mobility	Residential DEC	State where samples were collected:
	CHAIN OF CU	Middle Turnoike P.O.	Email: info@phoenixlabs.com Client Services (8)	Project:	- Renort to:	Invoice to:	_ QUOTE#	Analysis	132	3000	X	×	×	×	×	×	×	×	X	×	\rightarrow	XXX	Ē	□ 78:50 □			d Time:	* * * * * * * * * * * * * * * * * * * *	 Standard Other *SURCHARGE APPLIES
***	S	587 Fast M	Email					. 2018-06-04	Waste Water =Wipe OIL =Oil	Date Time	<u> </u>		2014-06-64 10:45	2019-0601 10:56	2019-060 10:55	2018-01-01 11:52	69	2019-06-04 12:25	3	CC 13.15	07:LT 10-10	₹ 25€	Date:	20 B-8 01			Turnaround Time:	2 Days*	Other ** SURCHARG
I			Inc.	J. T.		DMCMMO	06,375	- Identification Date:	rface Water WW = oil SD =Solid W	Sample Da		5 2003	5 200%	5 201	5 20%	5 2003	5 2019-0	5 2019		30-stac 6	S 2044	S 2011 &					ons: ma/kg	`	
			Environmental Laboratories, Inc.	74 Geoffuntonment		The second	Many C	Client Sample - Information - Identification	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X =(Other)	Customer Sample	B-45 (55"45")	(2)	β-46 (4-7") /	B-46 (16-19")	Š		8-48 (4-7")) %	4. (4-7)	ン ト	B-SC (8-10")	62-61	Accepted by:	7 / V)		Somments, Special Requirements or Regulations:		
::			Environmen	Customer: (5	1	٠.	Р	Sampler's Signature	Matrix Code: DW=Drinking Water (RW=Raw Water SE=5 B=Bulk L=Liquid X =	PHOENIX USE ONLY	20876	26877	X1878	36879	28800	H 88 1	08800	36883	7887	30885	3688C	26827	Relinguished by:	A 4 W	•		Comments, Special R.		

This section MUST be completed with complete completed with completed with complete completed with complete completed with completed with complete completed completed with complete completed co	CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726
1	
Companies Comp	#
C C C C C C C C C C	Analysis Request
	DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X =(Other)
1	Time Reported
1	×
1	13.78 ×
1	X
1	14:25 X
1	14.50 X
1	χ ος:
1 1 1 1 1 1 1 1 1 1	×
MA MA MA MA MA MA MA MA	X X X
MA MA MA MCP Certification MA MCP Certification MCP Certification GW-1 GW-1 GW-2 GW-2 GW-2 GW-2 GW-2 GW-2 GW-1 GA Mobility S-1 GW-1 S-2 GW-2 GB Mobility S-2 GW-1 S-2 GW-2 G-2 GW-3 GW-2 G-2 GW-3 GW-2 G-2 GW-2 G-2 GW-3 GW-2 G-2 GW-2 G-2 GW-3 GW	16:50 ×
RCP Cert	Time
GW Protection GW-1 GW-2 GW Protection GW-2 GW Protection GW-3 GA Mobility S-1 GW-1 S-1 GW-2 S-1 GW-3 GB Mobility S-2 GW-1 S-2 GW-2 S-2 GW-3 GW Protection GW	8.04 18:50 [
SW Protection GW-3 GW-3 GW GW GW-3 GW GW GW GW GW GW GW G	(Resi
GA Mobility S-1 GW-1 S-1 GW-2 B-1 GW-3 GB Mobility S-2 GW-1 S-2 GW-2 S-2 GW-3 I/C DEC S-3 GW-1 S-3 GW-2 S-3 GW-3 GB C S-4 GW-1 S-3 GW-2 S-4 GW-3 GB C S-4 GW-1 State where samples were collected:	GW □
GW-2	Turnaround Time:
S other	2 Days* 3 Daye*
2	Standard
	Other SURCHARGE APPLIES

* All chiedra		Relinguished by	120	AC874	3/08/2	16896	70		8080H	7	Jegente Envint	26864	PHOENIX USE ONLY	Matrix Code: DW=Diriking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment \$L=Studge S=Soil \$D=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X =(Other)	Sampler's Cilla Signature A	Address:	Customer:	PHOE Environmenta
edection hunts shell be 0.2 mg/K	. (Accepted by:	B+11 (125-165)	8-12 (15-18)	144 (0-34)	121		R-41 (43-16")		-	-40 (4-7")	7 (64)		=Ground Water SW=Surf liment SL=Sludge S=Soi (Other)	Homes house	and thought of or	A Geo Environment	PHOENIX &
Caffee		3	S 64/19	6/4	54/1/2 11/1/1/2	5 6/5/39	5 6/5/19	61/2/0, 5	2	5 6/2/19	5 (///hq	15/19 5	Sample Date Matrix Sampled	ace Water ww =Wask \$D =Solid W =Wipe	Identification Date:	0507)	ranged, Tuc	Inc.
Turnaround Time: 1 Day: 2 Days* 3 Days* Standard Other SURCHARGE APPLIES	(Resi	Date: Time: RI Date: Dire	10:15 X & SIC		× ×	17:15 X	×	-	X	-	₩. % × °	×	Time Constitution Sampled		Analysis Request	Report to: Invoice to: QUOTE #	Project:	GHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726
ner State where samples were col	GW Protection SW Protection	RCP Cert														Ben Rock Ben Rock Ben Rock	frankly Mill	TODY RECORD 3ox 370, Manchester, CT 06040 nm Fax (860) 645-0823 (860) 645-8726
\$.16W.1 \$.16W.2 \$.16W.3 \$.26W.2 \$.26W.3 \$.26W.2 \$.26W.3 \$.36W.2 \$.36W.3 \$.36W.3 \$.36W.2 \$.36W.3 \$.36W.3 \$.36W.2 \$.36W.3 \$.36W.	GW-1 GW-2 GW-3	MCP Certification	1	1	4 2 (2)		1	1	1	1-	j-4 V		5 888	101.11	11	This s	Project P.O.	Temp C Pg of Data Delivery/Contact Options: Fax: Phone: Employee Temp Contact Options:
Data Package Titer II Checklist Full Data Package* Phoenix Std Report Other Surcharge applies	GIS/Key Colher	Data Format Excel										_		21 18/18	1883	This section MUST be completed with Bottle Quantities.	,	Delivery/Contact Options:

Bobbi Aloisa

From: Benjamin Rach Senjamin.Rach@gza.com

Sent: Monday, June 17, 2019 10:42 AM

To: Bobbi Aloisa

Subject: additional analysis request

Attachments: 1855_001.pdf

Good Morning Bobbi,

Congrats on your son getting promoted. I saw you and Keith at the ceremony. My daughter Maddox is off to E.O. Smith next year. I can't believe they are in high school now!!

Anyways, down to business. I need to request some additional analysis via manual Soxhlet extraction. See attached as marked.

Thanks!

Sincerely,

Ben

Benjamin D. Rach

Project Manager

GZA | 95 Glastonbury Boulevard, 3rd Floor | Glastonbury, CT 06033 o: 860.858.3131 | c: 860.250.7327 | <u>benjamin.rach@gza.com</u> | <u>www.gza.com</u> | <u>LinkedIn</u>

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Known for excellence. Built on trust.

"Change the things that can be changed, accept those that cannot, and have the wisdom to know the difference"

Dr. Richard Carlson

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.qza.com.

Wednesday, June 26, 2019

Attn: Mr. Benjamin Rach GZA GeoEnvironmental Inc 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: DANIELS SDG ID: GCD41078

Sample ID#s: CD41078, CD41080, CD41082 - CD41083, CD41085

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

June 26, 2019

SDG I.D.: GCD41078

Project ID: DANIELS

Client Id	Lab Id	Matrix
B-57 (5.5-8.5``)	CD41078	SOIL
B-35A (21-24``)	CD41080	SOIL
B-23B (33-36``)	CD41082	SOIL
B-58 (10-13``)	CD41083	SOIL
B-22B (45-48``)	CD41085	SOIL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 26, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: AW 06/24/19 13:50 Matrix: SOIL Received by: Location Code: **GZA-PCB** В 06/24/19 16:47

Rush Request: Standard Analyzed by: see "By" below

05.0045441.06 Laboratory Data

SDG ID: GCD41078

Phoenix ID: CD41078

Project ID: DANIELS

P.O.#:

Client ID: B-57 (5.5-8.5``)

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		06/24/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/24/19	XX/KL	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1221	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1232	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1242	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1248	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1254	0.09	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1260	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1262	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
PCB-1268	ND	0.072	mg/kg	2	06/25/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	81		%	2	06/25/19	SC	30 - 150 %
% DCBP (Confirmation)	54		%	2	06/25/19	SC	30 - 150 %
% TCMX	80		%	2	06/25/19	SC	30 - 150 %
% TCMX (Confirmation)	61		%	2	06/25/19	SC	30 - 150 %

Project ID: DANIELS Phoenix I.D.: CD41078

Client ID: B-57 (5.5-8.5")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 26, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 26, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: AW 06/24/19 14:45 Matrix: SOIL Received by: Location Code: **GZA-PCB** В 06/24/19 16:47

Rush Request: Standard Analyzed by: see "By" below

05.0045441.06 Laboratory Data

SDG ID: GCD41078

Phoenix ID: CD41080

Project ID: DANIELS

P.O.#:

Client ID: B-35A (21-24``)

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/24/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/24/19	XX/KL	SW3540C
PCB (Soxhlet SW354	.0C)						
PCB-1016	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1221	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1232	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1242	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1248	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1254	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1260	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1262	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1268	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	80		%	2	06/25/19	SC	30 - 150 %
% DCBP (Confirmation)	52		%	2	06/25/19	SC	30 - 150 %
% TCMX	84		%	2	06/25/19	SC	30 - 150 %
% TCMX (Confirmation)	63		%	2	06/25/19	SC	30 - 150 %

Project ID: DANIELS Phoenix I.D.: CD41080

Client ID: B-35A (21-24")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 26, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 26, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: AW 06/24/19 15:00 Matrix: SOIL Received by: Location Code: **GZA-PCB** В 06/24/19 16:47

Rush Request: Standard Analyzed by: see "By" below

05.0045441.06 Laboratory Data

SDG ID: GCD41078

Phoenix ID: CD41082

Project ID: DANIELS

P.O.#:

Client ID: B-23B (33-36``)

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		06/24/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/24/19	XX/KL	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1221	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1232	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1242	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1248	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1254	0.55	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1260	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1262	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1268	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	65		%	2	06/25/19	SC	30 - 150 %
% DCBP (Confirmation)	51		%	2	06/25/19	SC	30 - 150 %
% TCMX	57		%	2	06/25/19	SC	30 - 150 %
% TCMX (Confirmation)	54		%	2	06/25/19	SC	30 - 150 %

Project ID: DANIELS Phoenix I.D.: CD41082

Client ID: B-23B (33-36")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 26, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 26, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: AW 06/24/19 15:25 Matrix: SOIL Received by: Location Code: **GZA-PCB** В 06/24/19 16:47

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD41078

Phoenix ID: CD41083

Project ID: DANIELS
Client ID: B-58 (10-13``)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	95		%		06/24/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/24/19	XX/KL	SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1221	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1232	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1242	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1248	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1254	0.16	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1260	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1262	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
PCB-1268	ND	0.069	mg/kg	2	06/25/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	60		%	2	06/25/19	SC	30 - 150 %
% DCBP (Confirmation)	47		%	2	06/25/19	SC	30 - 150 %
% TCMX	60		%	2	06/25/19	SC	30 - 150 %
% TCMX (Confirmation)	53		%	2	06/25/19	SC	30 - 150 %

Client ID: B-58 (10-13")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 26, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 26, 2019

FOR: Attn: Mr. Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: AW 06/24/19 15:55 Matrix: SOIL Received by: Location Code: **GZA-PCB** В 06/24/19 16:47

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD41078

Phoenix ID: CD41085

Project ID: DANIELS

P.O.#:

Client ID: B-22B (45-48``)

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	94		%		06/24/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/24/19	XX/KL	SW3540C
PCB (Soxhlet SW3540	(C)						
PCB-1016	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1221	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1232	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1242	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1248	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1254	0.3	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1260	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1262	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
PCB-1268	ND	0.07	mg/kg	2	06/25/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	63		%	2	06/25/19	SC	30 - 150 %
% DCBP (Confirmation)	48		%	2	06/25/19	SC	30 - 150 %
% TCMX	67		%	2	06/25/19	SC	30 - 150 %
% TCMX (Confirmation)	56		%	2	06/25/19	SC	30 - 150 %

Client ID: B-22B (45-48``)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 26, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 26, 2019

QA/QC Data

SDG I.D.: GCD41078

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 484857 (ug/Kg), C	C Sam	ple No: CD40699 10X (CD4107	8, CD4	1080, C	D41082	, CD41	083, CI	D4108	5)		
Polychlorinated Biphenyls	- Soil										
PCB-1016	ND	170	60	70	15.4	92	84	9.1	40 - 140	30	
PCB-1221	ND	170							40 - 140	30	
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	64	74	14.5	96	87	9.8	40 - 140	30	
PCB-1262	ND	170							40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	104	%	58	90	43.2	103	94	9.1	30 - 150	30	r
% DCBP (Surrogate Rec) (Confirm	110	%	66	89	29.7	102	93	9.2	30 - 150	30	
% TCMX (Surrogate Rec)	97	%	58	85	37.8	101	96	5.1	30 - 150	30	r
% TCMX (Surrogate Rec) (Confirm	100	%	61	82	29.4	98	94	4.2	30 - 150	30	

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

June 26, 2019

Wednesday, June 26, 2019

Sample Criteria Exceedances Report

Criteria: None State: CT

GCD41078 - GZA-PCB

State:	CI						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CD41082	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	0.55	0.07	0.1	0.1	mg/kg
CD41083	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	0.16	0.069	0.1	0.1	mg/kg
CD41085	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	0.3	0.07	0.1	0.1	mg/kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

June 26, 2019 SDG I.D.: GCD41078

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

c Pg 4 of 4		\$ 570. com	20.2442.00.	This section MUST be completed with Bottle Quantities.	liggo 1	THOO THE SELVE	Od elleged A.C. Nij. A. C. Nij. A									Data Format	Excel PDF	GIS/Key		Tier II Checklist Tull Data Package* Phoenix Std Report	Other *SURCHARGE APPLIES
Cooler: Coolant: IPK ☐ Templ\.5 · C	Data Delivery:	M Email: begand, 17th B 579. Com	Project P.O. 05.8045441.66	This O			\$ 1.50 100 100 100 100 100 100 100 100 100 1	4.	44	1 4	7			7		MA	☐ MCP Certification ☐ GW-1	☐ GW-2 ☐ GW-3			ected: CT
ORD			hin				37.005					7	74,			CI	Direct Exposure RCP Cert (Residential) GW Protection	<u> </u>		Residential DEC I/C DEC XX Other 6. 1857	State where samples were collected:
CHAIN OF CUSTODY RECORD	le Turnpike, P.O. Box 370, Manches	Client Services (860) 645-8726	Project: Demock M. Report to: Dem Rede.		Analysis				K	×			×			: Time: RI	2019-26-24 16:47 Dire	GW GW		1 Day* 2 Days* 3 Days*	Standard Other State
CHAI	587 East Midd		the the blood	133,	Joy 66-24		Date Time Sampled Sampled		30:17 K2:97-1828		10:52 Kenta X		15.15	7015067 15:35 X		Date:	mynn 200		1000年		
	JOENIX	Environmental Laboratories, Inc.	95 Charlemon Boulevirel	astantany, 101 Oct	Clifat Sample - Information - Identification	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Sample Identification Matrix	·	125 (21.5-105) >			ľ	2	15-224 (15-19)		Accepted by:	1 Bothy -		Special Requirements or Regulations:		
		Ruvironment	Customer: (7.4) Address: 95	ଷ]	Sampler's Signature	Matrix Code: DW=Drinking Water GW= RW=Raw Water SE=Sedin OIL=Oil B=Bulk L=Liquid	PHOENIX USE ONLY SAMPLE #	∞ ;	2012		C801h	41083	2017	21088		Relinguished by:	And Wille		Comments, Special Red	>	·

Monday, July 08, 2019

Attn: Benjamin Rach GZA GeoEnvironmental Inc 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: DANIELS MILL SDG ID: GCD32412

Sample ID#s: CD32412 - CD32418, CD32421 - CD32423

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

July 08, 2019

SDG I.D.: GCD32412

Project ID: DANIELS MILL

Client Id	Lab Id	Matrix
B-25B (0-0.25)	CD32412	SOIL
B-25B (0.75-1)	CD32413	SOIL
B-7A (0-0.25)	CD32414	SOIL
B-7A (1.75-2)	CD32415	SOIL
B-7A (2.75-3)	CD32416	SOIL
B-27A (0-0.25)	CD32417	SOIL
B-27A (1.75-2)	CD32418	SOIL
B-36A (2.75-3)	CD32421	SOIL
B-36A (4-4.25)	CD32422	SOIL
B-36A (6-6.25)	CD32423	SOIL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/197:58Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32412

Project ID: DANIELS MILL
Client ID: B-25B (0-0.25)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	XX/KL/S	B SW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1221	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1232	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1242	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1248	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1254	1.7	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1260	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1262	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
PCB-1268	ND	0.38	mg/kg	10	06/13/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Interference		%	10	06/13/19	SC	30 - 150 %
% DCBP (Confirmation)	120		%	10	06/13/19	SC	30 - 150 %
% TCMX	98		%	10	06/13/19	SC	30 - 150 %
% TCMX (Confirmation)	100		%	10	06/13/19	SC	30 - 150 %

Client ID: B-25B (0-0.25)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

Due to matrix interference from non target compounds in the sample, surrogate could not be reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/198:35Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 05.0045441.06 Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32413

Project ID: DANIELS MILL Client ID: B-25B (0.75-1)

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	82		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	XX/KL/S	B SW3540C
PCB (Soxhlet SW354	IOC)						
PCB-1016	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1221	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1232	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1242	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1248	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1254	0.93	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1260	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1262	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
PCB-1268	ND	0.4	mg/kg	10	06/13/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	98		%	10	06/13/19	SC	30 - 150 %
% DCBP (Confirmation)	Interference		%	10	06/13/19	SC	30 - 150 %
% TCMX	77		%	10	06/13/19	SC	30 - 150 %
% TCMX (Confirmation)	83		%	10	06/13/19	SC	30 - 150 %

Client ID: B-25B (0.75-1)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

Due to matrix interference from non target compounds in the sample, surrogate could not be reported.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/198:45Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32414

Project ID: DANIELS MILL Client ID: B-7A (0-0.25)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	XX/KL/S	BSW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1221	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1232	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1242	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1248	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1254	2.8	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1260	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1262	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
PCB-1268	ND	1.8	mg/kg	50	06/13/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	50	06/13/19	SC	30 - 150 %
% DCBP (Confirmation)	Diluted Out		%	50	06/13/19	SC	30 - 150 %
% TCMX	Diluted Out		%	50	06/13/19	SC	30 - 150 %
% TCMX (Confirmation)	Diluted Out		%	50	06/13/19	SC	30 - 150 %

Client ID: B-7A (0-0.25)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/199:00Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 05.0045441.06 Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32415

Project ID: DANIELS MILL Client ID: B-7A (1.75-2)

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	80		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	(X/KL/S	B SW3540C
PCB (Soxhlet SW3540	(C)						
PCB-1016	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1221	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1232	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1242	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1248	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1254	17	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1260	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1262	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
PCB-1268	ND	2.1	mg/kg	50	06/13/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	50	06/13/19	SC	30 - 150 %
% DCBP (Confirmation)	Diluted Out		%	50	06/13/19	SC	30 - 150 %
% TCMX	Diluted Out		%	50	06/13/19	SC	30 - 150 %
% TCMX (Confirmation)	Diluted Out		%	50	06/13/19	SC	30 - 150 %

Client ID: B-7A (1.75-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/199:15Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32416

Project ID: DANIELS MILL Client ID: B-7A (2.75-3)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	85		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	XX/KL/S	BSW3540C
PCB (Soxhlet SW3540)C)						
PCB-1016	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1221	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1232	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1242	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1248	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1254	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1260	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1262	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
PCB-1268	ND	0.39	mg/kg	10	06/14/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	99		%	10	06/14/19	SC	30 - 150 %
% DCBP (Confirmation)	96		%	10	06/14/19	SC	30 - 150 %
% TCMX	104		%	10	06/14/19	SC	30 - 150 %
% TCMX (Confirmation)	105		%	10	06/14/19	SC	30 - 150 %

Client ID: B-7A (2.75-3)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/199:25Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32417

Project ID: DANIELS MILL Client ID: B-27A (0-0.25)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	XX/KL/S	B SW3540C
PCB (Soxhlet SW3540	<u>)C)</u>						
PCB-1016	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1221	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1232	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1242	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1248	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1254	8.5	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1260	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1262	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
PCB-1268	ND	1.9	mg/kg	50	06/14/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	50	06/14/19	SC	30 - 150 %
% DCBP (Confirmation)	Diluted Out		%	50	06/14/19	SC	30 - 150 %
% TCMX	Diluted Out		%	50	06/14/19	SC	30 - 150 %
% TCMX (Confirmation)	Diluted Out		%	50	06/14/19	SC	30 - 150 %

Client ID: B-27A (0-0.25)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/199:40Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32418

Project ID: DANIELS MILL Client ID: B-27A (1.75-2)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/12/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/12/19	XX/KL/S	B SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1221	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1232	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1242	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1248	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1254	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1260	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1262	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
PCB-1268	ND	0.38	mg/kg	10	06/14/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	73		%	10	06/14/19	SC	30 - 150 %
% DCBP (Confirmation)	68		%	10	06/14/19	SC	30 - 150 %
% TCMX	81		%	10	06/14/19	SC	30 - 150 %
% TCMX (Confirmation)	78		%	10	06/14/19	SC	30 - 150 %

Client ID: B-27A (1.75-2)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/1910:15Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32421

Project ID: DANIELS MILL Client ID: B-36A (2.75-3)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/19/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/19/19	X/AK/KL	/\SW3540C
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	 ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1221	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1232	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1242	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1248	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1254	8.4	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1260	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1262	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
PCB-1268	ND	0.81	mg/kg	10	06/21/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	93		%	10	06/21/19	SC	30 - 150 %
% DCBP (Confirmation)	89		%	10	06/21/19	SC	30 - 150 %
% TCMX	93		%	10	06/21/19	SC	30 - 150 %
% TCMX (Confirmation)	83		%	10	06/21/19	SC	30 - 150 %

Client ID: B-36A (2.75-3)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/1910:40Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32422

Project ID: DANIELS MILL Client ID: B-36A (4-4.25)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/19/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/21/19	BB/KL/S	BSW3540C
PCB (Soxhlet SW3540)	<u>C)</u>						
PCB-1016	 ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1221	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1232	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1242	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1248	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1254	1.4	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1260	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1262	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
PCB-1268	ND	0.79	mg/kg	10	06/24/19	SC	SW8082A
QA/QC Surrogates							
% DCBP	108		%	10	06/24/19	SC	30 - 150 %
% DCBP (Confirmation)	105		%	10	06/24/19	SC	30 - 150 %
% TCMX	101		%	10	06/24/19	SC	30 - 150 %
% TCMX (Confirmation)	96		%	10	06/24/19	SC	30 - 150 %

Client ID: B-36A (4-4.25)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 08, 2019

FOR: Attn: Benjamin Rach

GZA GeoEnvironmental Inc 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:06/12/1911:00Location Code:GZA-PCBReceived by:SW06/12/1913:42

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCD32412

Phoenix ID: CD32423

Project ID: DANIELS MILL Client ID: B-36A (6-6.25)

P.O.#:

05.0045441.06

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	87		%		06/27/19	ML	SW846-%Solid
Extraction for PCB	Completed				06/27/19	XX/KL/M	_{IL} SW3540C
Polychlorinated Biph	<u>enyls</u>						
PCB-1016	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1221	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1232	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1242	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1248	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1254	0.84	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1260	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1262	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
PCB-1268	ND	0.38	mg/kg	10	06/29/19	PS	SW8082A
QA/QC Surrogates							
% DCBP	87		%	10	06/29/19	PS	30 - 150 %
% DCBP (Confirmation)	77		%	10	06/29/19	PS	30 - 150 %
% TCMX	58		%	10	06/29/19	PS	30 - 150 %
% TCMX (Confirmation)	60		%	10	06/29/19	PS	30 - 150 %

Client ID: B-36A (6-6.25)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 08, 2019

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 08, 2019

QA/QC Data

SDG I.D.: GCD32412

ouly 00, 2010			-				obai	.D C	10002-	T 1 Z	
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 482998 (ug/Kg), CCD32418)	QC Sam	ple No: CD31418 10X (CD324	112, CD3	2413, C	D32414	, CD32	2415, CI	D32416	6, CD32	417,	
Polychlorinated Biphenyls	- Soil										
PCB-1016	ND	170	103	95	8.1	69	102	38.6	40 - 140	30	r
PCB-1221	ND	170	100	00	0.1	00	102	00.0	40 - 140	30	•
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	117	99	16.7	66	96	37.0	40 - 140	30	r
PCB-1262	ND	170							40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	104	%	112	91	20.7	62	90	36.8	30 - 150	30	r
% DCBP (Surrogate Rec) (Confirm	120	%	124	91	30.7	63	95	40.5	30 - 150	30	r
% TCMX (Surrogate Rec)	98	%	106	105	0.9	66	101	41.9	30 - 150	30	r
% TCMX (Surrogate Rec) (Confirm	106	%	113	111	1.8	72	110	41.8	30 - 150	30	r
Comment:											
This Batch consists of a Blank, LC	S, LCSD	and MS									
QA/QC Batch 485435 (ug/Kg), C	C Sam	nple No: CD32423 10X (CD324	123)								
Polychlorinated Biphenyls		•	0,								
PCB-1016			103	99	4.0				40 140	20	
PCB-1016 PCB-1221	ND ND	170 170	103	99	4.0				40 - 140	30	
PCB-1221 PCB-1232	ND	170							40 - 140 40 - 140	30 30	
PCB-1232 PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	
PCB-1254	ND	170							40 - 140	30	
PCB-1260	ND	170	94	99	5.2				40 - 140	30	
PCB-1262	ND	170	34	33	5.2				40 - 140	30	
PCB-1268	ND	170							40 - 140	30	
% DCBP (Surrogate Rec)	72	%	102	103	1.0				30 - 150	30	
% DCBP (Surrogate Rec) (Confirm	71	%	98	99	1.0				30 - 150	30	
% TCMX (Surrogate Rec)	74	%	100	95	5.1				30 - 150	30	
` - ,	68	%	96	96	0.0				30 - 150	30	
Due to PCB in the unspiked sample	e MS/M	SD could not be reported									
QA/QC Batch 484121 (ug/Kg), C			121)								
Polychlorinated Biphenyls	- Soil										
PCB-1016	ND	170	101	102	1.0	83	70	17.0	40 - 140	30	
PCB-1221	ND	170			-		-		40 - 140	30	
PCB-1232	ND	170							40 - 140	30	
PCB-1242	ND	170							40 - 140	30	
PCB-1248	ND	170							40 - 140	30	

QA/QC Data

% % Blk LCS LCSD LCS MS MSD RPD MS Rec RL RPD RPD Blank % % % % Limits Limits Parameter PCB-1254 ND 170 40 - 140 30 90 PCB-1260 ND 170 106 107 0.9 80 11.8 40 - 140 30 ND 170 PCB-1262 40 - 140 30 PCB-1268 ND 170 40 - 140 30 % DCBP (Surrogate Rec) 113 % 115 116 0.9 97 88 9.7 30 - 150 30 % DCBP (Surrogate Rec) (Confirm 106 % 106 111 4.6 90 82 9.3 30 - 150 30 % TCMX (Surrogate Rec) 94 % 108 114 5.4 77 57 29.9 30 - 150 30 76 % TCMX (Surrogate Rec) (Confirm 91 % 106 113 6.4 58 26.9 30 - 150 30 QA/QC Batch 484529 (ug/Kg), QC Sample No: CD39932 10X (CD32422) Polychlorinated Biphenyls - Soil PCB-1016 170 96 ND 100 100 0.0 73 27.2 40 - 140 30 PCB-1221 ND 170 40 - 140 30 ND 170 PCB-1232 40 - 140 30 PCB-1242 ND 170 40 - 140 30 ND PCB-1248 170 40 - 140 30 ND 170 PCB-1254 40 - 140 30 PCB-1260 ND 170 110 104 5.6 85 106 22.0 40 - 140 30 ND 170 40 - 140 PCB-1262 30 PCB-1268 ND 170 40 - 140 30 % DCBP (Surrogate Rec) 87 % 102 114 11.1 92 116 23.1 30 - 150 30 90 % % DCBP (Surrogate Rec) (Confirm 114 109 4.5 88 112 24.0 30 - 150 30 % TCMX (Surrogate Rec) <10 % 99 6.8 106 59 87 38.4 30 - 150 30 r,s % TCMX (Surrogate Rec) (Confirm 2 % 106 103 2.9 58 85 37.8 30 - 150 30 r,s

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCD32412

July 08, 2019

r = This parameter is outside laboratory RPD specified recovery limits.

s = This parameter is outside laboratory Blank Surrogate specified recovery limits.

Monday, July 08, 2019

Criteria: CT: GAM, RC

Sample Criteria Exceedances Report GCD32412 - GZA-PCB

State: CT

State.			•				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CD32412	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1.7	0.38	1	1	mg/kg
CD32412	\$PCB_SOXR	PCB-1254	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	1.7	0.38	1	1	mg/kg
CD32414	\$PCB SOXR	PCB-1254	CT / Requested PCB RL /	2.8	1.8	1	1	malka
CD32414 CD32414		PCB-1268	•	2.6 ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR \$PCB_SOXR	PCB-1260 PCB-1262	CT / Requested PCB RL / CT / Requested PCB RL /	ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR	PCB-1240 PCB-1242	CT / Requested PCB RL /	ND ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR	PCB-1242 PCB-1221	CT / Requested PCB RL /	ND	1.8	1	1	mg/kg
CD32414 CD32414		PCB-1016	•	ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR	PCB-1010 PCB-1232	CT / Requested PCB RL / CT / Requested PCB RL /	ND ND	1.8	1	1	mg/kg
CD32414 CD32414	\$PCB_SOXR	PCB-1232 PCB-1268	•	ND ND	1.8	1	1	mg/kg
	\$PCB_SOXR	PCB-1254	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH			1	1	mg/kg
CD32414	\$PCB_SOXR		CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	2.8	1.8	1	1	mg/kg
CD32414	\$PCB_SOXR	PCB-1262	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	1	1	mg/kg
CD32414	\$PCB_SOXR	PCB-1232	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	1	1	mg/kg
CD32414	\$PCB_SOXR	PCB-1260	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	1	1	mg/kg
CD32414	\$PCB_SOXR	PCB-1221	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	1	1	mg/kg
CD32414	\$PCB_SOXR	PCB-1248	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	•	•	mg/kg
CD32414	\$PCB_SOXR	PCB-1242	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	1 1	1	mg/kg
CD32414	\$PCB_SOXR	PCB-1016	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.8	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	17	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1232	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1262	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1232	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1260	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1016	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1248	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1268	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1242	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1262	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32415	\$PCB SOXR	PCB-1254	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	17	2.1	1	1	mg/kg
CD32415	\$PCB_SOXR	PCB-1221	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	2.1	1	1	mg/kg
CD32417	\$PCB SOXR	PCB-1232	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB SOXR	PCB-1262	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
	Ţ. UZ_UU/A			110			•	e'''ق…

Monday, July 08, 2019

Criteria: CT: GAM, RC

Sample Criteria Exceedances Report GCD32412 - GZA-PCB

State: CT

State:	CT						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CD32417	\$PCB_SOXR	PCB-1268	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1260	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	8.5	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1248	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1016	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1221	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1242	CT / Requested PCB RL /	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1268	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1232	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1260	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1016	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1254	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	8.5	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1248	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1221	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1242	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32417	\$PCB_SOXR	PCB-1262	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	ND	1.9	1	1	mg/kg
CD32421	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	8.4	0.81	1	1	mg/kg
CD32421	\$PCB_SOXR	PCB-1254	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	8.4	0.81	1	1	mg/kg
CD32422	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	1.4	0.79	1	1	mg/kg
CD32422	\$PCB_SOXR	PCB-1254	CT / RSR DEC RES (mg/kg) / Pest/PCB/TPH	1.4	0.79	1	1	mg/kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:Phoenix Environmental Labs, Inc.Client:GZA GeoEnvironmental IncProject Location:DANIELS MILLProject Number:Laboratory Sample ID(s):CD32412-CD32418Sampling Date(s):6/12/2019

List RCP Methods Used (e.g., 8260, 8270, et cetera) 8082

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ✓ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	☐ Yes ☑ No ☐ NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: PCB Narration.	☐ Yes ☑ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	☐ Yes 🗹 No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	✓ Yes □ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	☐ Yes ☑ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.						
Authorized Signature: Rashui Wakol	Position: Project Manager					
Printed Name: Rashmi Makol	Date: Monday, July 08, 2019					
Name of Laboratory Phoenix Environmental Labs, Inc.						

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 08, 2019 SDG I.D.: GCD32412

SDG Comments

Temperature above 6C:

The samples were received in a cooler with ice packs. The samples were delivered to the Laboratory within a short period of time after sample collection. Therefore no significant bias is suspected.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 482998 (Samples: CD32412, CD32413, CD32414, CD32415, CD32416, CD32417, CD32418): ----

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% DCBP (Surrogate Rec) (Confirmation))

Instrument:

AU-ECD1 06/13/19-1

Saadia Chudary, Chemist 06/13/19

CD32415

The initial calibration (PC531Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC531Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD1 06/14/19-1

Saadia Chudary, Chemist 06/14/19

CD32416, CD32418

The initial calibration (PC531Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC531Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD24 06/24/19-1

Saadia Chudary. Chemist 06/24/19

CD32422

The initial calibration (PC617Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC617Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD29 06/20/19-1

Saadia Chudary, Chemist 06/20/19

CD32421

The initial calibration (PC611Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC611Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD3 06/13/19-1

Saadia Chudary, Chemist 06/13/19

CD32417

The initial calibration (PC423AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC423BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 06/13/19-1

Saadia Chudary, Chemist 06/13/19

CD32412, CD32413, CD32414

The initial calibration (PC508Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC508Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 06/29/19-1

Saadia Chudary, Chemist 06/29/19

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 08, 2019 SDG I.D.: GCD32412

PCB Narration

CD32423

The initial calibration (PC627Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC627Bl) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 482998 (CD31418)

CD32412, CD32413, CD32414, CD32415, CD32416, CD32417, CD32418

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: % DCBP (Surrogate Rec) (Confirmation)(30.7%)

This Batch consists of a Blank, LCS, LCSD and MS

Batch 484121 (CD34415)

CD32421

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 484529 (CD39932)

CD32422

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 485435 (CD32423)

CD32423

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Due to PCB in the unspiked sample, MS/MSD could not be reported.

Temperature Narration

The samples were received at 8.5C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Cooler: Yes	TempZy°C Pg of Z	Data Delivery/Contact Options:	benjamin, rad @ 52a am	Project P.O. 05. 0045441. 06	This section MUST be	8 B	* * *	1000 1 200 CT	tos lugs									7					Data Format	Excel		Equis		S-2 GW-3 III I Data Package* S-3 GW-3 III Data Package* Other	- Green	SURCHARGE APPLIES
		Fa	Fax (860) 645-0823 Phone: 645-8726 Email:	שארר	(Sport)				TO GIT IN TO GO THE PARTY OF TH	13/2 Vz	·		1					8					اړ≤	<u>X</u>	GW Protection	SW Protection	K GA Mobility S-1 GW-1 S-1 GW-2 S-1 GW-3	DEC S-3 GW-1 C	Other	State where samples were collected:
	CHAIN OF CUSTODY RECORD	~	Email: info@phoenixlabs.com Fax (860) 64 Client Services (860) 645-8726	Project: DAAREL'S	Report to: &EN	QUOTE#		Analysis Request	Chron		X	X	×	×	×	× '	×)	×	Ť	×:	X	X	-	H 13,42 Direct Exposure		M9 □	Turnaround Time:	- Day 2 Days* 3 Days*	Standard	*SURCHARGE APPLIES
					GLOST ONBU	GOW RUKY, CI	:	Client Sample_Information - Identification A. A	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X =(Other)	Sample Sample Date Time Matrix Sampled Sampled) 6/a/3 S (sc.0	JE80 1 1 (1-5C.D.	5480 (St.D-0		5160 (5-5Cig	(3)		0-0.25)		201 (5.76.5)	0601 (50 4-4	0011 7 17 (500)	Accepted by: Date:	Kinstal May 6/12/			_		# € E	*SURC
			Environmental Laboratories, Inc.	Customer: G2A	Address: 95	39		Sampler's Clent Sample Signature	Matrix Code: DW=Drinking Water GW=Ground W RW=Raw Water SE=Sediment SL= B=Bulk L=Liquid X =	PHOENIX USE ONLY Customer Sample SAMPLE # Identification	32412 8-25B (32413 8258 (114 8-7A (32415 BTA (1)	324 6 PM (2)	ACE-8 [1	1(8 82)A	119 8-36A C	O 8-36A (B-36A	7 B. J.	3943518-36A (6	ished by:	LANGER FAM		7		J. EXICH VOLUME FOR		

Yes	Tempによって Pgよ of と Data Delivery/Contact Options:	161 6 125- 40	OS; 00	This section MUST be completed with Bottle Quantities.	1100/205	TI NOS NOS	\$1100 \$100 \$100 \$100 \$100 \$100 \$100 \$10	\$							Data Format Excel PDF	☐ GIS/Key ☐ EQuIS	الة لـــــ	3	- SURCHARGE APPLIES
Coolant:		Fax: Phone: Κατα Επαί!: δευχευα	Project P.O.	# '		TOS TUDGE TUDGE TO THE STATE OF	100 140 OF	,							MCP Certification GW-1	GW-2	GW-3 S-1 GW-1	S-2 GW-1	ere collected:
		587 East Middle Lumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 545-0823 Client Services (860) 645-8726	7	Pen RALI										15		SW Protection		Residential DEC	State where samples were collected:
CHOILD HO	CHAIN OF COSTODIT RECORD	ast Middle Turnpike, P.O. Box 370, Mancheste Email: info@phoenixlabs.com Fax (860) 54 Client Services (860) 645-8726	'	Report to: Report to: Re Invoice to:		Kednest Kory		X	X	×				Time.	27	ow [1 Time:	*. *. p.	☐ Other ** SURCHARGE APPLIES
		587 East N Emai		FLOOK	6(/c//9 and	=Waste Water -Wipe OIL=Oil	Date Time Sampled Sampled	H	1,20%	0.450				Date.	6/18/19	5	Turnaround Time:	2 Days* 3 Days* X □ □ □	Other *SURCHAR
		ies, Inc.	3	KY BUN, STA	tion - Identification	F=Surface Water WW S=Soil SD=Solid W	Sample Datrix Sal	5		X				- Poc	Stil far		itions:		
	JENITY.	Environmental Laboratories,	62A	FLATONOVR), CT	Flient Sample - Information - Identification	W=Ground Water SW ediment SL=Sludge (Other)	Customer Sample Identification	$ \mathcal{L} $	- 1	(1 - C) -1/5-A				Accepted			uirements or Regula		
		Environment		Address:	Sampler's Signature	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=OI (Other)	PHOENIX USE ONLY SAMPLE #	50	2/5	Ŋ.				Relinguished by:	anthon fan		Comments, Special Requirements or Regulations:		

7	Of ST be th es.		1/3	62.01							÷	38						iist ckage" Report	PPLIES
intact Options:	This section MUST be completed with Bottle Quantities.	100	1 37.5												Data Format	De GIS/Key	□ EQuIS	Data Package Tier II Checklist Full Data Package* Full Data Report	
Data Dellyery/Contact Options: Prone: Prone	Project P.O. Of Covinsial Multiple Section Multiple Secti				H	1					3				MCP Certification	GW-1	GW-3 5.40m.1 5.40m.2 5.40m.3		were collected:
CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	BEN FORTH														10 000 E	dential)	SW Protection GA Mobility		State where samples were collected:
CHAIN OF CUSTODY RECORD sast Middle Tumpike, P.O. Box 370, Manchester, C Email: info@phoenixlabs com Fax (860) 645-0 Client Services (860) 645-8726	Project: Report to: Invoice to: Quote #	Analysis Request	Carlos Carlos	1000	~	×,	× ×	, X	×	×			X	×	Time: RE				2004
CH/ 587 East Mido Email: in C	Pid Swar	6/17/9	e Water e OIL ≍Oii	Time	\$2.0		× Jhgo	+			9560	100	040	0011	Date: Ti			É	Other
-commun.	BLVD	18	/ater WW=Wast =Solid W=Wip	ple Date	0	+	+	-			-	-	-	7	MON				
PHOENIX Environmental Laboratories, Inc.	GER GLATTONEURY GLAZINEURY, CT	Client Sample_Information - Identification	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid X = (Other)	Customer Sample Sample Harry	(25.0-	(1-52-0)	(36.0-0)	(2-10	(3x.0-0)	(र-५८)	3.0-0	(* 1.1.) (*)	(32.4.4)	6-625) NI	Accepted by:	Wish b	Comments, Special Réquirements or Regulations:	expla valume for ms/no	
JEN	षश्च	JAMes Sampl	iter GW=Ground SE=Sediment S	Custom Ident	B-25B	8-228	0 0 0 C 4	AC-8	-	-	1-36A (A-36A	1		Tarki,	*	ial Réquirement	VOLUME FI	
PH	Customer: Address:	Sampler's Signature	utrix Code: V=Drinking Wa V=Raw Water Bulk L=Liquid	PHOENIX USE ONLY SAMPLE #	32412	32413	27413		Clhes	8) hes	227.33	10 20 V	Say Barra	32433 B-36A	Relinquished by:	- Constant	nments, Speci	1 Exica	

State where samples were collected:	2		
& GA Mobility GB Mobility Residential DEC I/C DEC	Turnaround Time: Other 1 Day' 2 Days' 3 Days' 3 Standard		1 EXICA VOLUME FOR MY/AVO
SW Protection GW-2	M9 [Tomports Special Control of the Cont
WE RCP Cert	6/12/8 /3:42 Direct Expos	Kingle HOLL	MARCH CASHION
TW 15		Accorded by:	
)	IIdo XXX	8-625 N X	2) 175 a Get Pos
		(A. 15)	h
	IOIS XXXX	1272	A
	S S S S S S S S S S S S S S S S S S S	(127)	
2	X 8260		_
	0940 X	(1:25-2)	_
	0925 X ZE10	(0-0.3g)	VCP-8 (1)
	0915 X 2180		(2-5CP) 8C-8 91 hCF
	0300 X 0000	£	(1-50) WC3 SI Pres
J	0842 X Jh80	0-0.35)	BY BY
	X KBO	(1.25.1)	8-258
-	0758 X	_	32412 8-258 (1
	Time (47 3)	ample Sample Date	Customer Sample
	2 (4g)	ster SW=Surface Water WW=Waste Studge S=Soil SD=Soild W=Wipe Other)	Matrix Code: Matrix Code: Water SW=Surface Water Ww=Waste Water RW=RW=RW=Waste Water SE=Sediment SL=Sludge S=Soil SD=Soild W=WipeOil.=Oil B=Bulk L=Liquid X = (Other)
	Analys Reque	Client Sample Information - Identification Date: 6/	Sampler's Que Sample II
<i>k</i>		POWEMENCY CT	t-Chi
BULLEL'S PROJECT PROJECT POST OF THE PROJECT AND THE PROJECT OF TH	Project: Report to:	95 EUNTONEURY BLUD 310	Address: 95 6
Box 370, Manchester, CT 06040 Fax: om Fax (860) 645-0823 Phone: (860) 645-8726 X Email:	597 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com	Vitories, Inc.	OF.
DECORD TO THE PROPERTY OF THE	CHAIN OF CLIPTORY BECOME)	

Sarah Bell

From: Benjamin Rach Senjamin Rach@gza.com

Sent: Thursday, June 27, 2019 4:47 PM

To: Sarah Bell

Subject: Additional analysis request

Attachments: 0183_001.pdf

Can you please add the one additional sample for PCBs as marked?

Thanks a bunch!

Sincerely,

Ben

Benjamin D. Rach

Project Manager

GZÁ | 95 Glastonbury Boulevard, 3rd Floor | Glastonbury, CT 06033 o: 860.858.3131 | c: 860.250.7327 | <u>benjamin.rach@gza.com</u> | <u>www.gza.com</u> | <u>LinkedIn</u>

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Known for excellence. Built on trust.

"Change the things that can be changed, accept those that cannot, and have the wisdom to know the difference" Dr. Richard Carlson

This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.gza.com.

Monday, October 24, 2022

Attn: Sean Connolly GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Project ID: DANIELS MILL SDG ID: GCM62544

Sample ID#s: CM62544 - CM62549, CM62551 - CM62557

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

October 24, 2022

SDG I.D.: GCM62544

Project ID: DANIELS MILL

Client Id	Lab Id	Matrix
B-59 (0-0.25`)	CM62544	SOIL
B-60 (0-0.25`)	CM62545	SOIL
B-61 (0-0.25`)	CM62546	SOIL
B-62 (0-0.25`)	CM62547	SOIL
B-63 (0-0.25`)	CM62548	SOIL
B-64 (0-0.25`)	CM62549	SOIL
B-66 (0-0.5``)	CM62551	SOIL
B-67 (0-0.25`)	CM62552	SOIL
B-68 (0-0.25`)	CM62553	SOIL
B-69 (0-0.25`)	CM62554	SOIL
B-70 (0-0.25`)	CM62555	SOIL
B-71 (0-0.25`)	CM62556	SOIL
B-72 (0-0.25`)	CM62557	SOIL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/11/2214:25Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62544

Project ID: DANIELS MILL Client ID: B-59 (0-0.25`)

45441.12

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	83		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	200	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	94		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	104		%	5	10/18/22	SC	30 - 150 %
% TCMX	83		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	88		%	5	10/18/22	SC	30 - 150 %

Client ID: B-59 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/11/2214:30Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62545

Project ID: DANIELS MILL Client ID: B-60 (0-0.25`)

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	105		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	98		%	5	10/18/22	SC	30 - 150 %
% TCMX	90		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	87		%	5	10/18/22	SC	30 - 150 %

Client ID: B-60 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

> GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information Custody Information Date <u>Time</u> Collected by: 10/11/22 14:35 Matrix: SOIL Received by: Location Code: **GZACTENG** CP 10/14/22 14:00 Rush Request:

Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62546

DANIELS MILL Project ID: Client ID: B-61 (0-0.25')

P.O.#:

45441.12

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	86		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	46		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	44		%	5	10/18/22	SC	30 - 150 %
% TCMX	43		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	39		%	5	10/18/22	SC	30 - 150 %

Client ID: B-61 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/11/2214:40Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62547

Project ID: DANIELS MILL Client ID: B-62 (0-0.25`)

45441.12

P.O.#:

Result	PQL	Units	Dilution	Date/Time	Ву	Reference
86		%		10/14/22	Q	SW846-%Solid
Completed				10/17/22	R/AL/C	SW3540C
1						
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
ND	190	ug/Kg	5	10/19/22	SC	SW8082A
80		%	5	10/19/22	SC	30 - 150 %
81		%	5	10/19/22	SC	30 - 150 %
63		%	5	10/19/22	SC	30 - 150 %
75		%	5	10/19/22	SC	30 - 150 %
	ND N	86 Completed ND 190 80 81 63	86 % Completed ND 190 ug/Kg	86 % Completed ND 190 ug/Kg 5 ND 5 80 % 5 81 % 5	86 % 10/14/22 Completed 10/17/22 ND 190 ug/Kg 5 10/19/22 80 % 5 10/19/22 81 % 5 10/19/22 63 % 5 10/19/22	86 % 10/14/22 Q Completed 10/17/22 R/AL/Q ND 190 ug/Kg 5 10/19/22 SC SO S S S S S S S S S S S S S S S S S S

Client ID: B-62 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/11/2214:45Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62548

Project ID: DANIELS MILL Client ID: B-63 (0-0.25`)

P.O.#:

45441.12

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>)C)</u>						
PCB-1016	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	89		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	82		%	5	10/18/22	SC	30 - 150 %
% TCMX	74		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	72		%	5	10/18/22	SC	30 - 150 %

Client ID: B-63 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/11/2214:50Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62549

Project ID: DANIELS MILL Client ID: B-64 (0-0.25`)

P.O.#:

45441.12

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>)C)</u>						
PCB-1016	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	180	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	92		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	90		%	5	10/18/22	SC	30 - 150 %
% TCMX	81		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	79		%	5	10/18/22	SC	30 - 150 %

Client ID: B-64 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/13/2210:00Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62551

Project ID: DANIELS MILL Client ID: B-66 (0-0.5``)

45441.12

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	99		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	(C)						
PCB-1016	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	170	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	94		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	92		%	5	10/18/22	SC	30 - 150 %
% TCMX	82		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	80		%	5	10/18/22	SC	30 - 150 %

Client ID: B-66 (0-0.5")

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

> GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample Information **Custody Information** Date Time Collected by: 10/13/22 10:50 Matrix: SOIL **GZACTENG** Received by: CP Location Code: 10/14/22 14:00

Analyzed by: Standard see "By" below

aboratory Data

SDG ID: GCM62544

Phoenix ID: CM62552

DANIELS MILL Project ID: Client ID: B-67 (0-0.25')

45441.12

96

88

80

79

Rush Request:

P.O.#:

RL/ Parameter Result **PQL** Units Dilution Date/Time By Reference Percent Solid 91 % 10/14/22 SW846-%Solid Client MS/MSD Completed 10/18/22 Extraction for PCB Completed 10/17/22 R/AL/Q SW3540C PCB (Soxhlet SW3540C) ND PCB-1016 180 5 10/18/22 SC SW8082A ug/Kg PCB-1221 ND 180 5 10/18/22 SW8082A ug/Kg PCB-1232 ND 180 ug/Kg 5 10/18/22 SC SW8082A PCB-1242 ND 180 ug/Kg 5 10/18/22 SC SW8082A 5 ND 10/18/22 SC SW8082A PCB-1248 180 ug/Kg ND 180 5 10/18/22 SC SW8082A PCB-1254 ug/Kg PCB-1260 ND 180 ug/Kg 5 10/18/22 SC SW8082A ND 180 5 10/18/22 SC SW8082A ug/Kg PCB-1262 PCB-1268 ND 180 ug/Kg 5 10/18/22 SC SW8082A **QA/QC Surrogates** 5

%

%

%

5

5

5

10/18/22

10/18/22

10/18/22

10/18/22

SC

SC

SC

30 - 150 %

30 - 150 %

30 - 150 %

30 - 150 %

_		
•	/~"	4

% DCBP

% TCMX

% DCBP (Confirmation)

% TCMX (Confirmation)

Client ID: B-67 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/13/2211:10Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62553

Project ID: DANIELS MILL Client ID: B-68 (0-0.25`)

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	89		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	68		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	64		%	5	10/18/22	SC	30 - 150 %
% TCMX	59		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	64		%	5	10/18/22	SC	30 - 150 %

Client ID: B-68 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/13/2211:30Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62554

Project ID: DANIELS MILL Client ID: B-69 (0-0.25`)

45441.12

P.O.#:

	%		10/14/22	Q	SW846-%Solid
ed			10/17/22	R/AL/Q	SW3540C
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
200	ug/Kg	5	10/19/22	SC	SW8082A
	%	5	10/19/22	SC	30 - 150 %
	%	5	10/19/22	SC	30 - 150 %
	%	5	10/19/22	SC	30 - 150 %
	%	5	10/19/22	SC	30 - 150 %
	200 200 200 200 200 200 200	200 ug/Kg	200 ug/Kg 5 5 5 6 5	200 ug/Kg 5 10/19/22 200 ug/Kg 5 10/19/22	200 ug/Kg 5 10/19/22 SC 200 Ug

Client ID: B-69 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/13/2211:50Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62555

Project ID: DANIELS MILL Client ID: B-70 (0-0.25`)

45441.12

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	86		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/C	SW3540C
PCB (Soxhlet SW3540	0C)						
PCB-1016	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	114		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	103		%	5	10/18/22	SC	30 - 150 %
% TCMX	95		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	94		%	5	10/18/22	SC	30 - 150 %
70 TOWN (Gorminiadori)							

Client ID: B-70 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/13/2212:15Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62556

Project ID: DANIELS MILL Client ID: B-71 (0-0.25`)

45441.12

P.O.#:

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	89		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/20/22	L/K/AL	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1221	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1232	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1242	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1248	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1254	370	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1260	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1262	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
PCB-1268	ND	190	ug/Kg	5	10/21/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	93		%	5	10/21/22	SC	30 - 150 %
% DCBP (Confirmation)	88		%	5	10/21/22	SC	30 - 150 %
% TCMX	88		%	5	10/21/22	SC	30 - 150 %
% TCMX (Confirmation)	93		%	5	10/21/22	SC	30 - 150 %

Client ID: B-71 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 24, 2022

FOR: Attn: Sean Connolly

GZA GeoEnvironmental, Inc. 95 Glastonbury Blvd 3rd Fl Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:10/13/2212:45Location Code:GZACTENGReceived by:CP10/14/2214:00

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCM62544

Phoenix ID: CM62557

Project ID: DANIELS MILL Client ID: B-72 (0-0.25`)

P.O.#:

45441.12

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	89		%		10/14/22	Q	SW846-%Solid
Extraction for PCB	Completed				10/17/22	R/AL/Q	SW3540C
PCB (Soxhlet SW3540	<u>(C)</u>						
PCB-1016	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1221	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1232	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1242	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1248	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1254	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1260	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1262	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
PCB-1268	ND	190	ug/Kg	5	10/18/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	53		%	5	10/18/22	SC	30 - 150 %
% DCBP (Confirmation)	50		%	5	10/18/22	SC	30 - 150 %
% TCMX	40		%	5	10/18/22	SC	30 - 150 %
% TCMX (Confirmation)	42		%	5	10/18/22	SC	30 - 150 %

Client ID: B-72 (0-0.25`)

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

October 24, 2022

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

October 24, 2022

QA/QC Data

LCS **LCSD** LCS MS MSD MS Rec **RPD** Blank RI **RPD RPD** % % % Limits Limits Parameter % QA/QC Batch 647357 (ug/Kg), QC Sample No: CM62552 10X (CM62544, CM62545, CM62546, CM62547, CM62548, CM62549, CM62551, CM62552, CM62553, CM62554, CM62555, CM62557) Polychlorinated Biphenyls - Soil PCB-1016 170 100 90 10.5 87 67 26.0 40 - 140 30 PCB-1221 ND 170 30 40 - 140 PCB-1232 ND 170 40 - 140 30 ND 170 PCB-1242 40 - 140 30 PCB-1248 ND 170 40 - 140 30 ND 170 PCB-1254 40 - 140 30 10.9 PCB-1260 ND 170 106 95 87 70 21.7 40 - 140 30 PCB-1262 ND 170 40 - 140 30 PCB-1268 ND 170 40 - 140 30 % DCBP (Surrogate Rec) 99 % 112 105 6.5 99 76 26.3 30 - 150 30 % DCBP (Surrogate Rec) (Confirm 101 % 107 98 91 67 88 30 4 30 - 15030 % TCMX (Surrogate Rec) 97 % 107 98 8.8 93 74 22.8 30 - 150 30 103 % 100 79 % TCMX (Surrogate Rec) (Confirm 103 8.4 23.5 30 - 150 112 30 QA/QC Batch 648029 (ug/Kg), QC Sample No: CM64954 10X (CM62556) Polychlorinated Biphenyls - Soil PCB-1016 ND 170 96 104 8.0 101 92 9.3 40 - 140 30 PCB-1221 ND 170 40 - 140 30 PCB-1232 ND 170 40 - 140 30 ND 170 PCB-1242 40 - 140 30 PCB-1248 ND 170 40 - 140 30 ND PCB-1254 170 40 - 140 30 PCB-1260 ND 170 105 111 5.6 121 92 27.2 40 - 140 30 PCB-1262 ND 170 40 - 140 30 PCB-1268 ND 170 40 - 140 30 92 % DCBP (Surrogate Rec) 91 % 99 7.3 106 97 89 30 - 150 30 % DCBP (Surrogate Rec) (Confirm 99 % 104 109 4.7 105 89 16.5 30 - 150 30

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

% TCMX (Surrogate Rec) (Confirm

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

99

96

%

%

MS - Matrix Spike

% TCMX (Surrogate Rec)

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director

94

92

81

14.9

14.0

30 - 150

30 - 150

30

30

SDG I.D.: GCM62544

October 24, 2022

94

93

105

103

11.1

10.2

Monday, October 24, 2022

Sample Criteria Exceedances Report GCM62544 - GZACTENG

Criteria: CT: RC State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CM62556	\$PCB_SOXR	PCB-1254	CT / Requested PCB RL /	370	190	300	300	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name:Phoenix Environmental Labs, Inc.Client:GZA GeoEnvironmental, Inc.Project Location:DANIELS MILLProject Number:Laboratory Sample ID(s):CM62544-CM62549,Sampling Date(s):10/11/2022, 10/13/2022CM62551-CM62557

8082

List RCP Methods Used (e.g., 8260, 8270, et cetera)

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	✓ Yes □ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	✓ Yes □ No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.
Authorized Signature: Roshui Wakol Position: Project Manager
Printed Name: Rashmi Makol Date: Monday, October 24, 2022
Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

October 24, 2022 SDG I.D.: GCM62544

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD24 10/18/22-1 Saadia Chudary, Chemist 10/18/22

CM62544 (5X), CM62545 (5X), CM62546 (5X), CM62548 (5X), CM62549 (5X), CM62551 (5X), CM62552 (5X), CM62555 (5X)

The initial calibration (PC1004AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1004BI) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:

Samples: CM62548, CM62549, CM62551, CM62552, CM62555

Preceding CC O18A035 - None.

Succeeding CC O18A048 - DCBP SURR 17%H (15%), PCB 1260 23%H (%)

AU-ECD3 10/19/22-1

Saadia Chudary, Chemist 10/19/22

CM62547 (5X), CM62554 (5X)

The initial calibration (PC1012AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1012BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 10/18/22-1

Saadia Chudary, Chemist 10/18/22

CM62553 (5X), CM62557 (5X)

The initial calibration (PC1012AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1012BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 10/21/22-1

Saadia Chudary, Chemist 10/21/22

CM62556 (5X)

The initial calibration (PC1012AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC1012BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 648029 (CM64954)

CM62556

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

QC (Site Specific):

Batch 647357 (CM62552)

CM62544, CM62545, CM62546, CM62547, CM62548, CM62549, CM62551, CM62552, CM62553, CM62554, CM62555, CM62557

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 40 - 140 with the following exceptions: None.

All MSD recoveries were within 40 - 140 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

October 24, 2022 SDG I.D.: GCM62544

Temperature Narration

The samples were received at 4.9C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

					Cooler: Coolant: IPK 🔀	er: Yes X No
		CHAIN OF C	CHAIN OF CUSTODY RECORD	ORD	၁ . b″h dwe⊥	Pg P of 2
		587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040	O.O. Box 370, Manche	ster, CT 06040	Data Delivery/Contact Options Fax:	ntact Options:
Environmental Laboratories, Inc.	V	Email Makrina Nolan: makrina@phoenixlabs.com Client Services (860) 645-	£	(860) 645-0823	Phone: Jean, Con	Com other sag from
Customer: (24 C	(2A Gesternionmental	Project:	Daniello	MIM	Project P.O: 4	
Address: 95CL			ö	Connoll	This s	M
Hash	Ĭ		7	Convoll		completed with
-		QUOTE #	7	(4)	Bott ⊢	Bottle Quantities.
Client Samp	Client Sample, Information - Identification				10/01	140/40
Sampler's Signature	Land Date: 10	11/22			3/4	The Secretary of the Se
Matrix Cote:	4	edne /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		No.	1000/00/00/00/00/00/00/00/00/00/00/00/00
DW=Drinking Water GW=Ground Water RW=Raw Water SE=Sediment SL=Slude	nd Wafer SW=Surface Water WW=Waste Water SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil		San	Well Secrit		THE SECTION OF SECTION
B=Bulk L=Liquid X = (Other)	(Other)			130	TO THE	S, SE SHAW SH 1110SO 1110SO
PHOENIX USE ONLY Custo	Customer Sample Date	Time		TAOT GOLD COM		TO BELLE TO BELLE TO BE
. +	Matrix	\setminus		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		100 00 100 / co
162544 18-59	B-59(0-0.35") S 144/28	X SEN		1		
	21/11/01 S (.58.0-0)09-E	1430 K				
0	5/1/01	1435 ×				
1 13-61	21/1/N S (126,0-0	× 24 h/				
8 13-63/	52/1/c/ S (15c.0-0	X 5hh1				
h500)	th/401 8 (.25.0-0)	1450 X		,		
<u> </u>	6 6.25.9 S	77 × 0562	164/08			
99	BCK 10/3/22	× 000/		7		, de
62552 B47	C/E/1/1 8 (150-0)	× 0501				
62553 B-681	calsibil S (25.00)	X 0//		1		
159-8 +	ce/51/01 S 1	1130 X				
19-20(Ce/5/h) S (1/13/2)	115U ×				
Relinquished by:	Accepted by:	Time:	<u>디</u>	Ψ¥		Data Format
In Carlo		10/4/22 1330	(Residential)	RCP Cert MCP Ce		Excel
	Enter A.	100H1 22 1400	Comm/Industrial)	GW Protection		GIS/Key
		<u> </u>	Direct Exposure	SW Protection GW-2		EQuIS
al Requirem	,	Turnaround Time:	GA Leachability] 🗌	1 S-1 GW-2 S-1 GW-3	U Other Data Package
* Detection limits of	one to be 0.3.18/18		☐ GB Leachability ☐	GB Mobility S-2 GW-1 Residential DEC		☐ Tier II Checklist
30.60			GA-GW	I/C DEC S-3 GW-1	1 S-3 GW-2 S-3 GW-3 ertion	Phoenix Std Report
		Standard	Oujectives	Other		Other
*MS/MSD are considered site sample	*MS/MSD are considered site samples and will be billed as such in accordance with	Other Surcharge Applies	Objectives	State where samples were collected:	collected:	* SURCHARGE APPLIES
me prices quoted.						

CT MA	(Residential) (Comm/Industrial) Direct Exposure GA Leachability GB Leachability	CHAIN OF CUSTODY RECORD 587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email Makrina Nolan: makrina@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-1102 Client Services (860) 645-1102
######################################		Signate - Information - Identification Wient Sample - Information - Identification Wient Sample - Information - Identification GW=Ground Water SW=Surface Water WW=Waste Water GUSTAL Customer Sample Customer Sample Gustal Gother) G-770-0.35') Gyf3/3 (3.15) G-770-0.35') Gyf3/3 (3.15)
Date: Time: RI	L La Brall	
Date: Time: RI	Accepted by: Luly A s or Regulations: c. A th Lo. 3 myly and will be billed as such in accordance with	Sampler's Signature DW=Drinking Water RW=Raw Water SE B=Bulk L=Liquid x= PHOENIX USE ONLY SAMPLE #

GZA GeoEnvironmental, Inc.