Space and all the matter and energy in it.

The Universe

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Night Sky

- Observing the sky dates to ancient times.
- Stars:
 - Appear as point sources of light.
 - Able to generate their own light.
 - Stars twinkle because of differences in the atmosphere
 - The Sun:
 - An average sized star.
 - About 5 billion years old!

Light Year

- Unit used to measure distances in the universe.
- Equal to the **DISTANCE** that **light travels in 1 year**.
 - 1light year = 6 trillion miles!
- Light travels at 300,000 km/sec (186,000 mi/sec)
 - Our Galaxy, the Milky Way is about 100,000 light years in diameter!
 - The second closest star to us is over 4 light years away!

Our own galaxy, the Milky Way!

<u>Stars</u>

- Massive, dense balls of gas (mostly hydrogen).
- They give off tremendous amounts of **ENERGY**.
- Powered by **fusion reactions**:

Hydrogen atoms fuse to form Helium atoms.

- This is a THERMO-nuclear reaction:
 - Thermo = heat (released)
 - Nuclear = involves the NUCLEUS of the atom

Star Anatomy

- 1. <u>Core</u>:
 - Very hot, dense, central region.
 - Nuclear fusion occurs here.
 - Releases electromagnetic radiation
- 2. Radiation zone:
 - Region of **compressed gas**.
 - Takes radiations thousands of years to pass through it!
 - Less dense than core.
- 3. Convection zone:
 - Here hot gases rise, cool and sink again.
 - This process emits light, heat and other electromagnetic radiation into space

Electromagnetic Radiation

- A term used to describe all the different kinds of energies released into space by stars such as the Sun.
- They all **travel in waves** and are made of tiny **particles called photons**.
- They differ in their wavelengths.

Star Atmosphere

• The **atmosphere** of a star has **3 layers**:

1. Photosphere –

- Innermost layer
- Actual surface of the star
- Bubble-like granules are tops of the convection currents.

2. Chromosphere –

- Middle layer
- Higher temperature
- Reddish light

3. <u>Corona</u> –

- Outermost layer
- Extends millions of miles into space.

Star Color & Temperature

Class	Temperature (kelvins)	Conventional color
0	≥ 33,000 K	blue
в	10,000–30,000 K	blue to blue white
Α	7,500-10,000 K	white
F	6,000–7,500 K	yellowish white
G	5,200-6,000 K	yellow
к	3,700–5,200 K	orange
М	≤ 3,700 K	red

- Stars have different colors.
- Their color is mostly related to their surface temperature:
 - Blue: hottest
 - Red: coolest
- Classification scheme:
 - Based on temperature hottest to coolest or OBAFGKM
 - Only Bored Astronomers Find Gratification Knowing Mnemonics!!

http://www.youtube.com/watch?v= lurFmd8xDe0

Brightness of Stars

Measuring Brightness:

1. Apparent Magnitude:

Brightness as it appears from Earth. (depends on distance)

2. Absolute Magnitude:

How bright a star **ACTUALLY** is. This is an intrinsic quality of the star and known as **LUMINOSITY**.

Luminosity:

Amount of light the star emits.

H – R Diagram

Hertzsprung-Russell Diagram

- Relationship between
 luminosity (or absolute magnitude) and **temperature** (or spectral class) of stars.
- Shows how stars change over time.

Some star stages:

- Main sequence stars
- Red giants
- White dwarfs

http://www.youtube.com/watch?v= Kqe6F-Qf9Tk

Star Evolution

- How stars change throughout their life.
- Stars are born, live, grow old, die.
- The lifetime of a star depends on it's **mass**:
 - Less massive stars have longer lives... Fuse hydrogen SLOWER
 - More massive stars have shorter lives...
 Fuse hydrogen FASTER
 - http://www.youtube.com/watch?v=4s7vyDLgk3M

Nebula

- The **birthplace** of stars.
- A massive cloud of gas and dust, **mostly hydrogen**.
- This cloud collapses into clusters...due to **gravity**.
- Eventually a **PROTOSTAR** forms.
- **Protostar** = a newborn star.

Main Sequence

This Protostar eventually settles into a balance of the 2 forces acting on it:
1) Inward force of gravity
2) Outward force of pressure (from nuclear fusion)

It is now called a Main Sequence Star.

Stars spend most of their life in this stage!!!

Red Giant

- Main Sequence stars will eventually run out of hydrogen fuel...
- When this happens, the star will start fusing helium to form carbon. 3He → C + energy

• This reaction gives off more energy and the star will **expand** into a **Red Giant**.

More about Red Giants

- A Red Giant is a star in old age...
- It expands and swallows up any planets in its orbit.

https://www.youtube.co m/watch?v=r35EooKvFs&spfreload=10

Mass Decides the Rest!

• Three possible outcomes for a Red Giant:

1. Low mass stars –

will collapse into a White Dwarf. (our sun)

2. Mid mass stars -

will form a **planetary nebula** and then a **White Dwarf**.

3. High mass stars -

will explode into a **Supernova** and then form a **neutron star** or a **black hole**.

Star Life Cycle Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The End → Low & Mid Mass Stars

- Star core is now all **carbon**, surrounded by **Helium** and **Hydrogen**.
- With less fusion pressure gravity wins and the star collapses.
- The outer layers are blown away...this forms a planetary nebula.
- The carbon core contracts to form a **white dwarf**.

The End → High Mass Stars

- Carbon starts to fuse!
- This causes...
 - 1. Many elements to form...all the way up to IRON.
 - 2. Finally, the star collapses and explodes.
 - 3. This is a supernova!

Supernova!

- <u>http://www.youtube.com/watch?v=tXV9mtY1Aol</u>
- The end event for high mass stars.
- Creates all the elements of the Periodic Chart!
- What's left???
 Neutron star
 OR
 Black Hole

End States for Massive Stars

1. <u>Neutron star</u>:

- Remaining core is smaller
- Gravitational pressure fuses protons and electrons into neutrons.
- A rotating neutron star emits light and is called a Pulsar.

2. Black hole:

- Remaining core is bigger
- Gravitational pressure overwhelms all forces!
- Even light cannot escape the dense, compact mass of the Black Hole!

Gravity is the most important force in the universe!!

Neutron Stars & Black Holes

<u>http://www.youtube.com/watch?v=awzk6YbP7QA&feat</u>
 <u>u</u>

Star Life Cycle Summary

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

http://www.youtube.com/watch?v=mzE7VZ MT1z8

- A large assembly of **millions to hundreds of billions** of stars. Along with **gas and dust**.
- Held by gravitational forces of all its member stars
- A **basic unit** of the universe.
- Classified by their **shapes** into **three main types**.

3 Types of Galaxies

<u>Spiral</u>

have arms of stars, gas, and dust that curve away from the center of the galaxy in a spiral pattern **Ex. – Milky** Way

Elliptical

shaped like spheres or eggs; have almost no dust or gas between stars; contain old stars

<u>Irregular</u>

faint galaxies without a definite shape; smaller than the other types of galaxies; contain fewer stars

The process of galaxies colliding to create a larger galaxy is known as "galactic cannibalism."

The Milky Way

- Our galaxy!!
- Contains about 300 billion stars
- **Diameter** ~100,000 ly
- <u>Structure</u>:
 - 1. <u>Nucleus</u> concentration of stars
 - 2. Rotating flattened disk of more stars, hydrogen gas and other elements.
 - **3.** <u>Spherical halo</u> Containing star clusters.

Other Galaxies

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

- Our nearest neighbors:
 - 1. Dwarf galaxy -
 - ~1,000 light years in diameter
 - Being pulled apart by the gravity of our galaxy.
 - 2. Andromeda -
 - 2 million light years away
 - Very similar to Milky Way

• **Billions** of other galaxies exist in the universe.

- A smaller number of stars **within a galaxy** that are bound by gravity.
- May consist of two stars (known as a <u>binary system</u>), three stars (known as <u>ternary systems</u>) or up to hundreds or thousands of stars (a <u>star cluster</u>)
 - Example is the Pleiades Star Cluster!

The Big Bang Theory

- Theory that the universe began about 13.7 billion years ago from an initial release of energy.
- The Big Bang theory is a **model** which helps explain **observed facts** about the universe.
- Supporting evidence:
 1. Expansion of the Universe.
 2. Cosmic background radiation.

Misconception: Describing this theory as the "Big Bang" misnomer because there really was not an explosion.

Expansion of the Universe

- In 1929, Edwin Hubble, observed that galaxies were moving away from each other. This idea of an "expanding" universe formed the basis of the Big Bang theory.
- This is now known as "Hubble Law".
- <u>Hubble Law</u> the farther away a galaxy is, the faster it is moving away from us!

"Equipped with his five senses, man explores the universe around him and calls the adventure Science."

Edwin Powell Hubble

The Doppler Effect

- The apparent change in wavelength of a sound or light source caused by the relative motions of the source and/or the observer.
- <u>http://www.youtube.com/watch?v=Kg9F5pN5tll</u>

Redshift

 A characteristic of light waves. As the wavelength spreads out it "shifts" into the red end of the spectrum:

Red Shift/Blue Shift The Doppler Effect with Ligh,

Big Bang Theory & Doppler Effect

http://www.youtube.com/watch?v=0rJPvGML9A0

More Evidence: Cosmic Background Radiation

 In 1965, astronomers Arno Penzias and Robert Wilson discovered Cosmic Background Radiation and won the 1978 Nobel Prize.

http://www.youtube.com/watch?v=McvfJ_fIYvo

Cosmic Background Explorer

- Launched in 1989 to investigate cosmic (microwave) background radiation and provide measurements that would shape our understanding of the universe.
- <u>http://www.youtube.com/watch?v=_mZQ-5-KYHw</u>

Hubble Space Telescope

- Named in honor of Edwin Hubble and launched in 1990.
- Hubble is a telescope that orbits Earth. Its position above the atmosphere (~350 miles up) gives it a view of the universe that far surpasses that of ground-based telescopes.
- One of NASA's most successful and long-lasting missions. It has beamed hundreds of thousands of images back to Earth.
- <u>http://www.youtube.com/watch?v=oAVjF_7ensg</u>

Big Bang in the Future

- The Big Bang model describes **our current** understanding of the universe.
- New discoveries, like dark matter and dark energy, will lead to refinement of today's theories.
- Science is a process!!

The more we know...the more we know we don' t know!!

Universe Topics

•	Quasars	Theory of Relativity
•	Pulsars	The Big Bang
•	Andromeda Galaxy	Hubble telescope
•	Birth of a star	Extraterrestrial life
•	Galaxy clusters	Ancient Astronomy
•	Neutron stars	Constellations
•	Classifying stars	Solar Eclipse
•	Classifying galaxies	Supernova
•	Black holes	Space exploration
•	Time travel	Travel at the speed
•	Dark matter	The Milky Way

Cosmic rays

of light Expanding Universe