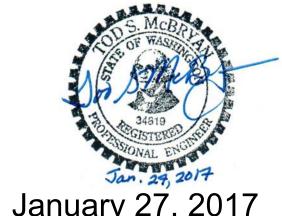
TRANSPORTATION TECHNICAL REPORT

for


Northwood Elementary School Replacement

PREPARED FOR:

Puyallup School District

PREPARED BY:

January 27, 2017

TABLE OF CONTENTS

1.	INTR	RODUCTION	1
	1.1.	Project Description	1
2.	EXIS	TING CONDITIONS	3
	2.1.	Roadway Network	3
	2.2.	Traffic Volumes	
	2.3.	Traffic Operations	5
	2.4.	Parking	
	2.5.	Traffic Safety	9
	2.6.	Transit Facilities and Service	10
	2.7.	Non-Motorized Transportation Facilities	10
3.	FUTI	URE BASELINE CONDITIONS	12
		Planned Transportation Projects in Site Vicinity	
	3.2.	Forecast 2019 Background Traffic Volumes	
	3.3.	Traffic Operations	
4.	FUTI	URE WITH PROJECT CONDITIONS	16
	4.1.	Traffic Volumes	
	4.2.	Traffic Operations	
	4.3.	Transit Facilities & Service	
	4.4.	Non-Motorized Transportation Facilities	
	4.5.	Parking	
	4.6.	Construction Traffic	
	4.7.	Long-Term Conditions	
5.	FINE	DINGS AND RECOMMENDATIONS	28
٠.	5.1.	Findings of Needed Improvement	
	5.2.	Proposed Mitigation Recommendations	
		Transportation Impact Fee Estimate	

APPENDIX A – Turn Movement Count Data Sheets

APPENDIX B – Level of Service Definitions

APPENDIX C – Level of Service Calculation Sheets

APPENDIX D – Channelization Analysis Details & Queue Model Results

LIST OF FIGURES

Figure 1. Site Vicinity Map	2
Figure 2. Proposed Site Plan	
Figure 3. Existing (2016) Traffic Volumes – Morning and Afternoon Peak Hours	
Figure 4. Public Transit System and Bicycle/Pedestrian Facilities	
Figure 5. Forecast 2019 Without-Project Traffic Volumes – Morning and Afternoon Peak Hours	14
Figure 6. Trip Distribution & Assignment – Morning and Afternoon Peak Hours	18
Figure 7. Forecast 2019 With-Project Traffic Volumes – Morning and Afternoon Peak Hours	20
LIST OF TABLES	
Table 1. Level of Service – Existing (2016) Off-Site Conditions	7
Table 2. Level of Service – Existing (2016) Site Access Conditions	8
Table 3. Collision Summary (January 1, 2013 through October 31, 2016)	9
Table 4. Level of Service – Background Off-Site Conditions	
Table 5. Level of Service – Background Site Access Conditions	16
Table 6. Estimated Vehicle Trips Generated by the Proposed Project	17
Table 7. Northwood Elementary School Replacement – Trip Generation Summary	17
Table 8. Level of Service – Future (2019) With-Project Off-Site Conditions	19
Table 9. Northwood Elementary Replacement Project – Left-Turn Lane Analysis Summary	21
Table 10. Level of Service – Future (2019) With-Project Site Access Conditions	23
Table 11. Estimated Morning Arrival Vehicle Queues	24

1. INTRODUCTION

This report presents the transportation impact analysis for the proposed replacement of Northwood Elementary School at its existing site located at 9805-24th Street E in Edgewood. It includes a description of existing and proposed conditions in the site vicinity, projected trip generation and distribution patterns, operational analysis at the project study area intersections, and an assessment of the project's impacts to safety, transit service, and non-motorized facilities.

The elements and organization of this analysis follow the City of Edgewood's (City's) *Traffic Impact Analysis Guidelines*. The study area for the analysis was defined by City review staff ² and its transportation review consultant³ based on preliminary scoping analyses prepared by Heffron Transportation. An analysis scoping meeting was held at the City on Thursday, November 10, 2016. The study area was identified based on the trip generation, distribution patterns, and assignments presented in that analysis. The school's morning arrival peak hour occurs between 8:00 and 9:00 A.M. and the afternoon dismissal peak hour occurs between 2:45 and 3:45 P.M. The project is expected to generate relatively little new traffic during the commuter PM peak hour (typically the highest hour between 4:00 and 6:00 P.M.) and, based on direction from the City, was not included in the analysis. The four off-site study area intersections and the corresponding analysis periods are listed below:

- Meridian Avenue E/8th Street E morning peak hour
- Meridian Avenue E/16th Street E morning and afternoon peak hours
- Meridian Avenue E/24th Street E morning and afternoon peak hours
- 94th Avenue E/24th Street E morning and afternoon peak hours

1.1. Project Description

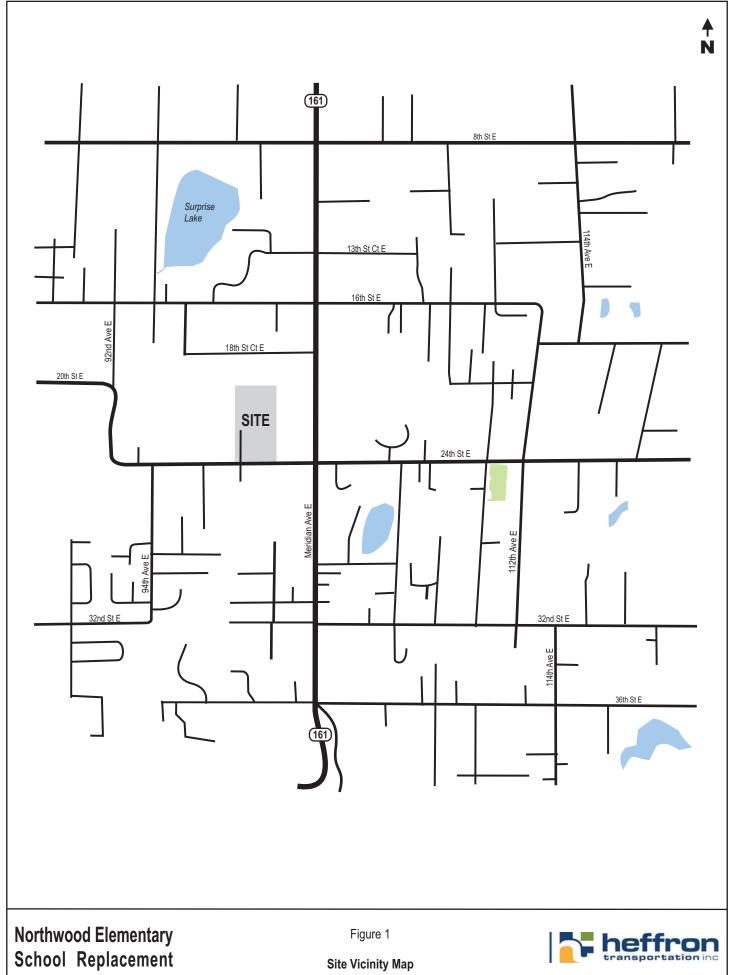
The school serves kindergarten through sixth grade (K-6) and consists of the main school building (30,400 square feet (sf)⁵) and six classrooms in portable buildings with capacity for 436 students.⁶ Existing enrollment (as of fall 2016) was reported at 429 students⁷ and the school currently has 36 staff.⁸ The school site is located west of Meridian Avenue E and north of 24th Street E. The site location and vicinity are shown on Figure 1.

The Northwood Elementary School site has hard and soft surface play areas and a grass play field. There is on-site parking with 59 striped stalls in the main lot for staff and parents/visitors. There are also seven spaces located behind the school building to the north. The school access is located on 24th Street E. The driveway extends 390 feet, then divides and loops around the main parking lot. The loop operates with a one-way circulation pattern for staff/visitors and school buses. School bus load/unload occurs in the front of the school just north of the parking lot.

Email communication: Larry Vandeberg, PSD Assistant Dir. Of Construction Management, December 16, 2016.

¹ City of Edgewood, March, 2012.

² Personal communication: Kevin Stender, City of Edgewood, November 17, 2016.


Email and personal communication: Kevin Jones, Transpo Group, November 15-16, 2016 and December 5, 2016.

⁴ Heffron Transportation, Inc. "Transportation Analysis Scoping", November 4, 2016.

Pierce County Assessor, https://epip.co.pierce.wa.us/cfapps/atr/epip/buildings.cfm?parcel=0420091011, accessed, Jan. 2017.

Puyallup School District: Northwood Elementary School Portable Move Traffic Impact Fee Adjustment, Heffron Transportation, Inc., June 16, 2010.

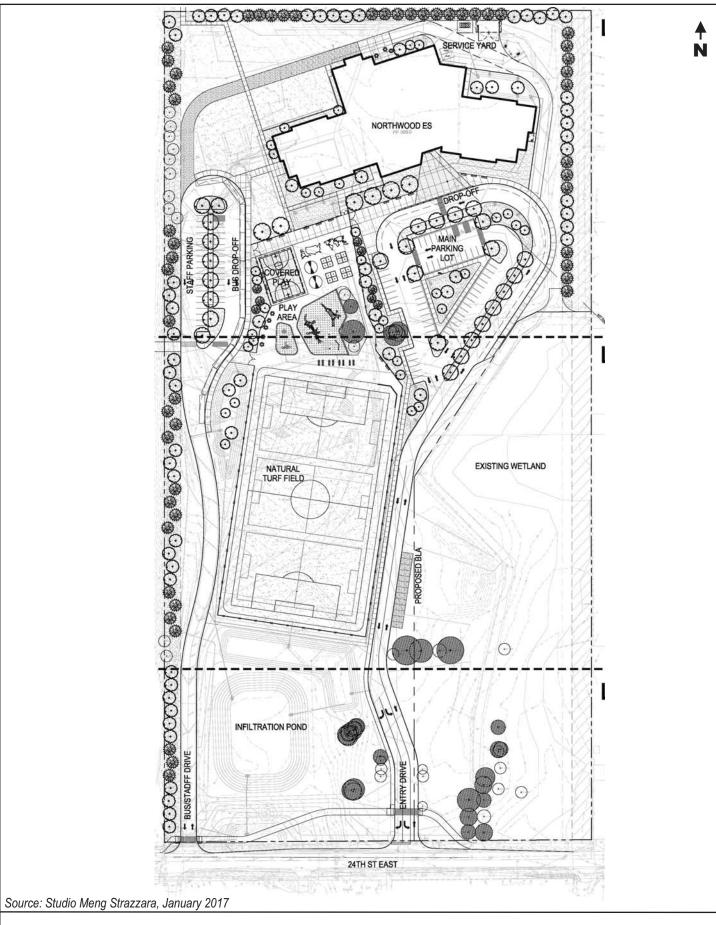
Email communication: Brian Devereux, Puyallup School District (PSD) Dir. Of Facilities Planning, September 26, 2016.

The project would remove the existing structures and parking on the site and construct a new elementary school with approximately 80,600 sf and capacity for up to 730 students. The proposed site plan is shown on Figure 2. As shown, the new school is proposed to have two access driveways on 24th Street E. The school bus load/unload area, staff parking (for 37 vehicles), and day-care van/shuttle load/unload would be accessed from the site's western driveway (along the western edge) at the location of the existing access driveway. The main parking lot (for 60 vehicles) and the passenger vehicle load/unload area would be accessed from a new east access driveway (located approximately 330 feet east of the west driveway). The proposal also includes 13 auxiliary parking spaces on the east side of the main access driveway near the athletic field, bringing the total proposed parking capacity to 110 spaces.

2. EXISTING CONDITIONS

This section describes the existing roadway network, traffic volumes, traffic operations (in terms of levels of service), traffic safety, transit facilities, non-motorized facilities, and parking.

2.1. Roadway Network


The City designates streets as principal arterials, minor arterials, collectors, and local access streets depending upon the street's function in the roadway network. The key roadways in the vicinity of the project site are described below.

Meridian Avenue E (State Route [SR] 161) is a north-south Principal Arterial that connects between Interstate-5 and SR 18 to the north, and SR 167 and SR 512 to the south. North of 24th Street E, it is generally a five-lane roadway with two travel lanes in each direction and a center two-way left-turn lane. South of 24th Street E, Meridian Avenue E is a three-lane roadway with two travel lanes in each direction and a center two-way left-turn lane. In the vicinity of the site, the roadway has curbs, gutters, and sidewalks on both sides and has a posted speed limit of 35 miles per hour (mph). There are also 4-foot wide shoulders provided for bicycles on both sides of the roadway and on-street parking is not permitted. Its intersections with 8th Street E, 16th Street E, and 24th Street E are signalized with crosswalks on all legs. A mid-block signed and marked crosswalk is located just south of 18th Street Court E.

24th **Street E** is a two-lane, east-west roadway that provides connection between 125th Avenue Court E to the east and 92nd Avenue E to the west. It is classified as a Minor Arterial to the west of 122nd Avenue E and as a local access street to the east. In the vicinity of the project site, there are generally paved and/or gravel-grass shoulders that vary in width but are typically narrower than three feet. Recent frontage improvements for a residential development directly west of the project site included sidewalk and an eight-foot wide paved shoulder. The roadway has a posted speed limit of 35 mph. A school-zone speed limit (20 mph) is signed near the school and is in effect when beacons are flashing or when children are present. A school crossing of 24th Street E is signed without pavement markings on the west site of the school access. There are no signs prohibiting on-street parking; during field observations of the afternoon school dismissal peak hour, no on-street parking was observed in the vicinity of the site.

⁹ City of Edgewood, *Edgewood Comprehensive Plan*, Adopted June 9, 2015.

Northwood Elementary School Replacement

Figure 2

Proposed Site Plan

16th Street E is a two-lane, east-west Collector Arterial that provides a connection between Meridian Avenue E and 112th Avenue E to the east. West of Meridian Avenue E, the roadway is known as Taylor Street. Except for a short segment, the roadway west of Meridian Avenue E is outside the city limits and is designated as a Pierce County Collector Arterial. The roadway has mostly grass/gravel shoulders, but there are intermittent sections with no shoulder. There is a 530-foot segment of sidewalk on the south side of the street that extends from Meridian Avenue E to 100th Avenue Court E. East of its intersection with Meridian Avenue E, it has a posted speed limit of 35 mph; west of Meridian Avenue E, it has a posted speed limit of 25 mph. There are no signs prohibiting on-street parking; during field observations of the afternoon school dismissal peak hour, no on-street parking was observed in the vicinity of the site.

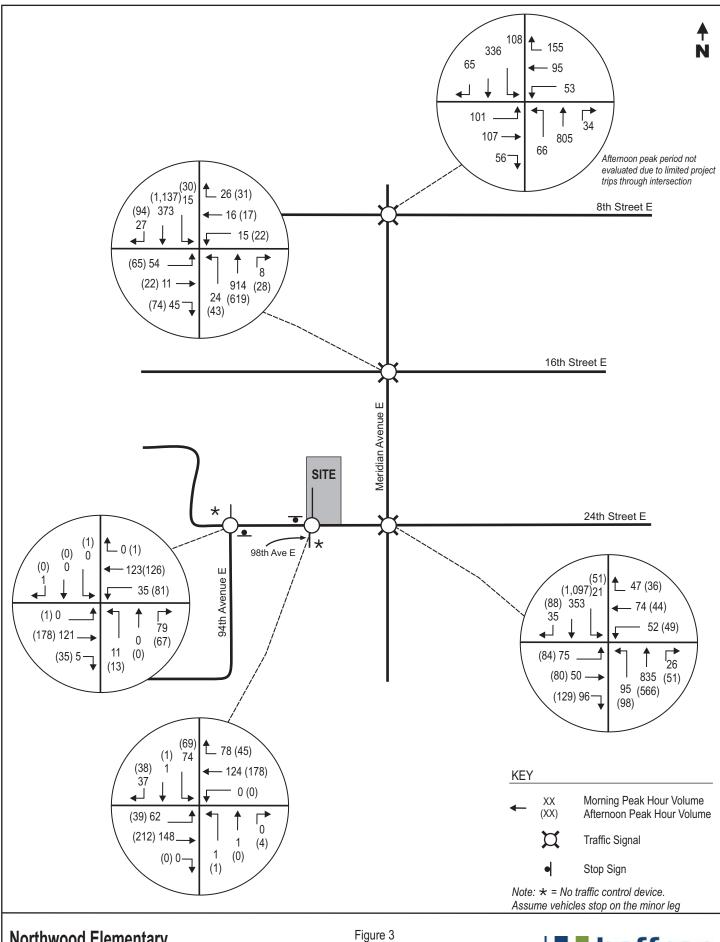
8th Street E is an east-west Minor Arterial that provides a connection between Meridian Avenue E and 122nd Avenue E to the east. West of Meridian Avenue E, the roadway is outside the city limits and is designated as a Pierce County Minor Arterial. The roadway has one travel lane in each direction with paved/grass-gravel shoulders. It has a posted speed limit of 35 mph. On-street parking is not permitted on either side of the roadway.

94th Avenue E is a two-lane, north-south Collector Arterial that provides a connection between 24th Street E on the north and 32nd Street E on the south. There are shoulders on both sides are a mix of paved, grass, and gravel. Along some segments of the roadway, the shoulders are over seven feet in width and are used for parking. The roadway has a posted speed limit of 25 mph.

2.2. Traffic Volumes

Classes at the existing Northwood Elementary School start at 8:55 A.M. and are dismissed at 3:16 P.M. To evaluate the potential traffic conditions in the study area during times when the school generates its highest traffic volumes (the morning arrival and afternoon dismissal peak hours), new peak period turning movement traffic counts were performed at all four study area intersections as well as the existing site access driveway. Morning arrival peak period traffic counts were conducted at all study area intersections and the site access on Tuesday, November 29, 2016. Afternoon dismissal peak period counts were also conducted at the 24th Street E intersections with Meridian Avenue E, 94th Avenue E, and the Northwood Elementary site access driveway on Tuesday, November 29 2016. The afternoon dismissal peak period count at the Meridian Avenue E/16th Street E intersection was performed on Wednesday, December 7, 2016. Morning counts were performed from 7:00 to 9:00 A.M. and afternoon counts were performed from 2:00 to 4:00 P.M. The existing (2016) morning arrival and afternoon dismissal peak hour traffic volumes are shown on Figure 3; the count data sheets are provided in Appendix A.

2.3. Traffic Operations


2.3.1. Off-Site Study-Area Intersections

Traffic operations analyses were performed for the study-area intersections. Traffic operations are evaluated using levels of service (LOS) with six letter designations, "A" through "F." LOS A is the best and represents the best traffic operation with little or no delay to motorists. LOS F is the worst and indicates poor traffic operations with long delays. The level of service definitions and thresholds are provided in Appendix B. The City's adopted minimum operational standard for intersections along the Meridian Avenue E corridor is LOS E. For all other arterial and collector intersections, the standard is LOS D (with some limited exceptions that do not apply to the study area intersections). ¹⁰

¹⁰ City of Edgewood Comprehensive Plan – Transportation Element, Adopted June 22, 2015.

-

Northwood Elementary School Replacement

Existing (2016) Traffic Volumes
Morning and Afternoon Peak Hours

Levels of service were determined using procedures in the *Highway Capacity Manual*.¹¹ Delay calculations rely on complex equations that consider a number of variables. For example, delay at signalized intersections is determined based on traffic volumes by lane group, signal phasing and timing, and the quality of progression along a corridor. Delay at unsignalized intersections is determined for vehicles that must stop or yield for oncoming traffic. That delay is related to the availability of gaps in the main street's traffic flow and the ability of a driver to enter or pass through those gaps.

All level of service calculations were performed using the *Synchro 9.1* traffic operations analysis software. The software models reflect current intersection geometries and levels of service were reported using the *Synchro* module for signalized intersections, which refines *Highway Capacity Manual* methods to account for more detailed driving behavior and signal operations. Timing data for the signalized intersections were obtained from the Washington State Department of Transportation (WSDOT). Input data for this analysis, including geometric characteristics, signal timing, and signal phasing were verified through field observations. Results for unsignalized intersections were reported using the *HCM 2010* module. Table 1 summarizes levels of service for existing (2016) morning arrival and afternoon dismissal peak hours at the off-site study-area intersections. As shown, all study area intersections currently operate at LOS C or better during the morning arrival and afternoon dismissal peak hours. The level of service calculation sheets are included in Appendix C.

Table 1. Level of Service – Existing (2016) Off-Site Conditions

	.,	Morning Peak Hour (8:00 to 9:00 a.m.)		Peak Hour 3:45 p.m.)
Signalized Intersection	LOS 1	Delay ²	LOS	Delay
Meridian Ave S (SR 161) / 8th St E	С	28.4	n/a ³	
Meridian Ave S (SR 161) / 16th St E	А	8.4	В	11.8
Meridian Ave S (SR 161) / 24th St E	С	23.5	С	28.9
Two-Way-Stop-Controlled Intersection	LOS	Delay	LOS	Delay
24th St E / 94th Ave E (overall)	А	2.9	А	3.3
Eastbound Left Turns	А	0.0	Α	7.6
Westbound Left Turns	А	7.6	Α	8.0
Northbound Movements	А	9.9	В	11.4
Southbound Movements (driveway)	А	9.0	С	16.7

Source: Heffron Transportation, January 2017

- 1. LOS = Level of service.
- 2. Delay = Average seconds of delay per vehicle.
- 3. n/a = Not applicable. This intersection is not evaluated for the afternoon dismissal peak hour because the project would generate fewer than 20 trips through this intersection during that hour.

As shown, the Meridian Avenue E/24th Street E intersection operates at LOS C during the afternoon peak hour. During the analysis scoping discussions, the City's transportation review consultant noted that queues of southbound traffic on Meridian Avenue E can form during the commuter PM peak period south of the 24th Street E intersection where Meridian Avenue E narrows from two lanes to one lane (approximately 550 feet downstream of the intersection). It was noted by the City's consultant that this queuing condition can affect and sometimes prevent westbound-to-southbound left turns from 24th Street E. Field observations conducted at the intersections found that these queues did not occur during the afternoon dismissal peak hour between 2:45 and 3:45 P.M.

¹¹ Transportation Research Board, 2010.

٠

2.3.2. Site Access Operations & Queuing

Operations at the existing site access driveway were also evaluated. The pedestrian crossing activity, peaking characteristics of school traffic, and heavy vehicle volumes (including school buses), have all been accounted for in these operations analyses. It is noted that there are currently few residences near the school and only one pedestrian was counted at the driveway during the morning and afternoon peak hours (crossing the north leg of the existing school access). Table 2 summarizes levels of service for existing (2016) morning arrival and afternoon dismissal peak hours. As shown, the driveway currently operates at LOS A overall and all movements currently operate at LOS C or better during the morning arrival and afternoon dismissal peak hours.

		Peak Hour 9:00 а.м.)		Peak Hour 3:45 p.m.)
Two-Way-Stop-Controlled Intersection	LOS ¹	Delay ²	LOS	Delay
24th St E / 98th Ave E / School Dwy (overall)	А	7.8	А	9.0
Eastbound Left Turns	А	7.9	Α	7.9
Westbound Left Turns	Α	0.0	Α	0.0
Northbound Movements	В	14.5	В	10.6
Southbound Movements	С	19.9	С	22.5

Source: Heffron Transportation, January 2017

- 1. LOS = Level of service.
- 2. Delay = Average seconds of delay per vehicle.

Peak school-related queuing typically occurs in the afternoon when family-vehicles arrive on site and drivers wait for dismissal. Therefore, afternoon site access and on-site queuing conditions were observed on Tuesday, January 3, 2017. The observations found that family drivers begin arriving at the site to pick up students prior to 2:55 P.M. Many line up along the side of the one-way loop road on-site rather than parking in available spaces in the lot; however, parking spaces filled up closer to the 3:16 P.M. dismissal time. The number of waiting vehicles was highest just before dismissal and included a total of about 62 cars with about 46 vehicles around the on-way loop and about 16 vehicles that used empty parking stalls within the parking lot.

The inbound queue of vehicles did not extend past the on-site gore point where the two-way driveway splits into one-way segments. Since the queue did not extend to 24th Street E, there was no interference from inbound school traffic with operations on 24th Street E. The outbound queue for vehicles leaving the site lasted for about ten minutes and peaked at about 15 vehicles. The main cause for delay leaving the site was due to left-turning vehicles awaiting adequate gaps in traffic on 24th Street E.

2.4. Parking

As described previously, the existing school has on-site parking with 59 striped spaces in the main lot and 7 spaces behind the school for a total supply of 66 spaces.

School-day parking demand at elementary schools is primarily driven by staffing levels and family-volunteer activity. A field count of on-site parking demand was conducted on Tuesday, January 3, 2017 at 1:45 P.M. and found 36 vehicles in the main lot and 6 vehicles in the back lot for a total demand of 42 vehicles (59% utilized). No on-street parking was observed along 24th Street E in the vicinity of the site. Based on the current school staffing level (36 employees), the school generates about 1.17 parked

vehicles per employee. This rate is consistent with rates for elementary schools observed by Heffron Transportation at numerous locations throughout Western Washington. ITE's *Parking Generation*¹² does not include data for elementary schools based on staffing levels (the data provided are based on enrollment levels and are unclear if they reflect conditions during morning arrival, afternoon dismissal, or special events). *Parking Generation* does include an employee-based rate for middle schools of 1.22-vehicles-per-employee, which is consistent with observations by Heffron Transportation.

2.5. Traffic Safety

As directed by the City's Transportation review consultant, ¹³ collision data for the study area intersections and roadway segments along 24th Street E were obtained from WSDOT. These data, reflecting the period between January 1, 2013 to October 31, 2016 (approximately 3.8 years), were examined to determine if there are any unusual traffic safety conditions that could impact or be impacted by the proposed project. The collision data are summarized in Table 3. There were relatively few collisions reported at the study area intersections during the 3.8-year time period. The highest number of collisions (9) occurred at the 24th Street E/Meridian Avenue E intersection and reflected an average of 2.3 collisions per year. Seven of the nine collisions were rear-end collisions, which are more common along approached to signalized intersections.

A common measure for determining crash rates at intersections is the number of crashes per million entering vehicles (MEV). The collision rate per MEV is a ratio of the number of collisions and the total number of vehicles that travel through an intersection over the study period. This collision rate, allows a comparison of intersections with varying traffic volumes. For example, intersections that have very high traffic volumes are more likely to have a larger number of collisions; however, the rate of collisions may be low when considering the volume of traffic. The rate for the 24th Street E/Meridian Avenue E intersection was determined using estimated Average Daily Traffic (ADT) volumes. The ADT volumes were estimated based on PM peak hour counts for the intersections assuming that an intersection's ADT is 10 times the PM peak hour volume. This estimating tool (the inverse is also known as a K-factor—0.1 in this case) is commonly applied to estimate daily traffic. Collision rates higher than 1.00 per MEV are considered to be relatively high and intersections with rates higher than that may merit additional examination from a safety perspective. The collision rate for the 24th Street E/Meridian Avenue E intersection is 0.27 and is well below 1.00 collision per MEV over the 3.8-year period. None of the intersection or roadway segment collisions involved fatalities. The data for the study area do not indicate any unusual traffic safety conditions along either the roadway segment or study area intersections along 24th Street E.

Table 3. Collision Summary (January 1, 2013 through October 31, 2016)

Intersection	Rear- End	Side- Swipe	Left Turn	Right Angle	Ped / Cycle	Other a	Total for 3.8 Years	Average/ Year
24th St E / 94th Ave E	1	0	0	0	0	0	1	0.3
24th St E / School Access	0	0	0	0	0	0	0	0.0
24 th St E / Meridian Ave E	7	0	0	1	0	1	9	2.3
Roadway Segment	Rear- End	Side- Swipe	Left Turn	Right Angle	Ped / Cycle	Other a	Total for 3.8 Years	Average/ Year
24 th St E – between 94 th Ave E and Meridian Ave E	4	1	0	1	0	1	7	1.8

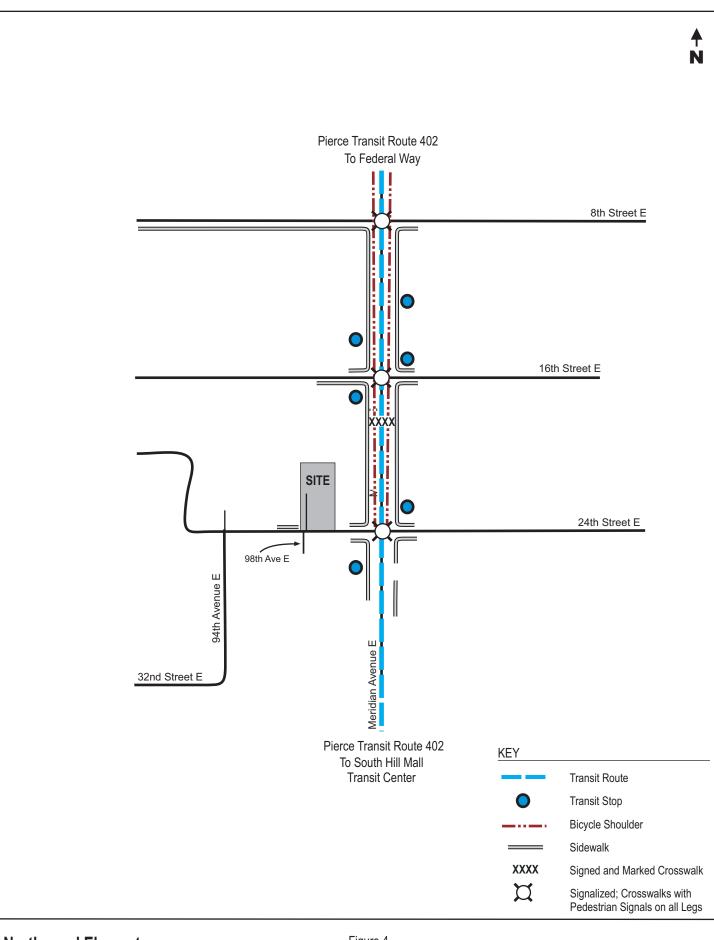
Source: Washington State Department of Transportation, November 2016.

Email communication, K. Jones, PE, PTOE, Transpo Group, Nov. 18, 2016.

1

a. "Other" collisions involved vehicle striking an object and vehicle in ditch.

¹² ITE, 4th Edition, 2010.


2.6. Transit Facilities and Service

The site is not directly served with transit stops; however, Pierce Transit provides bus service within the larger City of Edgewood and Pierce County areas. The closest transit stops are located about ¼ mile to the east on Meridian Avenue E at the 24th Street E intersection (the southbound stop is on the south side and the northbound stop is on the north side). These stops are served by Pierce Transit Route 402, which operates seven days per week between Meridian, Puyallup, and Federal Way. Weekday service is provided from about 5:00 A.M. to 9:00 P.M. with headways (time between consecutive buses) of 30 minutes to an hour. The transit facilities and service are shown on Figure 4.

2.7. Non-Motorized Transportation Facilities

As described in the *Roadway Network* section, Meridian Avenue E has sidewalks and 4-foot wide shoulders for bicycles on both sides of the roadway within the study area. There are marked crosswalks with pedestrian signals at all three signalized study-area intersections. There is a signed and marked midblock crosswalk on Meridian Avenue E just south of 18th Street Court E. The non-motorized facilities are also shown on Figure 4.

Northwood Elementary School Replacement

Figure 4
Public Transit System and
Bicycle/Pedestrian Facilities

3. FUTURE BASELINE CONDITIONS

This section of the report presents the future conditions without the proposed project. Year 2019 was selected as the future horizon year for the analyses because this is the year the replacement school is planned to opened. For comparison, and to provide an analysis of potential new traffic and parking impacts, year 2019 without-project conditions assume the existing Northwood Elementary School would operate at its existing capacity of 436 students. The following sections describe planned improvements, traffic volumes, and traffic operations (in terms of levels of service).

3.1. Planned Transportation Projects in Site Vicinity

The City of Edgewood's adopted 2017-2022 Capital Improvement Plan (CIP)¹⁴ was reviewed to determine if any proposed projects would affect study-area roadways or intersections. No funded roadway or non-motorized projects within the study area are identified in the CIP that are expected to affect the capacity or operations at the study area intersections by year 2019 when the proposed Northwood Elementary School Replacement project would be complete and occupied.

It is noted that the City of Edgewood is working to implement its *Meridian Avenue Corridor Projects*, which are identified in the *Edgewood 2035 Comprehensive Plan*. Near the project site, planned improvements include new grid streets along the alignments of 20th Street E (Project W-3) and 100th Avenue E (Project W-4) as described below.

- **Project W-3: 20**th **Street E** Construct a new Collector Arterial segment of 20th Street E from 101st Avenue E to Meridian Avenue E.
- Project W-4: 20th Street E / 100th Avenue E / 24th Street E Construct a new Collector Arterial segment of 100th Avenue E between 24th Street E and 20th Street E.

The alignment of the planned new segment of 100^{th} Avenue E (Project W-4) falls along the eastern edge of the northern portion of the school site. As a result, the District will be requested to dedicate right-of-way to the City for this roadway's future completion. Since completion of these two projects will rely on right-of-way that has not yet been acquired by the City and the timing of design and construction is unknown at this time, these projects were not assumed to be complete in 2019 for this analysis. Therefore, the existing roadway network was assumed for all analyses of 2019 conditions.

3.2. Forecast 2019 Background Traffic Volumes

Traffic forecasts were developed for future 2019 without-project conditions based on guidance provided by the City's transportation review consultant. Based on this direction, a 2% compound annual growth rate was applied to the existing 2016 traffic volumes. In addition, traffic estimates associated with 17 planned development projects (called 'pipeline projects') was then added to the background traffic estimates to reflect year 2019 conditions. The 17 pipeline projects are listed below:

- The Arbors at Edgewood
- Caldwell Crest
- Edgewood Apartments
- Edgewood Commercial
- Edgewood Estates

- Nicklaus Property
- North Edgewood Apartments
- Northwood Estates
- Pascolo Estates
- Rainier Vista

City of Edgewood, Adopted August 23, 2016.

-

Northwood Elementary School Replacement Transportation Technical Report

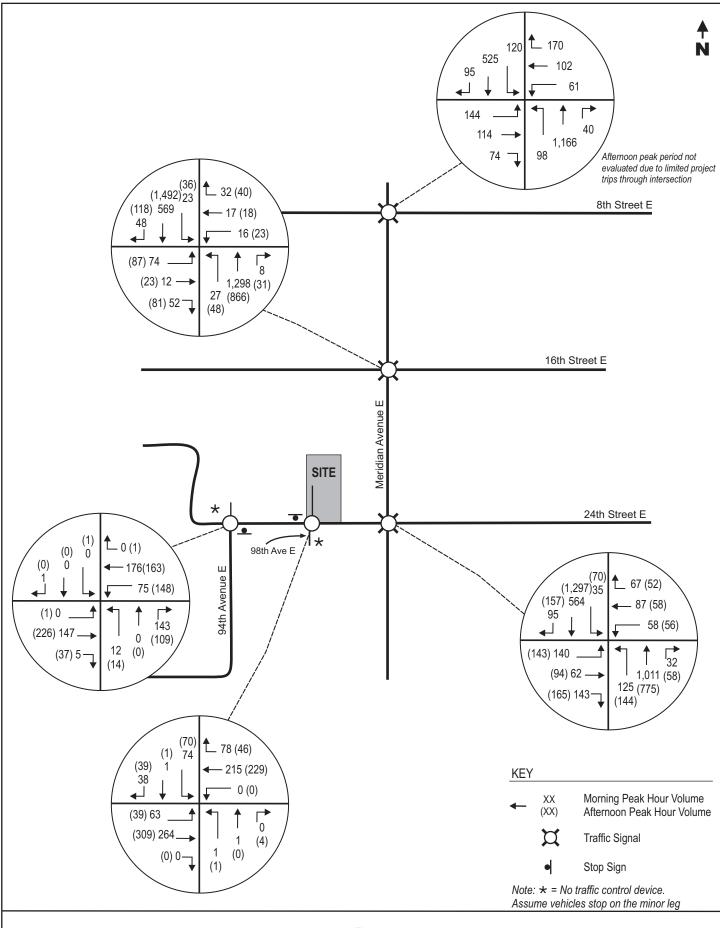
- Edgewood Heights
- Edgewood Memory Care
- Edgewood View Point
- Jovita Crossing

- View Pointe
- Westridge Plat
- Wolf Point

It is noted that construction of some of these developments has already begun and some are partially occupied. As a result, the existing counts may already include some of the associated pipeline traffic and the future forecasts may overstate the actual total background volumes.

Traffic assignments for these pipeline projects were provided by the City's Transportation review consultant. These pipeline assignments primarily reflected trips estimated for the commuter PM peak hour (the highest hour between 4:00 and 6:00 P.M.) and did not have estimates of traffic generated during the morning arrival or afternoon dismissal peak hours being evaluated for the Northwood Elementary School Replacement project. Therefore, the pipeline traffic estimates were adjusted to reflect the amount of traffic that could be generated by these developments during the morning and afternoon analysis peak hours. The methodology used to adjust the pipeline traffic estimates was coordinated with the City's transportation review consultant. ¹⁵ Report 365 Travel Estimation Techniques for Urban Planning 16 from the National Cooperative Highway Research Program (NCHRP) identifies time-of-day characteristics for home-based and non-home-based trips for areas of varying populations.¹⁷ The percentages of trips provided for Home-Based trips, which accounts for the types of trips expected from the pipeline development, were combined to derive ratios of the commuter PM peak hour for the morning arrival and afternoon dismissal peak hours. These published data indicate that Home-Based trips during the 8:00 to 9:00 A.M. school arrival hour are 81.5% of the trip generated during the traditional commuter PM peak hour. Therefore, to estimate pipeline traffic during the morning arrival peak hour, a factor of 81.5% was applied to the PM peak hour pipeline trips. In addition, in order to account for the reverse commute patterns in the morning, the assignments were reversed (e.g. southbound trips on Meridian Avenue E during the PM peak hour would be northbound during the morning).

Similarly, the data indicate that trips occurring between 3:00 and 4:00 P.M. (representing the afternoon dismissal peak hour 2:45 to 3:45 P.M.) are 81.8% of the commuter PM peak hour. To estimate pipeline traffic during the afternoon dismissal peak hour, a factor of 81.8% was applied to the PM peak hour pipeline trips. The resulting pipeline traffic estimates were then added to the forecasts to reflect 2019 without-project traffic estimates for each analysis period. The resulting 2019 "without project" volumes during morning arrival and afternoon dismissal peak hours are shown on Figure 5. The combination of the growth rate and the assumed pipeline trips at the intersections results in 2019 volumes that are between 29% and 49% higher than existing. The pipeline development traffic represents between 18% and 29% of the forecast 2019 total entering volumes.


Based on guidance from the City's Transportation consultant, although City of Edgewood population is below 10,000;¹⁷ commute patterns for the area are largely reflective of the greater Puget Sound region and the published travel characteristics for areas with population sizes of 1,000,000 or greater were applied.

-

Personal communication, K. Jones, PE, PTOE, Transpo Group, Dec. 15, 2016.

Transportation Research Board, National Academy Press, 1998 – Table 41.

Northwood Elementary School Replacement

Figure 5
Forecast 2019 Without-Project Traffic Volumes
Morning and Afternoon Peak Hours

3.3. Traffic Operations

3.3.1. Off-Site Study-Area Intersections

Levels of service for study area intersections were calculated for the 2019-without-project background conditions using the methodology described previously. Table 4 shows the results of the level of service analysis; results for the 2016 existing conditions are included for comparison.

As shown, the assumed growth in background traffic (including pipeline development and the assumed 2% compound annual growth) is forecast to result in increased delays at all study area intersections during both study time periods. However, the signalized intersections would continue to operate at LOS D or better, meeting the City's minimum LOS standard. However, it is noted that some movements, such as left turns from 24th Street E to Meridian Avenue E may operate below LOS D or E. All movements at the 24th Street E/94th Avenue E intersection are forecast to operate at LOS D or better during both peak hours in 2019 without the project.

Table 4. Level of Service – Background Off-Site Conditions

	Morning Peak Hour (8:00 to 9:00 a.m.)			Afternoon Peak Hour (2:45 to 3:45 p.m.)				
	Existing	g (2016)	2019 w/o Project		Existing (2016)		2019 w/o Project	
Signalized Intersection	LOS ¹	Delay ²	LOS	Delay	LOS	Delay	LOS	Delay
Meridian Ave S (SR 161) / 8th St E	С	28.4 C 33.7 n/a ³		n/a ³				
Meridian Ave S (SR 161) / 16th St E	Α	8.4	В	10.2	В	11.8	В	14.4
Meridian Ave S (SR 161) / 24th St E	С	23.5	С	30.9	С	28.9	D	37.7
Two-Way Stop Controlled Intersection	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
24th St E / 94th Ave E (overall)	Α	2.9	Α	3.8	Α	3.3	Α	4.4
Eastbound Left Turns	Α	0.0	Α	0.0	Α	7.6	Α	7.7
Westbound Left Turns	Α	7.6	Α	7.8	Α	8.0	Α	8.4
Northbound Movements	Α	9.9	В	10.7	В	11.4	В	13.6
Southbound Movements (dwy)	Α	9.0	Α	9.3	С	16.7	D	27.9

Source: Heffron Transportation, January, 2017.

3.3.2. Site Access Operations & Queuing

Future operations at the site access driveway were also evaluated and are presented in Table 5. As shown, the forecast growth in background traffic volumes on 24th Street E is expected to degrade access operations to LOS B overall in the morning and LOS C overall in the afternoon. Southbound turns from the site driveway are forecast to degrade to LOS E in the morning and LOS F in the afternoon.

^{1.} LOS = Level of service.

^{2.} Delay = Average seconds of delay per vehicle.

^{3.} n/a = Not applicable. This intersection is not evaluated for the afternoon dismissal peak hour.

Table 5. Level of Service – Background Site Access Conditions

		Morning F (8:00 to 9	Peak Hour 9:00 а.м.)		Afternoon Peak Hour (2:45 to 3:45 p.m.)			
	Existin	g (2016)	2019 w/o Project		Existing (2016)		2019 w/o Project	
Two-Way Stop Controlled Intersection	LOS ¹	LOS ¹ Delay ²		Delay	LOS	Delay	LOS	Delay
24th St E / 98th Ave E / School Dwy (overall)	Α	7.8	В	11.6	Α	9.0	С	16.6
Eastbound Left Turns	Α	7.9	Α	8.3	Α	7.9	Α	8.3
Westbound Left Turns	Α	0.0	Α	0.0	Α	0.0	Α	0.0
Northbound Movements	В	14.5	С	19.2	В	10.6	В	12.2
Southbound Movements	С	19.9	Е	41.1	С	22.5	F	54.5

Source: Heffron Transportation, January, 2017.

On-site queuing conditions related to family drivers waiting for afternoon dismissal are not anticipated to change noticeably for the future without-project conditions. However, the outbound queue for vehicles leaving the site may be increased due to additional delays for those turning left.

4. FUTURE WITH PROJECT CONDITIONS

This section describes the conditions that would exist with the proposed new Northwood Elementary School at its enrollment capacity of 730 students. Potential impacts to study-area traffic operations, site access, queuing, transit, safety, non-motorized facilities, and parking were evaluated. In addition, analysis of special event conditions and construction were examined. The following sections describe the methodology used to determine the proposed project's impacts.

4.1. Traffic Volumes

The proposed project is expected to generate new trips on the surrounding transportation network. With the enrollment capacity increase from 436 students to the proposed capacity of 730 students, the school is expected to generate an increase in morning and afternoon peak hour traffic compared to existing conditions. The following describes the assumptions used to estimate the potential net increases in traffic during the key analysis periods.

4.1.1. School Trip Generation Rates

Peak hour trip generation for the school was determined using rates developed from counts performed at the existing Northwood Elementary School on Tuesday, November 29, 2016. The trip results and trip rates are summarized in Table 6. The average rates published in the Institute of Transportation Engineers' [ITE] *Trip Generation Manual*¹⁸ for Elementary Schools (Land Use Code 520) are shown for comparison. The morning arrival and afternoon dismissal peak hour rates observed at Northwood Elementary are somewhat higher than the average published ITE rates. It is noted that these rates reflect all trips generated by the school including student pick-up/drop-offs, school bus trips, parent trips, teacher/staff trips, and visitors.

^{1.} LOS = Level of service.

^{2.} Delay = Average seconds of delay per vehicle.

Table 6. Estimated Vehicle Trips Generated by the Proposed Project

	Enrollment 1 &	Nur	mber of 1	rips		Trip Rate (trips/student)		ITE Rates
School/Reporting Period	Time Period	ln	Out	Total	In	Out	Total	For Comparison
Northwood Elementary	429 Students							
Morning Arrival Peak Hour	8:00 – 9:00 a.m.	141	112	253	56%	44%	0.59	0.45 trips/student
Afternoon Dismissal Peak Hour	2:45 – 3:45 p.m.	84	108	192	44%	56%	0.45	0.28 trips/student

Source: Number of trips is based on traffic counts performed at school's driveway on Tuesday, November 29, 2016.

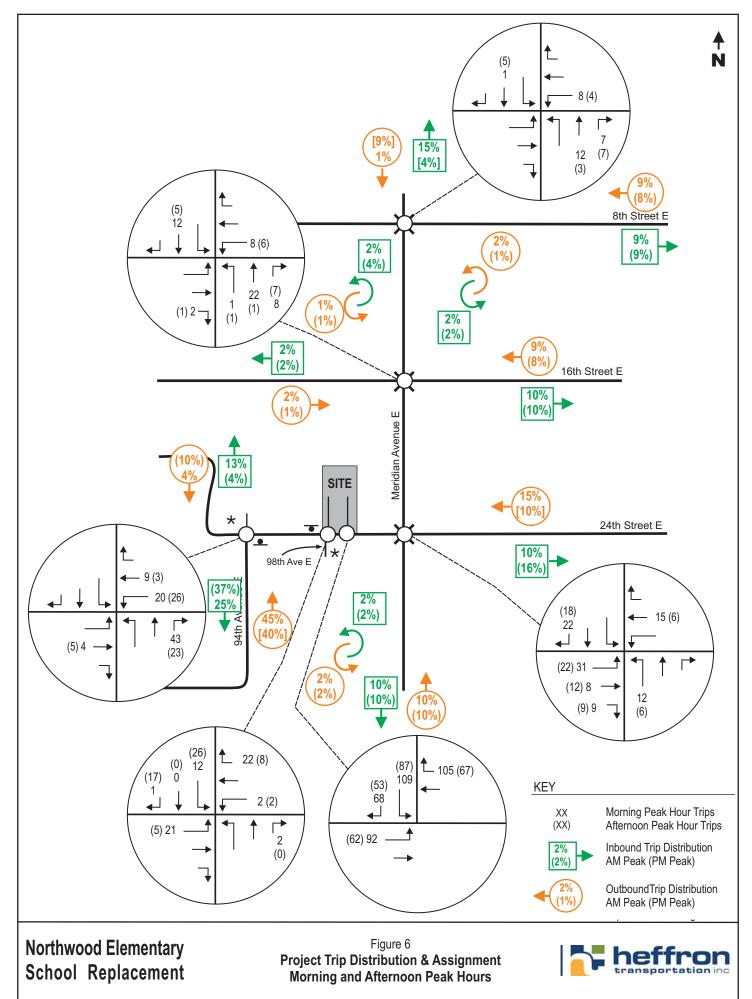
4.1.2. Trip Generation Estimates for Replacement School

Table 7 summarizes the forecast trip generation for the existing and proposed replacement Northwood Elementary School based upon the calculated rates described above. It reflects the planned increase in capacity from 436 to 730 students. As shown, the project is forecast to result in net increases of 175 morning arrival peak hour trips and 130 afternoon dismissal peak hour trips.

Table 7. Northwood Elementary School Replacement – Trip Generation Summary

	Capacity			Morning Peak Hour (8:00 to 9:00 A.M.)			Hour м.)
Site Condition	(students)	In	Out	Total	In	Out	Total
Proposed Replacement	730	240	190	430	142	183	325
Existing School	436	142	113	255	85	110	195
Net Change	294	98	77	175	57	73	130

Source: Heffron Transportation, Inc., November 2016.


4.1.3. Trip Distribution and Assignment

Separate project trip distribution patterns and assignments were developed for the morning and afternoon peak hours to reflect typical patterns of some family drivers linking trips with work trips. The trip distribution patterns were based on a combination of sources including traffic flow patterns derived from new counts taken in November 2016, the overall residential density within the existing enrollment area for Northwood Elementary School, and planned increases in residential homes within the enrollment area.

The current enrollment boundary for Northwood Elementary has about two-thirds of its area extending southwest of the school to N Levee Road E on the south and about 70th Avenue E to the west. The remaining third of the area surrounds the school site and extends northeast to 8th Street E on the north and 122nd Avenue E on the east. It is recognized that attendance areas are subject to review by the Boundary Review Committee and ultimately the Puyallup School Board. Current planning indicates most planned growth in Edgewood is in the Northwood attendance area, which may indicate boundary changes for Northwood Elementary School would be minor. However, any changes will not be known until late 2018. The resulting total project trip distribution patterns and assignments for the morning arrival and afternoon dismissal peak hours are shown on Figure 6.

^{1.} Enrollment in Fall 2016 provided by Puyallup School District.

4.1.1. Forecast With-Project Traffic Volumes

To estimate 2019 traffic volumes with the proposed project, the project trips were added to the 2019 without-project volumes described and presented previously. Forecast 2019 with-project volumes for morning and afternoon peak hours are shown on Figure 7.

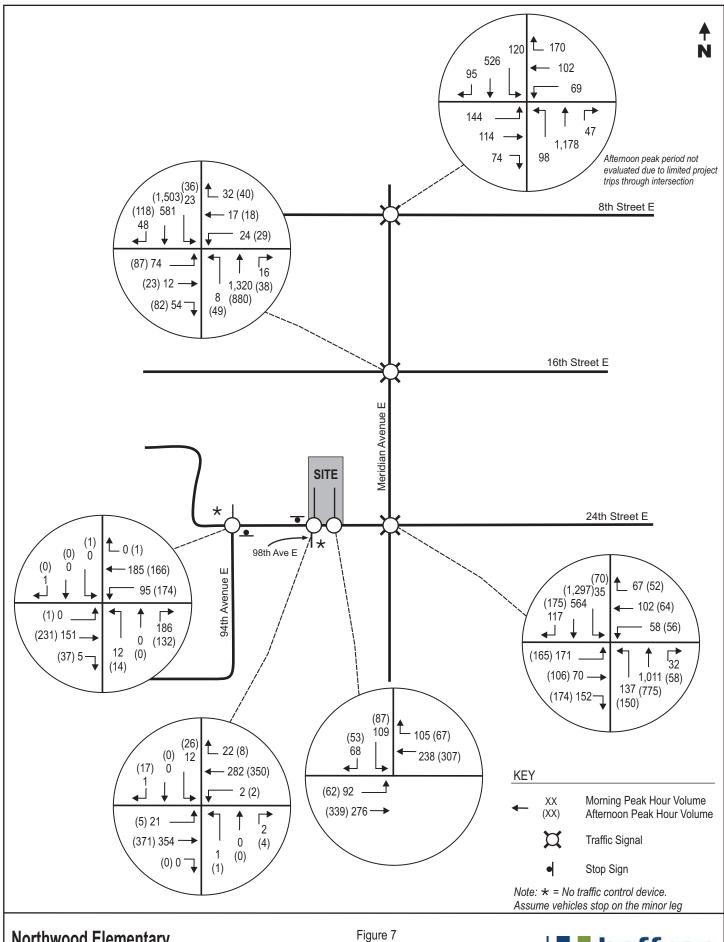
4.2. Traffic Operations

4.2.1. Off-Site Study-Area Intersections

Intersection levels of service for future with-project conditions at the off-site intersections were determined using the same methodology described previously. Table 8 summarizes forecast 2019-with-project levels of service; the without-project results are shown for comparison. As shown, the school project is expected to add some delay to the off-site study-area intersections; however, all four are expected to continue operating at without-project levels—LOS D or better—with the proposed Northwood Elementary School project during both peak hours.

Table 8. Level of Service - Future (2019) With-Project Off-Site Conditions

	Morning Peak Hour (8:00 to 9:00 A.M.)				Afternoon Peak Hour (2:45 to 3:45 p.m.)				
	2019 w/	o Project	2019 wi	th Project	2019 w/	o Project	2019 with Project		
Signalized Intersection	LOS ¹	Delay ²	LOS	Delay	LOS	Delay	LOS	Delay	
Meridian Ave S (SR 161) / 8th St E	С	C 33.7 C 34.1 n/a ³		'a ³	n/a ³				
Meridian Ave S (SR 161) / 16th St E	В	10.2	В	10.4	В	14.4	В	14.5	
Meridian Ave S (SR 161) / 24th St E	С	30.9	С	33.9	D	37.7	D	41.8	
Two-Way-Stop-Controlled Intersection	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	
24th St E / 94th Ave E (overall)	Α	3.8	Α	4.4	Α	4.4	Α	5.0	
Eastbound Left Turns	Α	0.0	Α	0.0	Α	7.7	Α	7.7	
Westbound Left Turns	Α	7.8	Α	7.8	Α	8.4	Α	8.6	
Northbound Movements	В	10.7	В	11.2	В	13.6	В	14.5	
Southbound Movements	Α	9.3	Α	9.4	D	27.9	D	34.0	


Source: Heffron Transportation, January, 2017.

^{1.} LOS = Level of service.

^{2.} Delay = Average seconds of delay per vehicle.

^{3.} n/a = Not applicable. This intersection is not evaluated for the afternoon dismissal peak hour.

Northwood Elementary School Replacement

Forecast 2019 With-Project Traffic Volumes
Morning and Afternoon Peak Hours

4.2.2. Site Access Operations & Queuing

Channelization Needs

The need for left-turn lanes at the site driveways on 24th Street E was evaluated using two methods. First, the method preferred by Pierce County and outlined in Highway Research Record (HRR) 211 *Volume Warrants for Left-Turn Storage Lanes at Unsignalized Grade Intersections*¹⁹ was applied. This methodology is used to assess the need for left-turn lanes on streets or highways where left-turning drivers must yield to oncoming traffic. With this methodology, the left-turn lane is warranted if there is a high probability that left-turning vehicles would unduly delay vehicles approaching from the same direction as the left turn. The methodology is based on the relationship of advancing volume, opposing volume, and left-turn percentages at an unsignalized intersection.

To evaluate the warrants, the advancing volume, opposing volume, and left-turn percentages were compared to the applicable charts in the appendix of *HRR 211*. *HRR 211* provides specific curves for design speeds of 40 mph and above, and for left turn percentages up to 40%. Therefore, it reflects a conservative analysis tool for 24th Street E, which has a posted speed limit of 35 mph and school zone speed limit of 20 mph. Table 9 summarizes the turning volumes and analysis results for the two access intersections. As shown, the highest volume of left-turns is expected to occur at the proposed new easternmost access driveway on 24th Street E (where passenger-vehicle access and egress would be consolidated). Smaller numbers of left turns are expected during peak hours at the western access driveway that would be designated for school buses and staff only. The eastern (main access) driveway would meet warrants for left-turn storage of 75-feet during both the morning arrival and afternoon dismissal peak hours in 2019 with the project. The analysis charts are attached in Appendix D.

Table 9. Northwood Elementary Replacement Project – Left-Turn Lane Analysis Summary

Peak Period / Location	Left-turn Volume	Advancing Volume ^a	% Lefts	Opposing Volume b	Turn Lane Warranted?
Morning Peak Hour					
Left to School Bus/Staff Driveway (West)	21	375	5.6%	306	No c
Left to Main Access Driveway (East)	92	368	25%	343	Yes d
Afternoon Peak Hour					
Left to School Bus/Staff Driveway (West)	5	376	1.3%	360	No ^e
Left to Main Access Driveway (East)	62	401	15.5%	374	Yesf

Source: Heffron Transportation, Inc. (Jan. 2017) using HRR 211 – Aspects of Traffic Control Devices, Highway Research Board, 1967.

- a. Advancing Volume = Total of left-turning, through-, and right-turning vehicles.
- b. Opposing Volume = Total of vehicles in opposing lane.
- c. Applied HRR 211 Figure 2 (40 mph roadway and conditions with left turns of 5% of advancing traffic).
- d. HRR 211 provides curves for conditions with left turns of 20% and 30% of advancing traffic on 40 mph roadways (Figures 5 & 6). An estimated curve for left turns at 25% of advancing traffic was interpolated and applied for this evaluation.
- e. Applied HRR 211 Figure 2 (40 mph roadway and conditions with left turns of 5% of advancing traffic).
- f. Applied HRR 211 Figure 4 (40 mph roadway and conditions with left turns of 15% of advancing traffic).

In addition to the HRR 211 charts, the channelization requirements for the school driveways were also evaluated using guidance in section 1310.03(2)(a) of WSDOT's *Design Manual* (July 2016). The manual states:

¹⁹ Highway Research Board, 1967.

1

At unsignalized intersections, use the following as a guide to determine whether or not to provide one-way left-turn lanes:

- A traffic analysis indicates congestion reduction with a left-turn lane. On two-lane highways, use Exhibit 1310-7a, based on total traffic volume (DHV) for both directions and percent left- turn traffic, to determine whether further investigation is needed.
- A study indicates crash reduction with a left-turn lane.
- Restrictive geometrics require left-turning vehicles to slow greatly below the speed of the through traffic.
- There is less than decision sight distance for traffic approaching a vehicle stopped at the intersection to make a left turn.

A traffic analysis based on the Highway Capacity Manual (HCM) may also be used to determine whether left-turn lanes are needed to maintain the desired level of service.

Exhibit 1310-7a – Left-Turn Storage Guidelines: Two-Lane, Unsignalized from the WSDOT Design Manual was used together with the forecast 2019 morning arrival and afternoon dismissal peak hour traffic volumes on 24th Street E as described above. The warrant exhibit only provides guidance for roadways with posted speed limits of 40 mph or higher; therefore, the lowest (40 mph) curve was applied. As shown on the attached warrant evaluation sheet, the forecast-with-project traffic volumes and the resulting left-turn percentages at the eastern access driveway would fall above the warrant curves for both peak hour conditions. Therefore, the WSDOT guidelines also indicate left-turn storage is needed to accommodate the left-turning traffic at that access. The WSDOT guidance also indicates that left-turn storage would not be needed at the western school-bus staff access driveway.

The exact design and limits of the widening on 24th Street E for the left-turn storage should be coordinated with City of Edgewood staff based on the various existing constraints including: nearby wetlands; available right-of-way; topographical constraints; and planned future improvements that may be incorporated into the future 100th Avenue E grid street project. However, for planning purposes, the following provides estimates of the potential channelization.

Exhibit 1310-8a – Left-Turn Storage Length: Two-Lane, Unsignalized (40 mph) from the WSDOT Design Manual was used to determine a potential storage length for the left-turn lane at the eastern (main) access driveway. As shown on the attached evaluation sheet, the morning arrival peak hour volumes indicate a storage length of 100 feet would be appropriate. The analysis charts are attached in Appendix D.

Based on the two methods (HRR 211 and WSDOT Design Manual), left-turn storage of 75 to 100 feet is recommended. Widening of 24^{th} Street E would also be required to accommodate transitions and taper lengths. Taper lengths may vary based on jurisdiction preferences. However, the WSDOT recommended taper ratio for a 35-mph roadway is 35:1 (taper length to width of left-turn lane on departure side of centerline per *Exhibit 1310-10a – Median Channelization: Widening* from the WSDOT *Design Manual*). Assuming the center left-turn storage lane is 12-feet wide (6 feet on each side of the centerline), the taper length could be as long as 210 feet ($35 \times 6 = 210$). A shadow taper (also assumed to be 210 feet in length) could be required west of the access roadway. In addition, to help facilitate left-turns out of the site, a short center acceleration storage area (about 50 feet) is recommended to accommodate two-stage left-turns from the east driveway. Therefore, the total widening of 24^{th} Street E to accommodate the left-turn lane could extend between 580 and 605 feet (assuming 210 feet for the transition and taper east of the access driveway, 75 to 100 feet for storage, 35 feet to accommodate the width of the access driveway, 50 feet for eastbound acceleration storage, and 210 feet for the taper west of the access driveway). These lengths may need to be adjusted based on noted constraints.

The segment of 24th Street E where the school driveways are planned is straight and flat. No sight-line obstructions (either horizontal curves or vertical curves) would interfere with sight-distance for drivers turning to or from the driveways in either direction.

Access Operations

With-project operations at the site access driveways were evaluated reflecting the recommended channelization from the previous section. There are two residential developments planned on the north side of 24th Street E to the west within walking distance of the site and it is possible that the replacement school could generate some additional pedestrian or bicycle trips. In addition, the larger school is expected to require additional school buses. Therefore, the potential increases in pedestrian crossing activity and school buses have been accounted for in the operations analyses of the site access intersections. The results are presented in Table 10.

As shown, operations at the west access driveway (serving school buses and some staff trips) are projected to operate at LOS A overall and all movements are forecast at LOS D or better. The new east access that would serve the main parking lot and the pick-up/drop-off loop is also forecast to operate at LOS A overall during both periods with the recommended channelization. During both analysis periods, the southbound left-turn movement would operate at LOS D and the southbound right-turn movement would operate at LOS B. It is acknowledged that operations could be worse for left-turns out of the site, if drivers are unwilling to use the center acceleration area for two-stage left-turns to eastbound 24th Street E. It is likely that there would be some congestion leaving the site for about 20 minutes twice each school day—during morning arrival and afternoon dismissal.

Table 10. Level of Service – Future (2019) With-Project Site Access Conditions

		.,	Peak Hour 9:00 a.m.)		Afternoon Peak Hour (2:45 to 3:45 P.M.)						
	2019 w/	o Project	2019 wit	th Project	2019 w/	o Project	2019 with Project				
Two-Way-Stop-Controlled Intersection	LOS ¹	Delay ²	LOS	Delay	LOS	Delay	LOS	Delay			
24th St E / West School Dwy (overall)	В	11.6	А	1.5	С	16.6	А	3.1			
Eastbound Left Turns	Α	8.3	Α	8.4	Α	8.3	Α	9.6			
Westbound Left Turns	Α	0.0	Α	8.2	Α	0.0	Α	8.1			
Northbound Movements	С	19.2	В	13.4	В	12.2	В	12.2			
Southbound Movements	Ε	41.1	D	27.5	F	54.5	С	21.9			
24th St E / East School Dwy (overall)	n/	a ⁴	Α	8.2	n/	'a ⁴	Α	7.1			
Eastbound Left Turns			Α	8.4			Α	8.3			
Southbound Left Turns			D	29.6			D	25.3			
Southbound Right-Turns			В	11.7			В	12.0			

Source: Heffron Transportation, January, 2017.

- 1. LOS = Level of service.
- 2. Delay = Average seconds of delay per vehicle.
- Driveway does not exist for without-project conditions.

On-Site Queuing Conditions

Peak queuing conditions are expected to increase with the larger school capacity. In the mornings, school drop-off activities usually occur with limited queues or delay. This is because arrivals tend to be

spread out over the 20 to 30 minutes before school start time. During this period, family drivers generally arrive, drop off students, and then immediately leave the site. In the afternoons, many drivers arrive early and wait in the queue lane(s) or parking spaces for the students to be dismissed, and longer vehicle queues can develop.

The morning arrival queue can be modeled directly using Poisson arrival methodologies for a multichannel service system (i.e., the number of drop-off spaces that can be used simultaneously). Assumptions documented from queuing data collection at Bellevue School District schools were used for this analysis.²⁰ This includes the assumption that it takes about 15 seconds for students to exit a vehicle while at the drop-off location space and the entire morning arrival time for a school occurs within 20 minutes. This equates to a service rate for each drop-off space of 4 vehicles per minute (80 vehicles in 20 minutes or a rate of 240 vehicles per hour). For the Northwood Elementary School Replacement, the total estimated morning arrival peak hour volume is 240 vehicles (as presented in the *Trip Generation* section); however, 197 are forecast to arrive at the main load/unload area. To account for the compressed 20-minute arrival period, the arrival rate for the model is three times this level or 591 vehicles per hour.

Students could be dropped off anywhere along the load/unload zone shown on the site plan (see Figure 2), which allows 26 spaces to be used at one time. However, to provide an analysis of potential worst-case conditions, a range of 10 to 15 spaces was evaluated to estimate both the average and 95th-percentile queues for the drop-off area closest to the building. Table 11 presents the estimated queues for the assumed drop-off spaces at the proposed school during the morning arrival. As shown, the estimated morning arrival queue is expected be accommodated on-site and is not expected to exceed the available load/unload zone capacity. The queue model calculation results are included in Appendix D.

Table 11. Estimated Morning Arrival Vehicle Queues

Vehicles Served Simultaneously	Average Queue	95 th Percentile Queue	Exceeds On-Site Vehicle Capacity?
10 vehicles	2 vehicles	5 vehicles	No
15 vehicles	2 vehicles	5 vehicles	No

Source: Heffron Transportation, Inc., January 2017, using service rate assumptions based on observations included in the Enatai Elementary School Traffic Impact Analysis, (Gibson Traffic Consultants, August 2014).

Although the queue analysis and estimation model is reasonable for application to morning arrival queues, the afternoon queueing conditions are different. Family drivers arrive prior to school dismissal during a time when no vehicles are being loaded (or serviced). In addition, students arrive at their family vehicles at different rates, so the service times per vehicle are different than during morning arrival. Therefore, on-site vehicle queue estimates during afternoon school dismissal were based on observations at the existing Northwood Elementary and at a Puyallup School District elementary school with enrollment similar to that proposed for Northwood.

Based on observations at the existing school and adjusting proportionately based on enrollment (730 proposed future compared to 429 existing), the maximum afternoon queue demand is estimated at about 105 vehicles. For comparison, afternoon dismissal queues were observed on Wednesday, January 4, 2017 at Edgerton Elementary School,²¹ which currently has enrollment of 740 students in K-6 and 33 students in pre-K. Based on those observations, the peak number of vehicles observed just before dismissal was 110 (including 45 in the main pick-up queue, about 60 waiting within the parking lot, and about 5 on

Located at 16528-127th Avenue Court E in Puyallup.

-

Gibson Traffic Consultants, Enatai Elementary School Traffic Impact Analysis, August 2014.

surrounding streets). Based on these observations, the estimated afternoon vehicle demand estimate of 105 vehicles is a reasonable approximation for the larger Northwood Elementary Replacement.

The on-site passenger-vehicle load/unload loop would provide space for 26 vehicles to load/unload simultaneously and the proposed new main access driveway is roughly long enough (about 800 feet to the first load/unload space) to accommodate about 40 vehicles before spilling back onto 24th Street E. Combined, the site proposes a total queuing length of about 1,320 linear feet. Planning research and guidance from several sources suggest providing on-site queue stacking of between 1.2 and 2.0 feet per student. In addition, the main visitor lot is expected to have between 35 and 40 parking spaces available in the late afternoon where family drivers can park and wait for students. Finally, during the peak few minutes around dismissal, there are typically some vehicles circulating within the drive aisles of the parking lot. In total, the site could accommodate between 100 and 120 vehicles on-site without spilling onto 24th Street E, which would meet the demand expected and would fall at the upper end of the referenced guidance.

It is acknowledged that some fluctuation in volumes and queuing activities are common as they can be affected by weather, special events, and unfamiliarity with drop-off/pick-up procedures at the beginning of each school year. It is noted that family drivers with younger students are more likely to park their vehicles and walk their children to and from the school.

4.3. Transit Facilities & Service

It is possible that some transit trips could be generated by teachers or staff at the site. However, the nearest transit stops are about ¼ mile away and the number of added transit trips is likely to be very small. School bus transportation would continue to be provided to those students that qualify. The project is not expected to result in adverse impacts to transit.

4.4. Non-Motorized Transportation Facilities

The project would construct a new walkway along its frontage on the north side of 24th Street E. The larger school may attract some additional pedestrian and bicycle trips within the local site vicinity, particularly from the planned new residential development located immediately to the west. Prior to opening of the replacement school, the District should review and identify any changes to walk routes, crosswalk locations, and/or crossing guard locations.

4.5. Parking

4.5.1. School Day Parking

As described previously, school-day parking at elementary schools is primarily driven by staffing levels and family-volunteer activity. The District estimates that Northwood Elementary School could have up to 61 employees with the school at its planned capacity of 730 students. Using the parking rate derived specifically for Northwood Elementary, the larger replacement school is projected to have a midday parking demand of about 71 vehicles, which is likely to occur midday when teachers, administrative staff, kitchen staff, and volunteers are typically on site. The proposed on-site parking supply of 110 spaces is expected to accommodate typical midday peak parking demand.

Keith B. Higgins, PE, TE – Hatch Mott MacDonald, Retooling School Drop-off/Pick-up Zones to Meet Demand, WesternITE Meeting Paper 9C, 2010.

-

4.5.2. Evening Event Parking

Similar to the existing school, the Northwood Elementary School Replacement would have common spaces and a gymnasium that are expected to be used for occasional evening and/or weekend events at the school. The types of events typically held at the school include the following.

- Large School Events Typically occur about once per month or once every other month. The largest events occur two or three times per year and usually include: Curriculum Night/Open House, Holiday Boutique, musical concerts or talent shows, and STEM or science fairs and showcases. Some of the larger events have staggered arrivals and not all attendees are on site at once, while others have fixed start and end times and all attendees are on site simultaneously.
- **PTA (or other) Meetings** There are commonly one or two smaller PTA events per month that usually occur in the library. Typically, attendance ranges from about 30 to 100 people.
- Community Use The site may be scheduled for use by community groups (e.g. Cub Scouts, Boy Scouts, Brownies, etc.) or recreational sports on the playfield or in the gymnasium. Community-use events usually have smaller attendance levels of 10 to 50 people, but may occur more frequently.

For evening events, the on-site parking supply of 110 spaces would be available. Room for another 26 parked vehicles would exist in the family-vehicle load/unload zone and another 20 parked vehicles in the school-bus load/unload zone, bringing the on-site total to 156 spaces for evening or weekend events.

For larger evening events, there are typically between 3.0 and 3.5 persons attending for each parked vehicle. This rate accounts for higher levels of carpooling (families and students in a single vehicle) as well as drop-off activity that does not generate parked vehicles. At these rates, the on-site parking supply could accommodate events with attendance of between 465 and 545 persons. If event parking demand exceeds these levels or if larger attendance levels are expected, it may be necessary to modify the event to reduce total peak demand. For example, curriculum night could be separated into two nights based on grade levels.

4.6. Construction Traffic

The existing school will continue to operate on the site while the new school is being constructed. This will require careful coordination to make sure that construction activities do not affect school loading/unloading and parking operations when school is in session.

The District should require the selected contractor to develop a construction management plan (CMP) that addresses traffic and pedestrian control during school construction. It should define truck routes, lane closures, walkway closures, and parking disruptions, as necessary. The CMP may also include measures to keep adjacent streets clean on a daily basis at the truck exit points (such as street sweeping or on-site truck wheel cleaning) to reduce tracking dirt offsite. The CMP should identify parking locations for the construction staff; to the extent possible, construction employee parking should be contained on-site.

4.7. Long-Term Conditions

As described previously the City of Edgewood is working to implement its *Meridian Avenue Corridor Projects*, which are identified in the *Edgewood 2035 Comprehensive Plan*. Near the project site, planned improvements include new grid streets along the alignments of 20th Street E (Project W-3) and 100th Avenue E (Project W-4).

Since the alignment of the planned new segment of 100th Avenue E (Project W-4) falls along the eastern edge of the northern portion of the school site, the Puyallup School District has been coordinating with the City to determine right-of-way dedication requirements. It is expected that the two projects would be constructed by either the City (if and when all necessary right-of-way is acquired) or by other adjacent land owners as part of re-development of their properties.

The City of Edgewood recommended the District design team explore options to provide access, egress, or both from the planned new 100th Avenue E. Options for this access configuration were examined; however, the school's site layout was designed to ensure access will function at opening in 2019 and to provide the maximize amount of on-site queue capacity to avoid overspill to City roadways. The on-site circulation and travel paths have been arranged to maximize on-site efficiency and reduce or eliminate conflicts among and between modes (school buses, passenger vehicles, and staff). Therefore, the District and its design team believe the site plan presented provides the best opportunity to meet District project objective based on programming and site constraints. Once the City's new grid streets (particularly 100th Avenue E) are complete, site access to the new replacement Northwood Elementary School could be modified to allow for service/delivery vehicle access onto the new 100th Avenue E at the north end of the school site. A future pedestrian connection to 100th Avenue E is also planned; the exact design and location will be coordinated with City staff.

5. FINDINGS AND RECOMMENDATIONS

5.1. Findings of Needed Improvement

Based on the analysis presented, no improvements would be required at off-site intersections to accommodate the proposed Northwood Elementary School Replacement project. However, improvements to 24th Street E along the site frontage, consisting of left-turn storage of 75 to 100 feet, are recommended at the east access driveway. Widening of 24th Street E would be required to accommodate transitions and tapers in both directions. The exact design and limits of the widening on 24th Street E for the left-turn storage should be coordinated with City of Edgewood staff based on the various existing constraints including: nearby wetlands; available right-of-way; topographical constraints; and planned future improvements that may be incorporated into the future 100th Avenue E grid street project.

5.2. Proposed Mitigation Recommendations

The following measures are recommended to reduce and minimize transportation-related impacts from the school replacement project.

- A. Prior to opening of the replacement school, the District should review and identify any changes to walk routes, crosswalk locations, and/or crossing guard locations.
- B. The school should develop a transportation and parking management plan to minimize the traffic and parking impacts associated with large events. The plan should identify locations for event parking (e.g. bus or passenger call load/unload zones) and ensure that all parking areas are open and available during large events. If large events are anticipated to generate demand that would exceed the on-site event parking supply, the school should examine ways to reduce the demand and event attendance (e.g. through splitting events based on grade levels).
- C. The District should require the selected contractor to develop a construction management plan (CMP) that addresses traffic and pedestrian control during school construction. It should define truck routes, lane closures, walkway closures, and parking disruptions, as necessary. The CMP may also include measures to keep adjacent streets clean on a daily basis at the truck exit points (such as street sweeping or on-site truck wheel cleaning) to reduce tracking dirt offsite. The CMP should identify parking locations for the construction staff; to the extent possible, construction employee parking should be contained on-site.

5.3. Transportation Impact Fee Estimate

The City of Edgewood collects traffic impact fees for new development. Based on rates published for Elementary Schools (Land Use 520) in *Exhibit A from City of Edgewood Ordinance 15-0438*, ²³ the impact fee rate for this project would be \$274 per student of added capacity. Based on this rate and the proposal to increase school capacity by 294 students (from 436 to 730), the estimated impact fee would be \$80,556. The City also collects a 5% administrative fee at the time of impact fee payment, which would add \$4,028 to the total. However, the project would likely be eligible for credit against this fee per the Edgewood Municipal Code Section 4.30.100.A, which states:

²³ Adopted 4/28/2015; effective 5/4/2015.

-

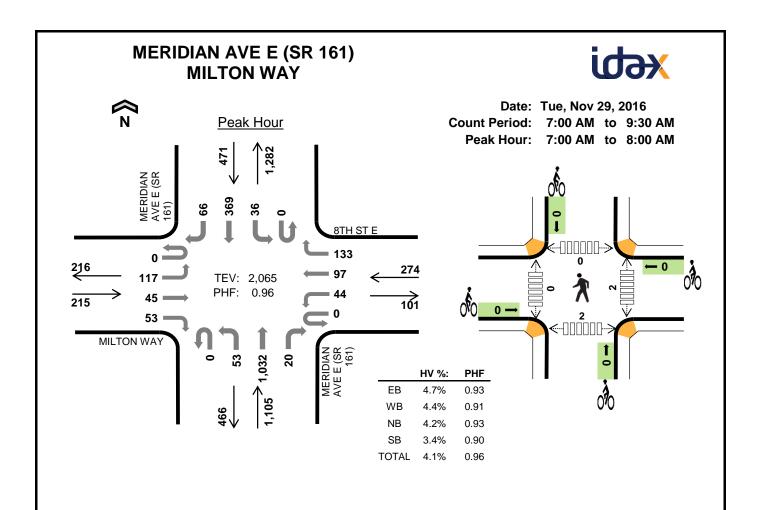
An applicant shall be entitled to a credit against the applicable traffic impact fee collected under the fee schedule adopted by the ordinance codified in this chapter for the value of any dedication of land for, improvement to, or new construction of, any system improvements provided by the applicant, to facilities that are:

- 1. Included within the six-year transportation improvement program and identified as system improvements that are to be funded in part by traffic impact fees; and
- 2. At suitable sites and constructed at an acceptable quality as determined by the city; and
- 3. Completed, dedicated, or otherwise transferred to the city prior to the determination and award of a credit as set forth in this section.

The dedication of right-of-way for the new 100^{th} Avenue E arterial segment may meet these requirements at the time of building permit and impact fee collection. Therefore, the costs of the right-of-way may be credited against the traffic impact fee amount.

It should be noted that traffic impact fees are due and payable before the building permit is issued by the City based on the fee rates in effect at that time. According to City code, claims for credit are processed by the City using whichever of the following options is selected by the applicant:

- 1. Claims for credits that are submitted prior to, or with, an application for a building permit for which an impact fee will be due will be processed by the City before payment of the impact fee is due in order to allow any credit authorized by the City to reduce the amount of the impact fee; or
- 2. Claims for credits that are submitted no later than 30 days after the issuance of a building permit for which an impact fee is due shall be processed by the City after the impact fee is paid in full, and any credit authorized by the City will be refunded to the applicant within 90 days of receipt of the claim for credit.


Claims for credits that are submitted more than six months after the issuance of a building permit for which an impact fee is due are deemed to be waived and shall be denied.

APPENDIX A Turn Movement Count Data Sheets

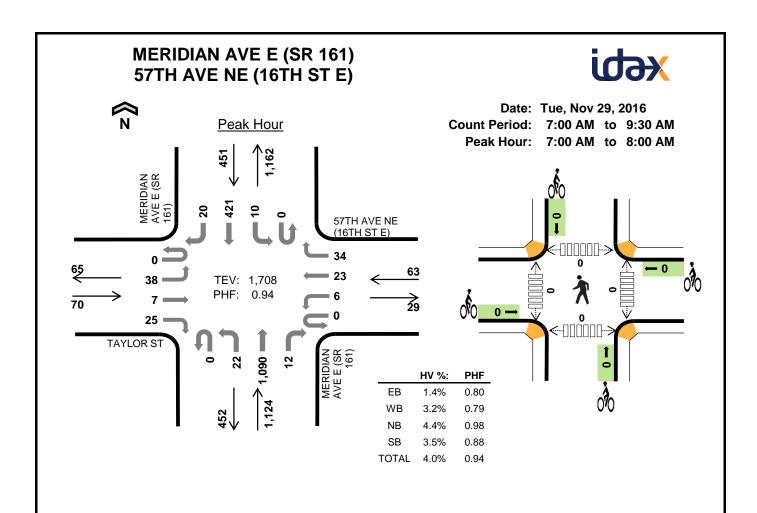
www.idaxdata.com 01

Two-and-a-Half-Hour Count Summaries

Interval		MILTO	N WAY	,		8TH	ST E		MERI	DIAN A	VE E (SI	R 161)	MERII	DIAN A	VE E (S	R 161)	45 min	Dalling
Interval Start		Eastb	ound			Westl	bound			North	nbound		Southbound				15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One Hour
7:00 AM	0	32	4	17	0	17	22	36	0	14	258	4	0	10	81	17	512	0
7:15 AM	0	25	13	9	0	7	15	43	0	14	257	1	0	7	78	21	490	0
7:30 AM	0	32	9	16	0	9	28	23	0	7	285	5	0	7	105	14	540	0
7:45 AM	0	28	19	11	0	11	32	31	0	18	232	10	0	12	105	14	523	2,065
Peak Hour	0	117	45	53	0	44	97	133	0	53	1,032	20	0	36	369	66	2,065	0

Note: For all three-hour count summary, see next page.

Interval		Heavy	Vehicle	Totals				Bicycles	;		Pedestrians (Crossing Leg)						
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total		
7:00 AM	1	2	10	6	19	0	0	0	0	0	0	0	0	1	1		
7:15 AM	2	3	10	4	19	0	0	0	0	0	2	0	0	0	2		
7:30 AM	6	2	12	4	24	0	0	0	0	0	0	0	0	1	1		
7:45 AM	1	5	14	2	22	0	0	0	0	0	0	0	0	0	0		
Peak Hour	10	12	46	16	84	0	0	0	0	0	2	0	0	2	4		


www.idaxdata.com 01

Interval		MILTO	N WAY	•	8TH ST E				MERI	DIAN A	VE E (SI	₹ 161)	MERIE	OIAN A	VE E (S	15-min	Dalling	
Interval Start		Eastb	ound			West	oound			North	bound		Southbound				Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
7:00 AM	0	32	4	17	0	17	22	36	0	14	258	4	0	10	81	17	512	0
7:15 AM	0	25	13	9	0	7	15	43	0	14	257	1	0	7	78	21	490	0
7:30 AM	0	32	9	16	0	9	28	23	0	7	285	5	0	7	105	14	540	0
7:45 AM	0	28	19	11	0	11	32	31	0	18	232	10	0	12	105	14	523	2,065
8:00 AM	0	22	23	11	0	8	23	31	0	14	223	6	1	13	92	19	486	2,039
8:15 AM	0	25	25	17	0	10	25	49	0	20	214	9	0	48	54	11	507	2,056
8:30 AM	0	31	17	15	0	16	20	44	0	12	195	7	0	21	96	20	494	2,010
8:45 AM	0	23	42	13	0	19	27	31	0	20	173	12	0	26	94	15	495	1,982
9:00 AM	0	30	24	12	0	40	44	31	0	23	146	10	0	22	103	15	500	1,996
9:15 AM	0	41	11	20	0	16	23	21	0	15	163	3	0	14	91	5	423	1,912
Count Total	0	289	187	141	0	153	259	340	0	157	2,146	67	1	180	899	151	4,970	0
Peak Hour	0	117	45	53	0	44	97	133	0	53	1,032	20	0	36	369	66	2,065	0

Note: Two-and-a-half-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

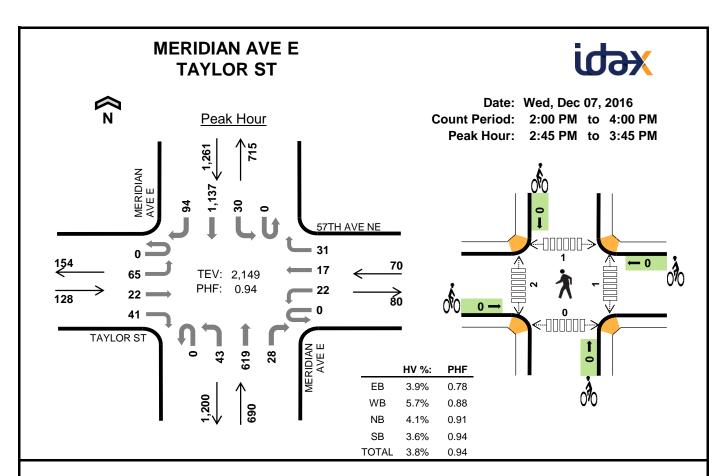
Interval		Heavy	Vehicle	Totals				Bicycles			Pedestrians (Crossing Leg)						
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total		
7:00 AM	1	2	10	6	19	0	0	0	0	0	0	0	0	1	1		
7:15 AM	2	3	10	4	19	0	0	0	0	0	2	0	0	0	2		
7:30 AM	6	2	12	4	24	0	0	0	0	0	0	0	0	1	1		
7:45 AM	1	5	14	2	22	0	0	0	0	0	0	0	0	0	0		
8:00 AM	1	0	8	2	11	0	0	0	0	0	0	0	0	0	0		
8:15 AM	2	0	13	3	18	0	0	0	0	0	1	0	1	1	3		
8:30 AM	10	3	4	6	23	0	0	0	0	0	0	1	0	1	2		
8:45 AM	9	6	10	4	29	0	0	0	1	1	2	0	0	2	4		
9:00 AM	2	16	10	8	36	0	0	0	0	0	2	0	0	2	4		
9:15 AM	1	6	6	5	18	0	0	0	0	0	0	0	0	1	1		
Count Total	35	43	97	44	219	0	0	0	1	1	7	1	1	9	18		
Peak Hour	10	12	46	16	84	0	0	0	0	0	2	0	0	2	4		

www.idaxdata.com 02

Two-and-a-Half-Hour Count Summaries

o ana a			-	. .														
Interval		TAYL	OR ST		57TH	AVE N	E (16TH	I ST E)	MERI	DIAN A	VE E (SI	R 161)	MERI	OIAN A	VE E (S	R 161)	45	Dalling
Interval Start	Eastbound					West	bound			North	nbound		Southbound				15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
7:00 AM	0	8	1	4	0	0	7	9	0	5	264	3	0	4	101	5	411	0
7:15 AM	0	9	2	5	0	2	5	13	0	3	276	4	0	1	84	4	408	0
7:30 AM	0	12	1	9	0	2	6	10	0	11	276	1	0	1	123	4	456	0
7:45 AM	0	9	3	7	0	2	5	2	0	3	274	4	0	4	113	7	433	1,708
Peak Hour	0	38	7	25	0	6	23	34	0	22	1,090	12	0	10	421	20	1,708	0

Note: For all three-hour count summary, see next page.

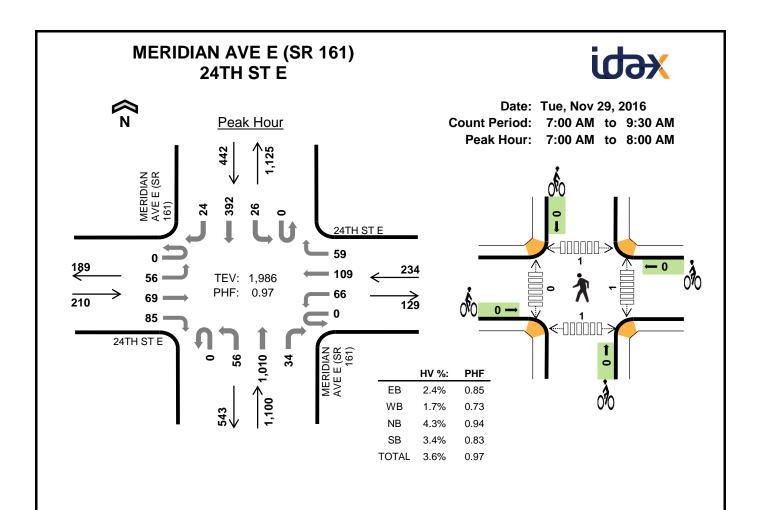

Mark Skaggs: (425) 250-0777

Interval		Heavy	Vehicle	Totals				Bicycles	;		Pedestrians (Crossing Leg)						
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total		
7:00 AM	1	0	10	5	16	0	0	0	0	0	0	0	0	0	0		
7:15 AM	0	0	11	3	14	0	0	0	0	0	0	0	0	0	0		
7:30 AM	0	2	12	3	17	0	0	0	0	0	0	0	0	0	0		
7:45 AM	0	0	17	5	22	0	0	0	0	0	0	0	0	0	0		
Peak Hour	1	2	50	16	69	0	0	0	0	0	0	0	0	0	0		

Interval		TAYL	OR ST		57TH	AVE N	E (16TH	ST E)	MERI	DIAN A	VE E (SI	R 161)	MERIE	DIAN A	VE E (S	R 161)	45	Dalling
Interval Start		Eastb	ound			Westl	bound			North	bound			South	nbound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One nou
7:00 AM	0	8	1	4	0	0	7	9	0	5	264	3	0	4	101	5	411	0
7:15 AM	0	9	2	5	0	2	5	13	0	3	276	4	0	1	84	4	408	0
7:30 AM	0	12	1	9	0	2	6	10	0	11	276	1	0	1	123	4	456	0
7:45 AM	0	9	3	7	0	2	5	2	0	3	274	4	0	4	113	7	433	1,708
8:00 AM	0	14	4	7	0	2	6	8	0	6	243	2	0	3	99	4	398	1,695
8:15 AM	0	12	2	11	0	3	5	9	0	6	244	2	0	1	72	1	368	1,655
8:30 AM	0	11	2	7	0	6	1	4	0	5	227	2	0	1	102	11	379	1,578
8:45 AM	0	17	3	20	0	4	4	5	0	7	200	2	0	10	100	11	383	1,528
9:00 AM	0	21	3	13	0	2	4	8	0	6	176	5	0	5	106	23	372	1,502
9:15 AM	0	8	5	15	0	1	4	10	0	7	176	1	0	7	110	9	353	1,487
Count Total	0	121	26	98	0	24	47	78	0	59	2,356	26	0	37	1,010	79	3,961	0
Peak Hour	0	38	7	25	0	6	23	34	0	22	1,090	12	0	10	421	20	1,708	0

Note: Two-and-a-half-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	1	0	10	5	16	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	11	3	14	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	2	12	3	17	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	17	5	22	0	0	0	0	0	0	0	0	0	0
8:00 AM	1	0	8	4	13	0	0	0	0	0	2	0	0	0	2
8:15 AM	1	1	14	1	17	0	0	0	0	0	0	0	0	0	0
8:30 AM	3	0	10	4	17	0	0	0	0	0	2	0	2	1	5
8:45 AM	3	1	8	7	19	0	0	0	0	0	0	0	0	0	0
9:00 AM	0	3	11	12	26	0	0	0	0	0	0	1	0	0	1
9:15 AM	2	2	6	2	12	0	0	0	0	0	1	0	3	0	4
Count Total	11	9	107	46	173	0	0	0	0	0	5	1	5	1	12
Peak Hour	1	2	50	16	69	0	0	0	0	0	0	0	0	0	0


IIWA-HAUR	Count Sum	mariae
I I W O-1 10 UI	Count Sum	IIIIai ies

Mark Skaggs: (425) 250-0777

Interval		TAYL	OR ST			57TH <i>A</i>	VE NE		М	ERIDI	AN AVE	E	М	ERIDI	AN AVE	E	45 min	Dalling
Interval Start		Eastb	ound			Westl	bound			North	bound			South	nbound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	iotai	One Hou
2:00 PM	0	7	1	2	0	4	1	6	1	6	139	6	0	4	159	13	349	0
2:15 PM	0	12	4	4	0	2	0	10	0	5	145	3	0	7	194	15	401	0
2:30 PM	0	9	3	10	0	2	2	8	0	4	145	2	0	13	248	16	462	0
2:45 PM	0	19	7	15	0	4	5	7	0	11	148	10	0	7	256	22	511	1,723
3:00 PM	0	18	4	6	0	3	4	12	0	12	158	3	0	7	288	17	532	1,906
3:15 PM	0	14	3	8	0	5	5	5	0	8	139	11	0	9	291	34	532	2,037
3:30 PM	0	14	8	12	0	10	3	7	0	12	174	4	0	7	302	21	574	2,149
3:45 PM	0	14	11	11	0	1	2	5	0	5	140	4	0	15	282	19	509	2,147
Count Total	0	107	41	68	0	31	22	60	1	63	1,188	43	0	69	2,020	157	3,870	0
Peak Hour	0	65	22	41	0	22	17	31	0	43	619	28	0	30	1,137	94	2,149	0

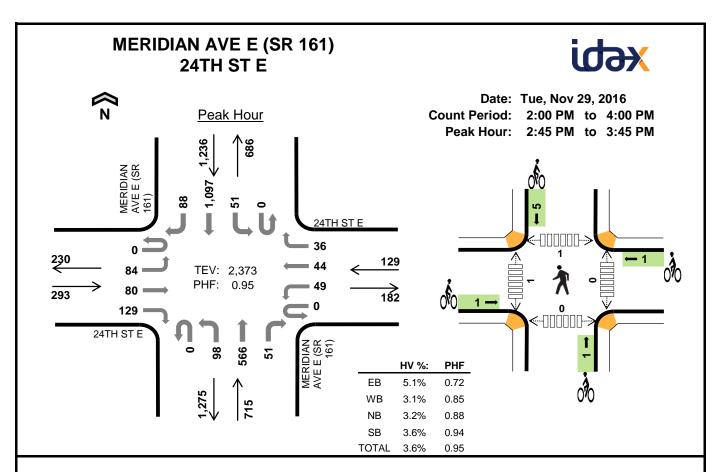
Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles	i			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	1	1	3	7	12	0	0	0	0	0	0	1	0	0	1
2:15 PM	2	1	5	11	19	0	0	0	0	0	0	0	0	0	0
2:30 PM	0	2	5	10	17	0	0	0	0	0	0	0	0	0	0
2:45 PM	2	1	6	10	19	0	0	0	0	0	0	0	1	0	1
3:00 PM	2	2	10	17	31	0	0	0	0	0	1	0	0	0	1
3:15 PM	0	1	4	10	15	0	0	0	0	0	0	1	0	0	1
3:30 PM	1	0	8	8	17	0	0	0	0	0	0	1	0	0	1
3:45 PM	0	1	4	12	17	0	0	0	0	0	0	0	0	0	0
Count Total	8	9	45	85	147	0	0	0	0	0	1	3	1	0	5
Peak Hour	5	4	28	45	82	0	0	0	0	0	1	2	1	0	4

Two-and-a-Half-Hour Count Summaries

			-	. .														
Interval		24TH	STE			24TH	STE		MERI	DIAN A	VE E (SI	R 161)	MERI	OIAN A	VE E (S	R 161)	45	Dalling
Interval Start		Easth	oound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	TOtal	One Hour
7:00 AM	0	19	20	23	0	21	31	16	0	12	248	10	0	7	78	3	488	0
7:15 AM	0	12	23	23	0	21	39	20	0	7	247	7	0	9	91	5	504	0
7:30 AM	0	16	15	20	0	12	29	12	0	12	259	6	0	4	123	6	514	0
7:45 AM	0	9	11	19	0	12	10	11	0	25	256	11	0	6	100	10	480	1,986
Peak Hour	0	56	69	85	0	66	109	59	0	56	1,010	34	0	26	392	24	1,986	0

Note: For all three-hour count summary, see next page.

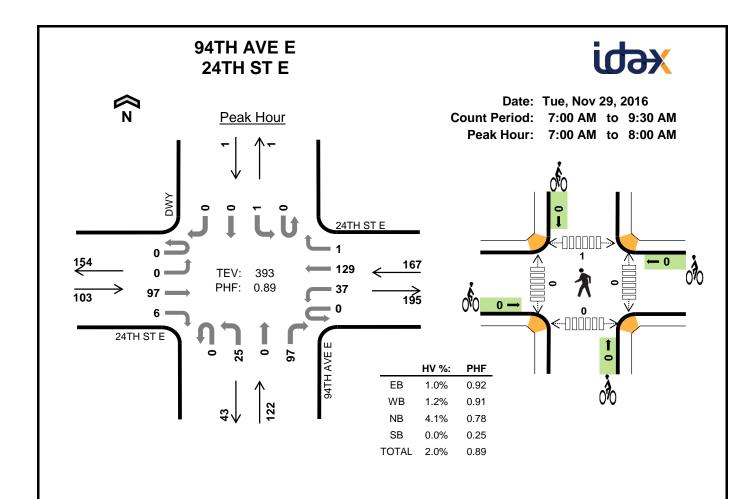

Mark Skaggs: (425) 250-0777

Interval		Heavy	Vehicle	Totals				Bicycles	;			Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	3	1	13	6	23	0	0	0	0	0	0	0	0	0	0
7:15 AM	1	1	12	3	17	0	0	0	0	0	0	0	1	0	1
7:30 AM	0	0	10	3	13	0	0	0	0	0	1	0	0	1	2
7:45 AM	1	2	12	3	18	0	0	0	0	0	0	0	0	0	0
Peak Hour	5	4	47	15	71	0	0	0	0	0	1	0	1	1	3

Interval		24TH	ST E			24TH	STE		MERI	DIAN A	VE E (SI	₹ 161)	MERIC	IAN A	VE E (S	R 161)	45	Dalling
Interval Start		Eastb	ound			Westl	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One nou
7:00 AM	0	19	20	23	0	21	31	16	0	12	248	10	0	7	78	3	488	0
7:15 AM	0	12	23	23	0	21	39	20	0	7	247	7	0	9	91	5	504	0
7:30 AM	0	16	15	20	0				0	12	259	6	0	4	123	6	514	0
7:45 AM	0	9	11	19	0	12	10	11	0	25	256	11	0	6	100	10	480	1,986
8:00 AM	0	15	9	10	0	19	15	15	0	22	223	9	0	6	93	7	443	1,941
8:15 AM	0	15	10	18	0	9	25	8	0	24	215	7	0	4	64	7	406	1,843
8:30 AM	0	12	9	29	0	12	24	12	0	30	221	4	0	4	100	15	472	1,801
8:45 AM	0	33	22	39	0	12	10	12	0	19	176	6	0	7	96	6	438	1,759
9:00 AM	0	15	8	21	0	8	8	12	0	21	146	9	0	8	103	12	371	1,687
9:15 AM	0	12	9	24	0	10	8	10	0	18	155	5	0	9	104	6	370	1,651
Count Total	0	158	136	226	0	136	199	128	0	190	2,146	74	0	64	952	77	4,486	0
Peak Hour	0	56	69	85	0	66	109	59	0	56	1,010	34	0	26	392	24	1,986	0

Note: Two-and-a-half-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	3	1	13	6	23	0	0	0	0	0	0	0	0	0	0
7:15 AM	1	1	12	3	17	0	0	0	0	0	0	0	1	0	1
7:30 AM	0	0	10	3	13	0	0	0	0	0	1	0	0	1	2
7:45 AM	1	2	12	3	18	0	0	0	0	0	0	0	0	0	0
8:00 AM	2	4	14	3	23	0	0	0	0	0	0	0	0	0	0
8:15 AM	1	1	13	2	17	0	0	0	0	0	0	0	0	0	0
8:30 AM	1	2	6	6	15	0	0	0	0	0	0	0	0	1	1
8:45 AM	10	4	4	7	25	0	0	0	0	0	0	0	1	0	1
9:00 AM	6	3	8	6	23	0	0	0	0	0	0	0	0	0	0
9:15 AM	0	1	7	4	12	0	0	0	0	0	0	0	0	0	0
Count Total	25	19	99	43	186	0	0	0	0	0	1	0	2	2	5
Peak Hour	5	4	47	15	71	0	0	0	0	0	1	0	1	1	3


IIWA-HAUR	Count Sum	mariae
I I W O-1 10 UI	Count Sum	IIIIai ies

Mark Skaggs: (425) 250-0777

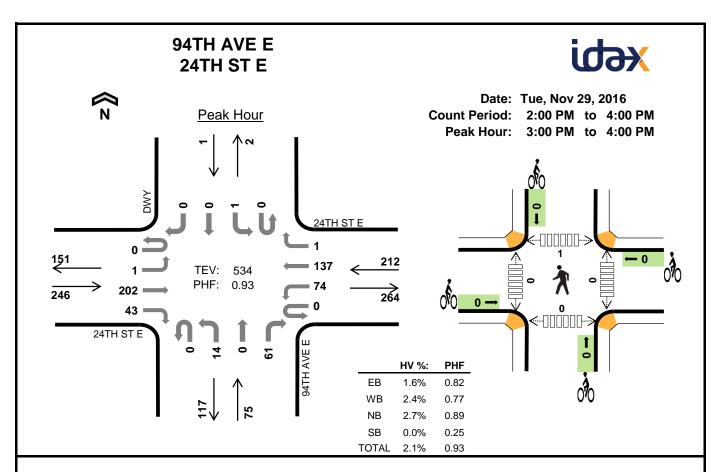
Interval		24TH	ST E			24TH	STE		MERI	DIAN A	VE E (S	R 161)	MERI	DIAN A	VE E (SI	R 161)	45 min	Dalling
Start		Eastb	ound			Westl	oound			North	bound			South	nbound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One nou
2:00 PM	0	17	11	18	0	23	9	17	0	24	105	7	0	14	174	20	439	0
2:15 PM	0	18	6	20	0	14	7	11	0	19	129	15	0	14	199	15	467	0
2:30 PM	0	18	18	18	0	12	21	8	0	26	125	13	0	13	212	24	508	0
2:45 PM	0	19	13	25	0	15	9	14	0	32	155	15	0	15	297	16	625	2,039
3:00 PM	0	15	17	31	0	9	13	8	0	24	130	14	0	13	250	24	548	2,148
3:15 PM	0	33	30	39	0	11	10	8	0	18	146	9	0	7	277	21	609	2,290
3:30 PM	0	17	20	34	0	14	12	6	0	24	135	13	0	16	273	27	591	2,373
3:45 PM	0	24	34	40	0	10	14	12	0	17	112	19	0	6	253	16	557	2,305
Count Total	0	161	149	225	0	108	95	84	0	184	1,037	105	0	98	1,935	163	4,344	0
Peak Hour	0	84	80	129	0	49	44	36	0	98	566	51	0	51	1,097	88	2,373	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	2	7	4	4	17	0	0	0	0	0	0	0	1	0	1
2:15 PM	1	3	4	10	18	0	0	0	0	0	0	1	2	0	3
2:30 PM	4	5	9	11	29	0	0	0	0	0	0	0	1	0	1
2:45 PM	5	4	7	16	32	0	0	0	0	0	0	0	1	0	1
3:00 PM	3	0	9	6	18	1	1	1	5	8	0	0	0	0	0
3:15 PM	6	0	4	8	18	0	0	0	0	0	0	0	0	0	0
3:30 PM	1	0	3	14	18	0	0	0	0	0	0	1	0	0	1
3:45 PM	4	3	4	4	15	0	0	0	0	0	0	2	0	0	2
Count Total	26	22	44	73	165	1	1	1	5	8	0	4	5	0	9
Peak Hour	15	4	23	44	86	1	1	1	5	8	0	1	1	0	2

Two-and-a-Half-Hour Count Summaries

Interval		24TH	ST E			24TH	STE			94TH	AVE E			D۱	WY		45 min	Dalling
Interval Start		Easth	oound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	Offic Flour
7:00 AM	0	0	28	0	0	11	32	0	0	6	0	33	0	0	0	0	110	0
7:15 AM	0	0	25	2	0	11	29	0	0	10	0	26	0	1	0	0	104	0
7:30 AM	0	0	24	0	0	5	40	1	0	5	0	23	0	0	0	0	98	0
7:45 AM	0	0	20	4	0	10	28	0	0	4	0	15	0	0	0	0	81	393
Peak Hour	0	0	97	6	0	37	129	1	0	25	0	97	0	1	0	0	393	0

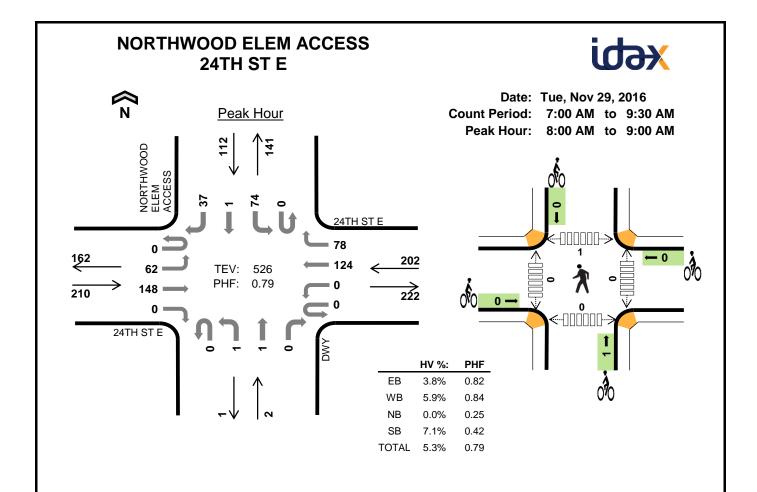

Note: For all three-hour count summary, see next page.

Interval		Heavy	Vehicle	Totals				Bicycles	i			Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	0	1	5	0	6	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Peak Hour	1	2	5	0	8	0	0	0	0	0	0	0	1	0	1

Interval		24TH	ST E			24TH	STE			94TH	AVE E			D۷	NY		45	Dalling
Interval Start		Eastl	oound			Westl	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
7:00 AM	0	0	28	0	0	11	32	0	0	6	0	33	0	0	0	0	110	0
7:15 AM	0	0	25	2	0	11	29	0	0	10	0	26	0	1	0	0	104	0
7:30 AM	0	0	24	0	0	5	40	1	0	5	0	23	0	0	0	0	98	0
7:45 AM	0	0	20	4	0	10	28	0	0	4	0	15	0	0	0	0	81	393
8:00 AM	0	0	25	0	0	11	20	0	0	6	0	17	0	0	0	0	79	362
8:15 AM	0	0	24	4	0	12	29	0	0	3	0	20	0	0	0	1	93	351
8:30 AM	0	0	36	0	0	3	36	0	0	0	0	22	0	0	0	0	97	350
8:45 AM	0	0	36	1	0	9	38	0	0	2	0	20	0	0	0	0	106	375
9:00 AM	0	0	14	3	0	14	20	0	0	8	0	15	0	0	0	0	74	370
9:15 AM	0	0	24	3	0	6	19	0	0	1	0	19	0	0	0	0	72	349
Count Total	0	0	256	17	0	92	291	1	0	45	0	210	0	1	0	1	914	0
Peak Hour	0	0	97	6	0	37	129	1	0	25	0	97	0	1	0	0	393	0

Note: Two-and-a-half-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	0	1	5	0	6	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
8:00 AM	2	2	1	0	5	0	0	0	0	0	0	0	0	0	0
8:15 AM	1	1	0	0	2	0	0	0	0	0	0	0	0	0	0
8:30 AM	1	2	3	0	6	0	0	0	0	0	0	0	0	0	0
8:45 AM	3	1	1	0	5	0	0	0	0	0	0	0	0	0	0
9:00 AM	3	1	1	0	5	0	0	0	0	0	0	0	0	0	0
9:15 AM	1	1	1	0	3	0	0	0	0	0	0	0	0	0	0
Count Total	12	10	12	0	34	0	0	0	0	0	0	0	1	0	1
Peak Hour	1	2	5	0	8	0	0	0	0	0	0	0	1	0	1


I WA-HALIR	Count Sum	mariae
II WO-IIOUI	Count Sun	ıı ı aı ıcə

Mark Skaggs: (425) 250-0777

· · · · · · · · · · · · · · · · · · ·																		
lutamial		24TH	STE			24TH	STE			94TH	AVE E			D۱	ΝY		15-min	Dalling
Interval Start		Eastl	oound			Westl	bound			North	bound			South	bound		Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One Hour
2:00 PM	0	0	22	0	0	20	16	0	0	3	0	15	0	0	0	0	76	0
2:15 PM	0	0	23	3	1	14	25	0	0	3	0	14	0	0	0	0	83	0
2:30 PM	0	0	33	3	0	25	27	0	0	6	0	16	0	1	0	0	111	0
2:45 PM	0	0	38	3	0	20	24	0	0	1	0	25	0	0	0	0	111	381
3:00 PM	0	1	54	8	0	10	22	1	0	4	0	14	0	0	0	0	114	419
3:15 PM	0	0	44	12	0	25	44	0	0	4	0	11	0	1	0	0	141	477
3:30 PM	0	0	42	10	0	26	36	0	0	4	0	17	0	0	0	0	135	501
3:45 PM	0	0	62	13	0	13	35	0	0	2	0	19	0	0	0	0	144	534
Count Total	0	1	318	52	1	153	229	1	0	27	0	131	0	2	0	0	915	0
Peak Hour	0	1	202	43	0	74	137	1	0	14	0	61	0	1	0	0	534	0

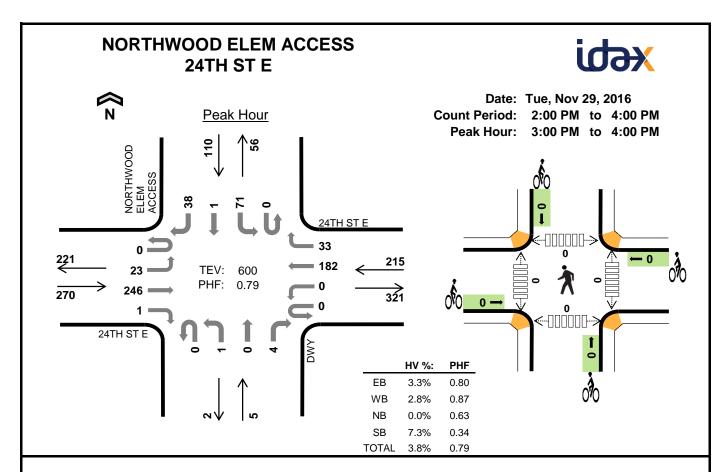
Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles	i			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM	1	5	2	0	8	0	0	0	0	0	0	0	2	0	2
2:45 PM	2	3	5	0	10	0	0	0	0	0	0	0	0	0	0
3:00 PM	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1
3:15 PM	2	2	0	0	4	0	0	0	0	0	0	0	0	0	0
3:30 PM	1	1	1	0	3	0	0	0	0	0	0	0	0	0	0
3:45 PM	1	1	1	0	3	0	0	0	0	0	0	0	0	0	0
Count Total	7	14	9	0	30	0	0	0	0	0	0	0	3	0	3
Peak Hour	4	5	2	0	11	0	0	0	0	0	0	0	1	0	1

Two-and-a-Half-Hour Count Summaries

						~												
Interval		24TH	STE			24TH	STE			D۱	NY		NORTH	HWOOD	ELEM A	CCESS	45 min	Dalling
Interval Start		Eastl	oound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	IOtal	One nou
8:00 AM	0	5	39	0	0	0	34	11	0	0	0	0	0	0	0	0	89	0
8:15 AM	0	16	31	0	0	0	35	17	0	0	0	0	0	12	0	9	120	0
8:30 AM	0	28	36	0	0	0	29	31	0	1	1	0	0	17	0	8	151	0
8:45 AM	0	13	42	0	0	0	26	19	0	0	0	0	0	45	1	20	166	526
Peak Hour	0	62	148	0	0	0	124	78	0	1	1	0	0	74	1	37	526	0

Note: For all three-hour count summary, see next page.


Mark Skaggs: (425) 250-0777

Interval		Heavy	Vehicle	Totals				Bicycles	;			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
8:00 AM	2	2	0	0	4	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	3	0	2	5	0	0	1	0	1	0	0	0	0	0
8:30 AM	4	4	0	4	12	0	0	0	0	0	0	0	0	0	0
8:45 AM	2	3	0	2	7	0	0	0	0	0	0	0	1	0	1
Peak Hour	8	12	0	8	28	0	0	1	0	1	0	0	1	0	1

Interval		24TH	STE			24TH	STE			D۷	NY		NORTH	HWOOD	ELEM A	CCESS	15-min	Rolling
Start		Eastl	oound			West	bound			North	bound			South	bound		Total	One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One nou
7:00 AM	0	0	67	0	0	0	47	1	0	0	0	1	0	0	0	0	116	0
7:15 AM	0	0	56	0	0	0	45	4	0	0	0	0	0	0	0	0	105	0
7:30 AM	0	0	54	0	0	0	43	5	0	1	0	0	0	0	0	0	103	0
7:45 AM	0	1	38	0	0	0	37	1	0	1	0	0	0	1	0	0	79	403
8:00 AM	0	5	39	0	0	0	34	11	0	0	0	0	0	0	0	0	89	376
8:15 AM	0	16	31	0	0	0	35	17	0	0	0	0	0	12	0	9	120	391
8:30 AM	0	28	36	0	0	0	29	31	0	1	1	0	0	17	0	8	151	439
8:45 AM	0	13	42	0	0	0	26	19	0	0	0	0	0	45	1	20	166	526
9:00 AM	0	2	31	0	0	0	35	4	0	0	0	0	0	6	0	2	80	517
9:15 AM	0	3	41	0	0	0	26	1	0	0	0	0	0	2	0	0	73	470
Count Total	0	68	435	0	0	0	357	94	0	3	1	1	0	83	1	39	1,082	0
Peak Hour	0	62	148	0	0	0	124	78	0	1	1	0	0	74	1	37	526	0

Note: Two-and-a-half-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles				Pedestria	ans (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
7:00 AM	4	1	0	0	5	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
8:00 AM	2	2	0	0	4	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	3	0	2	5	0	0	1	0	1	0	0	0	0	0
8:30 AM	4	4	0	4	12	0	0	0	0	0	0	0	0	0	0
8:45 AM	2	3	0	2	7	0	0	0	0	0	0	0	1	0	1
9:00 AM	2	1	0	1	4	0	0	0	0	0	1	0	0	0	1
9:15 AM	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
Count Total	15	16	0	9	40	0	0	1	0	1	1	0	2	0	3
Peak Hour	8	12	0	8	28	0	0	1	0	1	0	0	1	0	1

Two-Hour	Count Si	ımmarıde
I WO-I IOUI	Ount O	arriiriai icə

Mark Skaggs: (425) 250-0777

Interval		24TH	ST E			24TH	ISTE			D۱	۷Y		NORTH	HWOOD	ELEM A	CCESS	45	Dalling
Interval Start		Eastb	oound			West	bound			North	bound			South	bound		15-min Total	Rolling One Hour
Start	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	One riou
2:00 PM	0	0	40	1	0	0	42	4	0	0	0	1	0	2	0	0	90	0
2:15 PM	0	4	35	0	0	0	39	0	0	0	0	0	0	2	0	1	81	0
2:30 PM	0	1	50	0	0	0	53	9	0	0	0	0	0	2	0	2	117	0
2:45 PM	0	16	49	0	0	0	44	12	0	0	0	1	0	2	0	0	124	412
3:00 PM	0	16	51	0	0	0	33	29	0	0	0	1	0	7	0	3	140	462
3:15 PM	0	5	55	0	0	0	45	4	0	1	0	1	0	52	0	28	191	572
3:30 PM	0	2	57	0	0	0	56	0	0	0	0	1	0	8	1	7	132	587
3:45 PM	0	0	83	1	0	0	48	0	0	0	0	1	0	4	0	0	137	600
Count Total	0	44	420	2	0	0	360	58	0	1	0	6	0	79	1	41	1,012	0
Peak Hour	0	23	246	1	0	0	182	33	0	1	0	4	0	71	1	38	600	0

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval		Heavy	Vehicle	Totals				Bicycles	i			Pedestria	ns (Cross	ing Leg)	
Start	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
2:00 PM	0	3	0	1	4	0	0	0	0	0	0	1	1	1	3
2:15 PM	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1
2:30 PM	2	6	0	0	8	0	0	0	0	0	0	0	0	0	0
2:45 PM	6	3	0	0	9	0	0	0	0	0	0	0	0	0	0
3:00 PM	4	5	0	2	11	0	0	0	0	0	0	0	0	0	0
3:15 PM	2	0	0	6	8	0	0	0	0	0	0	0	0	0	0
3:30 PM	1	1	0	0	2	0	0	0	0	0	0	0	0	0	0
3:45 PM	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0
Count Total	17	18	0	10	<i>4</i> 5	0	0	0	0	0	0	1	1	2	4
Peak Hour	9	6	0	8	23	0	0	0	0	0	0	0	0	0	0

APPENDIX B Level of Service Definitions

Levels of service (LOS) are qualitative descriptions of traffic operating conditions. These levels of service are designated with letters ranging from LOS A, which is indicative of good operating conditions with little or no delay, to LOS F, which is indicative of stop-and-go conditions with frequent and lengthy delays. Levels of service for this analysis were developed using procedures presented in the *Highway Capacity Manual* (Transportation Research Board, 2010).

Level of service for signalized intersections is defined in terms of delay. Delay can be a cause of driver discomfort, frustration, inefficient fuel consumption, and lost travel time. Specifically, level of service criteria are stated in terms of the average delay per vehicle in seconds. Delay is a complex measure and is dependent on a number of variables including: the quality of progression, cycle length, green ratio, and a volume-to-capacity ratio for the lane group or approach in question. Table A-1 shows the level of service criteria for signalized intersections from the *Highway Capacity Manual*.

Table A-1. Level of Service Criteria

Level of Service	Average Delay Per Vehicle	General Description
А	Less than 10.0 Seconds	Free flow
В	10.1 to 20.0 seconds	Stable flow (slight delays)
С	20.1 to 35.0 seconds	Stable flow (acceptable delays)
D	35.1 to 55.0 seconds	Approaching unstable flow (tolerable delay— occasionally wait through more than one signal cycle before proceeding.
Е	55.1 to 80.0 seconds	Unstable flow (approaching intolerable delay)
F	Greater than 80.0 seconds	Forced flow (jammed)

Source: Transportation Research Board, Highway Capacity Manual, 2010.

For unsignalized two-way-stop-controlled, all-way-stop-controlled, and roundabout intersections, level of service is based on the average delay per vehicle. The level of service for a two-way, stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. Delay is related to the availability of gaps in the main street's traffic flow, and the ability of a driver to enter or pass through those gaps. The delay at an all-way, stop-sign (AWSC) controlled intersection is based on saturation headways, departure headways, and service times. Delay at roundabouts is based on entry flow rates and flow rate capacity. Table A-2 shows the level of service criteria for unsignalized intersections from the *Highway Capacity Manual*.

Table A-2. Level of Service Criteria for Unsignalized Intersections

Level of Service	Average Delay (seconds per vehicle)
А	Less than 10.0
В	10.1 to 15.0
С	15.1 to 25.0
D	25.1 to 35.0
Е	35.1 to 50.0
F	Greater than 50.0

Source: Transportation Research Board, Highway Capacity Manual, 2010.

APPENDIX C Level of Service Calculation Sheets

Lane Group		۶	→	•	•	+	4	1	†	<i>></i>	/	+	1
Transport Counter (print)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γph)		ች	ĵ.		ች	*	7	*	∳ Љ		ሻ	44	7
Fullur Vollum (viph) 101 107 56 53 95 155 66 805 34 108 336 65 636 636 646 646 709 700	· ·			56						34	_		
Storage Length (ft) 270 0 200 1 5 300 0 185 220		101	107	56	53	95	155	66	805	34	108	336	65
Storage Langish (fil) 270 0 200 1 5 300 0 165 220 174 175	* * *		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Lane's 1					200		65	300			185		
Taper Length (fit)		1		0	1			1		0	1		1
Lane Luli Factor 1,00 1,		25			25			25			25		
Ped Bike Factor 1.00 0.99		1.00	1.00	1.00		1.00	1.00	1.00	0.95	0.95	1.00	0.95	1.00
Fith Protected	Ped Bike Factor		0.99		1.00		0.99	1.00	1.00		1.00		0.98
Satd Flow (prof) 1671 1658 0 1752 1845 1568 1736 1752 3756 1758 0.750 0.750 0.750 0 1752 3505 1588 Sald, Flow (perm) 1670 1658 0 1744 1845 1547 1537 346 0 1748 3505 1533 Right Turn on Red 19 19 18 18 4 4 1868 158 4 4 20 186 150 20 150 20 150 20 150	Frt		0.948				0.850		0.994				0.850
Fit Permitted 0.950 0.	Flt Protected	0.950			0.950			0.950			0.950		
Sald, Flow (perm) 1670 1678 1788 1784 1845 1547 1733 3446 0 1748 3505 1738 1818	Satd. Flow (prot)	1671	1658	0	1752	1845	1568	1736	3446	0	1752	3505	1568
Right Turn on Red Sate How (RTOR) 19 Yes Yes <th< td=""><td>Flt Permitted</td><td>0.950</td><td></td><td></td><td>0.950</td><td></td><td></td><td>0.950</td><td></td><td></td><td>0.950</td><td></td><td></td></th<>	Flt Permitted	0.950			0.950			0.950			0.950		
Right Turn on Red Sate How (RTOR) 19 Yes Yes <th< td=""><td>Satd. Flow (perm)</td><td>1670</td><td>1658</td><td>0</td><td>1744</td><td>1845</td><td>1547</td><td>1733</td><td>3446</td><td>0</td><td>1748</td><td>3505</td><td>1533</td></th<>	Satd. Flow (perm)	1670	1658	0	1744	1845	1547	1733	3446	0	1748	3505	1533
Safid. Flow (RTOR)				Yes			Yes			Yes			
Link Speed (mph) 20 20 207			19				158		4				
Link Distance (ft) 439 439 21.4 2.7 2.7 2.7 2.7 2.7 5.2 5.5 15.0 15.0 15.0 15.0 21.4 4 4 4 4 4 4 4 4 4 4 8 9.98 0.98<			20			20			35			20	
Confil. Peds. (#/hr) 1 4 4 4 4 9 0.98 0													
Confil. Peds. (#/hr) 1 4 4 4 4 9 0.98 0	` ,												
Peak Hour Factor 0.98		1		4	4		1	1		3	3		1
Heavy Vehicles (%)	` ,	0.98	0.98	0.98		0.98	0.98	0.98	0.98			0.98	0.98
Adj. Flow (vph) 103 109 57 54 97 158 67 821 35 110 343 66 Shared Lane Traffic (%) Lane Group Flow (vph) 103 166 0 54 97 158 67 856 0 110 343 66 Turn Type Split NA Split NA Perm Prot NA Prot NA Perd NA Perd NA Prot NA Perd NA Perd NA Prot NA Perd NA NA Perd NA <													
Shared Laine Traffic (%) Lane Group Flow (vph) 103 166 0 54 97 158 67 856 0 110 343 66 Turn Type Split NA Split NA Perm Prot NA													
Lane Group Flow (vph) 103 166 0 54 97 158 67 856 0 110 343 66 Turn Type Split NA Split NA Perm Prot NA NA Prot NA NA Prot NA NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Turn Type Split NA Split NA Permited Phases Protected Phases NA Permitted Phases NA Permitted Phases Permitted Phases NA Permitted Phases Permitted Phases NA Permitted Phases Permitted Phase Permitted Phases Permitted Phase Permitted Phases Permitted Phase Permitted Phase Permitted Phases Permitted Phases <th< td=""><td>• •</td><td>103</td><td>166</td><td>0</td><td>54</td><td>97</td><td>158</td><td>67</td><td>856</td><td>0</td><td>110</td><td>343</td><td>66</td></th<>	• •	103	166	0	54	97	158	67	856	0	110	343	66
Protected Phases 8 8 4 4 4 1 6 5 2 Permitted Phases 8 8 4 4 4 1 6 5 2 2 Switch Phase 8 8 4 4 4 1 6 5 2 2 Minimum Initial (s) 6.0 6.0 10.0 10.0 10.0 6.0 10.0 6.0 10.0 10.0 Minimum Initial (s) 6.0 30.0 36.0 36.0 36.0 20.0 50.0 22.6 50.0 50.0 Total Split (s) 25.0 25.0 31.0 31.0 31.0 15.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6													
Permitted Phases 8 8 8 8 4 4 4 4 1 6 5 5 2 2 2 2 2 2 2 2		-			-								
Detector Phase 8 8 8 4 4 4 1 6 5 2 2							4						2
Switch Phase Switch Phase Image: Control of the page of t		8	8		4	4		1	6		5	2	
Minimum Initial (s) 6.0 6.0 10.0 10.0 10.0 6.0 10.0 6.0 10.0 50.0 40.0													
Minimum Split (s) 30.0 30.0 36.0 36.0 36.0 20.0 50.0 22.6 50.0 49.0 Total Split (s) 25.0 25.0 31.0 31.0 31.0 15.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.0 3.9 3.9 3.9 3.0 3.9 3.0 3.9 3.0 3.9 3.0 3.9 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 <td></td> <td>6.0</td> <td>6.0</td> <td></td> <td>10.0</td> <td>10.0</td> <td>10.0</td> <td>6.0</td> <td>10.0</td> <td></td> <td>6.0</td> <td>10.0</td> <td>10.0</td>		6.0	6.0		10.0	10.0	10.0	6.0	10.0		6.0	10.0	10.0
Total Split (s) 25.0 25.0 31.0 31.0 31.0 15.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0	• •												
Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0													
Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0<													
Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0 </td <td></td>													
All-Red Time (s) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 <td></td>													
Lost Time Adjust (s) 0.0													
Total Lost Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.9 4.6 4.9 4.9 Lead/Lag Lead/Lag Optimize? Yes													
Lead/Lag Lead Lag Optimize? Lead Yes													
Lead-Lag Optimize? Yes													
Vehicle Extension (s) 3.0 3.0 2.7 2.7 2.7 2.5 3.5 3.0 3.0 3.0 Minimum Gap (s) 0.2 0.2 0.2 0.2 0.2 0.2 3.0 0.2 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 6.0 <td></td>													
Minimum Gap (s) 0.2 0.2 0.2 0.2 0.2 0.2 3.0 0.2 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 Max Max Max Max Max Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 17.0 17.0 17.0 17.0		3.0	3.0		27	27	27						
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 15.0 15.0 15.0 15.0 15.0 15.0 17.0 17.0 17.0 17.0 Flash Dont Walk (s) 18.0 18.0 25.0 25.0 25.0 25.0 15.0 15.0 17.0 17.0													
Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 15.0 15.0 15.0 Recall Mode None None None None None None Max None Max Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 17.0 17.0 Flash Dont Walk (s) 18.0 18.0 25.0 25.0 25.0 15.0 15.0 17.0 17.0													
Recall Mode None None None None None None Max None Max Max Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 17.0													
Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 6.0 6.0 6.0 6.0 7.0													
Flash Dont Walk (s) 18.0 18.0 25.0 25.0 15.0 17.0 17.0								NOTIC			NOTIC		
, ,													
1 5053000 5003 WOLL V V V V U U U U U	Pedestrian Calls (#/hr)	0	0		0	0	0		0			0	0

	•	→	•	•	•	•	4	†	/	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	13.9	13.9		11.5	11.5	11.5	8.4	41.9		10.7	46.6	46.6
Actuated g/C Ratio	0.14	0.14		0.12	0.12	0.12	0.09	0.43		0.11	0.48	0.48
v/c Ratio	0.43	0.65		0.26	0.44	0.49	0.45	0.57		0.57	0.20	0.08
Control Delay	44.1	47.7		44.0	48.1	12.4	53.7	23.9		54.3	17.0	1.9
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	44.1	47.7		44.0	48.1	12.4	53.7	23.9		54.3	17.0	1.9
LOS	D	D		D	D	В	D	С		D	В	Α
Approach Delay		46.4			29.1			26.0			23.0	
Approach LOS		D			С			С			С	
Queue Length 50th (ft)	58	85		31	57	0	39	199		64	63	0
Queue Length 95th (ft)	115	163		72	115	59	91	325		132	116	13
Internal Link Dist (ft)		359			547			2598			476	
Turn Bay Length (ft)	270			200		65	300			185		220
Base Capacity (vph)	354	366		481	506	539	187	1492		236	1686	788
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.29	0.45		0.11	0.19	0.29	0.36	0.57		0.47	0.20	0.08

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 96.8

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.65 Intersection Signal Delay: 28.4 Intersection Capacity Utilization 63.8%

Intersection LOS: C ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 1: Meridian Ave E (SR 161) & 8th St E

11/29/2016 8:00 am

Synchro 9 Report

	۶	→	•	•	←	•	4	†	<i>></i>	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	f)		J.	f)		, N	∱ }		,	∱ }	
Traffic Volume (vph)	54	11	45	15	16	26	24	914	8	15	373	27
Future Volume (vph)	54	11	45	15	16	26	24	914	8	15	373	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		0	180		0	280		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.99		1.00	0.99			1.00		1.00		
Frt		0.878			0.908			0.999			0.990	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1687	1542	0	1736	1644	0	1736	3467	0	1736	3436	0
Flt Permitted	0.728			0.719			0.950			0.950		
Satd. Flow (perm)	1290	1542	0	1312	1644	0	1736	3467	0	1731	3436	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		47			27			1			9	
Link Speed (mph)		35			30			35			35	
Link Distance (ft)		602			674			2630			2678	
Travel Time (s)		11.7			15.3			51.2			52.2	
Confl. Peds. (#/hr)	2		1	1		2			4	4		
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	7%	7%	7%	4%	4%	4%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	56	11	47	16	17	27	25	952	8	16	389	28
Shared Lane Traffic (%)												
Lane Group Flow (vph)	56	58	0	16	44	0	25	960	0	16	417	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0		10.0	10.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	32.6	32.6		35.6	35.6		10.6	28.9		10.6	27.9	
Total Split (s)	38.0	38.0		38.0	38.0		15.0	67.0		15.0	67.0	
Total Split (%)	31.7%	31.7%		31.7%	31.7%		12.5%	55.8%		12.5%	55.8%	
Maximum Green (s)	33.4	33.4		33.4	33.4		10.4	62.1		10.4	62.1	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		2.7	2.7		2.5	3.5		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	10.0		0.0	10.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)	6.0	6.0		6.0	6.0			6.0			6.0	
Flash Dont Walk (s)	22.0	22.0		22.0	22.0			18.0			16.0	

011 101	<i>,</i> a	• •	<u> </u>								
•	→	•	•	—	•	4	†	/	/	+	✓
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
0	0		0	0			0			0	
10.0	10.0		10.9	10.9		6.7	71.2		6.6	69.0	
0.11	0.11		0.12	0.12		0.07	0.79		0.07	0.77	
0.39	0.27		0.10	0.20		0.19	0.35		0.12	0.16	
45.9	18.2		38.0	22.3		44.2	4.7		42.9	4.6	
0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
45.9	18.2		38.0	22.3		44.2	4.7		42.9	4.6	
D	В		D	С		D	Α		D	Α	
	31.8			26.5			5.7			6.0	
	С			С			Α			Α	
27	5		7	8		12	65		8	23	
71	42		28	41		41	183		30	71	
	522			594			2550			2598	
175			180			280			180		
482	606		491	632		202	2753		202	2643	
0	0		0	0		0	0		0	0	
0	0		0	0		0	0		0	0	
0	0		0	0		0	0		0	0	
0.12	0.10		0.03	0.07		0.12	0.35		0.08	0.16	
	EBL 0 10.0 0.11 0.39 45.9 0.0 45.9 D 27 71 175 482 0 0 0	EBL EBT 0 0 10.0 10.0 0.11 0.11 0.39 0.27 45.9 18.2 0.0 0.0 45.9 18.2 D B 31.8 C 27 5 71 42 522 175 482 606 0 0 0 0 0 0	EBL EBT EBR 0 0 0 10.0 10.0 0.11 0.11 0.39 0.27 45.9 18.2 0.0 0.0 45.9 18.2 D B 31.8 C 27 5 71 42 522 175 482 606 0 0 0 0 0 0	EBL EBT EBR WBL 0 0 0 0 10.0 10.0 10.9 0.11 0.11 0.12 0.39 0.27 0.10 45.9 18.2 38.0 0.0 0.0 0.0 45.9 18.2 38.0 D B D 31.8 C 27 5 7 71 42 28 522 175 180 482 606 491 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT 0 0 0 0 0 0 10.0 10.0 10.9 10.9 0.11 0.11 0.12 0.12 0.39 0.27 0.10 0.20 45.9 18.2 38.0 22.3 0.0 0.0 0.0 0.0 0.0 45.9 18.2 38.0 22.3 D B D C 31.8 26.5 C C 27 5 7 8 71 42 28 41 522 594 175 180 482 606 491 632 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR 0 0 0 0 0 0 10.0 10.0 10.9 10.9 0.11 0.11 0.12 0.12 0.39 0.27 0.10 0.20 45.9 18.2 38.0 22.3 0.0 0.0 0.0 0.0 0.0 45.9 18.2 38.0 22.3 D B D C 31.8 26.5 C C C 27 5 7 8 71 42 28 41 522 594 175 180 482 606 491 632 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL 0 0 0 0 0 0 10.0 10.0 10.9 10.9 6.7 0.11 0.11 0.12 0.12 0.07 0.39 0.27 0.10 0.20 0.19 45.9 18.2 38.0 22.3 44.2 0.0 0.0 0.0 0.0 0.0 0.0 45.9 18.2 38.0 22.3 44.2 D B D C D 31.8 26.5 C C C 27 5 7 8 12 71 42 28 41 41 522 594 175 180 280 482 606 491 632 202 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBT EBR WBL WBT WBR NBL NBT 0	EBL EBT EBR WBL WBT WBR NBL NBT NBR 0 0 0 0 0 0 0 10.0 10.0 10.9 10.9 10.9 6.7 71.2 71.2 0.11 0.11 0.12 0.07 0.79 0.79 0.35 0.27 0.10 0.20 0.19 0.35 0.35 0.27 0.10 0.20 0.19 0.35 0.35 0.0 <	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL 0	0 0 0 0 0 10.0 10.0 10.9 10.9 6.7 71.2 6.6 69.0 0.11 0.11 0.12 0.12 0.07 0.79 0.07 0.77 0.39 0.27 0.10 0.20 0.19 0.35 0.12 0.16 45.9 18.2 38.0 22.3 44.2 4.7 42.9 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.9 18.2 38.0 22.3 44.2 4.7 42.9 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45.9 18.2 38.0 22.3 44.2 4.7 42.9 4.6 D B D C D A D A 31.8 26.5 5.7 6.0 E A A A A A A<

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 89.7

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.39 Intersection Signal Delay: 8.4 Intersection Capacity Utilization 43.5%

Intersection LOS: A ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 2: Meridian Ave E (SR 161) & 16th Street E

11/29/2016 8:00 am Synchro 9 Report

	۶	→	*	•	—	•	4	†	~	\	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ		ሻ	ĵ.		ሻ	∱ 1≽		ሻ	∱ }	
Traffic Volume (vph)	75	50	96	52	74	47	95	835	26	21	353	35
Future Volume (vph)	75	50	96	52	74	47	95	835	26	21	353	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	185		0	185		0	280		0	280		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.99		1.00	0.99							
Frt		0.902			0.942			0.995			0.986	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1703	1603	0	1703	1680	0	1736	3454	0	1736	3423	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1701	1603	0	1701	1680	0	1736	3454	0	1736	3423	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		72			23			3			9	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1274			2535			555			2630	
Travel Time (s)		24.8			49.4			10.8			51.2	
Confl. Peds. (#/hr)	1		1	1		1						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	6%	6%	6%	6%	6%	6%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	81	54	103	56	80	51	102	898	28	23	380	38
Shared Lane Traffic (%)												
Lane Group Flow (vph)	81	157	0	56	131	0	102	926	0	23	418	0
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	10.6	30.6		10.6	31.6		10.6	26.9		10.6	29.9	
Total Split (s)	21.0	39.0		17.0	35.0		24.0	62.0		12.0	50.0	
Total Split (%)	16.2%	30.0%		13.1%	26.9%		18.5%	47.7%		9.2%	38.5%	
Maximum Green (s)	16.4	34.4		12.4	30.4		19.4	57.1		7.4	45.1	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		19.0			20.0			15.0			18.0	
Pedestrian Calls (#/hr)		0			0			0			0	

	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	10.2	13.2		8.8	12.0		11.3	59.8		6.8	51.0	
Actuated g/C Ratio	0.10	0.14		0.09	0.12		0.12	0.61		0.07	0.52	
v/c Ratio	0.46	0.56		0.37	0.58		0.51	0.44		0.19	0.23	
Control Delay	53.3	31.6		52.8	46.1		52.8	13.8		52.5	16.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	53.3	31.6		52.8	46.1		52.8	13.8		52.5	16.6	
LOS	D	С		D	D		D	В		D	В	
Approach Delay		38.9			48.1			17.7			18.5	
Approach LOS		D			D			В			В	
Queue Length 50th (ft)	48	49		33	64		60	141		14	79	
Queue Length 95th (ft)	107	123		82	137		127	306		44	145	
Internal Link Dist (ft)		1194			2455			475			2550	
Turn Bay Length (ft)	185			185			280			280		
Base Capacity (vph)	293	624		221	551		353	2116		134	1791	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.28	0.25		0.25	0.24		0.29	0.44		0.17	0.23	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 97.7

Natural Cycle: 85

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.58 Intersection Signal Delay: 23.5 Intersection Capacity Utilization 58.5%

Intersection LOS: C ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 3: Meridian Ave E (SR 161) & 24th St E

11/29/2016 8:00 am

Synchro 9 Report

Intersection													
Int Delay, s/veh	2.9												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	N	IBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				4			4	
Traffic Vol, veh/h	0	121	5	35	123	0		11	0	79	0	0	1
Future Vol, veh/h	0	121	5	35	123	0		11	0	79	0	0	1
Conflicting Peds, #/hr	1	0	0	0	0	1		0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	S	top	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		-	0	-	-	0	-
Grade, %	-	0	-	-	0	-		-	0	-	-	0	-
Peak Hour Factor	85	85	85	84	84	84		98	98	98	25	25	25
Heavy Vehicles, %	6	6	6	4	4	4		6	6	6	0	0	0
Mvmt Flow	0	142	6	42	146	0		11	0	81	0	0	4
Major/Minor	Major1			Major2			Min	or1			Minor2		
Conflicting Flow All	147	0	0	148	0	0		377	376	145	417	379	147
Stage 1	-	-	-	-	-	-		145	145	-	231	231	
Stage 2	_	_	_	-	_	_		232	231	_	186	148	_
Critical Hdwy	4.16	_	_	4.14	_	_		1.16	6.56	6.26	7.1	6.5	6.2
Critical Hdwy Stg 1	-	_	_	-	_	_		.16	5.56	-	6.1	5.5	-
Critical Hdwy Stg 2	_	_	-	-	_	_		.16	5.56	_	6.1	5.5	_
Follow-up Hdwy	2.254	-	-	2.236	-	-		554	4.054	3.354	3.5	4	3.3
Pot Cap-1 Maneuver	1411	-	_	1421	-	-		573	549	892	550	556	905
Stage 1	-	-	-	-	-	-		848	769	_	776	717	-
Stage 2	-	-	-	-	-	-		762	706	-	820	779	-
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1411	-	-	1421	-	-	į	557	531	892	488	538	904
Mov Cap-2 Maneuver	-	-	-	-	-	-	!	557	531	-	488	538	-
Stage 1	-	-	-	-	-	-	:	848	769	-	775	694	-
Stage 2	-	-	-	-	-	-	•	734	683	-	746	779	-
Approach	EB			WB				NB			SB		
HCM Control Delay, s	0			1.7				9.9			9		
HCM LOS	U			1.7				Α			Á		
Minor Lano/Major Mymt	MDI n1	EBL	EBT	EBR WBL	WBT	WBR:	CDI n1						
Minor Lane/Major Mvmt	NBLn1		EDI		VVDI	WDK							
Capacity (veh/h)	831	1411	-	- 1421	-	-	904						
HCM Control Polov (a)	0.111	-	-	- 0.029	-	-	0.004						
HCM Long LOS	9.9	0	-	- 7.6	0	-	9						
HCM DEth % till O(vob)	Α	A 0	-	- A - 0.1	Α	-	A						
HCM 95th %tile Q(veh)	0.4	U	-	- U. I	-	-	0						

Intersection	7.0													
Int Delay, s/veh	7.8													
Movement	EBL	EBT	EBR	W	BL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	62	148	0		0	124	78		1	1	0	74	1	37
Future Vol, veh/h	62	148	0		0	124	78		1	1	0	74	1	37
Conflicting Peds, #/hr	1	0	0		0	0	1		0	0	0	0	0	0
Sign Control	Free	Free	Free	Fr	ee	Free	Free		Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-	-		-	-	-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	0	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	82	82	82		84	84	84		25	25	25	42	42	42
Heavy Vehicles, %	7	3	0		0	7	5		0	0	0	11	0	0
Mvmt Flow	76	180	0		0	148	93		4	4	0	176	2	88
Major/Minor	Major1			Majo	or2				Minor1			Minor2		
Conflicting Flow All	241	0	0		80	0	0		571	573	180	529	527	195
Stage 1			-		-	-	-		332	332	-	195	195	-
Stage 2	_	_	_		_	_	_		239	241	_	334	332	_
Critical Hdwy	4.17	_	_		4.1	_	-		7.1	6.5	6.2	7.21	6.5	6.2
Critical Hdwy Stg 1	-	_	_		-	_	-		6.1	5.5	-	6.21	5.5	-
Critical Hdwy Stg 2	-	_	_		_	_	-		6.1	5.5	_	6.21	5.5	_
Follow-up Hdwy	2.263	_	_		2.2	_	_		3.5	4	3.3	3.599	4	3.3
Pot Cap-1 Maneuver	1297	_	_		108	_	_		435	432	868	446	459	851
Stage 1	_	_	_		-	_	_		686	648	-	786	743	-
Stage 2	_	_	_		_	_	_		769	710	_	661	648	_
Platoon blocked, %		_	_			_	-							
Mov Cap-1 Maneuver	1297	_	_	14	108	_	-		369	404	868	420	429	850
Mov Cap-2 Maneuver	-	_	_		-	_	-		369	404	-	420	429	
Stage 1	-	_	_		_	_	-		641	606	_	734	742	_
Stage 2	-	-	-		-	-	-		687	709	-	614	606	-
Approach	EB			\	ΝB				NB			SB		
HCM Control Delay, s	2.3				0				14.5			19.9		
HCM LOS	2.0				J				В			C		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR W	BL.	WBT	WRR	SBLn1						
Capacity (veh/h)	386	1297	LDI		108	VVDI	VVDIX	504						
HCM Lane V/C Ratio	0.021	0.058	-	- 14	·UO	-	-	0.529						
HCM Control Delay (s)	14.5	7.9	0	-	0	-	-	19.9						
HCM Lane LOS	14.5 B	7.9 A	0 A	-	A	-	-	19.9 C						
HCM 95th %tile Q(veh)	0.1	0.2	А	-	A 0	-	-	3.1						
HOW YOU WINE Q(VEN)	U. I	0.2	-	-	U	-	-	3. l						

	۶	→	*	•	←	4	1	†	~	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		ሻ	↑ ↑		ሻ	† }	
Traffic Volume (vph)	65	22	74	22	17	31	43	619	28	30	1137	94
Future Volume (vph)	65	22	74	22	17	31	43	619	28	30	1137	94
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		0	180		0	280		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00				0.99		1.00	1.00		1.00	1.00	
Frt		0.884			0.903			0.993			0.989	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1736	1615	0	1703	1605	0	1736	3443	0	1736	3426	0
Flt Permitted	0.724			0.647			0.950			0.950		
Satd. Flow (perm)	1321	1615	0	1160	1605	0	1734	3443	0	1734	3426	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		79			33			6			11	
Link Speed (mph)		35			30			35			35	
Link Distance (ft)		602			674			2630			2678	
Travel Time (s)		11.7			15.3			51.2			52.2	
Confl. Peds. (#/hr)	1					1	2		1	1		2
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	4%	4%	4%	6%	6%	6%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	69	23	79	23	18	33	46	659	30	32	1210	100
Shared Lane Traffic (%)												
Lane Group Flow (vph)	69	102	0	23	51	0	46	689	0	32	1310	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0		10.0	10.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	32.6	32.6		35.6	35.6		10.6	28.9		10.6	27.9	
Total Split (s)	36.0	36.0		36.0	36.0		14.2	72.0		12.0	69.8	
Total Split (%)	30.0%	30.0%		30.0%	30.0%		11.8%	60.0%		10.0%	58.2%	
Maximum Green (s)	31.4	31.4		31.4	31.4		9.6	67.1		7.4	64.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		2.7	2.7		2.5	3.5		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	10.0		0.0	10.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)	6.0	6.0		6.0	6.0		140110	6.0		. 10110	6.0	
Flash Dont Walk (s)	22.0	22.0		22.0	22.0			18.0			16.0	
riasir Done waik (s)	22.0	22.0		22.0	22.0			10.0			10.0	

	۶	→	\rightarrow	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	11.6	11.6		11.6	11.6		7.6	70.6		6.9	69.9	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.08	0.72		0.07	0.71	
v/c Ratio	0.45	0.39		0.17	0.24		0.35	0.28		0.27	0.54	
Control Delay	50.2	18.6		42.5	22.7		50.7	6.1		50.1	9.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	50.2	18.6		42.5	22.7		50.7	6.1		50.1	9.0	
LOS	D	В		D	С		D	Α		D	Α	
Approach Delay		31.3			28.9			8.9			10.0	
Approach LOS		С			С			Α			Α	
Queue Length 50th (ft)	42	13		13	10		28	80		19	200	
Queue Length 95th (ft)	86	62		38	45		66	125		51	315	
Internal Link Dist (ft)		522			594			2550			2598	
Turn Bay Length (ft)	175			180			280			180		
Base Capacity (vph)	421	569		370	534		169	2465		130	2429	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.16	0.18		0.06	0.10		0.27	0.28		0.25	0.54	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 98.7

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.54 Intersection Signal Delay: 11.8 Intersection Capacity Utilization 53.9%

Intersection LOS: B ICU Level of Service A

Analysis Period (min) 15

Splits and Phases: 2: Meridian Ave E (SR 161) & 16th Street E

11/29/2016 2:45 pm Synchro 9 Report

	•	→	•	•	←	•	1	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, J	f)		, N	£		, A	∱ 1≽		, N	∱ }	
Traffic Volume (vph)	84	80	129	49	44	36	98	566	51	51	1097	88
Future Volume (vph)	84	80	129	49	44	36	98	566	51	51	1097	88
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	185		0	185		0	280		0	280		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00				0.99		1.00				1.00	
Frt		0.907			0.932			0.988			0.989	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1719	1641	0	1752	1709	0	1752	3463	0	1736	3427	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1717	1641	0	1752	1709	0	1752	3463	0	1736	3427	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		58			29			10			8	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1274			2535			555			2630	
Travel Time (s)		24.8			49.4			10.8			51.2	
Confl. Peds. (#/hr)	1					1	1					1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	5%	5%	5%	3%	3%	3%	3%	3%	3%	4%	4%	4%
Adj. Flow (vph)	88	83	134	51	46	38	102	590	53	53	1143	92
Shared Lane Traffic (%)												
Lane Group Flow (vph)	88	217	0	51	84	0	102	643	0	53	1235	0
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	10.6	30.6		10.6	31.6		10.6	26.9		10.6	29.9	
Total Split (s)	17.0	34.5		14.2	31.7		18.0	66.9		14.4	63.3	
Total Split (%)	13.1%	26.5%		10.9%	24.4%		13.8%	51.5%		11.1%	48.7%	
Maximum Green (s)	12.4	29.9		9.6	27.1		13.4	62.0		9.8	58.4	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		19.0			20.0			15.0			18.0	
Pedestrian Calls (#/hr)		0			0			0			0	

	ᄼ	→	\rightarrow	•	•	•	•	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	10.3	16.5		8.2	14.6		11.0	65.0		8.3	59.6	
Actuated g/C Ratio	0.09	0.15		0.07	0.13		0.10	0.58		0.07	0.53	
v/c Ratio	0.56	0.75		0.40	0.34		0.59	0.32		0.41	0.67	
Control Delay	65.2	49.7		62.5	35.2		65.2	15.1		62.7	23.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	65.2	49.7		62.5	35.2		65.2	15.1		62.7	23.6	
LOS	Ε	D		Ε	D		Ε	В		Ε	С	
Approach Delay		54.2			45.5			21.9			25.2	
Approach LOS		D			D			С			С	
Queue Length 50th (ft)	63	115		37	37		73	133		38	352	
Queue Length 95th (ft)	126	202		84	87		141	208		85	520	
Internal Link Dist (ft)		1194			2455			475			2550	
Turn Bay Length (ft)	185			185			280			280		
Base Capacity (vph)	193	488		153	443		213	2020		154	1834	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.46	0.44		0.33	0.19		0.48	0.32		0.34	0.67	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 111.6

Natural Cycle: 85

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.75 Intersection Signal Delay: 28.9 Intersection Capacity Utilization 71.3%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Meridian Ave E (SR 161) & 24th St E

Intersection	2.2												
Int Delay, s/veh	3.3										0.51		
Movement	EBL	EBT	EBR	WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	4	25	01	4	1		10	♣		1	- ♣	0
Traffic Vol, veh/h	1	178	35	81	126	1		13	0	67	1	0	0
Future Vol, veh/h	1 1	178	35	81	126	1 1		13	0	67 0	1	0	0
Conflicting Peds, #/hr Sign Control	Free	0 Free	0 Free	0 Free	0 Free	Free		0 Stop	0 Stop	Stop	Stop	Stop	Stop
RT Channelized	riee -	riee	None	riee -	riee -	None		Stop	Siup -	None	310p	Stop	None
Storage Length	-	_	None	_	-	NONE		-	_	None	-	-	NONE
Veh in Median Storage, #		0	-	_	0	-		-	0	-	-	0	_
Grade, %	_	0	_	_	0	_		_	0	_	_	0	_
Peak Hour Factor	84	84	84	75	75	75		77	77	77	25	25	25
Heavy Vehicles, %	2	2	2	3	3	3		8	8	8	0	0	0
Mvmt Flow	1	212	42	108	168	1		17	0	87	4	0	0
WWW. Tiow		212	72	100	100	'		17	O	07	7	U	U
Major/Minor	Major1			Major2			N	1inor1			Minor2		
Conflicting Flow All	170	0	0	254	0	0		620	621	233	665	642	170
Stage 1	-	-	-	-	-	-		235	235	-	386	386	-
Stage 2	-	-	-	-	-	-		385	386	-	279	256	-
Critical Hdwy	4.12	-	-	4.13	-	-		7.18	6.58	6.28	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-		6.18	5.58	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-		6.18	5.58	-	6.1	5.5	-
Follow-up Hdwy	2.218	-	-	2.227	-	-		3.572			3.5	4	3.3
Pot Cap-1 Maneuver	1407	-	-	1305	-	-		392	396	791	376	395	879
Stage 1	-	-	-	-	-	-		755	699	-	641	614	-
Stage 2	-	-	-	-	-	-		626	600	-	732	699	-
Platoon blocked, %	4.407	-	-	1005	-	-		0/1	050	704	044	050	070
Mov Cap-1 Maneuver	1407	-	-	1305	-	-		364	359	791	311	358	878
Mov Cap-2 Maneuver	-	-	-	-	-	-		364	359	-	311	358	-
Stage 1	-	-	-	-	-	-		754	698	-	640	558	-
Stage 2	-	-	-	-	-	-		569	545	-	651	698	-
Approach	EB			WB				NB			SB		
HCM Control Delay, s	0			3.1				11.4			16.7		
HCM LOS								В			С		
Minor Long/Major Mussel	MDI "1	EDI	ГЛТ	בטט איטי	WDT	WIDD	CDI p1						
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR S							
Capacity (veh/h)	664	1407	-	- 1305	-	-	311						
HCM Cantral Dalay (a)	0.156		-	- 0.083	-	-	0.013						
HCM Long LOS	11.4	7.6	0	- 8	0	-	16.7						
HCM Lane LOS	В	A	Α	- A	Α	-	С						
HCM 95th %tile Q(veh)	0.6	0	-	- 0.3	-	-	0						

Intersection														
Int Delay, s/veh	9													
Movement	EBL	EBT	EBR		WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	39	212	0		0	178	45		1	0	4	69	1	38
Future Vol, veh/h	39	212	0		0	178	45		1	0	4	69	1	38
Conflicting Peds, #/hr	1	0	0		0	0	1		0	0	0	0	0	0
Sign Control	Free	Free	Free		Free	Free	Free		Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-	-		-	-	-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-		-	0	-		-	0	-	-	0	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	94	94	94		90	90	90		63	63	63	34	34	34
Heavy Vehicles, %	8	5	0		0	2	11		0	0	0	7	0	8
Mvmt Flow	41	226	0		0	198	50		2	0	6	203	3	112
Major/Minor	Major1			М	ajor2				Minor1			Minor2		
Conflicting Flow All	249	0	0		226	0	0		589	558	226	536	533	224
Stage 1	217	-	-		-	-	-		309	309	-	224	224	-
Stage 2	_	_	_		_	_	_		280	249	_	312	309	_
Critical Hdwy	4.18	_	_		4.1	_	_		7.1	6.5	6.2	7.17	6.5	6.28
Critical Hdwy Stg 1	1.10	_	_		-	_	_		6.1	5.5	-	6.17	5.5	0.20
Critical Hdwy Stg 2	_	_	_		_	_	_		6.1	5.5	_	6.17	5.5	_
Follow-up Hdwy	2.272	_	_		2.2	_	_		3.5	4	3.3	3.563	4	3.372
Pot Cap-1 Maneuver	1282	_	_		1354	_	_		423	441	818	448	456	801
Stage 1	-	_	_		-	_	_		705	663	-	767	722	-
Stage 2	_	_	_		_	_	_		731	704	_	688	663	_
Platoon blocked, %		_	_			_	_		701	701		000	000	
Mov Cap-1 Maneuver	1282	_	_		1354	_	_		352	424	818	432	439	800
Mov Cap-2 Maneuver	1202	_	_		-	_	_		352	424	-	432	439	-
Stage 1	_	_	_		_	_	_		679	638	_	738	721	_
Stage 2	-	-	-		-	-	-		626	703	-	657	638	-
Approach	EB				WB				NB			SB		
HCM Control Delay, s	1.2				0				10.6			22.5		
HCM LOS	1.2				U				В			22.5 C		
Minor Long/Maior Muse	NDI 1	בטו	רחד	EDD.	MDI	WDT	MDD	CDI1						
Minor Lane/Major Mvmt	NBLn1	EBL	EBT		WBL	WBT	WBK	SBLn1						
Capacity (veh/h)	647	1282	-	-	1354	-	-	516						
HCM Lane V/C Ratio		0.032	-	-	-	-		0.616						
HCM Control Delay (s)	10.6	7.9	0	-	0	-	-	22.5						
HCM Lane LOS	В	A	Α	-	Α	-	-	C						
HCM 95th %tile Q(veh)	0	0.1	-	-	0	-	-	4.1						

Lane Group	T. WCHdiail / WC L (2411007	v olalilos _i	Tillings					
Trainary Volume (vph)		•	-	\rightarrow	•	•	•	4	†	/	>	ļ	4
Traffix (Volume (γph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (γph)	Lane Configurations	7	f)		Ţ	†	7	ሻ	∱ ∱		*	^	7
Indea Index Inde	Traffic Volume (vph)	144	114	74	61		170	98		40	120		95
Storage Length (ft) 270 0 0 0 0 1 1 1 1 0 0	Future Volume (vph)	144	114	74	61	102	170	98	1166	40	120	525	95
Storage Lame's	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Taper Length (fit)	Storage Length (ft)	270		0	200		65	300		0	185		220
Lane Luli, Facior 1.00 1	Storage Lanes	1		0	1		1	1		0	1		1
Ped Bike Factor 1.00 0.94 0.94 0.95 0.99 0.00 0.00 0.00 0.095 0.	Taper Length (ft)	25			25			25			25		
Fith	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	1.00
File Protected	Ped Bike Factor	1.00	0.99		1.00		0.99	1.00	1.00		1.00		0.98
Satis Flow (proft) 1671 1644 0 1752 1845 1568 1736 3451 0 1752 3505 1568 Flit Permitted 0,950	Frt		0.941				0.850		0.995				0.850
Fit Permitted	Flt Protected	0.950			0.950			0.950			0.950		
Satis Flow (perm) 1670 1644 70 7454 7455 7575 7585 7	Satd. Flow (prot)	1671	1644	0	1752	1845	1568	1736	3451	0	1752	3505	1568
Right Turn on Red Yes	Flt Permitted	0.950			0.950			0.950			0.950		
Said, Flow (RTOR)	Satd. Flow (perm)	1670	1644	0	1744	1845	1547	1733	3451	0	1750	3505	1533
Link Speed (mph)	Right Turn on Red			Yes			Yes			Yes			Yes
Link Distance (ft)	Satd. Flow (RTOR)		24				173		3				98
Travel Time (s)	Link Speed (mph)		20			20			35			20	
Confil. Peds. (#/hr) 1 4 4 4 4 9 0.98 0	Link Distance (ft)		439			627			2678			556	
Peak Hour Factor 0.98 3.36 3% 97 Lane Group Flow (vph) 147 192 0 62 104 173 100 1231 0 122 536 97 Turn Type Split NA Split NA 49 1 1 6 5 26 20 20 20 20 20 20 <td>Travel Time (s)</td> <td></td> <td>15.0</td> <td></td> <td></td> <td>21.4</td> <td></td> <td></td> <td>52.2</td> <td></td> <td></td> <td>19.0</td> <td></td>	Travel Time (s)		15.0			21.4			52.2			19.0	
Heavy Vehicles (%)	Confl. Peds. (#/hr)	1		4	4		1	1		3	3		1
Adj. Flow (vph) 147 116 76 62 104 173 100 1190 41 122 536 97 Shared Lane Traffic (%) Lane Group Flow (vph) 147 192 0 62 104 173 100 1231 0 122 536 97 Turn Type Split NA Split NA Perm Prot NA Prot NA Perd NA Perd NA Prot NA NA Prot NA	Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph) Shared Lane Traffic (%) Shared Lane Traffic (%) 147 116 76 62 104 173 100 1190 41 122 536 97 Lane Group Flow (vph) 147 192 0 62 104 173 100 1231 0 122 536 97 Turn Type Split NA Split NA Perm Prot NA NA Prot NA NA NA NA NA NA NA NA NA NA </td <td>Heavy Vehicles (%)</td> <td>8%</td> <td>8%</td> <td>8%</td> <td>3%</td> <td>3%</td> <td>3%</td> <td>4%</td> <td>4%</td> <td>4%</td> <td>3%</td> <td>3%</td> <td>3%</td>	Heavy Vehicles (%)	8%	8%	8%	3%	3%	3%	4%	4%	4%	3%	3%	3%
Shared Lane Traffic (%) Lane Group Flow (vph) 147 192 0 62 104 173 100 1231 0 122 536 97 Turn Type Split NA Split NA Perm Prot NA NA Prot NA N		147	116	76	62	104	173	100	1190	41	122	536	97
Lane Group Flow (vph)													
Turn Type		147	192	0	62	104	173	100	1231	0	122	536	97
Protected Phases 8 8 8 4 4 4 7 7 7 7 7 7 7	• • • • • •	Split	NA		Split	NA	Perm	Prot	NA		Prot	NA	Perm
Detector Phase 8 8 8 4 4 4 1 6 5 2 2 2 2 2 2 2 2 2		-			-	4		1	6		5	2	
Detector Phase 8 8 8 4 4 4 1 6 5 2 2 2 2 5 5 5 5 5	Permitted Phases						4						2
Switch Phase Minimum Initial (s) 6.0 6.0 10.0 10.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 10.0 Minimum Split (s) 30.0 30.0 36.0 36.0 36.0 20.0 50.0 22.6 50.0 50.0 Total Split (s) 25.0 25.0 31.0 31.0 31.0 45.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8% 25.8% 25.8% 25.8% 125.9% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.0 3.9 3.0 3.9 3.6 3.9 3.0 3.0 1.0 1.0 1.0 1.0 1.0	Detector Phase	8	8		4	4	4	1	6		5	2	
Minimum Split (s) 30.0 30.0 36.0 36.0 36.0 20.0 50.0 22.6 50.0 50.0 Total Split (s) 25.0 25.0 31.0 31.0 31.0 15.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0													
Minimum Split (s) 30.0 30.0 36.0 36.0 36.0 20.0 50.0 22.6 50.0 50.0 Total Split (s) 25.0 25.0 31.0 31.0 31.0 15.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0	Minimum Initial (s)	6.0	6.0		10.0	10.0	10.0	6.0	10.0		6.0	10.0	10.0
Total Split (s) 25.0 25.0 31.0 31.0 31.0 15.0 46.4 17.6 49.0 49.0 Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.6 3.9 3.6 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.0 3.9 3.9 3.0 3.9 3.0 3.9 3.9 3.6 3.9 3.0 3.9 3.9 3.0 3.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 4.9 4.6 <td></td> <td></td> <td>30.0</td> <td></td> <td>36.0</td> <td>36.0</td> <td>36.0</td> <td>20.0</td> <td>50.0</td> <td></td> <td></td> <td>50.0</td> <td>50.0</td>			30.0		36.0	36.0	36.0	20.0	50.0			50.0	50.0
Total Split (%) 20.8% 20.8% 25.8% 25.8% 25.8% 25.8% 12.5% 38.7% 14.7% 40.8% 40.8% Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0					31.0	31.0	31.0				17.6	49.0	49.0
Maximum Green (s) 20.4 20.4 26.4 26.4 26.4 10.4 41.5 13.0 44.1 44.1 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0<		20.8%			25.8%	25.8%					14.7%	40.8%	40.8%
Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 3.9 All-Red Time (s) 1.0 </td <td></td>													
All-Red Time (s) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 <td></td>													
Lost Time Adjust (s) 0.0													
Total Lost Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.9 4.6 4.9 4.9 Lead/Lag Lead/Lag Optimize? Yes	• •												
Lead/Lag Lead Lag Optimize? Lead Yes													
Lead-Lag Optimize? Yes													
Vehicle Extension (s) 3.0 3.0 2.7 2.7 2.7 2.5 3.5 3.0 3.0 3.0 Minimum Gap (s) 0.2 0.2 0.2 0.2 0.2 0.2 3.0 0.2 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 10.0 0.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 <td>· ·</td> <td></td>	· ·												
Minimum Gap (s) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 3.0 0.2 3.0 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 10.0	.	3.0	3.0		2.7	2.7	2.7						
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 0.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17.0 17.0 17.0 Flash Dont Walk (s) 18.0 18.0 25.0 25.0 25.0 15.0 15.0 17.0 17.0													
Time To Reduce (s) 0.0 0.0 0.0 0.0 0.0 15.0 16.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 17.0 17.0 17.0	• • •												
Recall Mode None None None None None None Max None Max Max Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 17.0													
Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 6.0 6.0 6.0 7.0													
Flash Dont Walk (s) 18.0 18.0 25.0 25.0 15.0 17.0 17.0													
	* *												
	Pedestrian Calls (#/hr)	0	0		0	0	0		0				

_	J	
Lanes.	Volumes.	Timinas

	۶	→	\rightarrow	•	←	•	4	†	/	>	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	15.3	15.3		12.2	12.2	12.2	9.4	42.5		11.3	44.4	44.4
Actuated g/C Ratio	0.15	0.15		0.12	0.12	0.12	0.09	0.42		0.11	0.44	0.44
v/c Ratio	0.58	0.71		0.29	0.46	0.51	0.62	0.84		0.62	0.34	0.13
Control Delay	49.4	50.5		45.1	49.1	12.1	62.4	33.6		58.1	20.3	4.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	49.4	50.5		45.1	49.1	12.1	62.4	33.6		58.1	20.3	4.7
LOS	D	D		D	D	В	Ε	С		Ε	С	Α
Approach Delay		50.0			29.5			35.8			24.4	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	87	102		37	63	0	61	358		74	113	0
Queue Length 95th (ft)	161	188		80	122	60	#139	#593		147	186	32
Internal Link Dist (ft)		359			547			2598			476	
Turn Bay Length (ft)	270			200		65	300			185		220
Base Capacity (vph)	342	356		465	490	537	181	1467		229	1554	734
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.43	0.54		0.13	0.21	0.32	0.55	0.84		0.53	0.34	0.13

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 100

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.84 Intersection Signal Delay: 33.7 Intersection Capacity Utilization 75.9%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Meridian Ave E (SR 161) & 8th St E

		,										<u> </u>
	•	-	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	£		*	£		7	∱ ∱		7	∱ ∱	
Traffic Volume (vph)	74	12	52	16	17	32	27	1298	8	23	569	48
Future Volume (vph)	74	12	52	16	17	32	27	1298	8	23	569	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		0	180		0	280		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25		ŭ	25		ŭ	25		ŭ	25		ŭ
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.99		1.00	0.99			1.00	0.70	1.00	0.70	0.70
Frt		0.879			0.903			0.999			0.988	
Flt Protected	0.950	0.077		0.950	0.700		0.950	0.777		0.950	0.700	
Satd. Flow (prot)	1687	1544	0	1736	1634	0	1736	3467	0	1736	3429	0
Flt Permitted	0.724	1011	O	0.713	1001	O	0.950	0107	Ū	0.950	0127	O
Satd. Flow (perm)	1282	1544	0	1301	1634	0	1736	3467	0	1733	3429	0
Right Turn on Red	1202	1011	Yes	1301	1034	Yes	1730	3407	Yes	1755	J727	Yes
Satd. Flow (RTOR)		54	103		33	103		1	103		12	103
Link Speed (mph)		35			30			35			35	
Link Distance (ft)		602			674			2630			2678	
Travel Time (s)		11.7			15.3			51.2			52.2	
Confl. Peds. (#/hr)	2	11.7	1	1	13.3	2		31.2	4	4	32.2	
Confl. Bikes (#/hr)	۷			'		۷			1	4		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	7%	7%	7%	4%	4%	4%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	770	13	54	17	18	33	28	1352	8	24	593	50
Shared Lane Traffic (%)	11	13	34	17	10	33	20	1332	U	24	373	30
Lane Group Flow (vph)	77	67	0	17	51	0	28	1360	0	24	643	0
Turn Type	Perm	NA	O	Perm	NA	O	Prot	NA	O	Prot	NA	O
Protected Phases	1 01111	8		1 01111	4		1	6		5	2	
Permitted Phases	8	Ü		4	•		•	· ·		Ü	_	
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase	· ·	ŭ		·	•		·	· ·		ŭ	_	
Minimum Initial (s)	6.0	6.0		10.0	10.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	32.6	32.6		35.6	35.6		10.6	28.9		10.6	27.9	
Total Split (s)	36.0	36.0		36.0	36.0		11.4	72.7		11.3	72.6	
Total Split (%)	30.0%	30.0%		30.0%	30.0%		9.5%	60.6%		9.4%	60.5%	
Maximum Green (s)	31.4	31.4		31.4	31.4		6.8	67.8		6.7	67.7	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	1.0	1.0		1.0	1.0		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		2.7	2.7		2.5	3.5		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	10.0		0.0	10.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)	6.0	6.0		6.0	6.0		1,0110	6.0		140110	6.0	
Flash Dont Walk (s)	22.0	22.0		22.0	22.0			18.0			16.0	
	22.0	22.0		22.0	22.0			.0.0			.0.0	

Northwood Elementary Replacement 8:00 am 11/29/2019 Forecast 2019 WOP Morning Peak Heffron Transportation, Inc. -JAB

	۶	→	•	•	•	•	4	†	<i>></i>	\	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	11.2	11.2		12.0	12.0		6.4	75.7		6.4	73.5	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.07	0.78		0.07	0.76	
v/c Ratio	0.52	0.30		0.11	0.22		0.25	0.50		0.21	0.25	
Control Delay	54.1	18.6		40.4	22.1		50.9	7.1		50.0	5.7	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	54.1	18.6		40.4	22.1		50.9	7.1		50.0	5.7	
LOS	D	В		D	С		D	Α		D	Α	
Approach Delay		37.6			26.7			8.0			7.3	
Approach LOS		D			С			Α			Α	
Queue Length 50th (ft)	47	8		10	10		17	119		15	72	
Queue Length 95th (ft)	94	47		30	45		47	315		43	116	
Internal Link Dist (ft)		522			594			2550			2598	
Turn Bay Length (ft)	175			180			280			180		
Base Capacity (vph)	415	537		421	552		121	2701		120	2596	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.19	0.12		0.04	0.09		0.23	0.50		0.20	0.25	
Intersection Summary												

Intersection Summary
Area Type:

Cycle Length: 120

Actuated Cycle Length: 97.2

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.52 Intersection Signal Delay: 10.2 Intersection Capacity Utilization 55.2%

Analysis Period (min) 15

Intersection LOS: B ICU Level of Service B

Other

Lane Group		•	→	•	•	←	•	•	†	<i>></i>	\	 	-√
Tarellic Volume (right)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	ሻ	ĵ₃		ኻ	î,		ሻ	♦ %		ኻ	♦ %	
Fullic Vollume (vph)	· ·			143			67			32			95
Ideal Flow (ryhphy)													
Storage Length (ft)													
Storage Lane's													
Taper Length (II)													
Lane UIII. Factor 1.00	· ·			ŭ			· ·			· ·	25		· ·
Ped Bike Factor	. •		1.00	1.00		1.00	1.00		0.95	0.95		0.95	0.95
Fith Protection 0,950									0.70	0.70		0.70	0.70
File Protected 0.950 0.9									0 995			0 978	
Satid. Flow (prot) 1703 1589 0 1703 1666 0 1736 3454 0 1736 3395 0 1716 1716 1716 1736 3395 0 1716 1716 1736 1736 3395 0 1716 1736		0.950	0.070		0.950	0.700		0.950	0.770		0.950	0.770	
Fit Permitted 0,950 0,			1589	0		1666	0		3454	0		3395	0
Sald, Flow (perm) 1701 1589 0 1701 1666 0 1736 3454 0 1736 3395 0 1736	11 /		1007	Ü		1000	Ü		0101	Ü		0070	Ü
Right Turn on Red Yes 16 Yes 16 Yes 16 Yes 16 16 Yes 16 17 18			1589	0		1666	0		3454	0		3395	0
Satid. Flow (RTOR)	•	1701	1007		1701	1000		1700	0101		1700	0070	
Link Speed (mph) 35 35 35 2630 Link Distance (ft) 1274 2535 555 2630 Travel Time (s) 24.8 49.4 10.8 555 Confl. Peds. (#/hr) 1 1 1 1 1 Peak Hour Factor 0.93			89	103		27	103		3	103		16	103
Link Distance (ft) 1274 24.8 49.4 55.5 2630 Cronfl. Peds. (#hr) 1 2 0 0.93	The state of the s												
Travel Time (s)													
Confil Peds. (#/hr)													
Peak Hour Factor 0.93 4 4 4% 5 2 1 6 10<	` '	1	24.0	1	1	77.7	1		10.0			01.2	
Heavy Vehicles (%)	, ,		0.93	-	-	0.93	· ·	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph) 151 67 154 62 94 72 134 1087 34 38 606 102 Shared Lane Traffic (%) Lane Group Flow (vph) 151 221 0 62 166 0 134 1121 0 38 708 0 Turn Type Prot NA 1 6 1 6 0 1 6 0 1 6 0 1 0 1 6 1 0 1 0 1 0													
Shared Lane Traffic (%) Lane Group Flow (vph) 151 221 0 62 166 0 134 1121 0 38 708 0 0 17m Type Prot NA Prot N													
Lane Group Flow (vph) 151 221 0 62 166 0 134 1121 0 38 708 0 Turn Type Prot NA Prot NA Prot NA Prot NA Permitted Phases Permitted Phases Permitted Phases Permitted Phases Permitted Phases Permitted Phase Permitted Phases Per deall Assistance Protes Parket		131	07	134	02	74	12	134	1007	54	30	000	102
Turn Type Prot NA Prot NA Prot NA Prot NA Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 3 8 5 2 1 6 Switch Phase 8 5 2 1 6 6 6 6.0 6.0 6.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 6.0 10.0 10.0 6.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 11.0 11.0 11.0<		151	221	0	62	166	0	134	1121	0	38	708	0
Protected Phases 7 4 3 8 5 2 1 6 Permitted Phases 7 4 3 8 5 2 1 6 Switch Phases 7 4 3 8 5 2 1 6 Switch Phases 8 5 2 1 6 6 6 6 6 6 6 6 6 10.0 6.0 10.0 6 10.0 6 10.0 6 10.0 6 10.0 6 10.0 6 10.0 6 10.0 6 29.9 10.1 6 29.9 10.1 10.6 29.9 10.1 10.6 29.9 10.1 10.6 26.9 10.6 29.9 10.1 10.0 20.2 23.2 61.2 11.8 49.8 10.0 10.0 10.0 11.8 49.8 10.0 10.0 11.0 11.0 11.0 11.0 11.0 11.0				O			Ü			Ū			Ü
Permitted Phases 7													
Detector Phase 7		,	•		J	· ·		O	_			O	
Switch Phase Minimum Initial (s) 6.0 6.0 6.0 6.0 6.0 6.0 10.0 6.0 10.0 Minimum Split (s) 10.6 30.6 10.6 31.6 10.6 26.9 10.6 29.9 Total Split (s) 25.0 41.6 15.4 32.0 23.2 61.2 11.8 49.8 Total Split (%) 19.2% 32.0% 11.8% 24.6% 17.8% 47.1% 9.1% 38.3% Maximum Green (s) 20.4 37.0 10.8 27.4 18.6 56.3 7.2 44.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0		7	4		3	8		5	2		1	6	
Minimum Initial (s) 6.0 6.0 6.0 6.0 6.0 10.0 6.0 10.0 Minimum Split (s) 10.6 30.6 10.6 31.6 10.6 26.9 10.6 29.9 Total Split (s) 25.0 41.6 15.4 32.0 23.2 61.2 11.8 49.8 Total Split (%) 19.2% 32.0% 11.8% 24.6% 17.8% 47.1% 9.1% 38.3% Maximum Green (s) 20.4 37.0 10.8 27.4 18.6 56.3 7.2 44.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0		•	•		Ü	Ü		Ü	_		•	Ü	
Minimum Split (s) 10.6 30.6 10.6 31.6 10.6 26.9 10.6 29.9 Total Split (s) 25.0 41.6 15.4 32.0 23.2 61.2 11.8 49.8 Total Split (%) 19.2% 32.0% 11.8% 24.6% 17.8% 47.1% 9.1% 38.3% Maximum Green (s) 20.4 37.0 10.8 27.4 18.6 56.3 7.2 44.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0 <td></td> <td>6.0</td> <td>6.0</td> <td></td> <td>6.0</td> <td>6.0</td> <td></td> <td>6.0</td> <td>10.0</td> <td></td> <td>6.0</td> <td>10.0</td> <td></td>		6.0	6.0		6.0	6.0		6.0	10.0		6.0	10.0	
Total Split (s) 25.0 41.6 15.4 32.0 23.2 61.2 11.8 49.8 Total Split (%) 19.2% 32.0% 11.8% 24.6% 17.8% 47.1% 9.1% 38.3% Maximum Green (s) 20.4 37.0 10.8 27.4 18.6 56.3 7.2 44.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0 <td></td>													
Total Split (%) 19.2% 32.0% 11.8% 24.6% 17.8% 47.1% 9.1% 38.3% Maximum Green (s) 20.4 37.0 10.8 27.4 18.6 56.3 7.2 44.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0	• • • • • • • • • • • • • • • • • • • •												
Maximum Green (s) 20.4 37.0 10.8 27.4 18.6 56.3 7.2 44.9 Yellow Time (s) 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.9 4.6 4.9 Lead/Lag Lead Lag Lag Lead Lag Lag Lag Lag Lag Lag Lag Lag Lag	• • • • • • • • • • • • • • • • • • • •												
Yellow Time (s) 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.9 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.9 4.6 4.9 Lead/Lag Lead Lag Lag Lead Lag													
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0													
Lost Time Adjust (s) 0.0	* *												
Total Lost Time (s) 4.6 4.6 4.6 4.6 4.6 4.6 4.9 4.6 4.9 Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag Lead-Lag Optimize? Yes	, ,												
Lead/Lag Lead Lag Lag Lead Lag													
Lead-Lag Optimize? Yes	• ,												
Vehicle Extension (s) 3.0													
Minimum Gap (s) 0.2 0.2 0.2 0.2 0.2 3.0 0.2 3.0 Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 15.0 0.0 15.0 Time To Reduce (s) 0.0	.												
Time Before Reduce (s) 0.0 0.0 0.0 0.0 15.0 0.0 15.0 Time To Reduce (s) 0.0													
Time To Reduce (s) 0.0	• • •												
Recall Mode None None None None None Max None Max Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 18.0 18.0													
Walk Time (s) 7.0 7.0 7.0 7.0 Flash Dont Walk (s) 19.0 20.0 15.0 18.0	• •												
Flash Dont Walk (s) 19.0 20.0 15.0 18.0					55			55					
r odostrian odno (ii ii	Pedestrian Calls (#/hr)		0			0			0			0	

	•		$\overline{}$	_	—	•	•	†	<i>></i>	<u> </u>	1	1
Lane Group	EBL	EBT	▼ EBR	▼ WBL	WBT	WBR	NBL	NBT	, NBR	SBL	▼ SBT	SBR
Act Effct Green (s)	14.8	23.1		8.9	14.7		13.5	58.5		6.9	46.9	
Actuated g/C Ratio	0.14	0.21		0.08	0.14		0.12	0.54		0.06	0.43	
v/c Ratio	0.65	0.54		0.45	0.67		0.62	0.60		0.35	0.48	
Control Delay	60.1	28.8		61.6	52.1		60.1	21.6		62.4	25.1	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	60.1	28.8		61.6	52.1		60.1	21.6		62.4	25.1	
LOS	Ε	С		Ε	D		Ε	С		Ε	С	
Approach Delay		41.5			54.7			25.7			27.0	
Approach LOS		D			D			С			С	
Queue Length 50th (ft)	105	87		43	97		93	302		27	180	
Queue Length 95th (ft)	186	167		96	177		168	461		68	300	
Internal Link Dist (ft)		1194			2455			475			2550	
Turn Bay Length (ft)	185			185			280			280		
Base Capacity (vph)	324	606		171	445		301	1859		116	1471	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.47	0.36		0.36	0.37		0.45	0.60		0.33	0.48	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 108.8

Natural Cycle: 85

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.67 Intersection Signal Delay: 30.9 Intersection Capacity Utilization 67.0%

Intersection LOS: C
ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Meridian Ave E (SR 161) & 24th St E

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBI	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	147	5	75	176	0	12		143	0	0	1
Future Vol, veh/h	0	147	5	75	176	0	12	2 0	143	0	0	1
Conflicting Peds, #/hr	1	0	0	0	0	1	(0 (0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Sto	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None			None	-	-	None
Storage Length	-	-	-	-	-	-			-	-	-	-
Veh in Median Storage, #		0	-	-	0	-		- 0	-	-	0	-
Grade, %	-	0	-	-	0	-		- 0	-	-	0	-
Peak Hour Factor	85	85	85	84	84	84	98	98	98	25	25	25
Heavy Vehicles, %	6	6	6	4	4	4	(6	6	0	0	0
Mvmt Flow	0	173	6	89	210	0	12	2 0	146	0	0	4
Major/Minor	Major1			Major2			Minor [*]			Minor2		
Conflicting Flow All	211	0	0	179	0	0	566		176	638	568	211
Stage 1	211	-	-	1//	-	-	176		-	389	389	211
Stage 2	_	_	_				390		_	249	179	
Critical Hdwy	4.16	_	_	4.14			7.16		6.26	7.1	6.5	6.2
Critical Hdwy Stg 1	4.10	_	_		_	_	6.16		0.20	6.1	5.5	0.2
Critical Hdwy Stg 2	_	_	_	_	_	_	6.16		_	6.1	5.5	_
Follow-up Hdwy	2.254	_	_	2.236	_	_	3.554		3.354	3.5	4	3.3
Pot Cap-1 Maneuver	1336	_	_	1385	_	_	429		857	392	435	834
Stage 1	-	_	_	-	_	_	817		-	639	612	-
Stage 2	_	_	_	_	_	_	626		_	759	755	_
Platoon blocked, %		_	_		_	_	02.				, , ,	
Mov Cap-1 Maneuver	1336	_	_	1385	_	_	403	397	857	307	403	833
Mov Cap-2 Maneuver	-	_	_	-	_	_	403		-	307	403	-
Stage 1	_	_	_	_	_	_	817		_	638	567	_
Stage 2	-	-	-	-	-	-	578		-	630	755	-
Approach	EB			WB			NE	}		SB		
HCM Control Delay, s	0			2.3			10.7			9.3		
HCM LOS	O			2.3			10 E			7.3 A		
National and India	ND: 4	EDI	EDT		WDT	WDD (2DI 1					
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR S						
Capacity (veh/h)	788	1336	-	- 1385	-	-	833					
HCM Lane V/C Ratio	0.201	-	-	- 0.064	-	-	0.005					
HCM Control Delay (s)	10.7	0	-	- 7.8	0	-	9.3					
HCM Lane LOS	В	Α	-	- A	Α	-	A					
HCM 95th %tile Q(veh)	0.7	0	-	- 0.2	-	-	0					

Intersection														
	11.6													
Movement	EBL	EBT	EBR	WE	BL W	/BT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4				4				4			4	
Traffic Vol, veh/h	63	264	0			215	78		1	1	0	74	1	38
Future Vol, veh/h	63	264	0		0 2	215	78		1	1	0	74	1	38
Conflicting Peds, #/hr	1	0	0		0	0	1		0	0	0	0	0	0
Sign Control	Free	Free	Free	Fre	ee Fi	ree	Free		Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	-	-	-		-	-	-		-	-	-	-	-	-
Veh in Median Storage,	# -	0	-		-	0	-		-	0	-	-	0	-
Grade, %	-	0	-		-	0	-		-	0	-	-	0	-
Peak Hour Factor	82	82	82	1	34	84	84		25	25	25	42	42	42
Heavy Vehicles, %	7	2	0		0	4	5		0	0	0	11	0	0
Mvmt Flow	77	322	0		0 2	256	93		4	4	0	176	2	90
Major/Minor	Major1			Majo	r2			I.	/linor1			Minor2		
Conflicting Flow All	350	0	0		22	0	0		825	826	322	781	779	303
Stage 1	-	-	-	0.		-	-		476	476	-	303	303	-
Stage 2	_	_	_		_	_	_		349	350	_	478	476	_
Critical Hdwy	4.17	_	_	4	.1	_	_		7.1	6.5	6.2	7.21	6.5	6.2
Critical Hdwy Stg 1	-	_	_	·	-	_	_		6.1	5.5	-	6.21	5.5	-
Critical Hdwy Stg 2	-	_	_		_	_	_		6.1	5.5	_	6.21	5.5	_
Follow-up Hdwy	2.263	-	_	2	.2	-	_		3.5	4	3.3	3.599	4	3.3
Pot Cap-1 Maneuver	1182	_	_	12		-	_		294	310	724	302	330	741
Stage 1	-	-	_		-	-	_		574	560	_	687	667	-
Stage 2	-	-	-		-	-	_		671	636	-	552	560	-
Platoon blocked, %		-	-			-	-							
Mov Cap-1 Maneuver	1182	-	-	12	19	-	-		241	285	724	280	304	740
Mov Cap-2 Maneuver	-	-	-		-	-	-		241	285	-	280	304	-
Stage 1	-	-	-		-	-	-		529	516	-	632	666	-
Stage 2	-	-	-		-	-	-		587	635	-	504	516	-
Approach	EB			W	/B				NB			SB		
HCM Control Delay, s	1.6			•	0				19.2			41.1		
HCM LOS	1.0								C			E		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WE	SI /V/	/BT	WBR S	SRI n1						
Capacity (veh/h)	261	1182	LDI	- 12		וטי	VV DIX S	354						
HCM Lane V/C Ratio	0.031		-	- 12	+ 7	-	-	0.76						
HCM Control Delay (s)	19.2	8.3	0	-	0	-	-	41.1						
HCM Lane LOS	19.2 C		A	-	A	-	-	41.1 E						
HCM 95th %tile Q(veh)	0.1	A 0.2	А	-	0	-	-	6.1						
HOW FOUT MILE Q(VEII)	U. I	0.2	-	-	U	-	-	U. I						

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations 7 6 7 6	SBR 118
Lang Configurations & A. & A.	110
Lanc Connigurations 7 pr 7 pr 7 pr	110
Traffic Volume (vph) 87 23 81 23 18 40 48 866 31 36 1492	110
Future Volume (vph) 87 23 81 23 18 40 48 866 31 36 1492	118
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	1900
Storage Length (ft) 175 0 180 0 280 0 180	0
Storage Lanes 1 0 1 0 1 0 1	0
Taper Length (ft) 25 25 25 25	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.95 1.00 0.95	0.95
Ped Bike Factor 1.00 0.99 1.00 1.00 1.00	
Frt 0.883 0.896 0.995 0.989	
Flt Protected 0.950 0.950 0.950 0.950	
Satd. Flow (prot) 1736 1613 0 1703 1591 0 1736 3451 0 1736 3427	0
Flt Permitted 0.717 0.614 0.950 0.950	
Satd. Flow (perm) 1308 1613 0 1101 1591 0 1735 3451 0 1734 3427	0
Right Turn on Red Yes Yes Yes	Yes
Satd. Flow (RTOR) 86 43 5 11	
Link Speed (mph) 35 35 35	
Link Distance (ft) 602 674 2630 2678	
Travel Time (s) 11.7 15.3 51.2 52.2	
Confl. Peds. (#/hr) 1 1 2 1 1	2
Confl. Bikes (#/hr)	
Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	0.94
Heavy Vehicles (%) 4% 4% 4% 6% 6% 6% 4% 4% 4% 4% 4%	4%
Adj. Flow (vph) 93 24 86 24 19 43 51 921 33 38 1587	126
Shared Lane Traffic (%)	
Lane Group Flow (vph) 93 110 0 24 62 0 51 954 0 38 1713	0
Turn Type Perm NA Perm NA Prot NA Prot NA	
Protected Phases 8 4 1 6 5 2	
Permitted Phases 8 4	
Detector Phase 8 8 4 4 1 6 5 2	
Switch Phase	
Minimum Initial (s) 6.0 6.0 10.0 10.0 6.0 10.0 6.0 10.0	
Minimum Split (s) 32.6 32.6 35.6 35.6 10.6 28.9 10.6 27.9	
Total Split (s) 35.8 35.8 35.8 11.4 72.4 11.8 72.8	
Total Split (%) 29.8% 29.8% 29.8% 9.5% 60.3% 9.8% 60.7%	
Maximum Green (s) 31.2 31.2 31.2 6.8 67.5 7.2 67.9	
Yellow Time (s) 3.6 3.6 3.6 3.6 3.9 3.6 3.9	
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Total Lost Time (s) 4.6 4.6 4.6 4.6 4.6 4.9 4.6 4.9	
Lead/Lag Lead Lag Lead Lag	
Lead-Lag Optimize? Yes Yes Yes Yes	
Vehicle Extension (s) 3.0 3.0 2.7 2.7 2.5 3.5 3.0 3.0	
Minimum Gap (s) 0.2 0.2 0.2 0.2 0.2 3.0 0.2 3.0	
Time Before Reduce (s) 0.0 0.0 0.0 0.0 0.0 10.0 0.0 10.0	
Time To Reduce (s) 0.0 0.0 0.0 0.0 15.0 0.0 15.0	
Recall Mode None None None None Max None Max	
Walk Time (s) 6.0 6.0 6.0 6.0 6.0 6.0	
Flash Dont Walk (s) 22.0 22.0 22.0 18.0 16.0	

Northwood Elementary Replacement 2:45 pm 11/29/2019 Forecast 2019 WOP Afternoon Peak Heffron Transportation, Inc. -JAB

	•	→	*	•	+	•	1	†	/	/	 	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	12.8	12.8		12.8	12.8		6.6	73.1		6.8	71.0	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.06	0.71		0.07	0.69	
v/c Ratio	0.57	0.40		0.18	0.26		0.46	0.39		0.33	0.72	
Control Delay	55.9	17.5		42.3	20.5		60.2	7.4		54.1	13.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	55.9	17.5		42.3	20.5		60.2	7.4		54.1	13.0	
LOS	Ε	В		D	С		Ε	Α		D	В	
Approach Delay		35.1			26.6			10.1			13.9	
Approach LOS		D			С			В			В	
Queue Length 50th (ft)	58	14		14	11		32	131		24	336	
Queue Length 95th (ft)	110	63		39	48		74	200		59	503	
Internal Link Dist (ft)		522			594			2550			2598	
Turn Bay Length (ft)	175			180			280			180		
Base Capacity (vph)	399	551		335	515		115	2464		122	2378	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.23	0.20		0.07	0.12		0.44	0.39		0.31	0.72	
Intersection Summary												

Area Type: Cycle Length: 120

Actuated Cycle Length: 102.4

Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.72 Intersection Signal Delay: 14.4 Intersection Capacity Utilization 64.4%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 2: Meridian Ave E (SR 161) & 16th Street E

Other

	۶	→	•	•	←	•	•	†	<i>></i>	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)		ሻ	↑ ↑		ሻ	∱ }	
Traffic Volume (vph)	143	94	165	56	58	52	144	775	58	70	1297	157
Future Volume (vph)	143	94	165	56	58	52	144	775	58	70	1297	157
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	185		0	185		0	280		0	280		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00				0.99		1.00				1.00	
Frt		0.904			0.929			0.990			0.984	
Flt Protected	0.950	0.70		0.950	0.727		0.950	0.770		0.950	0.70	
Satd. Flow (prot)	1719	1636	0	1752	1703	0	1752	3470	0	1736	3407	0
Flt Permitted	0.950	1000	Ü	0.950	1700	Ü	0.950	0170	Ü	0.950	0107	Ü
Satd. Flow (perm)	1717	1636	0	1752	1703	0	1752	3470	0	1736	3407	0
Right Turn on Red	17.17	1000	Yes	1702	1700	Yes	1702	0170	Yes	1700	0107	Yes
Satd. Flow (RTOR)		65	.00		31	100		8	100		13	100
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		1274			2535			555			2630	
Travel Time (s)		24.8			49.4			10.8			51.2	
Confl. Peds. (#/hr)	1	21.0			17.1	1	1	10.0			01.2	1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	5%	5%	5%	3%	3%	3%	3%	3%	3%	4%	4%	4%
Adj. Flow (vph)	149	98	172	58	60	54	150	807	60	73	1351	164
Shared Lane Traffic (%)	177	70	172	30	00	54	130	007	00	73	1331	104
Lane Group Flow (vph)	149	270	0	58	114	0	150	867	0	73	1515	0
Turn Type	Prot	NA	O	Prot	NA	O	Prot	NA	O	Prot	NA	O
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	,	7		3	Ü		3	2			O	
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase	,	7		3	Ü		3	2			O	
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	10.6	30.6		10.6	31.6		10.6	26.9		10.6	29.9	
Total Split (s)	17.4	37.2		11.8	31.6		17.2	64.2		16.8	63.8	
Total Split (%)	13.4%	28.6%		9.1%	24.3%		13.2%	49.4%		12.9%	49.1%	
Maximum Green (s)	12.8	32.6		7.170	27.0		12.6	59.3		12.770	58.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
1 1 7	0.2	0.2		0.2	0.2		0.2	15.0		0.2	15.0	
Time Before Reduce (s) Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)	None	7.0		NOHE	7.0		NOHE	7.0		NOHE	7.0	
Flash Dont Walk (s)		19.0			20.0			15.0			18.0	
Pedestrian Calls (#/hr)		0			0			0			0	

Northwood Elementary Replacement 2:45 pm 11/29/2019 Forecast 2019 WOP Afternoon Peak Heffron Transportation, Inc. -JAB

	•	→	•	•	•	4	4	†	/	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	12.6	22.8		7.0	14.9		12.4	64.2		9.8	59.1	
Actuated g/C Ratio	0.11	0.19		0.06	0.13		0.11	0.54		0.08	0.50	
v/c Ratio	0.81	0.73		0.56	0.47		0.81	0.46		0.51	0.88	
Control Delay	84.4	46.5		76.9	40.3		84.1	19.2		65.4	34.5	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	84.4	46.5		76.9	40.3		84.1	19.2		65.4	34.5	
LOS	F	D		Ε	D		F	В		Ε	С	
Approach Delay		60.0			52.6			28.8			35.9	
Approach LOS		Ε			D			С			D	
Queue Length 50th (ft)	112	153		44	59		113	211		54	522	
Queue Length 95th (ft)	#248	249		#108	116		#249	324		110	#798	
Internal Link Dist (ft)		1194			2455			475			2550	
Turn Bay Length (ft)	185			185			280			280		
Base Capacity (vph)	187	501		107	415		188	1893		180	1716	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.80	0.54		0.54	0.27		0.80	0.46		0.41	0.88	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 117.8

Natural Cycle: 125

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.88 Intersection Signal Delay: 37.7 Intersection Capacity Utilization 84.5%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Meridian Ave E (SR 161) & 24th St E

Intersection													
Int Delay, s/veh	4.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				4			4	
Traffic Vol, veh/h	1	226	37	148	163	1		14	0	109	1	0	0
Future Vol, veh/h	1	226	37	148	163	1		14	0	109	1	0	0
Conflicting Peds, #/hr	1	0	0	0	0	1		0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free		Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		-	0	-	-	0	-
Grade, %	-	0	-	-	0	-		-	0	-	-	0	-
Peak Hour Factor	84	84	84	75	75	75		77	77	77	25	25	25
Heavy Vehicles, %	2	2	2	3	3	3		8	8	8	0	0	0
Mvmt Flow	1	269	44	197	217	1		18	0	142	4	0	0
Major/Minor	Major1			Major2			M	1inor1			Minor2		
Conflicting Flow All	220	0	0	313	0	0	10	906	907	291	978	929	219
Stage 1	220	-	-	515	Ū	Ū		293	293	271	614	614	217
Stage 2	_	_	_	_	_	_		613	614	_	364	315	_
Critical Hdwy	4.12	_	_	4.13	_	_		7.18	6.58	6.28	7.1	6.5	6.2
Critical Hdwy Stg 1	4.12	-	-	4.13	-	-		6.18	5.58	0.20	6.1	5.5	0.2
Critical Hdwy Stg 2	-	-	-	-	-	-		6.18	5.58	-	6.1	5.5	-
Follow-up Hdwy	2.218			2.227				3.572	4.072	3.372	3.5	4	3.3
Pot Cap-1 Maneuver	1349	_	_	1242	_	_		251	269	734	232	270	826
Stage 1	1347	-	-	1242	-	-		702	660	734	483	486	020
Stage 2	-	-	-	-	-	-		470	473	_	659	659	_
Platoon blocked, %	-	-	-	-	-	-		470	4/3	-	037	037	-
Mov Cap-1 Maneuver	1349	-	-	1242	-	-		216	220	734	161	221	825
Mov Cap-1 Maneuver	1349	-	-	1242	-	-		216	220	734	161	221	023
•	-	-	-	-	-	-		701	659	-	482	398	-
Stage 1	-	-	-	-	-	-		385	387		531	658	-
Stage 2	-	-	-	-	-	-		300	307	-	331	000	-
Approach	EB			WB				NB			SB		
HCM Control Delay, s	0			4				13.6			27.9		
HCM LOS								В			D		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR	SBLn1						
Capacity (veh/h)	577	1349		- 1242	-	-	161						
HCM Lane V/C Ratio	0.277	0.001	_	- 0.159	-	-	0.025						
HCM Control Delay (s)	13.6	7.7	0	- 8.4	0	-	27.9						
HCM Lane LOS	13.0 B	Α.	A	- 0.4 - A	A	-	27.9 D						
HCM 95th %tile Q(veh)	1.1	0	Α -	- A	A -	-	0.1						
HOW FOUT FOUTE Q(VEII)	1.1	U	-	- 0.0	-	-	U. I						

Intersection	16.6													
3.		ГОТ	EDD	,	MDI	WDT	WDD		NDI	NDT	NDD	CDI	CDT	CDD
Movement Lang Configurations	EBL	EBT	EBR		WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations Traffic Vol, veh/h	39	♣ 309	0		0	4 > 299	46		1	♣ 0	1	70	♣ 1	39
Future Vol, veh/h	39	309	0		0	299	46		1	0	4 4	70	1	39 39
·	39 1	309	0		0	299	40		0	0	0	0	0	3 9
Conflicting Peds, #/hr Sign Control	Free	Free	Free		Free	Free	Free			Stop	Stop			
RT Channelized		riee	None			riee -	None		Stop	Siop -	None	Stop	Stop	
	-	-	None		-	-	None		-	-	None	-	-	None
Storage Length	- #	0	-		-	0	-		-	0	-	-	_	-
Veh in Median Storage,			-		-		-		-		-	-	0	-
Grade, %	94	0 94	- 94		90	0 90	90		63	0 63	63	- 24	0 34	2.4
Peak Hour Factor												34		34
Heavy Vehicles, %	8	4	0		0	1	11		0	0	0	7	0	8
Mvmt Flow	41	329	0		0	332	51		2	0	6	206	3	115
Major/Minor	Major1			Ma	ajor2				Minor1			Minor2		
Conflicting Flow All	384	0	0		329	0	0		829	796	329	774	771	359
Stage 1	-	-	-		-	-	-		412	412	-	359	359	-
Stage 2	-	-	_		-	_	_		417	384	_	415	412	-
Critical Hdwy	4.18	-	_		4.1	_	_		7.1	6.5	6.2	7.17	6.5	6.28
Critical Hdwy Stg 1	-	-	_		-	-	_		6.1	5.5	_	6.17	5.5	-
Critical Hdwy Stg 2	-	-	_		-	-	_		6.1	5.5	_	6.17	5.5	-
Follow-up Hdwy	2.272	-	_		2.2	_	_		3.5	4	3.3	3.563	4	3.372
Pot Cap-1 Maneuver	1142	-	_		1242	_	_		292	322	717	310	333	672
Stage 1	-	_	_		_	-	_		621	598	-	649	631	-
Stage 2	-	_	_		_	_	_		617	615	_	605	598	_
Platoon blocked, %		_	_			_	_							
Mov Cap-1 Maneuver	1142	_	_	-	1242	-	_		232	308	717	297	318	671
Mov Cap-2 Maneuver	-	_	_			_	_		232	308	-	297	318	
Stage 1	_	_	_		_	_	_		594	572	_	620	630	_
Stage 2	-	-	-		-	-	-		509	614	-	573	572	-
Approach	EB				WB				NB			SB		
HCM Control Delay, s	0.9				0				12.2			54.5		
HCM LOS	0.9				U				12.2 B			54.5 F		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT		WBL	WBT	WBR							
Capacity (veh/h)	506	1142	-	- 1	1242	-	-	370						
HCM Lane V/C Ratio		0.036	-	-	-	-	-	0.874						
HCM Control Delay (s)	12.2	8.3	0	-	0	-	-	54.5						
HCM Lane LOS	В	Α	Α	-	Α	-	-	F						
HCM 95th %tile Q(veh)	0	0.1	-	-	0	-	-	8.5						

		,				_						
	•	-	•	•	•	•	1	T	_	-	¥	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽.		"	↑	7	ሻ	∱ Ъ		7	^	7
Traffic Volume (vph)	144	114	74	69	102	170	98	1178	47	120	526	95
Future Volume (vph)	144	114	74	69	102	170	98	1178	47	120	526	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	270		0	200		65	300		0	185		220
Storage Lanes	1		0	1		1	1		0	1		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	1.00
Ped Bike Factor	1.00	0.99		1.00		0.99	1.00	1.00		1.00		0.98
Frt		0.941				0.850		0.994				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1671	1644	0	1752	1845	1568	1736	3447	0	1752	3505	1568
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1670	1644	0	1744	1845	1547	1733	3447	0	1750	3505	1533
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		24				173		4				98
Link Speed (mph)		20			20			35			20	
Link Distance (ft)		439			627			2678			556	
Travel Time (s)		15.0			21.4			52.2			19.0	
Confl. Peds. (#/hr)	1		4	4		1	1		3	3		1
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	8%	8%	8%	3%	3%	3%	4%	4%	4%	3%	3%	3%
Adj. Flow (vph)	147	116	76	70	104	173	100	1202	48	122	537	97
Shared Lane Traffic (%)												
Lane Group Flow (vph)	147	192	0	70	104	173	100	1250	0	122	537	97
Turn Type	Split	NA		Split	NA	Perm	Prot	NA		Prot	NA	Perm
Protected Phases	8	8		4	4		1	6		5	2	
Permitted Phases						4						2
Detector Phase	8	8		4	4	4	1	6		5	2	2
Switch Phase												
Minimum Initial (s)	6.0	6.0		10.0	10.0	10.0	6.0	10.0		6.0	10.0	10.0
Minimum Split (s)	30.0	30.0		36.0	36.0	36.0	20.0	50.0		22.6	50.0	50.0
Total Split (s)	25.0	25.0		31.0	31.0	31.0	15.0	46.4		17.6	49.0	49.0
Total Split (%)	20.8%	20.8%		25.8%	25.8%	25.8%	12.5%	38.7%		14.7%	40.8%	40.8%
Maximum Green (s)	20.4	20.4		26.4	26.4	26.4	10.4	41.5		13.0	44.1	44.1
Yellow Time (s)	3.6	3.6		3.6	3.6	3.6	3.6	3.9		3.6	3.9	3.9
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	4.6	4.6		4.6	4.6	4.6	4.6	4.9		4.6	4.9	4.9
Lead/Lag							Lead	Lag		Lead	Lag	Lag
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0		2.7	2.7	2.7	2.5	3.5		3.0	3.0	3.0
Minimum Gap (s)	0.2	0.2		0.2	0.2	0.2	0.2	3.0		0.2	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	10.0		0.0	10.0	10.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	15.0		0.0	15.0	15.0
Recall Mode	None	None		None	None	None	None	Max		None	Max	Max
Walk Time (s)	6.0	6.0		6.0	6.0	6.0		6.0			6.0	6.0
Flash Dont Walk (s)	18.0	18.0		25.0	25.0	25.0		15.0			17.0	17.0
Pedestrian Calls (#/hr)	0	0		0	0	0		0			0	0

	۶	→	•	•	←	•	4	†	<i>></i>	/	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	15.3	15.3		12.2	12.2	12.2	9.4	42.5		11.3	44.4	44.4
Actuated g/C Ratio	0.15	0.15		0.12	0.12	0.12	0.09	0.42		0.11	0.44	0.44
v/c Ratio	0.58	0.71		0.33	0.46	0.51	0.62	0.85		0.62	0.35	0.13
Control Delay	49.4	50.5		45.9	49.1	12.1	62.4	34.4		58.1	20.3	4.7
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	49.4	50.5		45.9	49.1	12.1	62.4	34.4		58.1	20.3	4.7
LOS	D	D		D	D	В	Ε	С		Ε	С	Α
Approach Delay		50.0			30.0			36.5			24.4	
Approach LOS		D			С			D			С	
Queue Length 50th (ft)	87	102		42	63	0	61	367		74	114	0
Queue Length 95th (ft)	161	188		88	122	60	#139	#608		147	187	32
Internal Link Dist (ft)		359			547			2598			476	
Turn Bay Length (ft)	270			200		65	300			185		220
Base Capacity (vph)	342	356		465	490	537	181	1466		229	1554	734
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	0
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	0
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	0
Reduced v/c Ratio	0.43	0.54		0.15	0.21	0.32	0.55	0.85		0.53	0.35	0.13

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 100

Natural Cycle: 140

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.85 Intersection Signal Delay: 34.1 Intersection Capacity Utilization 76.5%

Intersection LOS: C ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 1: Meridian Ave E (SR 161) & 8th St E

11/29/2019 8:00 am

Synchro 9 Report

	۶	→	*	•	←	•	4	†	~	\	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£		7	£		, N	∱ 1≽		, N	∱ }	
Traffic Volume (vph)	74	12	54	24	17	32	28	1320	16	23	581	48
Future Volume (vph)	74	12	54	24	17	32	28	1320	16	23	581	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		0	180		0	280		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.99		1.00	0.99			1.00		1.00		
Frt		0.878			0.903			0.998			0.989	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1687	1542	0	1736	1634	0	1736	3463	0	1736	3433	0
Flt Permitted	0.724			0.712			0.950			0.950		
Satd. Flow (perm)	1283	1542	0	1299	1634	0	1736	3463	0	1733	3433	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		56			33			2			12	
Link Speed (mph)		35			30			35			35	
Link Distance (ft)		602			674			2630			2678	
Travel Time (s)		11.7			15.3			51.2			52.2	
Confl. Peds. (#/hr)	2		1	1		2			4	4		
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	7%	7%	7%	4%	4%	4%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	77	13	56	25	18	33	29	1375	17	24	605	50
Shared Lane Traffic (%)												
Lane Group Flow (vph)	77	69	0	25	51	0	29	1392	0	24	655	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0		10.0	10.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	32.6	32.6		35.6	35.6		10.6	28.9		10.6	27.9	
Total Split (s)	36.0	36.0		36.0	36.0		11.4	72.7		11.3	72.6	
Total Split (%)	30.0%	30.0%		30.0%	30.0%		9.5%	60.6%		9.4%	60.5%	
Maximum Green (s)	31.4	31.4		31.4	31.4		6.8	67.8		6.7	67.7	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag							Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		2.7	2.7		2.5	3.5		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	10.0		0.0	10.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)	6.0	6.0		6.0	6.0			6.0			6.0	
Flash Dont Walk (s)	22.0	22.0		22.0	22.0			18.0			16.0	

	۶	-	\rightarrow	•	←	•		†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	11.3	11.3		12.1	12.1		6.4	75.6		6.4	73.4	
Actuated g/C Ratio	0.12	0.12		0.12	0.12		0.07	0.78		0.07	0.76	
v/c Ratio	0.52	0.30		0.15	0.22		0.25	0.52		0.21	0.25	
Control Delay	53.5	18.2		41.4	22.1		51.2	7.3		50.0	5.8	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	53.5	18.2		41.4	22.1		51.2	7.3		50.0	5.8	
LOS	D	В		D	С		D	Α		D	Α	
Approach Delay		36.8			28.4			8.2			7.3	
Approach LOS		D			С			Α			Α	
Queue Length 50th (ft)	47	8		15	10		18	125		15	75	
Queue Length 95th (ft)	94	47		40	45		49	330		43	120	
Internal Link Dist (ft)		522			594			2550			2598	
Turn Bay Length (ft)	175			180			280			180		
Base Capacity (vph)	416	538		421	552		122	2693		120	2594	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.19	0.13		0.06	0.09		0.24	0.52		0.20	0.25	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 97.2

Natural Cycle: 90


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.52 Intersection Signal Delay: 10.4 Intersection Capacity Utilization 56.1%

Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

Splits and Phases: 2: Meridian Ave E (SR 161) & 16th Street E

11/29/2019 8:00 am

Synchro 9 Report

	•	→	`	•	—	•	•	<u></u>	<i>></i>	<u> </u>	1	
Lane Group	EBL	EBT	▼ EBR	▼ WBL	WBT	WBR	NBL	NBT	NBR	SBL	▼ SBT	SBR
	\		LDIX	- VVDL		WDIX	NDL		NDIX	<u> </u>		JUIN
Lane Configurations		}	150		}	/7		∱ }	22		† ‡	117
Traffic Volume (vph)	171	70 70	152	58	102	67 7	137	1011	32	35	564	117
Future Volume (vph)	171	70	152	58	102	67	137	1011	32	35	564	117
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	185		0	185		0	280		0	280		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25	4.00	4.00	25	4.00	4.00	25	0.05	0.05	25	0.05	0.05
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.99		1.00	0.99							
Frt		0.897			0.941			0.995			0.974	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1703	1593	0	1703	1678	0	1736	3454	0	1736	3381	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1701	1593	0	1701	1678	0	1736	3454	0	1736	3381	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		84			23			3			21	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		923			2535			555			2630	
Travel Time (s)		18.0			49.4			10.8			51.2	
Confl. Peds. (#/hr)	1		1	1		1						
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	6%	6%	6%	6%	6%	6%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	184	75	163	62	110	72	147	1087	34	38	606	126
Shared Lane Traffic (%)												
Lane Group Flow (vph)	184	238	0	62	182	0	147	1121	0	38	732	0
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase	·	•		_	-			_			_	
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	10.6	30.6		10.6	31.6		10.6	26.9		10.6	29.9	
Total Split (s)	25.0	41.6		15.4	32.0		23.2	61.2		11.8	49.8	
Total Split (%)	19.2%	32.0%		11.8%	24.6%		17.8%	47.1%		9.1%	38.3%	
Maximum Green (s)	20.4	37.0		10.8	27.4		18.6	56.3		7.170	44.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	Lead			Lead			Lead			Lead		
Lead-Lag Optimize?	Yes	Lag		Yes	Lag			Lag Yes		Yes	Lag	
.		Yes			Yes		Yes				Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		19.0			20.0			15.0			18.0	
Pedestrian Calls (#/hr)		0			0			0			0	

	۶	→	\rightarrow	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	16.6	26.5		8.9	16.2		14.3	58.8		6.9	46.4	
Actuated g/C Ratio	0.15	0.24		0.08	0.14		0.13	0.52		0.06	0.41	
v/c Ratio	0.73	0.54		0.46	0.70		0.67	0.62		0.36	0.52	
Control Delay	65.1	30.1		64.1	55.2		63.6	23.5		64.7	27.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	65.1	30.1		64.1	55.2		63.6	23.5		64.7	27.6	
LOS	Ε	С		Ε	Ε		Ε	С		Ε	С	
Approach Delay		45.3			57.5			28.2			29.4	
Approach LOS		D			Ε			С			С	
Queue Length 50th (ft)	133	104		45	116		107	328		28	205	
Queue Length 95th (ft)	227	189		97	196		186	474		69	317	
Internal Link Dist (ft)		843			2455			475			2550	
Turn Bay Length (ft)	185			185			280			280		
Base Capacity (vph)	312	587		165	431		290	1807		112	1405	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.59	0.41		0.38	0.42		0.51	0.62		0.34	0.52	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 112.5

Natural Cycle: 85

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.73 Intersection Signal Delay: 33.9 Intersection Capacity Utilization 68.9%

Intersection LOS: C ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 3: Meridian Ave E (SR 161) & 24th St E

11/29/2019 8:00 am Synchro 9 Report

Intersection													
Int Delay, s/veh	4.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIX	VVDL	4	WDIX		NDL	4	NDIX	JDL	4	JDIN
Traffic Vol, veh/h	0	151	5	95	185	0		12	0	186	0	0	1
Future Vol, veh/h	0	151	5	95	185	0		12	0	186	0	0	1
Conflicting Peds, #/hr	1	0	0	0	0	1		0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free		Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	_	_	-	-	_	-		_	_	-	_	_	-
Veh in Median Storage, #	_	0	_	-	0	_		_	0	_	_	0	_
Grade, %	_	0	_	-	0	_		_	0	_	_	0	_
Peak Hour Factor	85	85	85	84	84	84		98	98	98	25	25	25
Heavy Vehicles, %	6	6	6	4	4	4		6	6	6	0	0	0
Mvmt Flow	0	178	6	113	220	0		12	0	190	0	0	4
Major/Minor	Major1			Major2			N	1inor1			Minor2		
Conflicting Flow All	221	0	0	184	0	0		629	628	181	722	631	221
Stage 1	_	_	_	-	_	_		181	181	_	447	447	-
Stage 2	_	_	_	-	_	_		448	447	_	275	184	_
Critical Hdwy	4.16	-	_	4.14	-	-		7.16	6.56	6.26	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	_	-	-	_		6.16	5.56	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-		6.16	5.56	-	6.1	5.5	-
Follow-up Hdwy	2.254	-	-	2.236	-	-		3.554	4.054	3.354	3.5	4	3.3
Pot Cap-1 Maneuver	1325	-	-	1379	-	-		389	394	851	345	401	824
Stage 1	-	-	-	-	-	-		812	742	-	595	577	-
Stage 2	-	-	-	-	-	-		582	567	-	736	751	-
Platoon blocked, %		-	-		-	-							
Mov Cap-1 Maneuver	1325	-	-	1379	-	-		360	357	851	249	363	823
Mov Cap-2 Maneuver	-	-	-	-	-	-		360	357	-	249	363	-
Stage 1	-	-	-	-	-	-		812	742	-	595	523	-
Stage 2	-	-	-	-	-	-		525	514	-	572	751	-
Annroach	רח			WD				ND			CD		
Approach	EB			WB				NB			SB		
HCM Control Delay, s	0			2.7				11.2			9.4		
HCM LOS								В			A		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR S	SBLn1						
Capacity (veh/h)	786	1325	_	- 1379	_	-	823						
HCM Lane V/C Ratio	0.257	. 525	_	- 0.082	_	-	0.005						
HCM Control Delay (s)	11.2	0	_	- 7.8	0	-	9.4						
HCM Lane LOS	В	A	_	- A	A	-	A						
HCM 95th %tile Q(veh)	1	0	_	- 0.3	-	_	0						
	·	,		270			-						

Intersection												
Int Delay, s/veh	1.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	21	354	0	2	283	22	1		2	12	0	1
Future Vol, veh/h	21	354	0	2	283	22	1	0	2	12	0	1
Conflicting Peds, #/hr	15	0	0	0	0	15	C	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None		-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	82	82	82	84	84	84	25	25	25	42	42	42
Heavy Vehicles, %	24	1	0	0	3	23	C	0	0	100	100	100
Mvmt Flow	26	432	0	2	337	26	4	0	8	29	0	2
Major/Minor	Major1			Major2			Minor1			Minor		
Major/Minor	Major1			Major2		0		0//	422	Minor2	052	2/5
Conflicting Flow All	378	0	0	432	0	0	839		432	857	853	365
Stage 1	-	-	-	-	-	-	483		-	370	370	-
Stage 2	4.24	-	-	-	-	-	356		- ()	487	483	7.0
Critical Hdwy	4.34	-	-	4.1	-	-	7.1	6.5	6.2	8.1	7.5	7.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	7.1	6.5	-
Critical Hdwy Stg 2	2 417	-	-	-	-	-	6.1	5.5	-	7.1	6.5	4.0
Follow-up Hdwy	2.416	-	-	2.2	-	-	3.5		3.3	4.4	4.9	4.2
Pot Cap-1 Maneuver	1070	-	-	1138	-	-	288		628	192	210	507
Stage 1	-	-	-	-	-	-	569		-	490	479	-
Stage 2	-	-	-	-	-	-	666	616	-	416	419	-
Platoon blocked, %	1070	-	-	1120	-	-	270	270	/20	100	200	F00
Mov Cap-1 Maneuver	1070	-	-	1138	-	-	279		628	182	200	500
Mov Cap-2 Maneuver	-	-	-	-	-	-	279		-	182	200	-
Stage 1	-	-	-	-	-	-	551	538	-	468	471	-
Stage 2	-	-	-	-	-	-	662	606	-	398	406	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.5			0.1			13.4			27.5		
HCM LOS							В			D		
						==						
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR S						
Capacity (veh/h)	443	1070	-	- 1138	-	-	191					
HCM Lane V/C Ratio	0.027	0.024	-	- 0.002	-	-	0.162					
HCM Control Delay (s)	13.4	8.4	0	- 8.2	0	-	27.5					
HCM Lane LOS	В	Α	Α	- A	Α	-	D					
HCM 95th %tile Q(veh)	0.1	0.1	-	- 0	-	-	0.6					

latara atiar							
Intersection Int Delay, s/veh	8.2						
,					0.51		
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u>ነ</u>	↑	4	405	100	*	
Traffic Vol, veh/h	92	276	238		109	68	
Future Vol, veh/h	92	276	238		109	68	
Conflicting Peds, #/hr	0	_ 0	0	0	0	0	
Sign Control	Free	Free	Free		Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	100	-	-	-	0	0	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	82	82	84	84	42	42	
Heavy Vehicles, %	0	1	3	0	0	0	
Mvmt Flow	112	337	283	125	260	162	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	408	0	-	0	907	346	
Stage 1	-	-	_	-	346	540	
Stage 2	_	_	_	_	561	_	
Critical Hdwy	4.1	_	_	_	6.4	6.2	
Critical Hdwy Stg 1	-	_	_	_	5.4	0.2	
Critical Hdwy Stg 2	_	_	_		5.4	_	
Follow-up Hdwy	2.2	_	_		3.5	3.3	
Pot Cap-1 Maneuver	1162	_	_		309	702	
Stage 1	1102	_	_		721	702	
Stage 2					575		
Platoon blocked, %					373		
Mov Cap-1 Maneuver	1162	_			279	702	
Mov Cap-1 Maneuver	1102	_			397	702	
Stage 1		_			721		
Stage 2	_	_	-	_	520	-	
Stage 2		_	_	_	320	_	
Approach	EB		WB		SB		
HCM Control Delay, s	2.1		0		22.7		
HCM LOS					С		
Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1 SBLn2				
Capacity (veh/h)	1162	וטו	397 702				
HCM Lane V/C Ratio	0.097	-					
HCM Control Delay (s)	8.4	-	0.654 0.231 29.6 11.7				
HCM Lane LOS		-					
HCM 95th %tile Q(veh)	A 0.3	-	D B 4.5 0.9				
FICIVI 95III 76IIIE Q(VEII)	0.3	-	4.5 0.9				

	•	→	`	•	←	•	•	<u>†</u>	<u></u>	<u> </u>	1	√
Lane Group	EBL	EBT	EBR	▼ WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u> </u>		LDIX	**************************************		VVDIX	NDL 1		INDIX	<u> </u>		JUIN
S .	87	}	02		1 3 18	40		† ‡	20		∱∱	118
Traffic Volume (vph)		23	82 82	29	18		49	880	38	36	1503	
Future Volume (vph)	87	23		29		40	49	880	38	36	1503	118
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	175		0	180		0	280		0	180		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25	1.00	4.00	25	4.00	4.00	25	0.05	0.05	25	0.05	0.05
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00	0.000			0.99		1.00	1.00		1.00	1.00	
Frt		0.882			0.896			0.994			0.989	
Flt Protected	0.950			0.950		_	0.950		_	0.950		_
Satd. Flow (prot)	1736	1611	0	1703	1591	0	1736	3447	0	1736	3427	0
Flt Permitted	0.717			0.612			0.950			0.950		
Satd. Flow (perm)	1308	1611	0	1097	1591	0	1735	3447	0	1734	3427	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		87			43			6			11	
Link Speed (mph)		35			30			35			35	
Link Distance (ft)		602			674			2630			2678	
Travel Time (s)		11.7			15.3			51.2			52.2	
Confl. Peds. (#/hr)	1					1	2		1	1		2
Confl. Bikes (#/hr)									1			
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	4%	4%	4%	6%	6%	6%	4%	4%	4%	4%	4%	4%
Adj. Flow (vph)	93	24	87	31	19	43	52	936	40	38	1599	126
Shared Lane Traffic (%)												
Lane Group Flow (vph)	93	111	0	31	62	0	52	976	0	38	1725	0
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Detector Phase	8	8		4	4		1	6		5	2	
Switch Phase												
Minimum Initial (s)	6.0	6.0		10.0	10.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	32.6	32.6		35.6	35.6		10.6	28.9		10.6	27.9	
Total Split (s)	35.8	35.8		35.8	35.8		11.4	72.4		11.8	72.8	
Total Split (%)	29.8%	29.8%		29.8%	29.8%		9.5%	60.3%		9.8%	60.7%	
Maximum Green (s)	31.2	31.2		31.2	31.2		6.8	67.5		7.2	67.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	7.0	4.0		4.0	4.0		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?							Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		2.7	2.7		2.5	3.5		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.2	0.2		0.2	0.2		0.2	10.0		0.2	10.0	
	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Time To Reduce (s)												
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)	6.0	6.0		6.0	6.0			6.0			6.0	
Flash Dont Walk (s)	22.0	22.0		22.0	22.0			18.0			16.0	

	۶	-	\rightarrow	•	←	•	^	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Pedestrian Calls (#/hr)	0	0		0	0			0			0	
Act Effct Green (s)	13.1	13.1		13.1	13.1		6.6	73.1		6.8	71.0	
Actuated g/C Ratio	0.13	0.13		0.13	0.13		0.06	0.71		0.07	0.69	
v/c Ratio	0.56	0.40		0.22	0.26		0.46	0.40		0.33	0.73	
Control Delay	55.0	17.2		43.3	20.3		60.9	7.6		54.4	13.3	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	55.0	17.2		43.3	20.3		60.9	7.6		54.4	13.3	
LOS	D	В		D	С		Ε	Α		D	В	
Approach Delay		34.4			28.0			10.3			14.2	
Approach LOS		С			С			В			В	
Queue Length 50th (ft)	58	14		18	11		33	137		24	344	
Queue Length 95th (ft)	110	63		47	48		76	210		60	520	
Internal Link Dist (ft)		522			594			2550			2598	
Turn Bay Length (ft)	175			180			280			180		
Base Capacity (vph)	397	550		333	513		115	2455		121	2371	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.23	0.20		0.09	0.12		0.45	0.40		0.31	0.73	

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 102.7

Natural Cycle: 100

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.73 Intersection Signal Delay: 14.7 Intersection Capacity Utilization 64.7%

Intersection LOS: B ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 2: Meridian Ave E (SR 161) & 16th Street E

11/29/2019 2:45 pm Synchro 9 Report

	•	→	•	•	←	•	4	†	~	\	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	f)		, N	£		7	∱ 1≽		, N	† }	
Traffic Volume (vph)	165	106	174	56	64	52	150	775	58	70	1297	175
Future Volume (vph)	165	106	174	56	64	52	150	775	58	70	1297	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	185		0	185		0	280		0	280		0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.95	0.95
Ped Bike Factor	1.00				0.99		1.00				1.00	
Frt		0.907			0.933			0.990			0.982	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1719	1641	0	1752	1711	0	1752	3470	0	1736	3400	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1717	1641	0	1752	1711	0	1752	3470	0	1736	3400	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		61			28			8			15	
Link Speed (mph)		35			35			35			35	
Link Distance (ft)		931			2535			555			2630	
Travel Time (s)		18.1			49.4			10.8			51.2	
Confl. Peds. (#/hr)	1					1	1					1
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	5%	5%	5%	3%	3%	3%	3%	3%	3%	4%	4%	4%
Adj. Flow (vph)	172	110	181	58	67	54	156	807	60	73	1351	182
Shared Lane Traffic (%)												
Lane Group Flow (vph)	172	291	0	58	121	0	156	867	0	73	1533	0
Turn Type	Prot	NA		Prot	NA		Prot	NA		Prot	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases												
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase												
Minimum Initial (s)	6.0	6.0		6.0	6.0		6.0	10.0		6.0	10.0	
Minimum Split (s)	10.6	30.6		10.6	31.6		10.6	26.9		10.6	29.9	
Total Split (s)	17.4	37.2		11.8	31.6		17.2	64.2		16.8	63.8	
Total Split (%)	13.4%	28.6%		9.1%	24.3%		13.2%	49.4%		12.9%	49.1%	
Maximum Green (s)	12.8	32.6		7.2	27.0		12.6	59.3		12.2	58.9	
Yellow Time (s)	3.6	3.6		3.6	3.6		3.6	3.9		3.6	3.9	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	4.6	4.6		4.6	4.6		4.6	4.9		4.6	4.9	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	0.2	0.2		0.2	0.2		0.2	3.0		0.2	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	15.0		0.0	15.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	None		None	None		None	Max		None	Max	
Walk Time (s)		7.0			7.0			7.0			7.0	
Flash Dont Walk (s)		19.0			20.0			15.0			18.0	
Pedestrian Calls (#/hr)		0			0			0			0	

	•	→	\rightarrow	•	←	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Act Effct Green (s)	12.8	24.8		7.0	16.6		12.6	64.3		9.9	59.1	
Actuated g/C Ratio	0.11	0.21		0.06	0.14		0.11	0.54		80.0	0.49	
v/c Ratio	0.93	0.75		0.57	0.47		0.85	0.47		0.51	0.91	
Control Delay	106.1	48.5		78.9	41.2		89.9	20.2		66.9	38.0	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Delay	106.1	48.5		78.9	41.2		89.9	20.2		66.9	38.0	
LOS	F	D		Ε	D		F	С		Ε	D	
Approach Delay		69.9			53.4			30.9			39.3	
Approach LOS		Ε			D			С			D	
Queue Length 50th (ft)	134	174		44	66		120	221		55	555	
Queue Length 95th (ft)	#302	276		#111	125		#268	334		111	#837	
Internal Link Dist (ft)		851			2455			475			2550	
Turn Bay Length (ft)	185			185			280			280		
Base Capacity (vph)	184	492		105	408		184	1863		177	1683	
Starvation Cap Reductn	0	0		0	0		0	0		0	0	
Spillback Cap Reductn	0	0		0	0		0	0		0	0	
Storage Cap Reductn	0	0		0	0		0	0		0	0	
Reduced v/c Ratio	0.93	0.59		0.55	0.30		0.85	0.47		0.41	0.91	

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 119.9

Natural Cycle: 125

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.93 Intersection Signal Delay: 41.8 Intersection Capacity Utilization 86.6%

Intersection LOS: D ICU Level of Service E

Analysis Period (min) 15

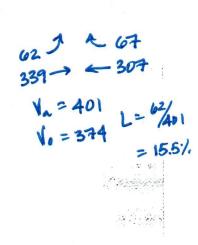
95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 3: Meridian Ave E (SR 161) & 24th St E

Synchro 9 Report 11/29/2019 2:45 pm

Intersection												
Int Delay, s/veh	5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBI	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	231	37	174	166	1	14		132	1	0	0
Future Vol, veh/h	1	231	37	174	166	1	14	1 0	132	1	0	0
Conflicting Peds, #/hr	1	0	0	0	0	1	(0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None			None	-	-	None
Storage Length	-	-	-	-	-	-			-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		- 0	-	-	0	-
Grade, %	-	0	-	-	0	-		- 0	-	-	0	-
Peak Hour Factor	84	84	84	75	75	75	77	77	77	25	25	25
Heavy Vehicles, %	2	2	2	3	3	3	{	8	8	0	0	0
Mvmt Flow	1	275	44	232	221	1	18	3 0	171	4	0	0
Major/Minor	Major1			Major2			Minor ¹			Minor2		
Conflicting Flow All	224	0	0	319	0	0	985		297	1072	1008	223
Stage 1	-	-	-	-	-	-	299			687	687	-
Stage 2	_	_	_	_	_	_	686		_	385	321	_
Critical Hdwy	4.12	_	_	4.13	_	_	7.18		6.28	7.1	6.5	6.2
Critical Hdwy Stg 1	-	_	_	-	_	_	6.18		-	6.1	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	_	6.18		_	6.1	5.5	_
Follow-up Hdwy	2.218	_	_	2.227	_	_	3.572		3.372	3.5	4	3.3
Pot Cap-1 Maneuver	1345	_	_	1235	_	_	22		728	200	242	822
Stage 1	-	_	_	-	_	_	697		-	440	450	
Stage 2	-	_	_	-	_	_	428		_	642	655	_
Platoon blocked, %		_	_		_	_						
Mov Cap-1 Maneuver	1345	_	_	1235	_	_	184	190	728	128	190	821
Mov Cap-2 Maneuver	-	_	_	-	_	_	184		-	128	190	-
Stage 1	-	_	_	-	_	_	696		_	439	353	_
Stage 2	-	-	-	-	-	-	336		-	490	654	-
Approach	EB			WB			NE	}		SB		
HCM Control Delay, s	0			4.4			14.5			34		
HCM LOS	Ü			1.1			E			D		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR S	SRI n1					
Capacity (veh/h)	567	1345	LDI	- 1235	VVDI	VV DIV V	128					
HCM Lane V/C Ratio	0.334		-	- 0.188	-	-	0.031					
HCM Control Delay (s)	14.5	7.7	0	- 8.6	0	-	34					
HCM Lane LOS	14.5 B	Λ. Λ	A	- 0.0 - A	A	-	54 D					
HCM 95th %tile Q(veh)	1.5	0	Α -	- A	A	-	0.1					
HOW FOUT FOUND Q(VEH)	1.3	U	-	- 0.7	-	-	U. I					

Intersection	3.1											
Int Delay, s/veh												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NE			SBL	SBT	SBR
Lane Configurations	_	4			4	_		4			4	
Traffic Vol, veh/h	5	371	0	2	350	8		1 (26	0	17
Future Vol, veh/h	5	371	0	2	350	8		1 (26	0	17
Conflicting Peds, #/hr	1	0	0	0	0	1		0 (0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Sto	p Stop		Stop	Stop	
RT Channelized	-	-	None	-	-	None		-	None	-	-	None
Storage Length	-	-	-	-	-	-		-		-	-	-
Veh in Median Storage, #	-	0	-	-	0	-		- (-	0	-
Grade, %	-	0	-	-	0	-		- (-	0	-
Peak Hour Factor	94	94	94	90	90	90	(3 63	63	34	34	34
Heavy Vehicles, %	100	3	0	0	1	100		0 (31	0	29
Mvmt Flow	5	395	0	2	389	9		2 () 6	76	0	50
Major/Minor	Major1			Major2			Mino	r 1		Minor2		
Conflicting Flow All	399	0	0	395	0	0	82		395	807	804	394
Stage 1	-	-	-	-	-	-	4(399	399	-
Stage 2	_	_	_	_	_	_	42			408	405	-
Critical Hdwy	5.1	_	_	4.1	-	_		.1 6.5		7.41	6.5	6.49
Critical Hdwy Stg 1	-	_	_	-	_	_		.1 5.5		6.41	5.5	-
Critical Hdwy Stg 2	_	_	_	_	_	_		.1 5.5		6.41	5.5	-
Follow-up Hdwy	3.1	_	_	2.2	-	_		.5 4		3.779	4	3.561
Pot Cap-1 Maneuver	780	_	_	1175	_	_	29			268	319	600
Stage 1	-	_	_	-	_	_	62			573	606	-
Stage 2	_	_	_	_	_	_	6			566	602	-
Platoon blocked, %		_	_		_	_	ŭ	000	•	000	002	
Mov Cap-1 Maneuver	780	_	_	1175	_	_	26	6 314	659	263	316	599
Mov Cap-2 Maneuver	-	_	_	-	_	_	26			263	316	-
Stage 1	_	_	_	_	_	_	62			568	604	_
Stage 2	-	-	-	-	-	-	56			556	597	-
Approach	EB			WB			N	В		SB		
HCM Control Delay, s	0.1			0			12			21.9		
HCM LOS	0.1			O			12	В		C C		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR WBL	WBT	WBR:	SBLn1					
Capacity (veh/h)	509	780	-	- 1175	-		338					
HCM Lane V/C Ratio		0.007	_	- 0.002	_	-	0.374					
HCM Control Delay (s)	12.2	9.6	0	- 8.1	0		21.9					
HCM Lane LOS	12.2 B	9.0 A	A	- 0.1 - A	A	-	21.9 C					
HCM 95th %tile Q(veh)	0	0	А	- A	- A	-	1.7					
TIGIVI 73111 /0111E Q(VEII)	U	U	-	- 0	-	-	1.7					


Intersection	7.4						
3 .	7.1						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	<u>ነ</u>	↑	4		7	<u>*</u> *	
raffic Vol, veh/h	62	339	307	67	87	53	
Future Vol, veh/h	62	339	307	67	87	53	
Conflicting Peds, #/hr	_ 0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	100	None	-	None	-	None	
Storage Length	100	-	-	-	0	0	
/eh in Median Storage, #	-	0	0	-	0	-	
Grade, %	- 04	0	0	-	0	-	
Peak Hour Factor	94	94	90	90	34	34	
leavy Vehicles, %	0	3	1	0	0	0	
//vmt Flow	66	361	341	74	256	156	
Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	416	0	-	0	871	378	
Stage 1	-	-	-	-	378	-	
Stage 2	-	_	-	-	493	_	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1154	-	-	-	324	673	
Stage 1	-	-	-	-	697	-	
Stage 2	-	-	-	-	618	-	
Platoon blocked, %		-	-	-			
Nov Cap-1 Maneuver	1154	-	-	-	305	673	
Nov Cap-2 Maneuver	-	-	-	-	427	-	
Stage 1	-	-	-	-	697	-	
Stage 2	-	-	-	-	583	-	
Approach	EB		WB		SB		
HCM Control Delay, s	1.3		0		20.3		
HCM LOS	1.3		0		C C		
Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1 SBLn2				
Capacity (veh/h)	1154	_	427 673				
ICM Lane V/C Ratio	0.057	_	0.599 0.232				
ICM Control Delay (s)	8.3	_	25.3 12				
ICM Lane LOS	0.5 A	_	D B				
		_					
HCM 95th %tile Q(veh)	0.2	-	3.8 0.9				

APPENDIX D Channelization Analysis Details & Queue Model Results

PSD-NORTHWOOD EVEM. REPLACEMENT MAIN ACCESS FOR AUTO WAD / UN WAD

AFTERNOON DISMISSAL

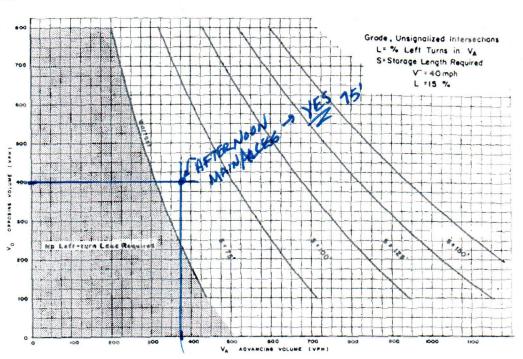


Figure 4. Warrant for left-turn storage lanes on two-lane highways.

MORNING APRIVAL

 $92 \int 105$ $276 \rightarrow 238$ $V_0 = 368$ $V_0 = 343$ $V_0 = 343$

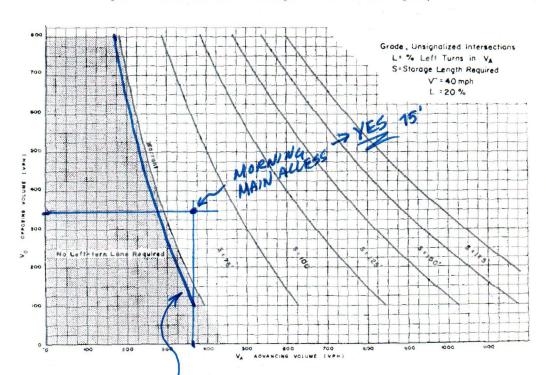


Figure 5. Warrant for left-turn storage lanes on two-lane highways.

ESTIMATED L=25% CURVE.

PSD - NORTHWOOD EVEM. REPLACEMENT BUS/STAFF ACCESS (WEST)

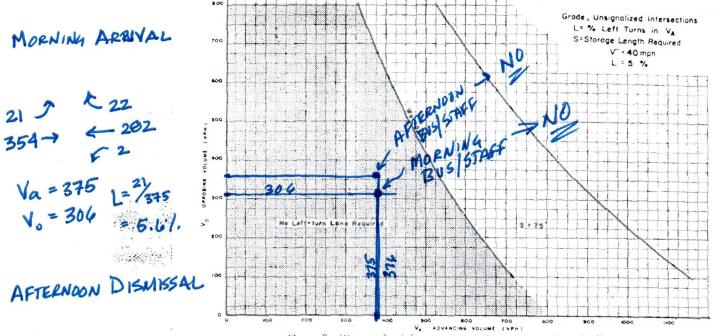


Figure 2. Warrant for left-turn storage lanes on two-lane highways.

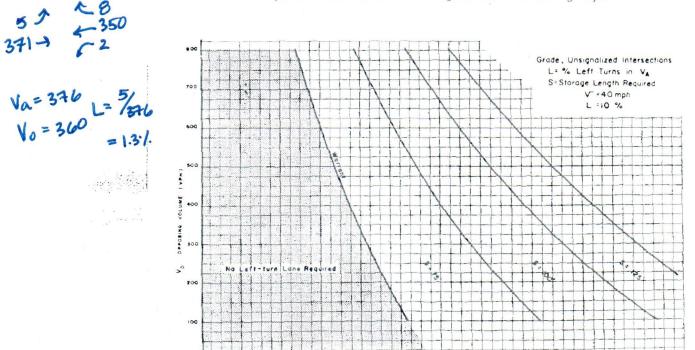


Figure 3. Warrant for left-turn storage lanes on two-lane highways.

Exhibit 1310-7a Left-Turn Storage Guidelines: Two-Lane, Unsignalized

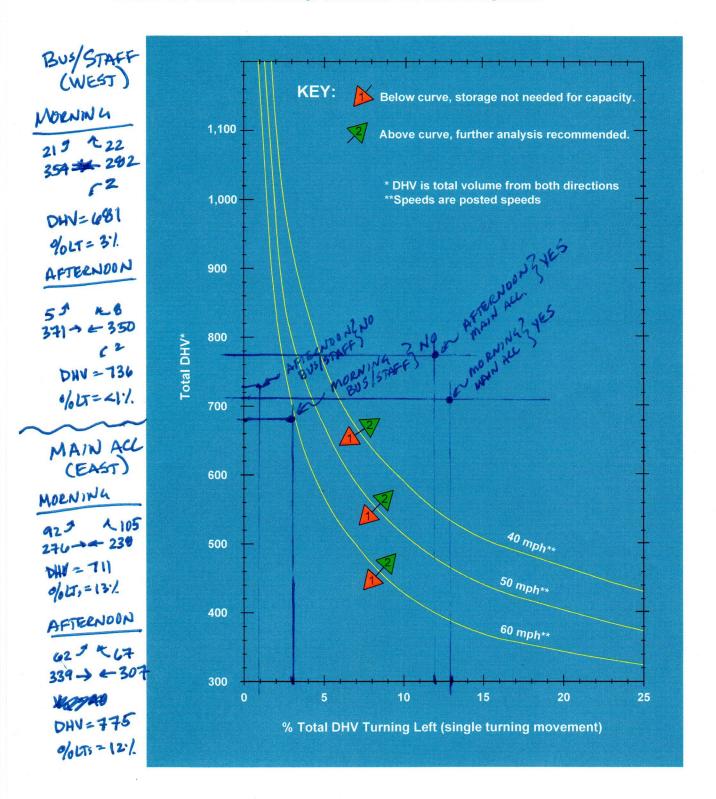
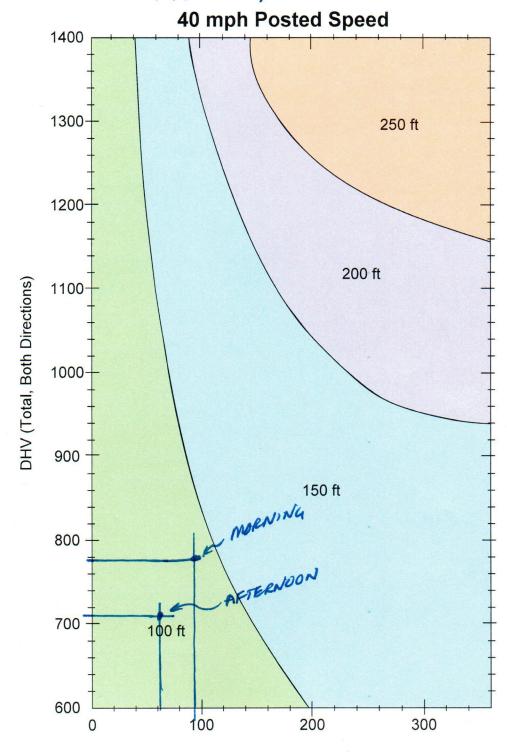
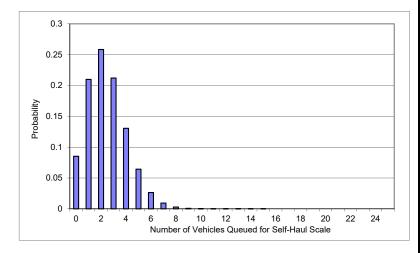



Exhibit 1310-8a Left-Turn Storage Length: Two-Lane, Unsignalized (40mph)

MORNING - DHV = 711; LT. = 92 AFTERNOUN - DHV = 775; LT3 = 62


Hourly Left Turns in One Direction

M/M/s Queueing Model for Puyallup School Disitrct's Northwood Elementary Load/Unload Zone

Morning Peak Hour (Arrival)

	Data	
$\lambda =$	591	(average arrival rate)
$\mu =$	240.0	(average service rate)
s =	10	(# servers)

where:

L = average number of vehicles queued at the load/unload zone at any one time $L_{\mbox{\tiny d}}\text{=}\text{average}$ number of vehicles in queue

W = average wait time at the load/unload zone (hours)

W_q = ave. wait time in queue (hours)

 ρ = Load/Unload Zone utilization

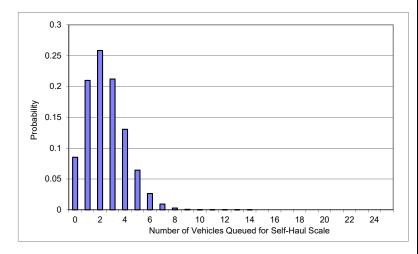
P₀ = probability of 0 vehicles at the Load/Unload Zone

P₁ = probability of 1 vehicle at the Load/Unload Zone, etc.

2 =Average number of vehicles at the load/unload zone at any one time

5 =Peak (95th-percentile) number of vehicles in load/unload zone at any one time

96.0% <= Closest probability to 95%


	Results		
L =	2.462583458		
$L_a =$	8.34578E-05		
4		Minutes	
W =	0.004	0.3	
$W_{\alpha} =$	0.000	0.0	
7			
ρ =	0.24625		
		Prob < x	vehicles
$P_0 =$	0.085220869	8.5%	0
$P_1 =$	0.209856391	29.5%	1
$P_2 =$	0.258385681	55.3%	2
$P_3 =$	0.21209158	76.6%	3
P ₄ =	0.130568879	89.6%	4
P ₅ =	0.064305173	96.0%	5
$P_6 =$	0.026391915	98.7%	6
$P_7 =$	0.009284299	99.6%	7
P ₈ =	0.002857823	99.9%	8
P ₉ =	0.000781932	100.0%	9
$P_{10} =$	0.000192551	100.0%	10
P ₁₁ =	4.74156E-05	100.0%	11
$P_{12} =$	1.16761E-05	100.0%	12
$P_{13} =$	2.87524E-06	100.0%	13
P ₁₄ =	7.08028E-07	100.0%	14
P ₁₅ =	1.74352E-07	100.0%	15
$P_{16} =$	4.29341E-08	100.0%	16
P ₁₇ =	1.05725E-08	100.0%	17
$P_{18} =$	2.60349E-09	100.0%	18
P ₁₉ =	6.41108E-10	100.0%	19
$P_{20} =$	1.57873E-10	100.0%	20
P ₂₁ =	3.88762E-11	100.0%	21
P ₂₂ =	9.57327E-12	100.0%	22
P ₂₃ =	2.35742E-12	100.0%	23
P ₂₄ =	5.80514E-13	100.0%	24
P ₂₅ =	1.42952E-13	100.0%	25
P ₂₅ =	3.52018E-14	100.0%	26
$P_{26} =$	8.66845E-15	100.0%	27
$P_{27} =$	2.13461E-15	100.0%	28
P ₂₈ =	5.25647E-16	100.0%	29
P ₂₉ =	1.2944E-16	100.0%	30
$P_{30} =$	3.18747E-17	100.0%	31
P ₃₁ =	7.84915E-18	100.0%	32
$P_{32} =$	1.93285E-18	100.0%	33
P ₃₃ =	4.75965E-19	100.0%	34
P ₃₄ =	1.17206E-19	100.0%	35
P ₃₅ =	2.88621E-20	100.0%	36
P ₃₆ =	7.10729E-21	100.0%	37
P ₃₇ =	1.75017E-21	100.0%	38
P ₃₈ =	4.30979E-22	100.0%	39
P ₃₉ =	1.06129E-22	100.0%	40
P ₄₀ =	2.61342E-23	100.0%	41

$\hbox{M/M/s Queueing Model for Puyallup School Disitrct's Northwood Elementary Load/Unload Zone}$

Morning Peak Hour (Arrival)

	Data	
$\lambda =$	591	(average arrival rate)
$\mu =$	240.0	(average service rate)
s =	15	(# servers)

where

L = average number of vehicles queued at the load/unload zone at any one time $L_{\mbox{\tiny d}}\text{=}\text{average}$ number of vehicles in queue

W = average wait time at the load/unload zone (hours)

W_q = ave. wait time in queue (hours)

 ρ = Load/Unload Zone utilization

P₀ = probability of 0 vehicles at the Load/Unload Zone

P₁ = probability of 1 vehicle at the Load/Unload Zone, etc.

2 =Average number of vehicles at the load/unload zone at any one time

5 =Peak (95th-percentile) number of vehicles in load/unload zone at any one time

96.0% <= Closest probability to 95%

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Results				
$\begin{array}{c} W = \\ W_q = \\ 0.000 \\ \hline \\ P_q = \\ 0.164166667 \\ \hline \\ P_q = \\ 0.08522163 \\ P_1 = \\ 0.209858265 \\ P_2 = \\ 0.258387988 \\ 55.3\% \\ 2 \\ P_3 = \\ 0.212093474 \\ P_6 = \\ 0.0643057045 \\ P_5 = \\ 0.064305747 \\ P_6 = \\ 0.02639215 \\ P_7 = \\ 0.009284381 \\ P_8 = \\ 0.002857849 \\ P_9 = \\ 0.000781939 \\ P_{10} = \\ 0.000192553 \\ P_{11} = \\ 4.31055E-05 \\ P_{12} = \\ 8.84561E-06 \\ 100.0\% \\ 10 \\ P_{13} = \\ 1.67556E-06 \\ 100.0\% \\ 11 \\ P_{15} = \\ 4.83831E-08 \\ P_{16} = \\ 7.94289E-09 \\ P_{10} = \\ 3.51426E-11 \\ P_{20} = \\ 5.76924E-12 \\ P_{20} = \\ 5.76924E-12 \\ P_{20} = \\ 5.76924E-12 \\ P_{22} = \\ 1.55485E-13 \\ P_{22} = \\ 1.2935E-16 \\ P_{23} = \\ 2.55255E-14 \\ 100.0\% \\ 20 \\ P_{24} = \\ 4.19043E-15 \\ P_{25} = \\ 6.87929E-16 \\ P_{26} = \\ 1.85402E-17 \\ P_{27} = \\ 3.04368E-18 \\ 100.0\% \\ 30 \\ P_{33} = \\ 2.21074E-21 \\ 100.0\% \\ 30 \\ P_{34} = \\ 9.78123E-24 \\ 100.0\% \\ 31 \\ P_{25} = \\ 6.87929E-16 \\ 100.0\% \\ 32 \\ P_{26} = \\ 1.85402E-17 \\ 100.0\% \\ 33 \\ P_{33} = \\ 5.95811E-23 \\ P_{34} = \\ 1.00.0\% \\ 35 \\ P_{35} = \\ 1.60575E-24 \\ 100.0\% \\ 36 \\ P_{36} = \\ 2.63611E-25 \\ 100.0\% \\ 37 \\ P_{37} = \\ 4.32761E-26 \\ 100.0\% \\ 39 \\ P_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 9_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 9_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 9_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ $	L =	2.462500011			
$\begin{array}{c} W = \\ W_q = \\ 0.000 \\ \hline \\ P_q = \\ 0.164166667 \\ \hline \\ P_q = \\ 0.08522163 \\ P_1 = \\ 0.209858265 \\ P_2 = \\ 0.258387988 \\ 55.3\% \\ 2 \\ P_3 = \\ 0.212093474 \\ P_6 = \\ 0.0643057045 \\ P_5 = \\ 0.064305747 \\ P_6 = \\ 0.02639215 \\ P_7 = \\ 0.009284381 \\ P_8 = \\ 0.002857849 \\ P_9 = \\ 0.000781939 \\ P_{10} = \\ 0.000192553 \\ P_{11} = \\ 4.31055E-05 \\ P_{12} = \\ 8.84561E-06 \\ 100.0\% \\ 10 \\ P_{13} = \\ 1.67556E-06 \\ 100.0\% \\ 11 \\ P_{15} = \\ 4.83831E-08 \\ P_{16} = \\ 7.94289E-09 \\ P_{10} = \\ 3.51426E-11 \\ P_{20} = \\ 5.76924E-12 \\ P_{20} = \\ 5.76924E-12 \\ P_{20} = \\ 5.76924E-12 \\ P_{22} = \\ 1.55485E-13 \\ P_{22} = \\ 1.2935E-16 \\ P_{23} = \\ 2.55255E-14 \\ 100.0\% \\ 20 \\ P_{24} = \\ 4.19043E-15 \\ P_{25} = \\ 6.87929E-16 \\ P_{26} = \\ 1.85402E-17 \\ P_{27} = \\ 3.04368E-18 \\ 100.0\% \\ 30 \\ P_{33} = \\ 2.21074E-21 \\ 100.0\% \\ 30 \\ P_{34} = \\ 9.78123E-24 \\ 100.0\% \\ 31 \\ P_{25} = \\ 6.87929E-16 \\ 100.0\% \\ 32 \\ P_{26} = \\ 1.85402E-17 \\ 100.0\% \\ 33 \\ P_{33} = \\ 5.95811E-23 \\ P_{34} = \\ 1.00.0\% \\ 35 \\ P_{35} = \\ 1.60575E-24 \\ 100.0\% \\ 36 \\ P_{36} = \\ 2.63611E-25 \\ 100.0\% \\ 37 \\ P_{37} = \\ 4.32761E-26 \\ 100.0\% \\ 39 \\ P_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 9_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 9_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 9_{39} = \\ 1.16632E-27 \\ 100.0\% \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ $	$L_{\alpha} =$	1.13694E-08			
$\begin{array}{c} P_0 = & 0.164166667 \\ P_1 = & 0.209858265 \\ P_2 = & 0.258387988 \\ P_3 = & 0.212093474 \\ P_5 = & 0.064305747 \\ P_6 = & 0.002857849 \\ P_7 = & 0.002857849 \\ P_8 = & 0.002857849 \\ P_9 = & 0.000781939 \\ P_{10} = & 0.000192553 \\ P_{11} = & 4.31055E-05 \\ P_{12} = & 8.84561E-06 \\ P_{13} = & 1.67556E-06 \\ P_{14} = & 2.94719E-07 \\ P_{16} = & 7.94289E-09 \\ P_{19} = & 3.51426E-11 \\ P_{20} = & 5.76924E-12 \\ P_{21} = & 9.47117E-13 \\ P_{22} = & 1.2935E-16 \\ P_{23} = & 2.21074E-21 \\ P_{24} = & 4.9967E-19 \\ P_{29} = & 8.2029E-20 \\ P_{33} = & 5.95811E-23 \\ P_{34} = & 2.24761E-26 \\ P_{25} = & 1.60575E-24 \\ P_{35} = & 1.60575E-24 \\ P_{36} = & 2.21663E-27 \\ P_{37} = & 3.61426E-27 \\ P_{38} = & 2.210066 \\ P_{29} = & 3.04368E-12 \\ P_{29} = & 3.04368E-12 \\ P_{29} = & 3.04368E-12 \\ P_{29} = & 3.04368E-13 \\ P_{29} = & 3.04368E-13 \\ P_{30} = & 1.30066 \\ P_{31} = & 2.100066 \\ P_{32} = & 3.04368E-18 \\ P_{33} = & 3.04368E-18 \\ P_{34} = & 3.00066 \\ P_{35} = & 3.00066 \\ P_{36} = & 3.00066 \\ P_{37} = & 3.04368E-18 \\ P_{29} = & 3.04368E-19 \\ P_{29} = & 3.00966-29 \\ P_{20} = & 3.04368E-19 \\ P_{20} = & 3.0436$	7		Minutes		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W =	0.004	0.3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$W_q =$	0.000	0.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ρ =	0.164166667			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			Prob < x	vehicles	
P2 = 0.258387988 55.3% 2 P3 = 0.212093474 76.6% 3 P4 = 0.130570045 89.6% 4 P5 = 0.064305747 96.0% 5 P6 = 0.02639215 98.7% 6 P7 = 0.009284381 99.6% 7 P8 = 0.002857849 99.9% 8 P9 = 0.000781939 100.0% 9 P10 = 0.000192553 100.0% 10 P11 = 4.31055E-05 100.0% 11 P12 = 8.84561E-06 100.0% 12 P13 = 1.67556E-06 100.0% 13 P14 = 2.94719E-07 100.0% 14 P15 = 4.83831E-08 100.0% 15 P16 = 7.94289E-09 100.0% 16 P17 = 1.30396E-09 100.0% 17 P18 = 2.14067E-10 100.0% 18 P20 = 5.76924E-12 100.0% 20 <th>$P_0 =$</th> <th>0.08522163</th> <th>8.5%</th> <th>0</th>	$P_0 =$	0.08522163	8.5%	0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.209858265	29.5%	1	
P ₄ = 0.130570045 89.6% 4 P ₅ = 0.064305747 96.0% 5 P ₆ = 0.02639215 98.7% 6 P ₇ = 0.009284381 99.6% 7 P ₈ = 0.002857849 99.9% 8 P ₉ = 0.000781939 100.0% 9 P ₁₀ = 0.000192553 100.0% 10 P ₁₁ = 4.31055E-05 100.0% 11 P ₁₂ = 8.84561E-06 100.0% 12 P ₁₃ = 1.67556E-06 100.0% 13 P ₁₄ = 2.94719E-07 100.0% 14 P ₁₅ = 4.83831E-08 100.0% 15 P ₁₆ = 7.94289E-09 100.0% 16 P ₁₇ = 1.30396E-09 100.0% 17 P ₁₈ = 2.14067E-10 100.0% 18 P ₁₉ = 3.51426E-11 100.0% 19 P ₂₀ = 5.76924E-12 100.0% 20 P ₂₁ = 9.47117E-13 100.0% 21 P ₂₂ = 1.55485E-13 100.0% 22 P ₂₃ = 2.55255E-14 100.0% 23 P ₂₅ = 6.87929E-16 100.	$P_2 =$	0.258387988	55.3%	2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$P_3 =$	0.212093474	76.6%	3	
P6 = 0.02639215 98.7% 6 P7 = 0.009284381 99.6% 7 P8 = 0.002857849 99.9% 8 P9 = 0.000192553 100.0% 9 P10 = 0.000192553 100.0% 10 P11 = 4.31055E-05 100.0% 11 P12 = 8.84561E-06 100.0% 12 P13 = 1.67556E-06 100.0% 13 P14 = 2.94719E-07 100.0% 14 P15 = 4.83831E-08 100.0% 15 P16 = 7.94289E-09 100.0% 16 P15 = 4.83831E-08 100.0% 17 P18 = 2.14067E-10 100.0% 17 P18 = 2.14067E-10 100.0% 19 P20 = 5.76924E-12 100.0% 20 P21 = 9.47117E-13 100.0% 21 P22 = 1.55485E-13 100.0% 22 P23 = 2.55255E-14 100.0% 24 </th <th>$P_4 =$</th> <th>0.130570045</th> <th>89.6%</th> <th>4</th>	$P_4 =$	0.130570045	89.6%	4	
P7 = 0.009284381 99.6% 7 P8 = 0.002857849 99.9% 8 P9 = 0.000781939 100.0% 9 P10 = 0.000192553 100.0% 10 P11 = 4.31055E-05 100.0% 11 P12 = 8.84561E-06 100.0% 12 P13 = 1.67556E-06 100.0% 13 P14 = 2.94719E-07 100.0% 14 P15 = 4.83831E-08 100.0% 15 P16 = 7.94289E-09 100.0% 16 P15 = 4.83831E-08 100.0% 17 P16 = 7.94289E-09 100.0% 17 P18 = 2.14067E-10 100.0% 18 P17 = 1.30396E-09 100.0% 18 P18 = 2.14067E-10 100.0% 19 P20 = 5.76924E-12 100.0% 20 P21 = 9.47117E-13 100.0% 21 P22 = 1.55485E-13 100.0%	$P_5 =$	0.064305747	96.0%	5	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$P_6 =$	0.02639215	98.7%	6	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$P_7 =$	0.009284381	99.6%	7	
P ₁₀ = 0.000192553 100.0% 10 P ₁₁ = 4.31055E-05 100.0% 11 P ₁₂ = 8.84561E-06 100.0% 12 P ₁₃ = 1.67556E-06 100.0% 13 P ₁₄ = 2.94719E-07 100.0% 14 P ₁₅ = 4.83831E-08 100.0% 15 P ₁₆ = 7.94289E-09 100.0% 16 P ₁₆ = 7.94289E-09 100.0% 16 P ₁₆ = 7.94289E-09 100.0% 17 P ₁₆ = 7.94289E-09 100.0% 16 P ₁₇ = 1.30396E-09 100.0% 17 P ₁₈ = 2.14067E-10 100.0% 18 P ₁₉ = 3.51426E-11 100.0% 20 P ₂₁ = 9.47117E-13 100.0% 20 P ₂₁ = 9.47117E-13 100.0% 22 P ₂₂ = 1.55485E-13 100.0% 23 P ₂₃ = 2.55255E-14 100.0% 23 P ₂₄ = 4.19043E-	P ₈ =	0.002857849	99.9%	8	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$P_9 =$	0.000781939	100.0%	9	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$P_{10} =$	0.000192553	100.0%	10	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₁₁ =	4.31055E-05	100.0%	11	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₁₂ =	8.84561E-06	100.0%	12	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₁₃ =	1.67556E-06	100.0%	13	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₁₄ =	2.94719E-07	100.0%	14	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₁₅ =	4.83831E-08	100.0%	15	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		7.94289E-09	100.0%	16	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.30396E-09	100.0%	17	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		2.14067E-10	100.0%	18	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₁₉ =	3.51426E-11	100.0%	19	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₂₀ =	5.76924E-12	100.0%	20	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₂₁ =	9.47117E-13	100.0%	21	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.55485E-13	100.0%	22	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		2.55255E-14	100.0%	23	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		4.19043E-15	100.0%	24	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₂₅ =	6.87929E-16	100.0%	25	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.12935E-16	100.0%	26	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.85402E-17	100.0%	27	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₂₇ =	3.04368E-18	100.0%	28	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂₈ =	4.9967E-19	100.0%	29	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P ₂₉ =	8.20292E-20	100.0%	30	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1.34665E-20	100.0%	31	
$\begin{array}{llllllllllllllllllllllllllllllllllll$			100.0%	32	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		3.6293E-22	100.0%	33	
$P_{34} = 9.78123E-24$ 100.0% 35 $P_{35} = 1.60575E-24$ 100.0% 36 $P_{36} = 2.63611E-25$ 100.0% 37 $P_{37} = 4.32761E-26$ 100.0% 38 $P_{38} = 7.1045E-27$ 100.0% 39 $P_{39} = 1.16632E-27$ 100.0% 40		5.95811E-23	100.0%	34	
$P_{35} = 1.60575E-24$ 100.0% 36 $P_{36} = 2.63611E-25$ 100.0% 37 $P_{37} = 4.32761E-26$ 100.0% 38 $P_{38} = 7.1045E-27$ 100.0% 39 $P_{39} = 1.16632E-27$ 100.0% 40					
P ₃₆ = 2.63611E-25 100.0% 37 P ₃₇ = 4.32761E-26 100.0% 38 P ₃₈ = 7.1045E-27 100.0% 39 P ₃₉ = 1.16632E-27 100.0% 40					
P ₃₇ = 4.32761E-26 100.0% 38 P ₃₈ = 7.1045E-27 100.0% 39 P ₃₉ = 1.16632E-27 100.0% 40					
P ₃₈ = 7.1045E-27 100.0% 39 P ₃₉ = 1.16632E-27 100.0% 40					
P ₃₉ = 1.16632E-27 100.0% 40					
···	P ₄₀ =				