

Standards-Based Education Priority Standards

Math 8

8 th Grad	le
Analyzing	g Functions
8.F.1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
8.F.2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
8.F.3	Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
8.F.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. 8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form x2 = p and x3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. 8.EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.

8.EE.4	Perform operations with numbers expressed in scientific notation, including problems			
	where both decimal and scientific notation are used. Use scientific notation and			
	choose units of appropriate size for measurements of very large or very small			
	quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific			
	notation that has been generated by technology.			
8.NS.1	Know that numbers that are not rational are called irrational. Understand informally			
	that every number has a decimal expansion; for rational numbers show that the			
	decimal expansion repeats eventually, and convert a decimal expansion which repeats			
	eventually into a rational number.			
8.NS.2	Use rational approximations of irrational numbers to compare the size of irrational			
	numbers, locate them approximately on a number line diagram, and estimate the			
	value of expressions.			

Linear Fai	rations and Models			
Linear Equations and Models				
8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph.			
	Compare two different proportional relationships represented in different ways.			
8.EE.6	Use similar triangles to explain why the slope m is the same between any two distinct			
	points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a			
	line through the origin and the equation $y = mx + b$ for a line intercepting the vertical			
	axis at b.			
8.EE.7	Solve linear equations in one variable.			
8.EE.8	Analyze and solve pairs of simultaneous linear equations.			
	Construct and interpret scatter plots for bivariate measurement data to investigate			
8.SP.1	patterns of association between two quantities. Describe patterns such as clustering,			
	outliers, positive or negative association, linear association, and nonlinear association.			
8.SP.3	Use the equation of a linear model to solve problems in the context of bivariate			
	measurement data, interpreting the slope and intercept.			

Congruer	nce and Similarity					
8.G.1	Verify experimentally the properties of rotations, reflections, and translations:					
8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be					
	obtained from the first by a sequence of rotations, reflections, and translations; given					
	two congruent figures, describe a sequence that exhibits the congruence between					
	them.					
8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-					
	dimensional figures using coordinates.					

8.G.4	Understand that a two-dimensional figure is similar to another if the second can be		
	obtained from the first by a sequence of rotations, reflections, translations, and		
	dilations; given two similar two-dimensional figures, describe a sequence that exhibits		
	the similarity between them.		
8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of		
	triangles, about the angles created when parallel lines are cut by a transversal, and the		
	angle-angle criterion for similarity of triangles.		

Pythagor	ean Theorem and Volume				
8.G.6	Explain a proof of the Pythagorean Theorem and its converse				
8.G.7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.				
8.G.8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.				
8.G.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.				