

Date

Exterior Angles of Triangles

1. Given parallel lines ℓ and q with transversal p, find the value of x.

$$180 - 122 = 58$$

 $58 + 63 + x = 180$
 $121 + x = 180$
 $x = 59$

The value of x is 59.

Interior and Exterior

2. Identify a location for an exterior angle adjacent to $\angle F$.

3. Consider $\triangle HAT$ in the diagram.

- a. Name the exterior angles of $\triangle HAT$. $\angle CTH$, $\angle OHA$, $\angle GAT$
- b. If the measure of $\angle HTA$ is 58° and the measure of $\angle THA$ is 86°, find the measures of the following angles.
 - $m \angle HAT = \underline{36^{\circ}}$ $m \angle GAT = \underline{144^{\circ}}$ $m \angle OHA = \underline{94^{\circ}}$ $m \angle CTH = \underline{122^{\circ}}$

Remote Interior Angles

4. Find the value of *x*.

The value of x is 86.

5. Find the value of *y*.

The value of *y* is 36.

6. Write equations that represent the angle relationships shown in the diagram.

Any exterior angle measure of a triangle is equal to the sum of the remote interior angle measures.

7. Use the relationship between an exterior angle of a triangle and the remote interior angles to find the value of x.

The value of x is 59.

Find the Angle Measure

For problems 8-13, find the value of *x* in the diagram by using any of the angle relationships you have learned. Label any additional angle measures you use to find the value of *x*.

13. Hint: Extend one segment as a transversal.

76 = x

76 - 34 = 42

42 + 34 = x

The value of x is 76.

The value of x is 81.

Date

Dylan and Noor are asked to find the measure of $\angle 1$ in the given triangle.

Dylan finds the measure of $\angle 1$ this way:

$$156^{\circ} + m \angle 2 = 180^{\circ}$$
$$m \angle 2 = 24^{\circ}$$
$$m \angle 1 + m \angle 2 + 81^{\circ} = 180^{\circ}$$
$$m \angle 1 + 24^{\circ} + 81^{\circ} = 180^{\circ}$$
$$m \angle 1 = 75^{\circ}$$

Noor finds the measure of $\angle 1$ this way:

$$m \angle 1 + 81^{\circ} = 156^{\circ}$$
$$m \angle 1 = 75^{\circ}$$

Explain whose solution is correct and why.

Both solutions are correct. Dylan uses the interior angle measures of a triangle and the linear pair formed by the exterior angle and the adjacent interior angle to find the measure of ≥ 1 .

Noor uses the exterior angle measure of the triangle, which is equal to the sum of the remote interior angle measures, to find the measure of $\angle 1$.

Date

Exterior Angles of Triangles

In this lesson, we

- defined exterior angle and remote interior angles of a triangle.
- determined that the measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles of the triangle.
- solved equations to find angle measures.

Examples

1. Find the measure of $\angle ACD$.

 $\angle ACB$ is adjacent to $\angle ACD$, so $\angle ABC$ and $\angle BAC$ are the

remote interior angles to $\angle ACD$.

An exterior angle of a triangle is an angle that forms a linear pair with an interior angle of the triangle. In the diagram, $\angle 1$ is an exterior angle of the triangle.

Remote interior angles of a triangle are the two interior angles not adjacent to a given exterior angle of the triangle. In the diagram, $\angle 1$ is an exterior angle, and $\angle 2$ and $\angle 3$ are the remote interior angles.

 $\angle ACD$ is an exterior angle of $\triangle ABC$.

 $m \angle ABC + m \angle BAC = m \angle ACD$ $96^{\circ} + 28^{\circ} = m \angle ACD$ $124^{\circ} = m \angle ACD$

D

B 96°

Exterior angle measure

Sum of the remote interior angle measures

2. Find the measure of $\angle GEF$.

Date

2. ∠*ACD*

For problems 1–6, find the measure of the given angle.

1. ∠*ACD*

96°

3. ∠*ACB*

4. ∠*DAB*

51°

79°

For problems 7-10, find the measure of the given angle. Describe all angle relationships you use to find the unknown angle measure.

7. ∠*DAB*

131°

The exterior angle measure of a triangle is equal to the sum of the remote interior angle measures, so 48 + 83 = 131.

126°

The exterior angle measure of a triangle is equal to the sum of the remote interior angle measures, so 100 + 26 = 126.

9. ∠*ACB*

79°

The exterior angle measure of a triangle is equal to the sum of the remote interior angle measures, so 126 - 47 = 79.

10. ∠*BAD*

 $\angle BAD$ and $\angle BAC$ are supplementary, so 180 - 77 = 103.

- 11. Use the diagram and the given information to answer parts (a)–(d).
 - \overrightarrow{AD} and \overrightarrow{EI} are parallel.
 - \overrightarrow{JP} and \overrightarrow{KO} are transversals.
 - The measure of $\angle BCQ$ is 67°.
 - The measure of $\angle QHI$ is 119°.

a. Find the measure of $\angle QFH$.

b. What is the angle relationship between $\angle BCQ$ and $\angle QFH$ that verifies the measure of $\angle QFH$?

 $\angle QFH$ and $\angle BCQ$ are alternate interior angles of parallel lines, \overrightarrow{AD} and \overrightarrow{EI} . So $\angle QFH$ and $\angle BCQ$ have the same measure.

c. Find the measure of $\angle FQH$.

52°

d. What is the relationship between $\angle FQH$, $\angle QFH$, and $\angle QHI$ that verifies the measure of $\angle FQH$?

The measure of the exterior angle of $\triangle FQH$, $\angle QHI$, is equal to the sum of the measures of the remote interior angles, $\angle FQH$ and $\angle QFH$.

^{67°}

12. In the diagram, \overrightarrow{AB} is parallel to \overrightarrow{CD} . The measure of $\angle ABE$ is 56°, and the measure of $\angle EDC$ is 22°.

- a. Find the measure of $\angle BED$. Hint: Extend \overline{BE} so that it intersects \overleftrightarrow{CD} at a point *F*. 78°
- b. Explain how you found the measure of $\angle BED$.

 \overleftrightarrow{AB} is parallel to \overleftrightarrow{CD} , so $\angle ABE$ and $\angle DFE$ both measure 56° because they are congruent alternate interior angles. $\angle BED$ is an exterior angle of a triangle with $\angle EFD$ and $\angle EDF$ as remote interior angles, so the measure of $\angle BED$ is 78° because 56 + 22 = 78.

13. In the diagram, \overleftrightarrow{OP} is parallel to \overleftrightarrow{LN} with transversals \overleftrightarrow{JM} and \overleftrightarrow{KM} .

- a. Find the measure of $\angle JMK$. 70°
- b. Explain how you found the measure of $\angle JMK$. \overleftrightarrow{OP} and \overleftrightarrow{LN} are parallel, so $\angle LMK$ and $\angle JKM$ both measure 72° because they are congruent alternate interior angles. The interior angle measures of $\triangle JKM$ sum to 180°, so the measure of $\angle JMK$ is 70° because 180 - (72 + 38) = 70.

Remember

For problems 14–17, write an equivalent expression.

 14. 3(x+2) + 7x 15. 5(x+6) + 3x

 10x + 6 8x + 30

16. 7(x+2) + 5x17. 8(x+4) + 8x12x + 1416x + 32

18. Figure *ABCDEFG* is congruent to figure *JKLMNPQ*. Describe a sequence of rigid motions that maps figure *ABCDEFG* onto figure *JKLMNPQ*.

A translation along \overrightarrow{AJ} maps point *A* to point *J*. A 45° counterclockwise rotation around point *J* maps figure *ABCDEFG* onto figure *JKLMNPQ*.

For problems 19 and 20, simplify.

19. $x^0 \cdot x^5$

 x^5

20. $(ab^5)^4 (a^2b)^3$ $a^{10}b^{23}$