\qquad

GEOMETRY HONORS SUMMER PACKET

This packet covers the first half of Chapter 1: Geometry Basics from the book we will be using as a resource for all Geometry Courses (Everything You Need to Ace Geometry in One Big Fat Notebook).
Completing this packet is a requirement for the Geometry Honors Course.

Topics Covered:

- Points, Lines, \& Planes
- Segment Addition Postulate
- Angles \& Angle Addition Postulate
- Angle Pairs \& Angle Relationships

HEADS UP: On the first two days of school we will review the material in a series of activities. On the third day of class there will be a graded quiz based on this material. This will be one of the first items in the gradebook for this course.
Below I have provided some links to help you with this packet. This packet is adapted from the work by Gina Wilson. You will notice that the first video does not exactly correlate with everything in this packet. Anything that seems to be missing can be found in the Everything You Need to Ace Geometry in One Big Fat Notebook. The following sections (1.1.B, 1.2, and 1.3) go along with the video better, the formatting of the pages is just slightly different.

Topics Covered	Helpful Video Links
1.1.A Points, Lines, and Planes	$\underline{\text { https://youtu.be/zPq8Taa_yp8 }}$
1.1.B Segment Addition Postulate	$\underline{\text { https://youtu.be/8UpYWkNswPs }}$
1.2 Angles \& Angle Addition Postulate	$\underline{\text { https://youtu.be/VNBOWkmK2To }}$
1.3 Angle Pairs \& Angle Relationships	$\underline{\text { https://youtu.be/pqJjX2k8kAs }}$

I have provided the page numbers in the Everything You Need to Ace Geometry in One Big Fat Notebook that go with each section at the top of each section. The picture to the right is an example of how the page numbers are being provided. For example, this picture say $2-7$ which means that the information for this section can be found in pages 2 through 7 in the Everything You Need to Ace Geometry
 in One Big Fat Notebook

I LOOK FORWARD TO MEETING YOU SOON AND I HOPE YOU ALL HAVE A WONDERFUL SUMMER! SEE YOU IN AUGUST! - MRS. OHRT

Unit 1: Basics of geometry [Honors Summer Packit]

1.1.A POINTS, LINES, \& Planes

LESSON OBJECTIVE: I can use definitions of basic geometry terms to properly name figures in a given diagram.

POINT	- A point is a \qquad - It has no \qquad or \qquad - Always use a single CAPITAL LETTER to name a point. Example: \qquad
	- A line is made up of \qquad - Any \qquad points form a line. - A line has not \qquad or \qquad . - Name a line by any two points anywhere on the line with \leftrightarrow over the top of them, or a lowercase script letter that might be next to the line. Example: \qquad
LINE SEGMENT	- A line segment is made up of \qquad - The difference between a line and a line segment is that a line segment stops, it does not continue. - Name a line segment using the two endpoints with - over the top of them. Example: \qquad
	- A ray starts at a point and extends \qquad (forever) in one direction. - Name a ray by using the endpoint and another point on the line with $a \rightarrow$ over the top of them. The order DOES matter! Example: \qquad
	- A vertex is the point of \qquad between two or more segments, rays, or lines. Example: \qquad - When referring to more than one vertex it is vertices (vur-tuh-seez)
	- An angle is formed by \qquad with the same endpoint (this endpoint is referred to as the vertex of the angle) Example: \qquad
TRIANGLE	- A triangle is a shape with \qquad sides and \qquad vertices ** We will learn more about triangles in Unit 3

PARALLEL LINES (the same

Naming POints, Lines, \& Planes Practice!

1. Use the diagram to the right to name the following.
a) Four collinear points. \qquad
b) A line that contains point M.
c) A line that contains points H and K . \qquad
d) Another name for line q.
e) The intersection of lines p and r.

2. Use the diagram to the right to name the following.
a) A line containing point F. \qquad
b) Another name for line k. \qquad
c) A plane containing point A. \qquad
d) An example of three non-collinear points. \qquad
e) The intersection of plane M and line K. \qquad

3. Use the diagram to the right to name the following.
a) Three coplanar points. \qquad
b) A plane containing point X. \qquad
c) The intersection of plane R and plane $Z V Y$.
d) How many planes appear in the figure? \qquad

e) How many planes contain point W? \qquad
4. Use the diagram to the right to name the following.
a) The intersection of lines I and m. \qquad
b) Another name for plane Q.
c) Aare points D and E collinear or coplanar? \qquad
d) How many times do planes P and Q intersect? \qquad

Homework 1.1.A : Points, Lines, \& Planes

1. Use the diagram to the right to name the following.
a) How many points appear in the figure? \qquad
b) How many lines appear in the figure? \qquad
c) How many planes appear in the figure? \qquad
d) Name a line containing point V. \qquad
e) Name the intersection of lines a and b. \qquad
f) Give another name for line b. \qquad

g) Name three non-collinear points. \qquad
h) Give another name for plane \mathcal{D}. \qquad
2. Use the diagram to the right to name the following.
a) How many points appear in the figure? \qquad
b) How many lines appear in the figure? \qquad
c) How many planes appear in the figure? \qquad
d) Name three collinear points.
e) Name four non-coplanar points. \qquad
f) Give another name for line e.
g) Name the intersection of $\overleftrightarrow{P Q}$ and $\overleftrightarrow{M O}$. \qquad
h) Name the intersection of plane \mathcal{K} and line c. \qquad

i) Give another name for plane \mathcal{L}. \qquad
j) Give another name for $\overleftrightarrow{P Q}$. \qquad
3. Use the diagram to the right to name the following.
a) How many points appear in the figure? \qquad
b) How many lines appear in the figure? \qquad
c) How many planes appear in the figure? \qquad
d) Name three collinear points. \qquad
e) Name four coplanar points. \qquad

f) Name the intersection of planes $A B C$ and $A B E$. \qquad
g) Name the intersection of planes $B C H$ and $D E F$.
h) Name the intersection of $\overline{A D}$ and $\overline{D F}$. \qquad

Unit 1: Basics of geometry [Honors Summer Packit]

1.1.B SEGMENT ADDITION POSTULATE

LLSSON OBJLCTIVE: I can use the segment addition postulate to find the measure of indicated lengths.

MEASURING SEGMENTS	The distance between two points A and B can be written as \qquad or \qquad BAR $\xrightarrow{\longrightarrow} \overline{A B}$ name of the line segment NO BAR $\rightarrow A B$ length of the line segment		
CONGRUENT SEGMENTS	If \qquad , then the segments are congruent. This is written as \qquad		
SEGMENT ADDITION POSTULATE	If A, B, and C, are collinear points and B is between A and C, then:		
Examples	Use the diagram below for questions 1 and 2	1. If $P Q=9$ and $Q R=28$, find $P R$.	
	3. If $E G=71$, find the value of x.	4. If $T V=14 x-8$, find $T U$.	
	5. If $J L=5 x+2$, find $J L$.	6. If $C E=7 x+4$, find the value of x.	

	7. If $S K=13 x-5, K Y=2 \mathrm{x}+9$, and $S Y=36-\mathrm{x}$, find each value. $\begin{aligned} & x= \\ & S K= \\ & K Y= \\ & S Y= \\ & \end{aligned}$
MIDPOINT OF A SEGMENT	- The \qquad of a segment is a point that divides the segment into \qquad - A line, ray, or segment that intersects a segment at its midpoint is said to \qquad the segment and is called the \qquad - In the diagram to the left, \qquad is the midpoint of \qquad and line \qquad is a \qquad of \qquad _.
Examples	8. If Q is the midpoint of $\overline{P R}$, find the value of x.
	9. If H is the midpoint of $\overline{G I}$, find $G H$.
	10. If R is the midpoint of $\overline{Q S}$, find $Q S$.
	11. If G is the midpoint of $\overline{F H}$ and $F H=6 y-2$, find y.

Homework 1.1.B : SEgment Adoition Postulate

| Use the diagram below for |
| :--- | :--- | :--- |
| questions 1 and 2 |\quad 1. If $L M=22$ and $M N=15$, find $L N$.

7. If $B D=7 x-10, B C=4 x-29$, and $C D=5 x-9$, find each value.

8. If $\overline{B D} \cong \overline{B C}, B D=5 x-26, B C=2 x+1$, and $A C=43$, find $A B$.

9. If $\overline{L K} \cong \overline{M K}, L K=7 x-10, K N=x+3, M N=9 x-11$, and $K J=28$, find $L J$.

10. If T is the midpoint of $\overline{S U}$, find the value of x.

11. If R is the midpoint of $\overline{Q S}$, find $Q S$.

12. If G is the midpoint of $\overline{F H}$, find $F G$.

13. If B is the midpoint of $\overline{A C}$, and $A C=8 x-20$ find $B C$.

14. If $\overline{E F}$ bisects $\overline{C D}, C G=5 x-1, G D=7 x-13, E F=6 x-4$, and $G F=13$, find $E G$.

15. If R is the midpoint of $\overline{Q S}, R S=2 x-4, S T=4 x-1$, and $R T=8 x-43$, find $Q S$.

1.2 ANGLES \& ANGLE ADDITION POSTULATE

LESSON OBJECTIVE: I can classify, and name angles based on their degree measure. I can also find an indicated angle using the angle addition postulate.

ANGLES	- An angle is formed by two \qquad with a common endpoint. - This common endpoint is called the \qquad - The rays are called the \qquad . - Name an angle using \qquad letters. The middle letter must always be the vertex of the angle! - Using a single letter if there is ONLY ONE angle located at the vertex. *Most of the time you are labeling angles you will be using 3 letters. - When referring to the measure of an angle, use a lowercase m. Example: $m \angle A B C=60^{\circ}$
TYPES OF ANGLES	
Example \#1	a) Nam the vertex of the angle. \qquad b) Name the sides of the angle. \qquad c) Give three ways to name the angle. \qquad \qquad \qquad d) Classify the angle. \qquad
Example \#2	1. Nam the vertex of the angle. \qquad 2. Name the sides of the angle. \qquad 3. Give three ways to name the angle. \qquad \qquad \qquad 4. Classify the angle. \qquad
CONGRUENT ANGLES	If \qquad , then the angles are congruent. This is written as \qquad

ANGLE BISECTOR	A \qquad that divides an angle into \qquad \qquad In the diagram to the right, \qquad is an angle bisector, therefore, \qquad	
PERPENDICULAR LINES	Two lines that \qquad at a \qquad . The symbol for perpendicular is \qquad In the diagram to the right, \qquad	
PERPENDICULAR BISECTOR	A line, segment, or ray \qquad to a segment at its \qquad In the diagram to the right, \qquad is the perpendicular bisector to \qquad .	
Example \#3	a) Write another name for $\angle C B F$. \qquad b) Name the sides of $\angle E B D$. \qquad c) Classify $\angle A B C$. \qquad d) Give an example of an obtuse angle. \qquad e) Name two congruent angles. \qquad f) Name a perpendicular bisector. \qquad	
Example \#4	a) Name the vertex of $\angle 2$. \qquad b) Name the sides of $\angle 4$. \qquad c) Write another name for $\angle 3$. \qquad d) Write another name for $\angle 1$. \qquad e) Classify $\angle Y T W$. \qquad f) Classify $\angle Y T U$. \qquad g) Classify $\angle X T U$. \qquad h) Classify $\angle W T X$. \qquad i) Name two perpendicular lines. \qquad g) Name an angle bisector. \qquad	

ANGLE ADDITION POSTULATE	If D is the interior of $\angle A B C$, then \qquad
Examples	Use the diagram below to answer questions 1 and 2. 1. If $m \angle A B D=48^{\circ}$ and $m \angle D B C=78^{\circ}$, find $m \angle A B C$. 2. If $m \angle D B C=74^{\circ}$ and $m \angle A B C=119^{\circ}$, find $m \angle A B D$.
	3. If $m \angle P Q R=141^{\circ}$, find each measure. $\begin{aligned} x & = \\ m \angle P Q S & = \\ m \angle S Q R & = \end{aligned}$
	4. If $m \angle D E F=(7 x+4)^{\circ}, m \angle D E G=(5 x+1)^{\circ}, m \angle G E F=23^{\circ}$ find each measure. $\begin{aligned} x & = \\ m \angle D E G & = \\ m \angle D E F & = \end{aligned}$
	5. If $m \angle J K M=43^{\circ}, m \angle M K L=(8 x-20)^{\circ}, m \angle J K L=(10 x-11)^{\circ}$, find each measure.$\begin{aligned} x & = \\ m \angle M K L & = \\ m \angle J K L & = \end{aligned}$

Examples Continued	6. If $m \angle D E F$ is a straight angle, $m \angle D E G=(23 x-3)^{\circ}$, and $m \angle G E F=(12 x+8)^{\circ}$, find each measure. $\begin{aligned} x & = \\ m \angle D E G & = \\ m \angle G E F & = \\ m \angle D E F & = \end{aligned}$
	7. If $m \angle T U W=(5 x+3)^{\circ}, m \angle W U V=(10 x-5)^{\circ}$, and $m \angle T U V=(17 x-16)^{\circ}$, find each measure. $\begin{aligned} x & = \\ m \angle T U W & = \\ m \angle W U V & = \\ m \angle T U V & = \end{aligned}$
	8. If $m \angle E C D$ is six less than five times $m \angle B C E$, and $m \angle B C D=162^{\circ}$, find each measure. $\begin{aligned} & m \angle B C E= \\ & m \angle E C D= \end{aligned}$ \qquad \qquad
	Use the diagram to the left to answer questions \#9 and \#10.
	9. If $m \angle A B F=(6 x+26)^{\circ}, m \angle E B F=(2 x-9)^{\circ}$, and $m \angle A B E=(11 x-31)^{\circ}$, find $m \angle A B F$.
	10. If $\overrightarrow{B D}$ bisects $m \angle C B E, \overrightarrow{B C} \perp \overrightarrow{B A}, m \angle C B D=(3 x+25)^{\circ}$, and $m \angle D B E=(7 x-19)^{\circ}$, find $m \angle A B D$.

HOMEWORK 1.2: ANGLES \& ANGLE ADDITION POSTULATE

1. Use the diagram below to complete each part.

Given: $\overrightarrow{B F} \perp \overrightarrow{A C}$
a) Name the vertex $\angle 4$.
b) Name the sides of $\angle 1$. \qquad
c) Write another name for $\angle 5$. \qquad
d) Classify each angle: $\angle F B C$: \qquad $\angle E B F:$ \qquad $\angle A B C$: \qquad
e) Name an angle bisector.
f) If $m \angle E B D=36^{\circ}$ and $m \angle D B C=108^{\circ}$, find $m \angle E B C$. \qquad
g) If $\angle E B F=1170$, find $m \angle A B E$. \qquad
2. If $m \angle M K L=83^{\circ}, m \angle J K L=127^{\circ}$, and $m \angle J K M=(9 x-10)^{\circ}$, find the value of x.

4. If $m \angle R S T=(12 x-1)^{\circ}, m \angle R S U=(9 x-15)^{\circ}$, and $m \angle U S T=53^{\circ}$, find each measure.

3. If $m \angle E F H=(5 x+1)^{\circ}, m \angle H F G=62^{\circ}$, and $m \angle E F G=(18 x+11)^{\circ}$, find each measure.

$$
x=
$$

\qquad $m \angle E F H=$ \qquad

$$
m \angle E F G=
$$

\qquad
5. If $m \angle W X Z=(5 x+3)^{\circ}, m \angle Z X Y=(8 x-4)^{\circ}$, and $\angle W X Y$ is a right angle, find each measure.

$x=$ \qquad
$m \angle W X Z=$ \qquad $m \angle Z X Y=$ \qquad
6. If $m \angle C D F=(3 x+14)^{\circ}, m \angle F D E=(5 x-2)^{\circ}$, and $m \angle U S T=(10 x-18)^{\circ}$, find each measure.

$$
x=
$$

\qquad

$$
\begin{aligned}
& m \angle C D F= \\
& m \angle F D E=
\end{aligned}
$$

\qquad
\qquad
$m \angle C D E=$ \qquad
7. If $m \angle L M P$ is 11 degrees more than $m \angle N M P$ and $m \angle N M L=137^{\circ}$, find each measure.

$m \angle L M P=$ \qquad
$m \angle N M P=$ \qquad
8. If $m \angle A B C$ is one degree less than three times $m \angle A B D$ and $m \angle D B C=47^{\circ}$, find each measure.

$m \angle A B D=$ \qquad
$m \angle A B C=$ \qquad
9. If $\overrightarrow{Q S}$ bisects $\angle P Q T, m \angle S Q T=(8 x-25)^{\circ}, \angle P Q T=(9 x+34)^{\circ}$, and $\angle S Q R=112^{\circ}$ find each measure.

$$
\begin{aligned}
& x= \\
& m \angle P Q S= \\
& m \angle P Q T= \\
& m \angle T Q R= \\
&
\end{aligned}
$$

10. If $\angle C D E$ is a straight angle, $\overrightarrow{D E}$ bisects $\angle G D H, m \angle G D E=(8 x-1)^{\circ}, \angle E D H=(6 x+15)^{\circ}$, and $\angle C D F=43^{\circ}$ find each measure.

x	$=$
$m \angle G D H$	$=$
$m \angle F D H$	$=$
$m \angle F D E$	$=$

1.3 ANGLE PAIRS \& ANGLE RELATIONSHIPS

LESSON OBJECTIVE: I can identify different angle pairs and use their relationships to find other angle measures.

ADJACENT ANGLES	
Two angles that are next to each	
other and share a common side.	

USINg ANGLE RELATIONSHIPS TO FIND ANGLE MEASURES

| Directions: Find the missing measures in each figure. Keep the angle relationships in mind. |
| :--- | :--- |
| 6. $\angle 1$ and $\angle 2$ are vertical angles. If the |
| measure of $\angle 2$ is 105°, find the measure of |
| $\angle 1$. |

USING ALGEBRA!

10. If $\boldsymbol{m} \angle \boldsymbol{P Q T}=(3 x+47)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{S Q R}=(6 x-25)^{\circ}$, find the measure of $\angle \boldsymbol{S Q R}$.

11. If $\overleftrightarrow{\boldsymbol{A B}} \perp \overrightarrow{\boldsymbol{C D}}, \boldsymbol{m} \angle \boldsymbol{D C E}=(7 x+2)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{E C B}=(x+8)^{\circ}$, find the measure of $\angle \boldsymbol{D C E}$.

12. If $\boldsymbol{m} \angle \boldsymbol{K} \boldsymbol{N} \boldsymbol{M}=(8 x-5)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{M} \boldsymbol{N} \boldsymbol{J}=(4 x-19)^{\circ}$, find the measure of $\angle \boldsymbol{K} \boldsymbol{N} \boldsymbol{M}$.

13. If $\boldsymbol{m} \angle \boldsymbol{D E G}=(5 x-4)^{\circ}, \boldsymbol{m} \angle \boldsymbol{G} \boldsymbol{E} \boldsymbol{F}=(7 x-8)^{\circ}, \boldsymbol{m} \angle \boldsymbol{D} \boldsymbol{E} \boldsymbol{H}=(9 y+5)^{\circ}$ find the values of x and y.

14. $\angle \boldsymbol{R}$ and $\angle \boldsymbol{S}$ are complementary angles. If $\boldsymbol{m} \angle \boldsymbol{R}=(12 x-3)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{S}=(7 x-2)^{\circ}$, find $m \angle R$.
15. $\angle \boldsymbol{P}$ and $\angle \boldsymbol{Q}$ are supplementary angles. If $\boldsymbol{m} \angle \boldsymbol{P}=(4 x+1)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{Q}=(9 x-3)^{\circ}$, find $\boldsymbol{m} \angle \boldsymbol{Q}$.
16. $\angle 1$ and $\angle 2$ form a linear pair. The measure of $\angle 2$ is six more than twice the measure of $\angle 1$. Find $m \angle 2$.
17. $\angle \boldsymbol{J}$ and $\angle \boldsymbol{K}$ are complementary angles. The measure of $\angle J$ is 18 less than the measure of $\angle \boldsymbol{K}$. Find the measure of each angle.
18. If $\overrightarrow{\boldsymbol{U} \boldsymbol{W}}$ bisects $\angle \boldsymbol{T} \boldsymbol{U} \boldsymbol{V}, \boldsymbol{m} \angle \boldsymbol{T} \boldsymbol{U} \boldsymbol{W}=(13 x-5)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{W} \boldsymbol{U} \boldsymbol{V}=(7 x+31)^{\circ}$, find the value of x.

19. If $\overrightarrow{\boldsymbol{M O}}$ bisects $\angle \boldsymbol{P M N}, \boldsymbol{m} \angle \boldsymbol{P M} \boldsymbol{N}=74^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{O M} \boldsymbol{N}=(2 x+7)^{\circ}$, find the value of x.

20. If $\overrightarrow{\boldsymbol{E F}}$ bisects $\angle \boldsymbol{C E B}, \boldsymbol{m} \angle \boldsymbol{C E F}=(7 x+21)^{\circ}$ and $\boldsymbol{m} \angle \boldsymbol{F} \boldsymbol{E} \boldsymbol{B}=(10 x-3)^{\circ}$, find the value of $\angle \boldsymbol{D} \boldsymbol{E} \boldsymbol{B}$.

HOMEWORK 1.3 : ANGLE PAIRS \& RELATIONSHIPS

1. Find the missing measure

2. Find the missing measure.

3. Find the missing measure

4. If the measure of an angle is 13°, find the measure of its supplement.
5. If the measure of an angle is 38°, find the measure of its complement.
6. $\angle 1$ and $\angle 2$ form a linear pair. If $m \angle 1=(5 x+9)^{\circ}$ and $\boldsymbol{m} \angle 2=(3 x+11)^{\circ}$, find the measure of each angle.
7. $\angle 1$ and $\angle 2$ are vertical angles. If $m \angle 1=(17 x+1)^{\circ}$ and $\boldsymbol{m} \angle 2=(20 x-14)^{\circ}$, find $\boldsymbol{m} \angle 2$.
8. $\angle K$ and $\angle L$ are complementary angles. If $m \angle K=(3 x+3)^{\circ}$ and $\boldsymbol{m} \angle L=(10 x-4)^{\circ}$, find the measure of each angle.
9. If $m \angle P$ is three less than twice the measure of $\angle Q$, and $\angle P$ and $\angle Q$ are supplementary angles, find the measure of each angle.
10. If $m \angle B$ is two more than three times the measure of $\angle C$, and $\angle B$ and $\angle C$ are complementary angles, find the measure of each angle.
11. Find the value of x.

12. If $\overrightarrow{B D} \perp \overrightarrow{A C}, m \angle D B E=(2 x-1)^{\circ}$, and $m \angle C B E=(5 x-42)^{\circ}$, find the value of x.

13. Find the value of x.

14. Find the value of x if $\overrightarrow{Q S}$ bisects $\angle P Q R$ and $m \angle P Q R=82^{\circ}$.

15. Find the values of x and y.

16. Find the values of x and y.

17. If $\overrightarrow{N P}$ bisects $\angle M N Q, m \angle M N Q=(8 x+12)^{\circ}, m \angle P N Q=78^{\circ}$, and $m \angle R N M=(3 y-9)^{\circ}$, find the values of x and y.

