

December 10, 2013

Mr. Neal Hutchison Department of Toxic Substances Control, Schools Unit 8800 Cal Center Drive Sacramento, California 95826

RE: Final PEA Report, Riggin and Akers K-12 Complex, Visalia

Dear Mr. Hutchison,

On behalf of the Visalia Unified School District, we are pleased to submit this final Preliminary Environmental Assessment for the 160 acre property located northwest of the intersection of Riggin Avenue and Akers Road in Visalia, California. The public comment period was May 13 through June 12, 2013, and there were no public comments. We have completed incorporation of the DTSC comments to the document. Please let me know if you have any questions.

Sincerely,

Than F. M. C. Kay

Thomas F. McCloskey, P.G., C.E.G., C.Hg. Principal Geologist

Copies: Addressee (hard copy, e-copy) Visalia Unified School District Attn: Mr. Robert Gröeber (e-copy) School Site Solutions Attn: Mr. John Dominguez (e-copy) Mr. Daniel Hart (e-copy)

FINAL PRELIMINARY ENVIRONMENTAL ASSESSMENT Visalia K-12 Education Complex, Visalia

Prepared for:

Visalia Unified School District

December 10, 2013

Prepared by: McCloskey Consultants, Inc.

FINAL PRELIMINARY ENVIRONMENTAL ASSESSMENT

VISALIA K-12 EDUCATION COMPLEX

W. Riggin Avenue & N. Akers Road

Visalia, California

December 10, 2013

Prepared for:

VISALIA UNIFIED SCHOOL DISTRICT

Prepared by: McCloskey Consultants, Inc.

420 Sycamore Valley Road West

Danville, CA 94526

Christopher M. Vertin Senior Staff Engineer

Than F. M. Ciskey

Thomas F. McCloskey, P.G., C.E.G., C.Hg. Principal Geologist

EXECUTIVE SUMMARY

The Visalia Unified School District (VUSD) is planning the redevelopment of 160 acres of primarily undeveloped farmland located adjacent to the northwest corner of the intersection of West Riggin Avenue and North Akers Road/Road 100 in Visalia, California (Site) (Figure 1). The VUSD is planning the redevelopment of entire Site with the construction of a new kindergarten through 12th grade campus and associated athletic fields.

This Preliminary Endangerment Assessment (PEA) is an initial investigation that provides the information necessary for determining if conditions exist at the Site that could pose a risk to human health or the environment. Under Senate Bill 475 (1989), the preparation of a PEA is a formal step in the site review process of the Department of Toxic Substances Control (DTSC). This report is to be reviewed by the DTSC to determine the need for further action at the Site.

Soil sampling was performed at the Site for the potential presence of made-man or naturally-occurring compounds that could affect the proposed school development. The scope of sampling work developed for the Site was based on environmental requirements for new school sites implemented as the result of two recent laws affecting school sites: Assembly Bill (AB) 387 (Wildman) and Senate Bill (SB) 162 (Escutia). These laws require the DTSC to be involved in the environmental review process for the proposed acquisition and/or construction of school properties utilizing state funds. The scope of work was prepared to address DTSC Schools Program environmental requirements for school sites, and was reviewed by the DTSC prior to implementation of the sampling (MCI, 2012).

Soil sampling in the farmed areas of the Site showed that there were trace detections of DDT and DDT isomers but not at concentrations that are a health concern. The soils were also tested for arsenic related to agricultural activities, but no detectible concentrations were identified.

The Site sampling resulted in the collection and analysis of soil samples from around the maintenance/storage shed and former residence. Concentrations of various organochlorine pesticides were detected around the maintenance/storage shed and former residence. Elevated concentrations of 4,4'-DDE, dieldrin, and toxaphene exceeded their single compound California Human Health Screening Levels (CHHSL) (Cal/EPA, 2005) for school uses at four sampling locations. An elevated concentration of beta-BHC exceeded its single compound United States Environmental Protection Agency

Regional Screening Level (USEPA, 2012) at one sampling location. No CHHSL has been established for beta-BHC. Total DDT concentrations exceeded their respective hazardous waste thresholds at one of the sampling locations.

An arsenic concentration of 17 mg/Kg was detected at one of the sampling locations, which exceeds the CHHSL and the DTSC Schools Unit acceptable risk management concentration for arsenic of 12 mg/Kg.

Lead concentrations were detected in the samples collected from around the maintenance/storage shed building perimeter and the historic former residence and ranged primarily from 4.7 mg/Kg to 140 mg/kg. Ten of the lead concentrations exceeded the CHHSL of 80 mg/kg. None of the samples were analyzed for soluble lead during the PEA sampling and therefore additional hazardous waste may be identified when further studies are conducted for waste profiling characterization and landfill disposal.

Concentrations of multiple semi-volatile organic compounds as well as gasoline, diesel and motor oil-range petroleum hydrocarbons were detected in the soil samples collected in and around the maintenance/storage shed. Only the motor oil range petroleum hydrocarbons exceeded the Regional Water Quality Control Board Environmental Screening Level (RWQCB, 2013) for ceiling level (odors).

Summary of Identified Contamination

As described in this PEA Report, anthropogenic (man-made) contaminants (pesticides, arsenic, lead and motor oil range petroleum hydrocarbons) in the soil were identified primarily in the area of the former residence and the maintenance/storage shed that exceeds DTSC Schools Program acceptable risk guidelines for school uses. Additional soil sampling would be needed to evaluate the full extent of contamination in these areas, and be performed under a Supplemental Site Investigation. Mitigation of these compounds would be needed to render the Site suitable for the new school.

The pesticides, metals and petroleum hydrocarbons can be mitigated by excavation and off-site disposal at an appropriate landfill. A Removal Action Workplan (RAW) would be needed which describes methods to be used during mitigation activities and dust control and monitoring measures. All plans would need to be reviewed and approved by the DTSC and subject to public review and comment prior to implementation.

TABLE OF CONTENTS

EXECU Sum	JTIVE SUMMARY Imary of Identified Contamination	i ii
10	INTRODUCTION	1
1.0	Drojact Description	I
1.1	Purnosa	1
1.2	Arganization of Renort	1
1.5	organization of Report	2
2.0	SITE DESCRIPTION	2
2.1	Site Identification	2
2.2	Current Site Use	2
2.3	Current Vicinity Land Use	3
3.0	SITE BACKGROUND	3
3.1	Onerational History and Status	
3	1.1 Prior Site Land Use	3
3	1.2 Property Ownership	4
3	1.3 Prior Surrounding Land Use	4
32	Hazardous Substance/Waste Management Information	4
3	2.1 On-Site Activities	4
3	2.2 Background Research	5
5	3.2.2.1 Site Location	5
	3.2.2.2 Regulatory Status	5
	3.2.2.3 Physical and Environmental Characteristics	5
	3.2.2.4 Zoning	5
	3.2.2.5 Current and Historical Land Uses	5
	3.2.2.6 Water Supply and Use	6
	3.2.2.7 Hazardous Substance/Waste Management Practices	6
	3.2.2.8 Vicinity Land Use and Hazardous Materials	6
4.0	APPARENT PROBLEMs	7
4.1	Pesticides	7
4.2	Lead-Based Paint	8
4.3	Pest and Weed Control Spraying	8
4.4	Metals	8
4.5	Petroleum Hydrocarbons	8
4.6	Polycyclic Aromatic Hydrocarbons (PAHs)	9
4.7	Dioxins	9
4.8	Polychlorinated Biphenyls (PCBs)	9
50	FNVIRONMENTAL SETTING	g
51	Factors Related to Soil Pathways	10
5	1 1 Site and Surrounding Area Tonography	10
5	1.2 Evidence of Environmental Impacts	.10
5	1.3 Site Geologic Setting and Soil Types	10
5	1.4 Site Accessibility	11
5	1.5 Preventive Measures	11
5	1.6 Nearest Potentially Affected Areas	.11
5.2	Factors Related to Water Pathways	.11
5.2	2.1 Potential Migration Pathways	11
5		

5.2	2.2	Potentially Affected Surface Water Bodies	12
5.2	2.3	Preventive Measures	12
5.3	F	Factors Related to Air Pathways	12
5.3	3.1	Potential Release Mechanisms	12
5.3	3.2	Prevailing Wind Direction and Velocity	13
5.3	3.3	Local Climate Information	13
5.3	3.4	Timing of Release Mechanisms	13
5.3	3.5	Potentially Affected Areas	13
6.0	PE	A SAMPLING AND RESULTS	13
6.1	S	Sampling Strategy	14
6.2	A	Agricultural Use	14
6.2	2.1	Soil Sampling	14
6.2	2.2	Analytical Results	15
6.3	I	Nater Supply Ditch	15
6.3	3.1	Soil Sampling and Analysis	15
6.3	3.2	Analytical Results	15
6.4	Ι	Dirt Access Roads	16
6.4	4.1	Soil Sampling and Analysis	16
6.4	4.2	Analytical Results	16
6.5	H	listorical Structures	16
6.5	5.1	Soil Sampling and Analysis	16
6.5	5.2	Analytical Results	17
6.6	E	Building Perimeter	18
6.0	6.1	Soil Sampling and Analysis	18
6.0	6.2	Analytical Results	18
6.7	I	Maintenance/Storage Shed	19
6.7	7.1	Soil Sampling and Analysis	19
6.7	7.2	Analytical Results	20
6.8	F	Pressure-Treated Fence Post Pile	21
6.8	8.1	Soil Sampling and Analysis	21
6.8	8.2	Analytical Results	21
6.9	E	Burn Area	21
6.9	9.1	Soil Sampling and Lab Analysis	21
6.9	9.2	Analytical Results	22
6.10	F	Pole-Mounted Electrical Transformers	22
6.2	10.1	Soil Sampling	22
6.1	10.2	Analytical Results	22
6.11	I	nvestigation-Derived Waste	23
6.12	5	Sampling Variances:	23
7.0	LA	BORATORY DATA REVIEW	23
7.1	S	Sample Hold Times	24
7.2	F	Evaluation of MS/MSD	24
7.3	F	Reporting Limits	26
8.0	нп	MAN HEALTH SCREENING EVALUATION	28
0.0			
9.0	EC	ULUGICAL SCREENING EVALUATION	29
9.1	S	ote Characterization	29
9.2	E	Siological Characterization	29
10.0	PU	BLIC PARTICIPATION	29

11.0	CONCLUSIONS AND RECOMMENDATIONS	29
12.0	LIMITATIONS	30
13.0	REFERENCES	31

TABLES

- Table 1 Results for Agricultural Sampling
- Table 2Results for Water Supply Ditch & Dirt Road Sampling
- Table 3
 Results for Large Former Barn & Former Residence Sampling
- Table 4
 Pesticide Results for Maintenance Shed Sampling
- Table 5Metals Results for Maintenance Shed & Fence Post Pile Sampling
- Table 6 TPH & Semi-VOCs Results for Maintenance Shed & Burn Area Sampling
- Table 7
 PCB Results for Transformer Sampling
- Table 8Cumulative Health Risk Determination for Site Soil Residential Exposure
Scenario

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Site Plan Agricultural Sampling Locations
- Figure 3 Site Plan Select Sampling Locations
- Figure 4 Former Residence /Maintenance Shed Summary Results
- Figure 5 Site Plan Former Large Barn Sampling Locations

APPENDICES

- Appendix A DTSC PEA Workplan Approval Letter
- Appendix B Laboratory Analytical Reports
- Appendix C Lead 95% Upper Confidence Limit Calculation, Former Residence Data

1.0 INTRODUCTION

The subject property is located in the southeastern portion of the San Joaquin Valley in the City of Visalia (Figure 1) adjacent to the northwest corner of the intersection of West Riggin Avenue and North Akers Road/Road 100 and is north of the City of Visalia. The former address associated with the Site is also 31431 Road 100, Visalia, CA, 93291, Tulare County. The property consists of a 160-acre property (Site) currently used for agricultural purposes. The Visalia Unified School District (VUSD) is planning redevelopment of the Site with a kindergarten through 12th grade (K-12) campus, an elementary and high school campus. A Site visit and PEA Scoping Meeting was performed on July 26, 2012 with the Department of Toxic Substances Control, Schools Unit (DTSC), Robert Gröeber (VUSD Superintendent), John Dominguez (School Site Solutions), and Tom McCloskey (McCloskey Consultants, Inc.) to discuss the site history and to scope the Site investigation necessary for DTSC approval of the school redevelopment. A PEA Workplan dated October 5, 2012 which described the DTSC required soil sampling was reviewed and conditionally approved by the DTSC in their letter dated November 20, 2012.

1.1 Project Description

The VUSD is planning redevelopment of the Site with a new K-12 campus. As currently planned, the entire 160 acres of the Site is under consideration for redevelopment. The new K-12 campus will also include playfields and other physical education facilities.

1.2 Purpose

This PEA is an initial investigation that provides the information necessary to determine if conditions exist at the Site that could pose a risk to human health or the environment. Under Senate Bill 475 (1989), the preparation of a PEA is a formal step in the review process of the DTSC Schools Unit. This report is to be reviewed by the DTSC to determine the need for further action at the Site.

Specific objectives of this PEA include:

- Determining if hazardous substances (including naturally-occurring substances) are present at the Site;
- Estimating the potential threat to human health and/or the environment posed by the Site conditions;
- Determining if an expedited response action is needed to reduce the existing threat to human health or the environment;
- Completing preliminary project scoping activities to determine data gaps and identify possible remedial actions strategies; and,
- Assessing and providing for the informational needs of the community.

This PEA was prepared in general accordance with the DTSC *Preliminary Endangerment Assessment Guidance Manual*, revised June 1999.

1.3 Organization of Report

A description of the Site is first presented identifying the physical setting of the Site in relation to the surrounding area. The Site background is then described including discussions of Site status, history and hazardous substance/waste management information. The apparent problem at the Site is presented followed by information regarding the Site environmental characteristics. A summary of the sampling activities performed at the Site, data obtained and a discussion of the results is then presented. An evaluation of the potential risks posed by the Site to human health and the environment is discussed. Finally, a profile of the surrounding community is presented followed by conclusions and recommendations based on the PEA.

2.0 SITE DESCRIPTION

2.1 Site Identification

The Visalia K-12 Education Complex is generally located within the southeastern portion of the San Joaquin Valley and the northwestern portion of Tulare County (Figure 2). It is located north of West Riggin Avenue and west of North Akers Street/ Road 100 and is north of the City of Visalia. The former address associated with the Site is 31431 Road 100, Visalia, CA, 93291, Tulare County. The entire 160 acres of the Site is under consideration for redevelopment. The Site has Assessor's Parcel Numbers of 077-100-01.

The Site has an EPA ID number and DTSC EnviroStor database identification number of 60000112, and the DTSC database Site Code 104498.

2.2 Current Site Use

A reconnaissance of the Site was conducted by Mr. Tom McCloskey on July 26, 2012, which was the same day as the scoping meeting and reconnaissance with Mr. Neal Hutchison. The majority of the Site currently was planted with corn and consisted of agricultural fields. A maintenance shed was the only existing structure near the center of the eastern side of the Site. There were no access restrictions to the property. Figure 2 presents current condition of the property. The planned redevelopment would impact the entire. The contact information for the appropriate Site representative is:

Mr. Robert Gröeber Assistant Superintendent Administration Services 5000 West Cypress Avenue Visalia, California (559) 730-7529 (office)

2.3 Current Vicinity Land Use

The Site is bounded to the north and east by agricultural land. A residential dwelling and agricultural land are located across North Akers Road/Road 100 to the west of the Site. A church, two residential dwelling, grazing land and a vacant former dairy are located across West Riggin Avenue/Avenue 312 to the south of the Site.

3.0 SITE BACKGROUND

3.1 Operational History and Status

3.1.1 Prior Site Land Use

Based on a review of historical aerial photographs, topographic maps, and previous Phase I Environmental Site Assessment reports, included in Appendix A of the PEA workplan, a dwelling-size structure was located on the east-central portion of the Site since at least 1892 and was observed on the 1927 topographic map. Based on 1937 aerial photograph, two barnsized structures and a shed-sized structure appear to be present in that area. The dwellingsized structure appears to remain on-Site until 1994. The barn-sized structure nearest to the dwelling was observed in the 1956 aerial photograph, but was replaced by a smaller structure in the 1969 aerial photograph. The barn-sized structure located to the southwest of the dwelling was observed in the 1969 aerial photograph, but was not aobserved in the 1972 aerial photograph being replaced by row crops. Much of the Site appears to have been used for agricultural purposes since as early as 1937 until the present time. The crop patterns fluctuated somewhat in each of the aerial photographs until the current configuration was observed in the 1972 aerial photograph.

A review of the aerial photographs also identified sections of the two water supply ditches that traverse the Site were filled in and rerouted. The Modoc Ditch traversed the northeastern portion of the Site in a southeast-northwest direction since at least 1927. The Modoc Ditch appeared to be filled in and rerouted to its' current configuration in the 1969 aerial photograph and topographic map. The Wutchumna Ditch has traversed the southern portion of the Site in a southeast-northwest 1937. A small section of the Wutchumna Ditch

traversed the southwestern portion of the Site in a southwest direction. The small section of the ditch was observed in the 1952 aerial photograph and was observed in the 1969 aerial photograph. The small section of the Wutchumna Ditch appeared to be filled in and in it's current configuration in the 1972 aerial photograph.

3.1.2 Property Ownership

The property currently is owned by the VUSD and reportedly has owned the Site since February 2005. The Shannon family of SK Ranch previously owned the Site and has continued to farm the Site since the 1950's. The VUSD plans to redevelopment the entire 160-acres of the property for the proposed project.

3.1.3 Prior Surrounding Land Use

Based on historical aerial photographs and topographic maps, the surrounding land use historically was primarily agricultural lands with a few rural residential dwellings similar to the current Site vicinity conditions.

3.2 Hazardous Substance/Waste Management Information

3.2.1 On-Site Activities

Hazardous substance uses on the Site include the use of pesticides, although no detailed information regarding the pesticide usage, specific spills, releases, and/or cleanup of the Site was obtained. An interview was performed on September 25, 2012 with Mr. Eric Shannon of SK Ranch. The Shannon family previously owned the Site and has farmed the Site since the 1950's. Mr. Shannon stated that a majority of the Site was planted with wine grapes for approximately 30 years and that pesticide usage mostly consisted of dusting sulfur. Mr. Shannon stated that pesticides were primarily stored and mixed at the SK Ranch facility located off-site (11878 Avenue 328, Visalia, CA) or at other farmed parcels in the area and that he did not believe that pesticide mixing was performed adjacent to the on-Site wells. Mr. Shannon stated that the maintenance / storage shed that is located on-Site was used as a temporary (less than 30 days) storage for dusting sulfur.

Lead-based paint may also have been used on the maintenance/storage shed and the removed historical structures that date back several decades. Small quantities of hazardous waste, primarily waste oils due to the equipment maintenance may have been generated and stored in the maintenance/storage shed. No information was provided regarding any litigation, proceedings, or violation of environmental laws related to any hazardous materials issues on the Site.

3.2.2 Background Research

3.2.2.1 Site Location

Site location information was summarized in Section 2.1 above.

3.2.2.2 Regulatory Status

During the historical review of the Site, a regulatory agency database report was obtained and reviewed to help establish whether contamination incidents, radon, oil and gas wells, or illegal drug manufacturing sites were reported at the Site. No potential concerns with regards to radon or illegal drug manufacturing were identified.

The State of California Department of Conservation, Division of Oil, Gas, and Geothermal Resources map for the Site reported one plugged and abandoned oil or gas well. The "Shell-Shannon-Gibralter" 15-1 well was drilled on January 7, 1978 to a total depth of 2981 feet on the southeastern portion of the Site (as shown on Figure 3 of the PEA Work Plan). The well was plugged and abandoned on January 15, 1978. This area is not a known oil field and is not considered a potential environmental concern for the Site.

Based on information provided in Federal and State radon screening test data included in the regulatory agency database report, 20 State radon screening and eight Federal radon screening tests have been performed within the Site zip code (93291). In only one of the State testing results radon concentrations exceeded 4 pCi/L, with an indoor average level greater than 2 pCi/L but less than 4 pCi/L. The average radon activity detected in the first floor living area in the Federal tests was reported to be 1.650 pCi/L with none of the tests revealing radon concentrations exceeding the USEPA recommended action level of 4 pCi/L. Based on this data radon gas is not a Site concern.

3.2.2.3 Physical and Environmental Characteristics

Physical and environmental characteristics of the Site were summarized in Section 2.2 above.

3.2.2.4 Zoning

According to the City of Visalia website, the Site is zoned Quasi-public, which is appropriate for school use.

3.2.2.5 Current and Historical Land Uses

Current and historical land uses were summarized in Sections 2.2, 3.1.1, and 3.2.1 above.

3.2.2.6 Water Supply and Use

The community of Visalia has a municipal water supply system (California Water Service) and the new school would use this source for drinking water. It is possible that groundwater from an existing or a new well would be used for landscape and playfield areas. A former dairy is located across W. Riggin Avenue off the southwest corner of the Site but this facility is in the likely cross-gradient groundwater flow direction.

3.2.2.7 Hazardous Substance/Waste Management Practices

As summarized in Section 3.2.1 above, hazardous substance uses on the Site include the potential use of pesticides. No specific information detailing the pesticide usage at the Site was obtained. Lead-based paint may also have been used on the maintenance/storage shed and the removed historical structures that date back several decades. Small quantities of hazardous waste, primarily waste oils from equipment maintenance, were identified as a potential environmental concern at the existing maintenance/storage shed.

3.2.2.8 Vicinity Land Use and Hazardous Materials

The current surrounding land use remains agricultural and rural residential as summarized in Section 3.1.3 above. Agricultural operations at the vicinity properties are not expected to have impacted the Site.

For this study a regulatory agency database report (included in the Appendix A of the PEA Workplan) was obtained and reviewed to help evaluate if hazardous materials incidents, radon gas, or oil and gas wells have been reported on Site or in the immediate area. During this study, a regulatory agency database report was obtained and reviewed to help evaluate if contamination incidents have been reported within the Site vicinity. The only potential concern was summarized in Section 3.2.1 above. No other potential concerns were recorded. A visual reconnaissance of the Site vicinity performed in coordination with review of the regulatory agency database report did not reveal the presence of facilities within approximately ¼ mile of the Site appearing likely/documented to use, handle, and/or store significant quantities of hazardous materials.

Based on a review of airport listings in the Visalia vicinity and area maps, no airports are located within 2 nautical miles of the Site. According to the regulatory agency database report and Site reconnaissance, high-voltage power transmission lines are not located in the site vicinity though 12 kV distribution lines are located adjacent to the Site, along the eastern side of N

Akers Road/Road 100, along the northern side of W Riggin Ave / Avenue 312. Based on the Site reconnaissance and review of the regulatory agency database report, propane tanks other than domestic and users of significant quantities of hazardous materials are not located within ¼ mile of the Site.

4.0 APPARENT PROBLEMS

Based on the background information summarized above, the following environmental concerns were identified.

4.1 Pesticides

The majority of the Site was farmed by 1937, and based on our review of the historical aerial photographs that date back to 1952, row-crops were present throughout the Site and farming has continued to the present day. The farming practices appear on the aerial photographs to usually involve the same crop over large areas, but some smaller subcrop areas were observed in the 1969 aerial photograph. Residual concentrations of metals and pesticides from the use of lead-arsenate and OCPs were identified as a potential concern in the PEA Work Plan.

The existing maintenance/storage shed dates back several decades and may have been treated with termiticides and/or insecticides around its' perimeter. OCPs such as chlordane may have been used for this purpose and was identified as a potential environmental concern in the PEA Work Plan. Historical structures (a former residence and a large former barns) removed from the Site appear to date back before the mid-1930's. The large former barn appeared to remain on-Site through the late 1960's. The former residence appeared to remain on-Site through the mid-1990's. OCPs began to be used in about 1950 and therefore residual concentrations in soils in these areas was identified as a potential concern in the PEA Work Plan (MCI, 2012).

A water supply ditch (Wutchumna Ditch) has traversed the southern portion of the Site in a southeast-northwest direction since as early as 1937. Persistent OCPs and arsenic may have been used in the agricultural areas up-gradient of the Site and were identified as a potential concern by the DTSC. The potential contaminates may have been transported via the ditch water and deposited in the soils along the sides of the ditch. Affected run-off and sediment transport into the ditch may also have carried OCPs and arsenic into the ditch according to the DTSC.

The dirt roads that traverse the Site in east/west and north/south directions are adjacent to agricultural fields and residual pesticide concentrations from over spray or spillage onto the roads were identified by the DTSC in the PEA Work Plan as a potential concern.

4.2 Lead-Based Paint

Given the age of the existing maintenance/storage shed on Site, lead-based paint may have been used and flaking of paint to soil around these buildings is a potential environmental concern. Historical structures removed from the Site date back to the early 1930's and some remained on-Site into the mid-1990's. Lead-based paint may have been used and flaking of paint to soil around these former structures is a potential environmental concern. Elevated concentrations of lead in shallow soil from flaking paint were identified as a potential concern in the PEA Work Plan.

4.3 Pest and Weed Control Spraying

Soil around the perimeter of older structures were often sprayed for pest and weed control purposes, and elevated concentrations of organochlorine pesticides (OCPs) around the existing maintenance/storage shed and former residence was identified as a potential concern along with lead from flaking lead-based paint.

4.4 Metals

The existing maintenance/storage shed has been used for the vehicle and equipment repair and storage for many years. Used motor-oil is commonly associated with elevated metals and was identified as a potential environmental concern in the PEA Workplan.

A pile of pressure-treated fence posts are located adjacent to the existing maintenance/storage shed. Chromated copper arsenate (CCA) has been used to pressure treat lumber since the 1940's to protect wood from rotting due to insects and microbial agents. Elevated chromium, copper and arsenic may have impacted soils from the pressure-treated fence posts and therefore was identified as a potential environmental concern in the PEA Workplan.

4.5 Petroleum Hydrocarbons

The existing maintenance/storage shed has been used for the vehicle and equipment repair and storage for many years. The use of gasoline, diesel, and motor-oil range total petroleum hydrocarbons, and used motor-oil associated was identified as a potential environmental concern. The potential environmental concern involves the possibility of leak, spill, or release that has occurred undetected in the soil within the maintenance/storage shed.

4.6 Polycyclic Aromatic Hydrocarbons (PAHs)

The existing maintenance/storage shed has been used for the vehicle and equipment repair and storage for many years. The use of diesel, and motor-oil range total petroleum hydrocarbons, and used motor-oil associated was identified as a potential environmental concern. Diesel fuel and used motor-oil is sometimes associated with polycyclic aromatic hydrocarbons (PAHs) and was identified as a potential environmental concern in the PEA Workplan.

A small burn area is located on the southern portion of the Site along the Wutchumna Ditch. Residual concentration of PAHs have been associated with burn areas depending on what materials were burned. The possibility that residual concentrations of PAHs from the burn area may have impacted soil was identified as a potential environmental concern in the PEA Workplan.

4.7 Dioxins

A small burn area is located on the southern portion of the Site along the Wutchumna Ditch. Residual concentrations of dioxins have been associated with burn areas depending on what materials were burned. The possibility that residual concentrations of dioxins from the burn area may have impacted soil was identified as a potential environmental concern in the PEA Workplan.

4.8 Polychlorinated Biphenyls (PCBs)

There are eight pole-mounted electrical transformers within the Site boundaries. All eight of the transformers are situated above soil, which could be impacted from a release. The oil in some older transformers contained PCBs. The transformers therefore involves the possibility that PCB-containing oil that may have impacted soils below the transformers and was identified as a potential concern in the PEA Workplan.

5.0 ENVIRONMENTAL SETTING

This section describes Site environmental conditions that could potentially influence the transport of contaminants from the source through identified potential exposure pathways to an exposed individual or environmental receptor.

5.1 Factors Related to Soil Pathways

5.1.1 Site and Surrounding Area Topography

The Site is relatively flat with a very gentle slope to the northwest, and has an elevation of about 311 feet above mean sea level. Geologically the Site generally is located in the San Joaquin Valley which is a large fluvial valley between the Coast Ranges to the west and the foothills of the Sierra Nevada Mountains to the east. The foothills of the Sierra Nevada Mountains are about 10 miles east of the Site.

5.1.2 Evidence of Environmental Impacts

No previous Site investigations were available to determine if contamination could be present on the Site.

5.1.3 Site Geologic Setting and Soil Types

Geologically the Site generally is located in the San Joaquin Valley which is a large fluvial valley between the Coast Ranges to the west and the foothills of the Sierra Nevada Mountains to the east. The foothills of the Sierra Nevada Mountains are about 10 miles east of the Site. The San Joaquin Valley is a structural trough infilled with up to 32,000 feet of marine and continental sediments deposited during periodic inundation by the Pacific Ocean and by erosion of the surrounding mountains. During this study, a regulatory agency database report (Appendix A of the PEA Workplan) was obtained and reviewed to obtain soil composition in the Site vicinity. Based on geologic information contained in the report, the Site appears to be underlain by moderately well-drained, fine-grained soils to a depth of 62 inches.

The nearest outcrop of ultramafic rock that could contain naturally-occurring asbestos (NOA) is approximately 8-10 miles to east in the foothills of the Sierra Nevada mountains. This is within the 10-mile distance established by the DTSC Schools Program guidelines which would trigger sampling. However, soil samples were analyzed for NOA during a PEA evaluation of a site called the Ferguson and Leila site (Figure 2 of the PEA Workplan) approximately 1.25 miles to the eastsoutheast of the corner of Riggin Avenue and Akers Road. Based on communications with the DTSC, it is understood that the Ferguson and Leila NOA results can be considered as representative of Site conditions and the analytical results could be used to evaluate the Site for the presence of NOA. NOA was not detected exceeding the laboratory detection limit of 0.001% in any of the seven soil samples collected from that Site and NOA is not considered a potential environmental concern for the Site (BSK, 2007).

5.1.4 Site Accessibility

Dirt road access is located along N. Akers Road/ Road 100 on the eastern side of the Site and traverse the Site in primarily north/south and east/west directions. The agricultural fields are generally accessible by foot.

5.1.5 Preventive Measures

There are no preventative measures currently in place to prevent exposure to chemicals in the shallow soils. The Site is open ground where the recent soil sampling was performed. The planned redevelopment will cover a large portion of the Site with structures, pavement, and athletic fields.

5.1.6 Nearest Potentially Affected Areas

The planned redevelopment of the Site will be into a new school. A few multiple rural residential and agricultural buildings are located within 1 mile of the Site. The closest sensitive receptors are the single-family residential structures located across N Akers Road/Road 100 on the eastern side of the Site, and across W Riggin Avenue/Avenue 312 on the southern side of the Site. A church is also location across W Riggin Avenue/Avenue 312 on the southern side of the Site. The Tulare County Child Care Educational Program and the Head Start Home-Based Program child care facilities are located within one mile to the southwest of the Site. No nursing homes, senior citizen centers, or hospitals appear to be located within one mile of the Site.

5.2 Factors Related to Water Pathways

5.2.1 Potential Migration Pathways

The anticipated potential releases of hazardous substances from the Site to water are migration to surface water bodies and to groundwater Groundwater is present in the sand and gravel units beneath the Site and regional flow is generally west-southwest. Based on a Department of Water Resources (DWR) website, groundwater was encountered at 104 feet below ground surface in October of 2010 for a well located on the southeastern portion of the Site. Fluctuations in the level of the groundwater occur due to variations in rainfall, groundwater preferential pathways, groundwater pumping, and seasonal influences. Therefore, because of the depth to groundwater, the potential of a release of hazardous substances to groundwater at the Site appears to be low for petroleum hydrocarbon compounds and other organic compounds that are soluble. Because migration and solubility of metals and pesticides in water is very low, the potential of a release of hazardous substances to groundwater at the Site appears to be very low for these compounds.

Water supply ditches are already in place at the Site, the vicinity streets are already paved, and the most likely possible migration pathway of hazardous substances at the Site to surface water bodies would be through contact with storm water runoff and subsequent discharge to the water supply ditches. Storm water runoff from the Site appears to discharge to local drainage ditches. There are no surface water bodies mapped in the Site area.

Contaminants could also potentially migrate to surface water irrigation water ditches through the deposition of airborne dust and/or fibers generated during activities at the Site.

5.2.2 Potentially Affected Surface Water Bodies

There are no nearby creeks or streams in the vicinity of the Site. A former creek bed traversed east-west through the middle of the Site. The nearest surface water is the Wutchumna Ditch (an irrigation water ditch) which traverses the southern portion of the Site in an southeast-northwest direction. The Modoc Ditch (an irrigation water ditch) traverses east-west along the northern Site border and north-south along the northeastern Site border.

5.2.3 Preventive Measures

Currently the Site is primarily planted with corn and consists of agricultural fields. The agricultural fields are at a lower grade then the perimeter dirt access roads and paved N. Akers Road/Road 100 and W. Riggin Avenue/Avenue 312 and therefore no erosion or runoff control measures are currently needed. Drainage control measures do not appear to be an issue needed on the agricultural fields. When grading and construction occurs at the Site, a variety of best management practices will be needed to comply with existing State storm water regulations to control runoff and reduce erosion and sediment transport from the Site.

5.3 Factors Related to Air Pathways

5.3.1 Potential Release Mechanisms

The Site consists mostly of exposed soil in the agricultural fields, the area around the existing maintenance/storage shed and former residence, the dirt access roads, and the water supply ditches. The exposed soil is therefore the anticipated pathway for a release to the air from wind traversing exposed soil. This pathway also exists after grading activities have commenced for the new construction.

5.3.2 Prevailing Wind Direction and Velocity

The daily prevailing wind direction in the Site vicinity is reportedly to the southeast. The daily average wind velocity in the vicinity is approximately 4 miles per hour based on data available for the weather station located at the Visalia Municipal Airport.

5.3.3 Local Climate Information

The average annual precipitation in the Visalia area is approximately 10 inches (based on data provided from Western Regional Climate Center observed on the National Oceanic and Atmospheric Administration website). The rainy season in the area generally is from October to April. The mean temperature at the Site is approximately 49 to 77 degrees Fahrenheit, depending upon the season.

5.3.4 Timing of Release Mechanisms

The Site consists mostly of exposed soil in the agricultural fields, the area around the existing maintenance/storage shed and former residence, the dirt access roads, and the water supply ditches. We anticipate that a potential release into the air could occur when wind traverses exposed soil of the agricultural fields or during the grading operations when conducted at the Site.

5.3.5 Potentially Affected Areas

If present, the Site vicinity could be affected by the release of pesticides dispersed by the wind if not controlled. A few areas adjacent to the Site include rural residential.

6.0 PEA SAMPLING AND RESULTS

The primary objective of sampling during the PEA investigation was to identify if contaminants are present which could represent risks for the planned future school use. The data obtained would then be used to evaluate the degree of risk presented by the contaminants identified, and ultimately to evaluate appropriate response actions at the Site to render it suitable for school uses. Full characterization of the extent of any contamination identified commonly needs to be done via a Supplemental Site Investigation (SSI) which would be needed to design final mitigation actions.

6.1 Sampling Strategy

A PEA scoping meeting was held on July 26, 2012 with representatives of the DTSC Schools Program to discuss the Site history and to scope the Site investigation necessary for DTSC approval of the redeveloped school campus. The scope of sampling work developed for the Site was based on environmental requirements for school sites implemented as the result of two recent laws: Assembly Bill (AB) 387 (*Wildman*) and Senate Bill (SB) 162 (*Escutia*). These laws require the DTSC to be involved in the environmental review process for the proposed acquisition and/or construction of school properties utilizing State funds. The sampling frequency in the former agricultural areas was in compliance with DTSC guidance for agricultural properties (DTSC, 2008), as reflected in the PEA Workplan, dated October 5, 2012 (MCI, 2012), and around existing structures in compliance with DTSC guidance (DTSC, 2006). All of the sampling was conducted in accordance with the PEA Workplan.

6.2 Agricultural Use

6.2.1 Soil Sampling

The majority of the Site was farmed by 1937, and based on our review of the historical aerial photographs that date back to 1952, row-crops were present throughout the Site and farming has continued to the present day. Pesticides were commonly applied to row crops and the presence of residual OCPs and arsenic contamination are therefore potential environmental concerns. Any application of pesticides would likely have been done in a uniform manner to treat the entire crop area.

The estimated the total agricultural area on the Site is approximately 159 acres, and the sampling was performed in accordance with DTSC guidelines (Cal/EPA, 2008) and the DTSC-approved PEA Work Plan. Based on the current crop configurations, the agricultural areas were divided into four different sections or grids as shown on Figure 2. For the sampling in Grid 1 (approximately 50 acres), the DTSC recommended 24 sampling locations for OCPs (EPA Test Method 8081) consisting of six, 4-point composite samples. Also in accordance with DTSC guidelines, six discrete samples (one sample from each composite set) were analyzed for arsenic (EPA Test Method 6010B). For the sampling in Grid 2 (approximately 35 acres), the DTSC recommended 16 sampling locations for OCPs consisting of four, 4-point composite samples. Four discrete samples (one sample from each composite set) were analyzed for arsenic. For the sampling in Grid 3 (approximately 33 acres), the DTSC recommended 16 sampling locations for OCPs consisting of four, 4-point discrete samples (one sample from each composite samples. Four discrete samples (one sample from each composite samples. Four discrete samples (one sample from each composite set) were analyzed for arsenic. For the sampling in Grid 3 (approximately 33 acres), the DTSC recommended 16 sampling locations for OCPs consisting of four, 4-point composite samples. Four discrete samples (one sample from each composite samples. Four discrete samples (one sample from each composite samples. Four discrete samples (one sample from each composite samples. Four discrete samples (one sample for arsenic. For the sampling in Grid 3 (approximately 33 acres), the DTSC recommended 16 sampling locations for OCPs consisting of four, 4-point composite samples. Four discrete samples (one sample from each composite samples. Four discrete samples (one sample from each composite samples), the DTSC recommended 12 sampling locations for OCPs

consisting of three, 4-point composite samples. Three discrete samples (one sample from each composite set) were analyzed for arsenic. The approximate randomly selected sampling locations are shown on Figure 2.

Because of the lower sampling frequency, the DTSC required that each OCP analyte detected from the composite samples be compared to ¼ the California Human Health Screening Level (CHHSL) value. Arsenic concentrations were compared to published naturally-occurring concentrations.

6.2.2 Analytical Results

The laboratory results of the pesticides and arsenic analyses are summarized in Table 1. The complete laboratory results are included in Appendix B.

The organochlorine pesticide results show that all but one of the composite samples had detectible concentrations of 4,4'-DDE ranging from 0.0026 milligrams per kilogram (mg/Kg) to 0.051 mg/Kg. These concentrations are well below ¼ of the single compound CHHSL (Cal/EPA, 2005) of 1.6 mg/kg for school uses.

Arsenic was not detected in any of the 17 discrete samples exceeding the laboratory detection limit of 1.7 mg/Kg.

6.3 Water Supply Ditch

6.3.1 Soil Sampling and Analysis

A water supply ditch (Wutchumna Ditch) has traversed the southern portion of the Site in a southeast-northwest direction since as early as 1937. The DTSC was concerned that persistent OCPs and arsenic may have washed into the ditch or been used in the agricultural areas upgradient of the Site and transported to the Site. To evaluate this concern, 12 locations were sampled for OCPs consisting of three, 4-point composite samples. Also in accordance with DTSC recommendations, three discrete samples were also analyzed for arsenic. The approximate sampling locations are shown on Figure 3.

6.3.2 Analytical Results

The laboratory results of the pesticides and arsenic analyses are summarized in Table 2. The complete laboratory results are included in Appendix B.

No OCPs were detected in any of the three composite samples analyzed exceeding the laboratory detection limits.

Arsenic was not detected in any of the three discrete samples exceeding the laboratory detection limit of 1.7 mg/Kg.

6.4 Dirt Access Roads

6.4.1 Soil Sampling and Analysis

Five dirt roads traverse the Site in east/west and north/south directions and are adjacent to agricultural fields. Residual pesticide concentrations may be present in the soil on these roads due to over-spraying in the fields or spillage of pesticides. To evaluate this concern, 20 locations were sampled for OCPs consisting of five, 4-point composite samples (one 4-point composite per dirt road). Also in accordance with DTSC guidelines, five discrete samples (one sample from each dirt road) were also analyzed for arsenic. The approximate sampling locations are shown on Figure 3.

6.4.2 Analytical Results

The laboratory results of the pesticides and arsenic analyses are summarized in Table 2. The complete laboratory results are included in Appendix B.

The OCP results show that all but one of the composite samples had detectible concentrations of 4,4'-DDE and 4,4'-DDT ranging from 0.0037 mg/Kg to 0.057 mg/Kg. These concentrations are well below ¼ of the single compound CHHSL of 1.6 mg/kg for school uses. Endosulfan II was detected in two of the composite samples ranging from 0.0076 mg/Kg to 0.014 mg/kg. These concentrations are well below ¼ of the United States Environmental Protection Agency Regional Screening Level (USEPA RSL) (USEPA, 2012) of 370 mg/Kg for school uses.

Arsenic was not detected in any of the five discrete samples exceeding the laboratory detection limit of 1.7 mg/Kg.

6.5 Historical Structures

6.5.1 Soil Sampling and Analysis

Historical structures (a former residence and a large former barn) removed from the Site appear to date back to before the mid-1930's. OCPs began to be used in about 1950 and therefore residual concentrations could remain in these areas. In addition, lead-based paint may have been used and flaking of paint to soil around these former structures is a potential

environmental concern. As described in the PEA Work Plan, the areas around the historical structures were gridded and discrete surface soil samples were collected from each of the sampling grids. To evaluate the area of the former residence, there were 16 locations sampled for OCPs consisting of four, 4-point composite samples. Also in accordance with DTSC guidelines, 16 discrete samples were analyzed for lead (EPA Test Method 6010B). To evaluate the area of the former large barn, there were 12 locations sampled for OCPs consisting of three, 4-point composite samples. Also in accordance with DTSC guidelines, 12 discrete samples were analyzed for lead. The approximate sampling locations for the former residence are shown on Figure 4. The approximate sampling locations for the former large barn are shown on Figure 5.

6.5.2 Analytical Results

The laboratory results of the pesticides and lead analyses are summarized in Table 3. The complete laboratory results are included in Appendix B.

The OCP results for the former residence grid sampling showed that all of the composite samples had detectible concentrations of 4,4'-DDE and 4,4'-DDT ranging from 0.037 mg/Kg to 0.120 mg/Kg. These concentrations are well below ¼ of the single compound CHHSL of 1.6 mg/kg for school uses. Technical chlordane was detected in composite sample HS-9-12 at a concentration of 0.130 mg/Kg. The concentration detected exceeded ¼ of the single compound CHHSL of 0.43 mg/Kg. Elevated lead was also detected in three of the discrete samples associated with composite HS-9-12 and therefore only the location without elevated lead (HS-12) was analyzed for pesticides. No organochlorine pesticides were detected in discrete sample HS-12 exceeding the laboratory reporting limits. Dieldrin was detected in two of the composite samples at concentrations of 0.0069 mg/Kg and 0.190 mg/Kg. The concentration of 0.190 mg/Kg was detected in composite sample HS-5-8 exceeding the single compound CHHSL of 0.035 mg/kg for school uses. Elevated lead was detected in one of the discrete samples associated with composite HS-5-8 and therefore three of the locations without elevated lead (HS-5, HS-6 and HS-8) were analyzed for pesticides. Dieldrin was only detected exceeding the laboratory reporting limit in discrete sample HS-8 at a concentration of 1.40 mg/Kg. The concentration detected exceeds the single compound CHHSL of 0.035 mg/kg for school uses. Elevated toxaphene was also detected in discrete sample HS-5 at a concentration of 2.30 mg/Kg, although no toxaphene was detected exceeding the reporting limit of 0.4 mg/Kg in composite sample HS-5-8. Endosulfan I and/or endosulfan II were detected in two of the composite samples and one of the discrete samples ranging from 0.011 mg/Kg to 0.65 mg/kg and the concentrations were well below ¼ of the USEPA RSL of 370 mg/Kg for residential land uses. Endosulfan sulfate was also detected exceeding the reporting limit in one discrete sample collected. No regulatory thresholds have been established for endosulfan sulfate. Alpha

chlordane and/or gamma chlordane were also detected in a two of the composite samples collected. No regulatory thresholds have been established for alpha or gamma chlordane.

Lead concentrations were detected in every discrete sample collected from around the former residence grid sampling and ranged from 5.3 mg/Kg to 140 mg/Kg. Lead concentrations were detected in every discrete sample collected for the former large barn grid sampling and ranged from 6.2 mg/kg to 12 mg/kg. The concentrations exceeded the CHHSL of 80 mg/kg at seven of the sampling locations. However, a statistical analysis of the data set from the 0-0.5 foot samples was performed to determine the 95% Upper Confidence Limit of the arithmetic mean (UCL). The analyses are included in Appendix C, and show that the 95% UCL for lead is 79 mg/kg which is less than the direct exposure CHHSL for residential use of 80 mg/kg. None of the samples were analyzed for soluble lead during the PEA Sampling and therefore additional hazardous waste may be identified when further studies are conducted and waste characterization is being performed.

The OCP results for the former large barn grid sampling showed that all of the composite samples had detectible concentrations of 4,4'-DDE ranging from 0.015 milligrams per kilogram (mg/Kg) to 0.048 mg/Kg. These concentrations are well below ¼ of the single compound CHHSL of 1.6 mg/kg for school uses.

6.6 Building Perimeter

6.6.1 Soil Sampling and Analysis

The existing maintenance/storage shed dates back several decades and may have been treated with termiticides and/or insecticides around its perimeter. Lead-based paint may have been used and flaking of paint to soil around this building is a potential environmental concern. To evaluate these potential environmental concerns, soil samples were collected within 1 foot of the outside walls, from a depth of 0- ½ feet, and at a frequency of one sample along each wall as shown on Figure 4. These samples were analyzed for OCPs and lead. Step-out samples 5-feet from the building walls were also collected and held by the lab for possible analysis. All four step-out samples were analyzed due to elevated concentrations of pesticides or lead detected adjacent to the building.

6.6.2 Analytical Results

The laboratory results of the pesticides analyses are summarized in Table 4 and the laboratory results of the lead analyses are summarized in Table 5. The complete laboratory results are included in Appendix B.

Organochlorine pesticide results indicate that pesticides concentrations were detected around the building perimeter of the existing maintenance/storage shed. Concentrations of 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, beta-BHC, dieldrin, endosulfan II and methoxychlor were detected in at least one of the samples collected. The 5-foot step-out samples at locations BP-1 and BP-3 were also analyzed for pesticides. Multiple compounds were detected at sampling location BP-1, although none of the compounds exceeded their single compound CHHSLs. Additional sampling via a Supplemental Site Investigation will be performed to further evaluate the extent of OCPs in this area. The results will then be statistically evaluated and presented in the SSI Report to evaluate the human health threat and the need for mitigation of OCPs.

Lead concentrations were detected in every sample collected from around the building perimeter and ranged from 26 mg/Kg to 100 mg/Kg. Lead concentrations exceeded the CHHSL of 80 mg/kg at two of the sampling locations but did not exceed the hazardous waste threshold. Elevated lead concentrations were co-located with elevated pesticides concentrations at one of the sampling locations. Two of the 5-foot step-out samples were analyzed for lead and the concentrations ranged from 17 mg/Kg to 79 mg/Kg. None of the lead concentrations from the step-out sampling exceeded the CHHSL of 80 mg/kg. The lead results were combined with the other lead results from the area and the statistical analysis of the concentrations are described in Section 6.5.2. None of the samples were analyzed for soluble lead during the PEA Sampling and therefore additional hazardous waste may be identified when further studies are conducted and waste characterization is being performed.

6.7 Maintenance/Storage Shed

6.7.1 Soil Sampling and Analysis

The existing maintenance/storage shed had been used for the vehicle and equipment repair and storage for many years. To evaluate if hazardous chemicals or compounds were present at elevated concentrations inside the maintenance shed, two surface soil samples were collected from areas where stained surface soils were observed and an additional surface soil sample was collected from outside the front door of the maintenance/storage shed. To evaluate the vertical extent of the surface contamination, soil samples were collected from a depth of 2½ to 3 feet below the ground surface (bgs) at each of the surface sampling locations. The soil samples collected were analyzed for gasoline (EPA Test Method 8260B), diesel, and motor oilrange petroleum hydrocarbons (EPA Test Method 8015B(Modified)), PAHs (EPA Test Method 8310) and CAM 17 metals (EPA Test Methods 6010B/7471A). A silica-gel cleanup would be performed on the extract to remove any naturally-occurring aliphatic compounds not related to petroleum hydrocarbons. The sample collected nearest to the pesticide storage area in the maintenance/storage shed was also analyzed for OCPs. The approximate sampling locations are shown on Figure 4.

6.7.2 Analytical Results

The laboratory results of the pesticides analyses are summarized in Table 4 and the laboratory results of the metal analyses are summarized in Table 5. Total petroleum hydrocarbon and PAHs analyses are summarized in Table 6. The complete laboratory results are included in Appendix B.

The OCP results for the maintenance/storage shed sampling showed that the one sample collected near the pesticide storage area had detectible concentrations of 4,4'-DDE and 4,4'-DDT ranging from 0.098 mg/Kg to 0.200 mg/Kg. These concentrations are well below the single compound CHHSL of 1.6 mg/kg for school uses. Dieldrin was also detected in the sample at concentrations of 0.24 mg/Kg which did not exceed the single compound CHHSL of 0.035 mg/kg for school uses.

Concentrations of barium, chromium, cobalt, copper, lead, nickel, silver, vanadium and zinc were detected in the three shallow soil samples and the three samples collected from 2½ to 3 feet bgs. With exception of lead, the concentrations of all the other metals detected are less than their respective CHHSLs and appear consistent with the naturally-occurring concentrations in published studies.

Lead concentrations were detected in every sample collected from the maintenance/storage shed sampling and ranged from 4.7 mg/Kg to 130 mg/Kg. Lead concentrations exceeded the CHHSL of 80 mg/kg at only one of the shallow soil sampling locations (MS-1) but did not exceed the hazardous waste threshold. The lead results (from 0-0.5 feet) were combined with the other lead results across the Site and the statistical analyses of the concentrations are described in Section 6.5.2.

Gasoline, diesel, and motor oil-range petroleum hydrocarbons, and semi-volatile organics (pyrene, chrysene and benzo(b)fluoranthene) were detected in the samples collected from the maintenance/storage shed. The results were compared to the CHHSLs, the USEPA RSLs, and the San Francisco Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for shallow soil for the protection of groundwater, contamination ceiling levels (odors), and direct exposure. Only the motor oil range petroleum hydrocarbon (TPHmo) concentration at sampling location MS-1 exceeded any of the regulatory threshold

concentrations. The TPHmo concentration of 940 mg/Kg exceeded only the ESL for the ceiling level of 500 mg/Kg.

6.8 Pressure-Treated Fence Post Pile

6.8.1 Soil Sampling and Analysis

A pile of pressure-treated fence posts are located adjacent to the existing maintenance/storage shed. Chromated copper arsenate (CCA) has been used to pressure treat lumber since the 1940's to protect wood from rotting due to insects and microbial agents. To evaluate this concern, two discrete soil samples were collected from the surface soil below the pressure-treated fence posts. The samples were analyzed for chromium, copper and arsenic (EPA Method 6010B). The approximate sampling locations are shown on Figure 4.

6.8.2 Analytical Results

The laboratory results of the metal analyses are summarized in Table 5. The complete laboratory results are included in Appendix B.

Arsenic was detected at a concentration of 17 mg/Kg in one of the surface soil samples collected in the treated fence post area, which exceeded the CHHSL for sensitive uses. . Additional sampling will be conducted in this area during a Supplemental Site Investigation (SSI) to determine if there is any vertical or lateral extent to the elevated arsenic concentration. If the data suggest that there is no extent to the elevated arsenic concentration, then a 95% UCL will be calculated for the site and the result compared to the 12 mg/Kg ambient concentration for agricultural sites as presented in DTSC's Ag Guidance (DTSC, 2008).

Concentrations of chromium and copper were detected in both of the soil samples and the concentrations are less than their respective CHHSLs and appear consistent with the naturally-occurring concentrations in published studies.

6.9 Burn Area

6.9.1 Soil Sampling and Lab Analysis

A small burn area is located on the southern portion of the Site along the Wutchumna Ditch and residual concentration of dioxins and PAHs have been associated with burn areas. Therefore in accordance with DTSC guidelines, one discrete sample was collected and analyzed for dioxins (EPA Test Method 1613) and PAHs (EPA Test Method 8310). The approximate sampling locations are shown on Figure 3.

6.9.2 Analytical Results

The laboratory results of the PAHs analysis are summarized in Table 6. The complete laboratory results are included as Appendix B.

The PAHs results show that only 1-methylnapthalene had detectible concentrations at 0.061 mg/Kg. This concentration is well below the USEPA RSL of 16 mg/kg for residential uses.

Four different dioxins (2,3,7,8-TCDF; 1,2,3,4,6,7,8-HpCDD; 1,2,3,4,6,7,8-HpCDF; and OCDD) were detected in the soil sample collected from the burn area exceeding the laboratory detection limits. The concentrations were then evaluated based on the World Health Organization toxicity equivalency factors (Van den Berg et al., ToxSci 93(2), 223-241, 2006). The calculated 2,3,7,8-TCDD equivalent concentration detected in the soil sample was 0.158 pico grams/gram or 1.58x10⁻⁷ mg/Kg. The concentration is less than the CHHSL of 4.6x10⁻⁶ mg/Kg for sensitive use.

6.10 Pole-Mounted Electrical Transformers

6.10.1 Soil Sampling

There are eight pole-mounted electrical transformers within the Site area. All eight of the transformers are situated above soil. The transformers located near the water supply wells along the water supply ditch (Wutchumna Ditch) were clustered in groups of three on the power pole. Many older transformers were filled with oils that contained PCBs. If any of the pole-mounted transformers leaked, the surface soil below the transformers could be impacted by PCBs. To evaluate this concern, one discrete soil sample was collected from the surface soil below each of the pole-mounted transformers in accordance with DTSC guidance. The soil samples collected from under the clustered transformers were composited prior to analysis. The discrete and composite samples were analyzed for PCBs (EPA Test Method 8082). The approximate sampling locations are shown on Figure 3.

Because of the lower sampling frequency, the DTSC required that each PCB analyte detected from the composite samples be compared to ¹/₃ the CHHSL value.

6.10.2 Analytical Results

The laboratory results of the PCBs are summarized in Table 7. The complete laboratory results are included in Appendix B.

PCB were not detected in any of the samples exceeding the laboratory detection limits

6.11 Investigation-Derived Waste

No investigated derived waste (IDW) was generated during the PEA sampling. For the sampling performed in the agricultural fields, water supply ditch, dirt roads, historical structures, around the building perimeter of the maintenance/storage shed, pressure-treated fence post pile and burn area, all samples were collected in single-use 4-ounce glass jars or 9-ounce glass jars from the upper 6 inches of soil and therefore no excess soil was generated and no cleaning of equipment was necessary. Disposal of used gloves were discarded in trash containers. For the deeper samples collected within the maintenance/storage shed, the soil was placed adjacent to the hand-augered location and the sampling equipment decontaminated adjacent to the sampling location.

6.12 Sampling Variances:

The field sampling that was performed in variance to the approved PEA Workplan include sampling location HS-2 was moved slightly to the north due to old equipment being located at the old sampling location. Sampling location HS-8 was moved to near the water tank spigot within the same sampling grid. An additional transformer was identified along W. Riggin Avenue and one additional surface soil sample was collected. Six of the transformers were located in clusters of three transformers on a power pole and the samples were composited prior to analysis. No duplicated samples were collected during the investigation due to the collection of composite sampling. A greater number of duplicate samples can be collected in a subsequent SSI investigation if requested. All the other sampling was performed in accordance with the PEA Workplan.

7.0 LABORATORY DATA REVIEW

The laboratory analytical data from the samples collected at the Site were reviewed for data quality and usability in the risk evaluation. The samples were all analyzed at Torrent Laboratory, Inc. in Milpitas, California with exception of the dioxins analysis. The dioxins analysis was sub-contracted to Frontier Analytical Laboratory in El Dorado Hills, California. The laboratory work order numbers include the following: 1302014, 1302015, 1302016, 1302017, 1302018 Rev.1, 1302020, 1302021, 1302022 Rev.1, 1302024 Rev.1, 1302025 Rev.1, and 1302026. The dioxins analysis from Frontier Analytical Laboratory is included in work order number 1302022 Rev.1 The samples were collected from 1/29/2013 through 2/1/2012 and received by the lab on 2/4/2012. No sample handling conditions were reported.

7.1 Sample Hold Times

For work orders 1302014, 1302015, 1302016, 1302017, 1201021, and 1302026 samples were analyzed for metals (arsenic) by EPA Method 6010B and OCPs by EPA Method 8081. All samples were extracted and analyzed within the specified hold times.

For work orders 1302018 Rev.1 and 1302020 samples were analyzed for metals (lead) by EPA Method 6010B and OCPs by EPA Method 8081. Additional analysis was performed on the samples from work order 1302018 Rev.1. Although the analysis was requested two days before hold times would be exceeded, the samples were extracted one day after the 14 day hold time was exceeded. All other samples were extracted and analyzed within the specified hold times.

For work order 1302022 Rev.1 soil samples were analyzed for metals (CAM 17) by EPA Methods 6010B/7471, OCPs by EPA Method 8081, PAHs by EPA Methods 8310, Dioxins by EPA Method 1613, TPHg, TPHd and TPHmo by EPA Methods 8015B(M) and 8260. All samples were extracted and analyzed within the specified hold times.

For work orders 1302024 Rev.1, samples were analyzed for PCBs by EPA Method 8082. All samples were extracted and analyzed within the specified hold times.

For work order 1302025 Rev.1 soil samples were analyzed for metals (Arsenic, chromium, copper and lead) by EPA Methods 6010B and OCPs by EPA Method 8081. All samples were extracted and analyzed within the specified hold times.

7.2 Evaluation of MS/MSD

The MS/MSD were reviewed for each of the work orders and are summarized below.

For work order 1302014, 1302015 and 1302017, one analytical batch (#413808) was reviewed for the metal analysis and one analytical batch (#413816) was reviewed for OCPs analysis. The MS% Recovery and MSD% Recovery was reviewed both batches and all compounds were within the % Recovery Limits. The control limits for both analytical batches were 30%.

For work order 1302016, one analytical batch (#413808) was reviewed for the metal analysis and one analytical batch (#413863) was reviewed for OCPs analysis. The MS% Recovery and MSD% Recovery was reviewed both batches and all compounds were within the % Recovery Limits. The control limits for both analytical batches were 30%.

For work order 1302018 Rev.1 and 1302020, one analytical batch (#413842) was reviewed for the metal analysis and one analytical batch (#414008) was reviewed for OCPs analysis. The MS% Recovery and MSD% Recovery was reviewed both batches and the compounds for batch #413842 were within the % Recovery Limits. The control limits for analytical batch #413842 was 30%. For QC analytical batch #414008, the % recoveries for aldrin, heptachlor, 4,4'-DDT, and TCMX were outside the laboratory control limits, but were within the % RPD limits. The associated LCS/LCSD% recoveries and % RPD were within the control limits. No corrective action was required.

For work orders 1302020 and 1302021, one analytical batch (#413844) was reviewed for the metal analysis and the same analytical batch (#413863) was reviewed for OCPs analysis. The MS% Recovery and MSD % Recovery was reviewed and all compounds were within the % Recovery Limits. The control limits for the analytical batch were 30%.

For work order 1302022 Rev.1, one analytical batch (#413859) was reviewed for the metal analysis, one analytical batch (#413853) was reviewed for the mercury analysis, one analytical batch (#413851) was reviewed for OCPs analysis, one analytical batch (#413880) was reviewed for the 8260 analysis, one analytical batch (#413830) was reviewed for the 8260 analysis, one analytical batch (#413830) was reviewed for the 8015B analysis, and one analytical batch (#413837) was reviewed for the 8310 analysis. For QC analytical batch #413830, the % recoveries for TPH as diesel was outside the laboratory control limits, but were within the % RPD limits. The associated LCS/LCSD% recoveries and % RPD were within the control limits. No corrective action was required. The associated LCS/LCSD% recoveries and % RPD were within the control limits. No corrective action was required. For QC analytical batch #413859, the % recoveries for arsenic was outside the laboratory control limits, but was within the % recovery limits. The associated LCS/LCSD% recoveries and % RPD were within the control limits. No corrective action was required. For QC analytical batch #413859, the % recoveries for arsenic was outside the laboratory control limits, but was within the % recovery limits. The associated LCS/LCSD% recoveries and % RPD were within the control limits. No corrective action was required. The MS% Recovery and MSD % Recovery was reviewed for the remaining batches and all compounds were within the % Recovery Limits. The control limits for remaining analytical batches were 30%.

For work orders 1302024 Rev.1, one analytical batch (#413826) was reviewed for the PCBs analysis. The MS% Recovery and MSD % Recovery was reviewed and all compounds were within the % Recovery Limits. The control limits for the analytical batch were 30%.

For work order 1302025 Rev.1, the same analytical batch (#413844) was used for the metal analysis and the same analytical batch (#413863) was reviewed for OCPs analysis. For QC analytical batch #413863, the % recoveries for most compounds were outside the laboratory control limits, but were within the % RPD limits. The associated LCS/LCSD% recoveries and % RPD were within the control limits. The sample and associated QC was re-extracted and the

results yielded were similar to the initial extraction. The original data is reported. No corrective action was required.

For work orders 1302026, one analytical batch (#413859) was reviewed for the metal analysis and the same analytical batch (#413851) was reviewed for OCPs analysis. The MS% Recovery and MSD % Recovery was reviewed both batches and all compounds were within the % Recovery Limits. The control limits for both analytical batches were 30%.

7.3 Reporting Limits

For work order 1302014, 1302015, 1302016, and 1302017, all undiluted reporting limits were at or below specified screening levels. All reporting limits were increased in the composite samples analyzed for OCPs due to potential matrix interference (viscous/dark color extract). The increased reporting limits were at or below specified CHHSL screening levels. The J flag for 4,4'-DDE in sample composite AG2-(5,6,7,8) indicates a value between the method MDL and PQL and the reported concentration of 2.8 µg/kg should be considered an estimate rather than quantitative. The J flag for 4,4'-DDE in sample composite AG2-(9,10,11,12) indicates a value between the method MDL and PQL and the reported concentration of 2.6 μ g/kg should be considered an estimate rather than quantitative. The J flag for 4,4'-DDE in sample composite AG4-(1,2,3,4) indicates a value between the method MDL and PQL and the reported concentration of 3.8 µg/kg should be considered an estimate rather than quantitative. The J flag for 4,4'-DDE in sample composite AG4-(5,6,7,8) indicates a value between the method MDL and PQL and the reported concentration of 6.5 μ g/kg should be considered an estimate rather than quantitative. The J flag for 4,4'-DDE in sample composite AG4-(9,10,11,12) indicates a value between the method MDL and PQL and the reported concentration of 7.1 μ g/kg should be considered an estimate rather than quantitative.

For work order 1302018 Rev.1, all undiluted reporting limits were at or below specified screening levels. Reporting limits for OCPs were increased in composite samples HS-1-4, HS-9-12, and HS-13-16 and discrete samples HS-5 and HS-6 due to matrix interference. The increased reporting limits were at or below specified CHHSL screening levels. The J flag for 4,4'-DDE in sample HS-6 indicates a value between the method MDL and PQL and the reported concentration of 7.7 μ g/kg should be considered an estimate rather than quantitative. The J flag for gamma-chlordane, alpha-chlordane, dieldrin and endosulfan II in composite sample HS-9-12 indicates a value between the method MDL and PQL and the reported concentrations of 12 μ g/kg, 18 μ g/kg, 6.9 μ g/kg and 11 μ g/kg respectively, should be considered estimates rather than quantitative. The J flag for gamma-chlordane in composite sample HS-13-16 indicates a value between the method MDL and PQL and the reported concentration of 8.4 μ g/kg should be considered an estimate rather than quantitative.

ranging up to 1,000 μ g/kg exceeding the CHHSLs screening level of 460 μ g/kg, but the MDL indicates toxaphene not present in the samples exceeding 33 to 82 μ g/kg.

For work order 1302020, 1302021 all undiluted reporting limits were at or below specified screening levels. All reporting limits were increased in the composite samples analyzed for OCPs due to potential matrix interference (viscous/dark color extract). The increased reporting limits were at or below specified CHHSL screening levels.

For work order 1302022 Rev.1, all undiluted reporting limits were at or below specified screening levels. Reporting limits for OCPS were increased in discrete sample MS-1 due to matrix interference. The toxaphene in sample MS-1 had a PQL of 2,000 μ g/kg exceeding the CHHSLs screening level of 460 μ g/kg, but the MDL indicates toxaphene not present in the samples exceeding 160 μ g/kg. The J flag for dieldrin in sample MS-1 indicates a value between the method MDL and PQL and the reported concentration of 24 μ g/kg should be considered an estimate rather than quantitative.

For work order 1302024 Rev.1, all undiluted reporting limits were at or below specified screening levels. All of the samples were reported to the method MDL.

For work order 1302025 Rev.1, all undiluted reporting limits were at or below specified screening levels. Reporting limits for OCPs were increased in samples BP-1, BP-1 @ 5', BP-2, BP-3 and BP-4 due to matrix interference. All of the samples analyzed for OCPs were reported to the method MDLs. The J flag for 4,4'-DDD and endosulfan II in sample BP-3 indicates a value between the method MDL and PQL and the reported concentrations of 14 μ g/kg and 13 μ g/kg, respectively, should be considered estimates not quantitative. The J flag for 4,4'-DDD and 4,4'-DDT in sample BP-4 indicates a value between the method MDL and PQL and the reported concentrations of 8.9 μ g/kg and 11 μ g/kg, respectively, should be considered estimates not quantitative. Toxaphene in some samples had PQLs ranging up to 2,000 μ g/kg exceeding the CHHSLs screening level of 460 μ g/kg.

For work order 1302026, all undiluted reporting limits were at or below specified screening levels. Reporting limits for OCPs were increased in composite samples DR-9-12 due to matrix interference. The increased reporting limits were at or below specified CHHSL screening levels.

8.0 HUMAN HEALTH SCREENING EVALUATION

As described above, many samples collected around the former residence and the existing maintenance/storage shed had concentrations of multiple OCPs, arsenic, and lead that exceed the CHHSL concentrations for sensitive uses. Elevated concentrations of motor oil range petroleum hydrocarbons was detected exceeding the ESL for ceiling level (odors) for residential uses.

Arsenic concentrations were only detected exceeding the laboratory reporting limit in sample FP-2, one of the samples collected from the pressure treated fence post pile. The concentration detected was 17 mg/Kg, which exceeds the the CHHSL for sensitive uses. To further evaluate the extent of arsenic in this area, additional sampling will be conducted via a SSI. Additional sampling will be conducted in this area during an SSI to determine if there is any vertical or lateral extent to the detected elevated arsenic concentration. If the data suggest that there is no extent to the elevated arsenic concentration, then a 95% UCL will be calculated for the site and the result compared to the 12 mg/Kg ambient concentration for agricultural sites as presented in DTSC's Ag Guidance (DTSC 2008).

Lead concentrations exceeding CHHSLs for unrestricted uses are present only in the area of the former residence. As described in Section 6.5.2, a statistical analysis of the data set from the 0-0.5 foot samples was performed to determine the 95% Upper Confidence Limit of the arithmetic mean (UCL). The analyses are included in Appendix C, and show that the 95% UCL for lead is 79 mg/kg which is less than the direct exposure CHHSL for residential use of 80 mg/kg. Based on this, lead does not pose an unacceptable health risk at the Site and no mitigation will be needed.

To evaluate the results for additive risk from multiple OCPs, ratio sum methods were used as described in the CHHSL guidance (Cal/EPA, 2005). The most elevated compound concentrations from across the entire Site were also used to calculate the additive risk and Hazard Index. Table 8 is a summary of the concentrations and risk calculation which shows that the additive cancer risk for theoretical exposure to the most elevated compounds of cancer-causing chemicals is 5.3×10^{-5} which exceeds the DTSC cancer risk recommendation of 1×10^{-6} . Likewise, the cumulative non-cancer Hazard Index for chemicals with non-cancer effects is calculated to be 0.0063 which is less than the maximum value of 1.0. However, there will be additional samples collected for OCPs in the SSI, and after these results are obtained a 95% UCL will be calculated using all the OCP data from the entire Site to reevaluate the human health risk. The results of this analysis will be included in the SSI Report.
9.0 ECOLOGICAL SCREENING EVALUATION

9.1 Site Characterization

As shown on Figure 2, the Site is primarily surrounded on the northern, eastern, and western sides by agricultural land with associated residential housing. A church, a few rural residences, and a former dairy are located across W Riggin Avenue / Avenue 312 to the south of the Site. There are no wildlife habitats in the immediate vicinity of the Site.

9.2 Biological Characterization

Based on current Site usage and the lack of wildlife habitats in the immediate vicinity of the Site, a biological resource report was not necessary.

10.0 PUBLIC PARTICIPATION

The public outreach for the PEA started with noticing of the field sampling work to residents within line of sight of the Site. The notice was reviewed and approved by the DTSC. The District's current intention is to make the PEA available for public review by Option A (Ed. Code § 17213.1, subdivison (a)(6)(B)) where the PEA review is combined with CEQA review. Copies of the report will be placed at the Tulare County Library, at the Visalia Unified School District Office, and on DTSC's Envirostor database. A public notice will be placed in the local paper, announcing the availability of the PEA for review, the locations, and the date of the public hearing.

11.0 CONCLUSIONS AND RECOMMENDATIONS

This PEA was performed to evaluate the existing Site to be redeveloped by the VUSD for a new kindergarten through 12th grade campus. The environmental concerns identified prior to sampling that could have posed a health risk include pesticides and arsenic in the shallow soils in the historically farmed areas, pesticide spraying and the flaking of lead-based paint around existing maintenance/storage shed and former historical structures, undocumented releases of total petroleum hydrocarbons from the existing maintenance/storage shed, a release of chemicals from the pressure treated fence posts located near the maintenance/storage shed, residual pesticides in the soils of the water supply ditch, residual pesticides on the dirt roads that traverse the Site due to over-spraying of the agricultural fields, leaking transformers, and

dioxins and PAHs in a known burn area. Soil sampling was performed across the Site to evaluate these concerns.

Several man-made contaminants OCPs, arsenic, lead, and motor oil range petroleum hydrocarbons) in soil were identified around the existing maintenance/storage shed and the former residence that exceed DTSC Schools Program acceptable risk guidelines. The lateral and vertical extent of affected soil is not fully delineated and additional soil sampling is recommended in select areas to complete the characterization of the site. In the DTSC Schools Program process, this is done by performing a SSI. At the completion of the SSI, the District will prepare an SSI Report with an updated screening level human health risk analysis, with final recommendations for the site.

12.0 LIMITATIONS

This report was prepared for the sole use of Visalia Unified School District and the California Department of Toxic Substances Control in evaluating soil quality at the time of this study. We make no warranty, expressed or implied, except that our services have been performed in accordance with environmental principles generally accepted at this time and location. The chemical and other data presented in this report can change over time and are applicable only to the time this study was performed. We are not responsible for data presented by others. The accuracy and reliability of contaminant studies are a reflection of the number and type of samples taken and extent of the analyses conducted, and are thus inherently limited and can be dependent upon the resources expended. Chemical analyses were performed for specific parameters during this investigation. Our sampling and analytical plan was designed using accepted environmental principles and our judgment for the performance of a soil quality evaluation and based on the degree of investigation approved by the California Department of Toxic Substances Control. There is a possibility that even with the proper application of these methodologies there may exist on the subject property conditions that could not be identified within the scope of the assessment or which were not reasonably identifiable from the available information.

13.0 REFERENCES

- Bradford, G.R., Chang, A.C., Page, A.L., Bakhtar, D., Frampton, J.A., Wright, H. March 1996, Background Concentrations of Trace and Major Elements in California Soils. Kearney Foundation of Soil Science
- BSK Associate, February 5, 2007. 13.8-Acre Proposed School Site, South of Ferguson Avenue and Leila Street, Visalia, California.
- Cal/EPA, January 2005. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties.
- Cal/EPA, September 12, 2006. Interim Guidance, Evaluation of School Sites with Potential Soil Contamination as a Results of Lead from Lead-Based Paint, Organochlorine Pesticides from Termiticides, and Polychlorinated Biphenyls from Electrical Transformers.
- Cal/EPA, March 21, 2007. Arsenic Strategies, Determination of Arsenic Remediation, Development of Arsenic Cleanup Goals for Proposed and Existing School Sites.
- Cal/EPA, April 30, 2008. Interim Guidance for Sampling Agricultural Properties (Third Revision).
- Cal/EPA, September 2009. Revised California Human Health Screening Levels for Lead.
- Cal/EPA, March 2010. Draft Updated Advisory Active Soil Gas Investigations.
- California Regional Water Quality Control Board, San Francisco Bay, November 2007 (Revised February 2013). Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater
- Department of Toxic Substances Control, June 1999. Preliminary Endangerment Assessment Guidance Manual.
- McCloskey Consultants, Inc., October 5, 2012. Preliminary Environmental Assessment Workplan, Visalia K-12 Education Complex, Northwest Corner of Riggin Avenue and Akers Street, Visalia.
- Shacklette, H.T., Boerngen, J.G., 1984. *Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States.* United States Geological Survey Professional Paper 1270.

Van den Berg et al., Martin, July 7, 2006, *The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds.* Toxicological Sciences **93(2)**, pages 223-241. TABLES

Table 1. Results for Agricultural Sampling

(Concentrations in milligrams per kilogram [mg/kg])

Approximate Location	Samp	le ID	Approximate Sampling Depth	Arsenic	alpha- BHC	beta- BHC	delta- BHC	gamma- BHC	4,4'- DDD	4,4'- DDE	4,4'- DDT	Total DDT	Alpha Chlordane	Chlordane	Gamma Chlordane	Aldrin	Dieldrin	Endrin	Endrin Aldehyde	Endrin Ketone	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Heptachlor	Heptachlor Epoxide	Methoxy chlor	Toxaphene
	s te	AG1-1	0-½ bgs	<1.7																							
	osit -1-4)CP3	AG1-2	0-½ bgs			<0.009	<0.008	<0.009	<0.008	0.025	<0.008	0.025	<0.009	<0.080	<0.009	<0.009	<0.009		<0.009	<0.008	<0.009	<0.009	<0.009	<0.009	<0.009	<0.020	<0.400
	AG1 or C	AG1-3	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.025	<0.008	0.025	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	tr ≻ C	AG1-4	0-½ bgs																								
	e co	AG1-5	0-½ bgs	<1.7																							
	osił -5-8 (CP <u>(</u>	AG1-6	0-½ bgs			-0.000	.0.000	10,000	10,000	0.042	10,000	0.042	10,000	10,000	10,000	10,000	-0.000	-0.000	-0.000	-0.000	10,000	10,000	10,000	10,000	10,000	10,020	10, 100
	mp G1- or C	AG1-7	0-½ bgs		- <0.008	<0.008	<0.008	<0.008	<0.008	0.042	<0.008	0.042	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	Co f	AG1-8	0-½ bgs																								
	5 G	AG1-9	0-½ bgs	<1.7																							
	osit 9-1,	AG1-10	0-½ bgs							0.000		0.000															
	mp G1- or O	AG1-11	0-½ bgs		- <0.008	<0.008	<0.008	<0.008	<0.008	0.036	<0.008	0.036	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
Agricultural	Fe A Co	AG1-12	0-½ bgs		-																						
Sampling Grid 1	e o e	AG1-13	0-½ bgs	<1.7																							
Gild I	osit .3-1 .CPs	AG1-14	0-½ bgs						0.000																		0.400
	mp 31-1 or O	AG1-15	0-½ bgs		- <0.008	<0.008	<0.008	<0.008	<0.008	0.035	<0.008	0.035	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	PC CO	AG1-16	0-½ bgs		-																						
	e O ie	AG1-17	0-½ bgs																								
	osit .7-2 .CPs	AG1-18	0-½ bgs	<1.7						0.000	0.000	0.000										0.000		0.000	0.000		
	mp i1-1 or O	AG1-19	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.028	<0.008	0.028	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	AG Co	AG1-20	0-½ bgs		-																						
	e 4 .	AG1-21	0-½ bgs																								
	osit :1-2 :CPs	AG1-22	0-½ bgs																								
	mp i1-2 or O	AG1-23	0-½ bgs	<1.7	<0.008	<0.008	<0.008	<0.008	<0.008	0.024	<0.008	0.024	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	AG AG	AG1-24	0-½ bgs		-																						
	e in	AG2-1	0-½ bgs	<1.7																							
	osit 1-4 CPs	AG2-2	0-½ bgs																								
	mp G2- or O	AG2-3	0-½ bgs		<0.0024	<0.0023	<0.0016	<0.0025	<0.003	<0.002	<0.0027	<0.003	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025	<0.033
	Co fc	AG2-4	0-½ bgs		-																						
	e in	AG2-5	0-½ bgs																								
	osit -5-8 CPs	AG2-6	0-½ bgs																								
	mp G2- or O	AG2-7	0-½ bgs		<0.0024	<0.0023	<0.0016	<0.0025	<0.003	0.0028 J	<0.0027	0.0028 J	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025	<0.033
Agricultural	Co fc	AG2-8	0-½ bgs	<1.7	-																						
Sampling	9 Q	AG2-9	0-½ bgs																								
Grid 2	osit 9-12 CPs	AG2-10	0-½ bgs	<1.7	1																						
	mp 52-9 or O	AG2-11	0-½ bgs		<0.0024	<0.0023	<0.0016	<0.0025	<0.003	0.0026 J	<0.0027	0.0026 J	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025	<0.033
	fc Co	AG2-12	0-½ bgs		1																						
	e o e	AG2-13	0-½ bgs																								
	osit .3-1 .CPs	AG2-14	0-½ bgs			.0.0000	.0.0010	.0.0005	.0.000	0.0000	.0.0007	0.0000	.0.0000		.0.0000	.0.0000	.0.0000	.0.000.0	.0.0040	.0.0000	.0.0000	.0.0000	.0.0000	.0.0000		.0.0005	.0.000
	տր 32-1 ንr O	AG2-15	0-½ bgs	<1.7	<0.0024	<0.0023	<0.0016	<0.0025	<0.003	0.0096	<0.0027	0.0096	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	< 0.0023	<0.0032	<0.0014	< 0.0025	<0.033
	AG AG	AG2-16	0-½ bgs																								
	СНІ	ISL		0.07**	NE	NE	NE	0.5	2.3	1.6	1.6	NE	NE	0.43	NE	0.033	0.035	21	NE	NE	NE	NE	NE	0.13	NE	340	0.46
	USEPA	RSL		0.39	0.077	0.27	NE	0.52	2	1.4	1.7	NE	NE	1.6	NE	0.029	0.03	18	NE	NE	370*	370*	NE	0.11	0.053	310	0.44
	TT	LC		500	NE	NE	NE	4.0	NE	NE	NE	1.0	NE	2.5	NE	1.4	8.0	0.2	NE	NE	NE	NE	NE	4.7	NE	100.0	5.0

Table 1. Results for Agricultural Sampling

(Concentrations in milligrams per kilogram [mg/kg])

Approximate Location	Samı	ole ID	Approximate Sampling Depth	Arsenic	alpha- BHC	beta- BHC	delta- BHC	gamma- BHC	4,4'- DDD	4,4'- DDE	4,4'- DDT	Total DDT	Alpha Chlordane	Chlordane	Gamma Chlordane	Aldrin	Dieldrin	Endrin	Endrin Aldehyde	Endrin Ketone	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Heptachlor	Heptachlor Epoxide	Methoxy chlor	Toxaphene
	e c	AG3-1	0-½ bgs																								
	osit -1-4 CPs	AG3-2	0-½ bgs	<1.7	.0.000	.0.000	.0.000	.0.000	.0.000	0.046	.0.000	0.046	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.000	.0.020	.0.400
	mp G3- or O	AG3-3	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.046	<0.008	0.046	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	Co A fo	AG3-4	0-½ bgs																								
	te S	AG3-5	0-½ bgs																								
	osit -5-8)CP:	AG3-6	0-½ bgs	<1.7	<0.000	<0.000	<0.000	-0.000	<0.000	0.051	<0.000	0.051	<0.000	<0.080	<0.000	<0.000	<0.000	<0.000	<0.000		<0.009	<0.000		<0.000	<0.000	<0.020	-0.400
	or C	AG3-7	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.051	<0.008	0.051	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
Agricultural	CC F	AG3-8	0-½ bgs																								
Sampling Grid 3	te 2 s	AG3-9	0-½ bgs																								
chu s	osi 9-1)CP	AG3-10	0-½ bgs			<0.008	<0.009	<0.009	<0.008	0.027	<0.009	0.027	<0.009	<0.080	<0.009	<0.009	<0.009	<0.008	<0.009		<0.009	<0.009		<0.009		<0.020	<0.400
	or C	AG3-11	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.057	<0.008	0.057	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	A Co	AG3-12	0-½ bgs	<1.7																							
	te L6 S	AG3-13	0-½ bgs	<1.7																							
	iosi 13-1 DCP:	AG3-14	0-½ bgs		<0.000	<0.008	<0.000		<0.008	0.047	<0.008	0.047	<0.000	<0.080	<0.008		~0.000	<0.008	~0.009	<0.000	<0.008	<0.000	<0.008	<0.008	<0.008	<0.020	<0.400
	amp 33-: or C	AG3-15	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.047	<0.008	0.047	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020	<0.400
	CC A(AG3-16	0-½ bgs																								
	te 1 s	AG4-1	0-½ bgs																								
	osi -1-/ DCP	AG4-2	0-½ bgs	<1.7	<0.0024	<0.0022	<0.0016	<0.0025	<0.002	0 0028 1	<0.0027	0 0020 1	~0.0020	<0.041	<0.0022	~0 0022	<0.0022	<0.0024	<0.0019	<0 0022	<0.0026	<0.0022	<0.0022	<0.0022	<0.0014	<0.0025	<0.022
	omp AG4 or C	AG4-3	0-½ bgs		<0.0024	<0.0025	<0.0010	<0.0025	<0.005	0.0056 J	<0.0027	0.00201	<0.0056	<0.041	<0.0032	<0.0052	<0.0025	<0.0034	<0.0018	<0.0025	<0.0020	<0.0055	NU.0025	<0.003Z	<0.0014	<0.0025	<0.055
	CC CC	AG4-4	0-½ bgs																								
	te 3 s	AG4-5	0-½ bgs																								
Agricultural	osi 5-8 DCP	AG4-6	0-½ bgs		<0.0024	<0.0022	<0.0016	<0.0025	<0.002	0.0065.1	<0.0027		~0.0020	<0.041	<0.0022	~0 0022	<0.0022	<0.0024	<0.0019	~0 0022	<0.0026	<0.0022	<0.0022	<0.0022	<0.0014	<0.0025	<0.022
Grid 4	omp AG4 or (AG4-7	0-½ bgs		<0.0024	<0.0025	<0.0010	<0.0025	<0.005	0.0005 J	<0.0027	0.0003 1	<0.0056	<0.041	<0.0052	<0.0052	<0.0025	<0.0034	<0.0018	<0.0025	<0.0020	<0.0055	<0.0025	<0.005Z	<0.0014	<0.0025	<0.055
	C(/	AG4-8	0-½ bgs	<1.7																							
	te 2 s	AG4-9	0-½ bgs																								
	oosi -9-1 DCP	AG4-10	0-½ bgs		<0.0024	<0.0023	<0.0016	<0.0025	<0.003	0 0071 1	<0.0027	0 0071 1	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	~0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025	<0.033
	omp 64- or (AG4-11	0-½ bgs	<1.7	<0.0024	<0.0023	<0.0010	<0.0025	<0.005	0.00713	<0.0027	0.00713	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0020	<0.0033	<0.0025	NU.0032	<0.0014	<0.0025	<0.033
	f A C	AG4-12	0-½ bgs																								
	СН	HSL		0.07**	NE	NE	NE	0.5	2.3	1.6	1.6	NE	NE	0.43	NE	0.033	0.035	21	NE	NE	NE	NE	NE	0.13	NE	340	0.46
	USEP A	A RSL		0.39	0.077	0.27	NE	0.52	2	1.4	1.7	NE	NE	1.6	NE	0.029	0.03	18	NE	NE	370*	370*	NE	0.11	0.053	310	0.44
	TT	LC		500	NE	NE	NE	4.0	NE	NE	NE	1.0	NE	2.5	NE	1.4	8.0	0.2	NE	NE	NE	NE	NE	4.7	NE	100.0	5.0

Total DDT Sum of the concentrations of 4,4'-DDD+4,4'-DDE+4,4'-DDT

<D.L. Indicates that the compound was not detected at or above stated laboratory detection limits.</p>

NE Not established.

CHHSL California Human Health Screening Levels, Residential Land Uses, Direct Exposure, Cal/EPA, January 2005 and updates.

USEPA RSL United States Environmental Protection Agency Regional Screening Levels for Residential Uses (November 2012)

Total threshold limit concentration for hazardous waste classification. TTLC

Not Analyzed --

USEPA RSL for Endosulfan *

** Cal/EPA does not require cleanup of soil to less than background concentrations. Natural background concentrations of arsenic often exceed the health-based goals in soil. DTSC Schools Unit acceptable risk management goal is 12 mg/Kg

Table 2. Results for Water Supply Ditch & Dirt Road Sampling

(Concentrations in milligrams per kilogram [mg/kg])

Approximate Location	Samp	ble ID	Approximate Sampling Depth	Arsenic	alpha-BHC	beta-BHC	delta-BHC	gamma- BHC	4,4'-DDD	4,4'-DDE	4,4'-DDT	Total DDT	Alpha Chlordane	Chlordane	Gamma Chlordane	Aldrin	Dieldrin	Endrin	Endrin Aldehyde	Endrin Ketone	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Heptachlor	Heptachlor Epoxide	Methoxychlor	Toxaphene
	te F S	WS-1	0-½ bgs	<1.7																							
	posi -1-4 DCP	WS-2	0-½ bgs		<0.0024	<0.0023	<0.0016	<0.0025	<0.003	<0.002	<0.0027	<0.003	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0 0014	<0.0025	<0.033
	om WS for (WS-3	0-½ bgs				.0.0010	0.0025		0.002	(0.002)		0.0000		10.0002		10.0025			0.0023				0.0002		1010020	
	0	WS-4	0-½ bgs																								
	iite 8 Ps	WS-5	0-½ bgs																								
Water Ditch	pos S-5- OCI	WS-6	0-½ bgs	<1.7	<0.0024	<0.0023	<0.0016	<0.0025	<0.003	<0.002	<0.0027	<0.003	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025	<0.033
Sampling	Com W: for	WS-7	0-½ bgs																								
	0	WS-8	0-½ bgs																								
	site 12 CPs	VV5-9	$0 - \frac{1}{2}$ Dgs																								
	npo S-9-	VVS-10	$0-\frac{1}{2}$ bgs		<0.0024	<0.0023	<0.0016	<0.0025	<0.003	<0.002	<0.0027	<0.003	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025	<0.033
	Con W.	W/S-12	0-1/2 bgs	<17																							
	a)	DR-1	0-½ bgs																								
	osite L-4 CPs	DR-2	0-½ bgs																								
	mpo DR-1 or O	DR-3	0-½ bgs	<1.7	<0.002	<0.002	<0.002	<0.002	<0.002	0.038	0.019	0.057	<0.002	<0.020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.100
	Co I fc	DR-4	0-½ bgs																								
	s te	DR-5	0-½ bgs	<1.7																							
	5-8 DCPS	DR-6	0-½ bgs		<0.002	<0.002	<0.002	<0.002	<0.002	0.007	<0.002	0.007	<0.002	<0.020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.100
	omp DR- or C	DR-7	0-½ bgs		<0.002	<0.002	<0.002	<0.002	<0.002	0.007	<0.002	0.007	<0.002	<0.020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.100
	CC f	DR-8	0-½ bgs																								
	ite 2 s	DR-9	0-½ bgs																			-					
Dirt Road	posi 9-1. OCP	DR-10	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	0.014	<0.008	<0.008	<0.008	<0.020	<0.400
Sampling	om DR- for (DR-11	0-½ bgs	<1.7																		0.011				101020	
	0	DR-12	0-½ bgs																								
	site 16 Ps	DR-13	0-½ bgs																								
	13- 0C	DR-14	0-½ bgs		<0.002	<0.002	<0.002	<0.002	<0.002	0.0043	<0.002	0.0043	<0.002	<0.020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005	<0.100
	Con DR- for	DR-15	$0 - \frac{1}{2}$ Dgs	<1.7																							
		DR-10	0-12 Dgs																								
	site -20 CPs		$0-\frac{1}{2}$ bgs																								
	npo -17 r 0(DR-19	0-1/2 bgs		<0.002	<0.002	<0.002	<0.002	<0.002	0.021	0.0037	0.0247	<0.002	<0.020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0076	<0.002	<0.002	<0.002	<0.005	<0.100
	Cor DR fo	DR-20	0-½ bgs	<1.7																							
	СН	HSL		0.07**	NE	NE	NE	0.5	2.3	1.6	1.6	NE	NE	0.43	NE	0.033	0.035	21	NE	NE	NE	NĘ	NE	0.13	NE	340	0.46
	USEPA	RSL		0.39	0.077	0.27	NE	0.52	2	1.4	1.7	NE	NE	1.6	NE	0.029	0.03	18	NE	NE	370*	370*	NE	0.11	0.053	310	0.44
	ТТ	LC		500	NE	NE	NE	4.0	NE	NE	NE	1.0	NE	2.5	NE	1.4	8.0	0.2	NE	NE	NE	NE	NE	4.7	NE	100.0	5.0

Total DDT Sum of the concentrations of 4,4'-DDD+4,4'-DDE+4,4'-DDT

Indicates that the compound was not detected at or above stated laboratory detection limits. <D.L.

NE Not established.

California Human Health Screening Levels, Residential Land Uses, Direct Exposure, Cal/EPA, January 2005 and updates. CHHSL USEPA RSL United States Environmental Protection Agency Regional Screening Levels for Residential Uses (November 2012)

Total threshold limit concentration for hazardous waste classification. TTLC

Not Analyzed ---

* USEPA RSL for Endosulfan

** Cal/EPA does not require cleanup of soil to less than background concentrations. Natural background concentrations of arsenic often exceeds the health-based goals in soil. DTSC Schools Unit acceptable risk management goal is 12 mg/Kg

Table 3. Results for Former Large Barn and Former Residence Sampling

Approximate Location	Sam	ple ID	Approximate Sampling Depth	Lead	alpha- BHC	beta- BHC	delta- BHC	gamma- BHC	4,4'-DDD	4,4'-DDE	4,4'-DDT	Total DDT	Alpha Chlordane	Chlordane	Gamma Chlordane	Aldrin	Dieldrin	Endrin	Endrin Aldehyde	Endrin Ketone	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Heptachlor	Heptachlor Epoxide	Methoxychlor
	s te	FB-1	0-½ bgs	7.4																						
	osit 1-4)CP ₃	FB-2	0-½ bgs	6.9			<0.000	<0.000	-0.009	0.049		0.049	<0.009		<0.008	-0.000	<0.000	<0.000	-0.009	<0.000	<0.009	<0.000		<0.000	<0.000	<0.020
	PB- FB- or C	FB-3	0-½ bgs	6.9	<0.008	<0.008	<0.008	<0.008	<0.008	0.048	<0.008	0.048	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020
	υ f	FB-4	0-½ bgs	6.2																						
	s s	FB-5	0-½ bgs	6.3																						
Former Large	5-8 DCP	FB-6	0-½ bgs	6.9	<0.008	~0.008	<0.008	<0.008	<0.008	0.040	<0.008	0.040	<0.008	<0.080	<0.008	~0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020
Sampling	or C	FB-7	0-½ bgs	7.3	<0.008	<0.008	<0.008	<0.008	<0.008	0.040	<0.008	0.040	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	\U.UU 8	<0.008	<0.008	<0.008	<0.020
8	J L	FB-8	0-½ bgs	8.0																						
	s 's	FB-9	0-½ bgs	12																						
	oosi 9-12 DCP	FB-10	0-½ bgs	8.5	<0.008	~0.008	<0.008	<0.008	<0.008	0.015	<0.008	0.015	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.020
	PB-9	FB-11	0-½ bgs	6.7	<0.008	<0.008	<0.008	<0.008	<0.008	0.015	<0.008	0.015	<0.008	<0.080	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	\U.UU 8	<0.008	<0.008	<0.020
	f _ C	FB-12	0-½ bgs	6.2																						
	te s	HS-1	0-½ bgs	25																						
	oosi 1-4 DCP	HS-2	0-½ bgs	23	<0.0061	<0.0056	<0.0040	<0.0061	<0.0076	0.054	0.076	0.120	<0.0004	<0 100	<0.0070	~0 0081	<0.0058		<0.0046	~0.0058	<0.0064	<0.0082	<0.0058	<0.0070	<0.0036	<0.0061
	HS- HS- Or (HS-3	0-½ bgs	41	<0.0001	<0.0030	<0.0040	<0.0001	<0.0070	0.054	0.070	0.150	<0.0094	<0.100	<0.0079	<0.0081	<0.0038	<0.0080	<0.0040	<0.0038	<0.0004	<0.0082	<0.0038	<0.0079	<0.0030	<0.0001
	ů f	HS-4	0-½ bgs	9.5																						
	H	S-5	0-½ bgs	27	< 0.0024	<0.0023	<0.0016	< 0.0025	<0.003	0.027	<0.0027	0.027	<0.0038	<0.041	<0.0032	<0.0032	< 0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025
	H	S-6	0-½ bgs	9.7	< 0.0024	<0.0023	<0.0016	<0.0025	<0.003	0.0077 J	0.0093	0.017	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	<0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	<0.0032	<0.0014	<0.0025
	H	S-7	0-½ bgs	130																						
	H	S-8	0-½ bgs	60	<0.012	<0.011	<0.0081	<0.012	<0.015	0.340	<0.013	0.340	<0.019	<0.210	<0.016	<0.016	1.400	<0.017	<0.0092	<0.012	0.65	0.48	0.043	<0.016	<0.0072	<0.012
Former	Com HS	posite -5-8	0-½ bgs		<0.008	<0.008	<0.008	<0.008	<0.008	0.110	0.038	0.148	<0.008	<0.080	<0.008	<0.008	0.190	<0.008	<0.008	<0.008	0.029	0.054	<0.008	<0.008	<0.008	<0.020
Sampling	H	S-9	0-½ bgs	140																						
Sampling	HS	5-10	0-½ bgs	110																						
	HS	5-11	0-½ bgs	88																						
	HS	5-12	0-½ bgs	5.3	< 0.002	< 0.002	<0.002	<0.002	<0.002	< 0.002	< 0.002	<0.002	<0.002	<0.020	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.005
	Com HS-	posite ·9-12	0-½ bgs		<0.0061	<0.0056	<0.0040	<0.0061	<0.0076	0.055	0.120	0.263	0.018 J	0.13	0.012 J	<0.0081	0.0069 J	<0.0086	<0.0046	<0.0058	<0.0064	0.011	<0.0058	<0.0079	<0.0036	<0.0061
	e. (c. (c	HS-13	0-½ bgs	110																						
	osit 3-16 (CPs	HS-14	0-½ bgs	130	10.0000	.0.0055	.0.0010	.0.0000	10.0076	0.054	0.007	0.000	.0.0004	.0.400	0.0004	10,0001	10.0070	.0.0000	.0.0016	.0.0050	.0.0000	10,0000	.0.0070	.0.0070	10,0000	10,00004
	S-1: S-1:	HS-15	0-½ bgs	98	<0.0061	<0.0056	<0.0040	<0.0061	<0.0076	0.051	0.037	0.088	< 0.0094	<0.100	0.0084	<0.0081	<0.0058	<0.0086	<0.0046	<0.0058	<0.0064	<0.0082	<0.0058	<0.0079	< 0.0036	<0.0061
	S H S	HS-16	0-½ bgs	59																						
	СН	IHSL		80	NE	NE	NE	0.5	2.3	1.6	1.6	NE	NE	0.43	NE	0.033	0.035	21	NE	NE	NE	NE	NE	0.13	NE	340
	USEP	PA RSL		400	0.077	0.27	NE	0.52	2	1.4	1.7	NE	NE	1.6	NE	0.029	0.03	18	NE	NE	370*	370*	NE	0.11	0.053	310
	T	TLC		1,000	NE	NE	NE	4.0	NE	NE	NE	1.0	NE	2.5	NE	1.4	8.0	0.2	NE	NE	NE	NE	NE	4.7	NE	100.0

Total DDT Sum of the concentrations of 4,4'-DDD+4,4'-DDE+4,4'-DDT

<D.L. Indicates that the compound was not detected at or above stated laboratory detection limits.</p>

NE Not established.

CHHSL California Human Health Screening Levels, Residential Land Uses, Direct Exposure, Cal/EPA, January 2005 and updates. USEPA RSL United States Environmental Protection Agency Regional Screening Levels for Residential Uses (November 2012) TTLC Total threshold limit concentration for hazardous waste classification. Not Analyzed ---

* USEPA RSL for Endosulfan

** Cal/EPA does not require cleanup of soil to less than background concentrations. Natural background concentrations of arsenic often exceeds the health-based goals in soil. DTSC Schools Unit acceptable risk management goal is 12 mg/Kg. **BOLD** Indicates exceedance of regulatory threshold

(Concentrations in milligrams per kilogram [mg/kg])

Approximate Location	Sample ID	Approximate Sampling Depth	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC	4,4'-DDD	4,4'-DDE	4,4'-DDT	Total DDT	Alpha Chlordane	Chlordane	Gamma Chlordane	Aldrin	Dieldrin	Endrin	Endrin Aldehyde	Endrin Ketone	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Heptachlor	Heptachlor Epoxide	Methoxychlor	Toxaphene	Cumulative Risk
	BP-1	0-½ bgs	<0.0061	<0.0056	<0.0040	<0.0061	<0.0076	0.530	0.270	0.800	<0.0094	<0.100	<0.0079	<0.0081	0.027	<0.0086	<0.0046	<0.0058	<0.0064	<0.0082	<0.0058	<0.0079	<0.0036	<0.0061	<0.082	1.3
	BP-1 @ 5'	0-½ bgs	<0.0061	<0.0056	<0.0040	<0.0061	<0.0076	5.600	0.250	5.850	<0.0094	<0.100	<0.0079	<0.0081	0.022	<0.0086	<0.0046	<0.0058	<0.0064	<0.0082	<0.0058	<0.0079	<0.0036	<0.0061	<0.082	
Ruilding	BP-2	0-½ bgs	<0.012	<0.011	<0.0081	<0.012	<0.015	0.190	0.100	0.290	<0.019	<0.210	<0.016	<0.016	0.063	<0.017	<0.0092	<0.012	<0.013	<0.016	<0.012	<0.016	<0.0072	<0.012	<0.160	
Dullullig Derimeter	BP-2 @ 5'	0-½ bgs																								
Sampling	BP-3	0-½ bgs	< 0.0061	0.340	<0.0040	< 0.0061	0.014 J	0.042	0.099	0.155	< 0.0094	<0.100	<0.0079	<0.081	0.029	<0.0086	<0.0046	<0.0058	<0.0064	0.013 J	<0.0058	<0.079	<0.0036	1.100	<0.082	0.9
Samping	BP-3 @ 5'	0-½ bgs	<0.0024	<0.0023	<0.0016	<0.0025	0.010	0.023	0.110	0.143	<0.0038	<0.041	<0.0032	<0.0032	<0.0023	< 0.0034	<0.0018	<0.0023	<0.0026	<0.0033	<0.0023	< 0.0032	<0.0014	<0.0025	<0.033	
	BP-4	0-½ bgs	<0.0061	<0.0056	<0.0040	<0.0061	0.0089 J	0.100	0.011 J	0.1199	< 0.0094	<0.100	<0.0079	<0.081	0.029	<0.0086	<0.0046	<0.0058	<0.0064	0.024	<0.0058	<0.079	<0.0036	<0.0061	<0.082	0.9
	BP-4 @ 5'	0-½ bgs																								
Maintenance Shed	MS-1	0-½ bgs	<0.012	<0.011	<0.0081	<0.012	<0.015	0.200	0.098	0.298	<0.019	<0.210	<0.016	<0.016	0.024 J	<0.017	<0.0092	<0.012	<0.013	<0.016	<0.012	<0.016	<0.0072	<0.012	<0.160	0.9
	CHHSL		NE	NE	NE	0.5	2.3	1.6	1.6	NE	NE	0.43	NE	0.033	0.035	21	NE	NE	NE	NE	NE	0.13	NE	340		0.46
	USEPA RSL		0.077	0.27	NE	0.52	2	1.4	1.7	NE	NE	1.6	NE	0.029	0.03	18	NE	NE	370*	370*	NE	0.11	0.053	310		0.44
	TTLC		NE	NE	NE	4.0	NE	NE	NE	1.0	NE	2.5	NE	1.4	8.0	0.2	NE	NE	NE	NE	NE	4.7	NE	100.0		5.0

Total DDT	Sum of the concentrations of 4,4'-DDD+4,4'-DDE+4,4'-DDT
<d.l.< td=""><td>Indicates that the compound was not detected at or above stated laboratory detection limits.</td></d.l.<>	Indicates that the compound was not detected at or above stated laboratory detection limits.
NE	Not established.
CHHSL	California Human Health Screening Levels, Residential Land Uses, Direct Exposure, Cal/EPA, January 2005 and updates.
USEPA RSL	United States Environmental Protection Agency Regional Screening Levels for Residential Uses (November 2012)
TTLC	Total threshold limit concentration for hazardous waste classification.
	Not Analyzed
*	USEPA RSL for Endosulfan
BOLD	Indicates exceedance of regulatory threshold

Table 5. Metals Results for Maintenace Shed & Fence Post Pile Sampling

(Concentrations in milligrams per kilogram [mg/kg])

Approximate Location	Sample ID	Approximate Sampling Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenium	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
[BP-1	0-½ bgs									61								
	BP-1@5'	0-½ bgs																	
Duilding	BP-2	0-½ bgs									100								
Building	BP-2 @ 5'	0-½ bgs									17								
Sampling	BP-3	0-½ bgs									26								
Sampling	BP-3 @ 5'	0-½ bgs																	
	BP-4	0-½ bgs									100								
	BP-4 @ 5'	0-½ bgs									79								
	MS-1	0-½ bgs	<5.0	<1.7	130	<2.0	<1.0	12	6.7	43	130	<0.50	<5.0	7.7	<5.0	<1.0	<5.0	31	120
		21⁄2-3 bgs	<5.0	<1.7	130	<2.0	<1.0	16	8.5	11	4.7	<0.50	<5.0	8.3	<5.0	<1.0	<5.0	45	38
Maintenance	MS-2	0-½ bgs	<5.0	<1.7	58	<2.0	<1.0	11	5.4	8.8	5.6	<0.50	<5.0	6	<5.0	<1.0	<5.0	31	34
Shed	1015 2	21⁄2-3 bgs	<5.0	<1.7	130	<2.0	<1.0	17	9.1	12	5.0	<0.50	<5.0	9.1	<5.0	<1.0	<5.0	44	40
	MS-3	0-½ bgs	<5.0	<1.7	56	<2.0	<1.0	6.8	<5.0	17	20.0	<0.50	<5.0	<5.0	<5.0	<1.0	<5.0	17	49
	1015 5	21⁄2-3 bgs	<5.0	<1.7	160	<2.0	<1.0	17	9.5	11	5.0	<0.50	<5.0	9	<5.0	<1.0	<5.0	45	41
Treated Fence Posts	FP-1	0-½ bgs		<1.7				11		18									
	FP-2	0-½ bgs		17				40		33									
	CHHSL		30	0.07*	5,200	16	1.7	100,000**	660	3,000	80	18	380	1,600	380	380	5	530	23,000
	TTLC		500	500	10,000	75	100	2,500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000

Total DDT	Sum of the concentrations of 4,4'-DDD+4,4'-DDE+4,4'-DDT
<d.l.< th=""><th>Indicates that the compound was not detected at or above stated laboratory detection limits.</th></d.l.<>	Indicates that the compound was not detected at or above stated laboratory detection limits.
NE	Not established.
CHHSL	California Human Health Screening Levels, Residential Land Uses, Direct Exposure, Cal/EPA, January 2005 and updates.
TTLC	Total threshold limit concentration for hazardous waste classification.
	Not Analyzed
*	Cal/EPA does not require cleanup of soil to less than background concentrations. Natural background concentrations of arsenic often excee
**	CHHSL for Chromium (III)
BOLD	Indicates exceedance of regulatory threshold

Table 4. Pesticide Results for Maintenace Shed Sampling

(Concentrations in milligrams per kilogram [mg/kg])

eeds the health-based goals in soil. DTSC Schools Unit acceptable risk management goal is 12 mg/Kg.

Table 6. TPH & Semi-VOCs Results for Maintenace Shed & Burn Area Sampling

Approximate Location	Sample ID	Approximate Sampling Depth	TPH Gasoline	TPH Diesel	TPH Motor Oil	Naphthalene	Acenapthylene	1-Methyl napthalene	2-Methyl napthalene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a) anthracene	Chrysene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Benzo(a) pyrene	Dibenzo(a,h) anthracene	Benzo(ghi) perylene	Indeno(1,2,3- cd) pyrene	Dioxins (2,3,7,8-TCDD Equivalent)
	ΝΛΟ 1	0-½ bgs	<0.100	45	940	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	0.042	<0.002	0.0084	<0.001	<0.001	<0.001	<0.020	<0.020	<0.020	
	1012-1	21⁄2-3 bgs	0.100	3.5	<10	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	<0.005	<0.002	<0.001	<0.001	<0.001	<0.001	<0.020	<0.020	<0.020	
Maintenance	N/IS_7	0-½ bgs	<0.100	16	100	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	<0.005	<0.002	<0.001	<0.001	<0.001	<0.001	<0.020	<0.020	<0.020	
Shed	1013-2	21⁄2-3 bgs	<0.100	4.8	<10	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	<0.005	<0.002	<0.001	<0.001	<0.001	<0.001	<0.020	<0.020	<0.020	
	MC_2	0-½ bgs	<0.100	7.6	<10	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	0.011	<0.002	0.0015	0.0022	<0.001	<0.001	<0.020	<0.020	<0.020	
	1012-2	21⁄2-3 bgs	<0.100	12	390	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	<0.005	<0.002	<0.001	<0.001	<0.001	<0.001	<0.020	<0.020	<0.020	
Burn Area	BA-1	0-½ bgs				<0.040	<0.040	0.061	<0.040	<0.040	<0.040	<0.040	<0.005	<0.002	<0.005	<0.002	<0.001	<0.001	<0.001	<0.001	<0.020	<0.020	<0.020	1.58x10 ⁻⁷
	CHHSL		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.038	NE	NE	NE	4.6x10 ⁻⁶
	USEPA RSL		NE	NE	NE	3.6	NE	16	230	3,400	2,300	NE	17,000	2,300	1,700	0.15	15	0.15	1.5	0.015	0.015	NE	0.15	4.5x10 ⁻⁶
ES	Ls (Table-G) ¹		83	83	NE	1.2	13	NE	0.25	16	8.9	11	2.8	60	85	12	23	46	5.1	130	9.9	27	15.00	NE
ESI	.s (Table-H-2) ²	2	100	100	500	500	500	NE	500	100	500	500	500	500	500	500	1,000	500	500	500	500	500	500.00	NE
ESI	.s (Table-K-1) ³	3	2,200	3,900	120,000	1.7	NE	NE	230	3,400	3,100	NE	23,000	2,300	3,400	0.38	3.8	0.38	0.38	0.038	0.11	NE	0.38	4.5x10 ⁻⁶

erns – Prote
ing Levels –
- Residentia

(Concentrations in milligrams per kilogram [mg/kg])

ection of Groundwater (Groundwater is a current or potential drinking water resource) – November 2007 (Revised February 2013).

- November 2007 (Revised February 2013).

al Exposure Scenario – November 2007 (Revised February 2013).

Table 7. PCB Results for Transformer Sampling

Approximate Location	Sample ID	Approximate Sampling Depth	Aroclor 1016	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1248	Aroclor 1254	Aroclor 1260
	T-1	0-½ bgs	<0.0115	<0.0160	<0.0230	<0.0215	<0.0180	<0.0120	<0.0135
Transformors	Composite T-2-4	0-½ bgs	<0.0115	<0.0160	<0.0230	<0.0215	<0.0180	<0.0120	<0.0135
Transformers	Composite T-5-7	0-½ bgs	<0.0115	<0.0160	<0.0230	<0.0215	<0.0180	<0.0120	<0.0135
	T-8	0-½ bgs	<0.0115	<0.0160	<0.0230	<0.0215	<0.0180	<0.0120	<0.0135
	CHHSL		0.089	0.089	0.089	0.089	0.089	0.089	0.089

(Concentrations in milligrams per kilogram [mg/kg])

Indicates that the compound was not detected at or above stated laboratory detection limits.

CHHSL

<D.L.

California Human Health Screening Levels, Residential Land Uses, Direct Exposure, Cal/EPA, January 2005 and updates.

Contaminant	Health Effects*	Maximum Concentration Detected	CHHSL ¹ / USEPA RSL ²	[Conc]/[Regulatory Threshold]
beta-BHC	С	0.34	0.27 ²	1.2593
4,4'-DDD	С	0.014	2.3 ¹	0.0061
4,4'-DDE	С	5.6	1.6 ¹	3.5000
4-4'-DDT	С	0.25	1.6 ¹	0.1563
Dieldrin	С	1.4	0.035 ¹	40.0000
Chlordane (Technical)	С	0.13	0.43 ¹	0.3023
Endosulfan I	N	0.65	370 ²	0.0018
Endosulfan II	N	0.48	370 ²	0.0013
Methoxychlor	N	1.1	340 ¹	0.0032
Toxaphene	С	2.3	0.46 ¹	5.0000
Dioxin (2,3,7,8-TCDD)	С	0.00000158	0.0000046 ¹	0.0343

Table 8. Cumulative Health Risk Determination for Site Soils – Residential Exposure Scenario (Concentrations in milligrams per kilogram [mg/kg])

Cumulative Risk ³	5.3 x 10 ⁻⁵
Non-Cancer Hazard Index ⁴	0.0063

¹CHHSL – California Human Health Screening Level for residential uses, Cal/EPA, 2005, and updates.

²USEPA RSL - United States Environmental Protection Agency Regional Screening Levels for sensitive uses, no CHHSL available

³ Cumulative Risk - calculated by summing the ratio of the detected concentrations for chemicals with cancer effects divided by the respective single-comp CHHSL (Cal/EPA, 2005) and multiplied by 10-6 which yields a conservative estimate of the excess risk of cancer for exposure to these chemicals.

⁴ Hazard Index – (Cal/EPA, 2005) calculated by summing the ratio of the detected concentrations for chemicals with non-cancer effects divided by the resp CHHSL (Cal/EPA, 2005), which yields an estimate of non-cancer effects. A hazard index greater than one suggests further evaluation is necessary. *Health Effects: C = Cancer / N = Non-cancer **FIGURES**

Visalia K-12 Education Complex Riggin Avenue and Akers Road Visalia, California

FIGURE 1

McCloskey consultants

Site Plan Select Sampling Locations Visalia K-12 Education Complex W Riggin Avenue & N Akers Road Visalia, California

FIGURE 3

McCloskey

APPENDIX A

DTSC PEA Workplan Approval Letter

Matthew Rodriguez

Secretary for

Environmental Protection

Department of Toxic Substances Control

Deborah O. Raphael, Director 8800 Cal Center Drive Sacramento, California 95826

Edmund G. Brown Jr. Governor

November 20, 2012

Mr. Robert Gröeber Assistant Superintendent Administrative Services Visalia Unified School District 5000 W. Cypress Avenue Visalia, California 93277

APPROVAL OF PRELIMINARY ENVIRONMENTAL ASSESSMENT WORKPLAN, VISALIA K-12 EDUCATION COMPLEX, NORTHWEST CORNER OF RIGGIN AVENUE AND AKERS STREET, VISALIA (SITE CODE 104498)

Dear Mr. Gröeber:

The Department of Toxic Substances Control (DTSC) has reviewed the *Preliminary* Environmental Assessment (PEA) Workplan for the Visalia K-12 Education Complex (McCloskey Consultants, Inc., Inc., October 5, 2012) received October 10, 2012. The PEA workplan includes site background information and a field sampling plan for the proposed PEA investigation activities.

The 160-acre site consists of cultivated farmland surrounded by existing and former agricultural lands. The site also includes former farmhouse, barn, and related outbuilding structures and an existing combined equipment workshop/storage shed. The following areas of concern with related chemicals will be investigated during the PEA:

- Chlorinated pesticides and arsenic in shallow soil within the agricultural fields. irrigation ditches, and along dirt roads related to application of agricultural pesticides
- Chlorinated pesticides and lead in shallow soil around the perimeters of former and existing structures related to applications of termiticides and lead-based paint
- Polychlorinated biphenyls in shallow soil beneath pole-mounted electrical transformers
- Polynuclear aromatic hydrocarbons (PAH) and dioxins/furans in shallow soil at the location of a former burn pit
- PAHs, metals, and petroleum-related hydrocarbons in shallow soil within and adjacent to the equipment workshop/storage shed related to equipment storage and repair
- Chromium, copper, and arsenic in shallow soil beneath a large pile of discarded • pressure-treated fence posts

Mr. Robert Gröeber November 20, 2012 Page 2

DTSC approves the PEA workplan without comment. In accordance with California Education Code §17210.1(b), the District should provide notice to residents in the immediate area, approved in form by DTSC, at least five days in advance of field investigation activities. Please notify DTSC a minimum of 48 hours in advance of fieldwork or schedule changes.

If you have any questions regarding this project, you may contact me at (916) 255-4369 or by e-mail at <u>hhutchis@dtsc.ca.gov</u>.

Sincerely,

H. N. el H.t

Neal Hutchison Northern California Schools Unit Brownfields and Environmental Restoration Program

cc: (via e-mail)

Mr. Juan Koponen, Supervising HSE I Northern California Schools Unit juan.koponen@dtsc.ca.gov

Ms. Valerie Mitchell, Ph.D., Staff Toxicologist HERO – Sacramento Office valerie.mitchell@dtsc.ca.gov

Mr. Tom McCloskey, P.G., C.E.G., C.Hg. President and Principal Geologist McCloskey Consultants, Inc. tom@mccloskeyconsultants.com

Ms. Emily Turney, School Development Consultant School Site Solutions emily@schoolsitesolutions.com

APPENDIX B

Laboratory Analytical Reports

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggins + Akers - Visalia

Work Order No.: 1302014

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 20 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Twenty discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

de She

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggins + Akers - Visalia Work Order: 1302014

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Sample Result Summary

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
AG1-1						13	302014-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG1-1-4)						13	302014-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	25	ug/Kg
AG1-5						13	302014-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG1-5-8)						13	302014-010
Parameters:		<u>Analysis</u> <u>Method</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	42	ug/Kg
AG1-9						13	302014-011
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG1-9-12)						13	302014-015
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	36	ug/Kg
AG1-13						13	302014-016
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	Results	Unit

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Result Summary

Report prepared for:	Tom McCloskey			Date	Received:	02/04/13	
Composite (AG1-13-16)	McCloskey Consultants				Date	Reported:	02/11/13 302014-020
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	Results	Unit
4,4'-DDE		SW8081A	4	2.0	8.0	35	ug/Kg
AG1-18						13	302014-022
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG1-17-20)						13	302014-025
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	28	ug/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Tom McCloskey McCloskey Consult	tants					Date Received: 02/04/13 Date Reported: 02/11/13				
Client Sample ID:	AG1-1				Lab Sa	mple ID:	13020 ⁻	14-001A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 8:27										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location:	Composite (AG Riggins + Aker	61-1-4) s - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	14-005A			
Date/Time Sampled	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	25		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	72.4		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	70.0		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nati	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	tants					Da Da	4/13 1/13			
Client Sample ID:	AG1-5				Lab Sa	mple ID:	13020 ⁻	14-006A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 9:06	;									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location: Project Number:	Composite (AC Riggins + Aker	61-5-8) s - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	14-010A			
Date/Time Sampled	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	42		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	73.7		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	70.1		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	atrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	tants					Da Da	eived: 02/0 orted: 02/1	4/13 1/13		
Client Sample ID:	AG1-9				Lab Sa	mple ID:	13020 ⁻	14-011A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 9:47										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location: Project Number:	Composite (AC Riggins + Aker	61-9-12) s - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	14-015A			
Date/Time Sampled	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	36		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	70.7		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	72.5		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	atrix - viscou	s/dark

Report prepared for:	Tom McCloskey McCloskey Consult	tants					Date Received: 02/04/13 Date Reported: 02/11/13				
Client Sample ID:	AG1-13				Lab Sa	mple ID:	13020	14-016A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 12:0	0									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location:	Composite (AC Riggins + Aker	61-13-16) s - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	14-020A			
Date/Time Sampled	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	35		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	68.3		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	66.7		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	tants		Date Received: Date Reported:					eived: 02/0 orted: 02/1	4/13 1/13	
Client Sample ID:	AG1-18				Lab Sa	mple ID:	13020 ²	14-022A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 11:1	5									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND		mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	vived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location:	Composite (AG Riggins + Aker	61-17-20) rs - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	14-025A			
Date/Time Sampled:	01/30/13 /										
Tag Number	Riggin + Akers	- Visalia									
	r nggin i y nore	Violand									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	28		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	71.9		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	70.9		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nate	ure of the s	ample m	atrix - viscou	ıs/dark

MB Summary Report

Work Order:	1302014	Prep l	Method:	3545_OCP	Prep	Date:	02/05/13	Prep Batch:	7767
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/04/13	Analytical	413816
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				68.0					
DCBP (S)				69.4					
Work Order:	1302014	Prep l	Method:	3050	Prep	Date:	02/04/13	Prep Batch:	7771
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/05/13	Analytical	413808
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Arsenic		0.25	1.7	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Nork Order:	1302014		Prep Metho	d: 3545	_OCP	Prep Da	te:	02/05/13	Prep Bat	tch: 776	7
Matrix:	Soil		Analytical	SW8	081A	Analyze	d Date:	02/04/13	Analytic	al 413	816
Jnits:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	85.1	88.8	4.30	56.9 - 120	30	
Heptachlor		0.79	2.0	ND	20	88.0	91.7	4.15	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	82.8	85.6	3.29	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	84.7	88.7	4.57	44 - 130	30	
Endrin		0.86	2.0	ND	20	94.8	101	6.18	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	113	119	5.25	52.8 - 134	30	
FCMX (S)				ND	350	70.0	72.7		52.5 - 139		
DCBP (S)				ND	350	72.1	74.9		50.2 - 139		
Nork Order:	1302014		Prep Metho	d: 3050		Prep Da	te:	02/04/13	Prep Bat	tch: 777	1
Matrix:	Soil		Analytical	SW6	010B	Analyze	d Date:	02/05/13	Analytic	al 413	808
Jnits:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Arsenic		0.25	1.7	ND	50	96.1	96.1	0.0416	71 - 121	30	•

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302014		Prep Metho	d: 3050		Prep Date:	02/0	4/13	Prep Batch	7771	
Matrix:	Soil		Analytical	SW60	10B	Analyzed D	oate: 02/0	5/13	Analytical	413808	;
Spiked Sample:	1302014-001A		Method:						Batch:		
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Arsenic		0.25	1.7	-0.23	50	86.4	88.9	3.84	71 - 121	30	

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: Riggins + Akers - Visalia	Received By: <u>kb</u>
Work Order No.: <u>1302014</u>	Physically Logged By: <u>kb</u>
	Checklist Completed By: kb
	Carrier Name: First Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Rece	eipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Not Present
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302014

WO Sample ID	<u>Client</u> Sample ID	<u>Collec</u> Date/	<u>ction</u> Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302014-001A	AG1-1	01/30/13	8:27	Soil	08/03/13			S_6010BAs/Pb Composite	
Sample Note:	As only (on discrete sampl	e)						·	
1302014-002A	AG1-2	01/30/13	9:12	Soil	08/03/13			0 <i>i</i>	
1302014-003A	AG1-3	01/30/13	9:29	Soil	08/03/13			Composite	
				0 "				Composite	
1302014-004A	AG1-4	01/30/13	8:34	Soil	08/03/13			Composite	
1302014-005A	Composite (AG1-1-4)	01/30/13		Soil	08/03/13			••••••	
0	000							S_8081AOCP	
302014-006A	AG1-5	01/30/13	9.06	Soil	08/03/13				
10020110007		01/00/10	0.00	0011	00/00/10			S_6010BAs/Pb	
1302014-0074	AG1-6	01/30/13	0.22	Soil	08/03/13			Composite	
1302014-0077		01/30/13	9.00	001	00/03/13			Composite	
1302014-008A	AG1-7	01/30/13	8:43	Soil	08/03/13			Composito	
1302014-009A	AG1-8	01/30/13	9:01	Soil	08/03/13			Composite	
1202014 0104	$C_{\text{opposite}}(\Lambda C1 = 9)$	01/20/12		Soil	00/02/12			Composite	
1302014-010A	Composite (AGT-5-6)	01/30/13		3011	00/03/13			S_8081AOCP	
1302014-011A	AG1-9	01/30/13	9:47	Soil	08/03/13				
								S_6010BAS/PD Composite	
1302014-012A	AG1-10	01/30/13	8:50	Soil	08/03/13				
1302014-013A	AG1-11	01/30/13	8:57	Soil	08/03/13			Composite	
				0 "				Composite	
1302014-014A	AG1-12	01/30/13	9:40	Soil	08/03/13			Composite	
1302014-015A	Composite (AG1-9-12)	01/30/13		Soil	08/03/13			0.00011.0007	
1302014-016A	AG1-13	01/30/13	12:00	Soil	08/03/13			S_8081AOCP	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tal: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302014

<u>WO Sample ID</u>	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
							S_6010BAs/Pb Composite	
1302014-017A	AG1-14	01/30/13 11:06	Soil	08/03/13			A	
1302014-018A	AG1-15	01/30/13 11:02	Soil	08/03/13			Composite	
1302014-019A	AG1-16	01/30/13 11:54	Soil	08/03/13			Composite	
							Composite	
1302014-020A	Composite (AG1-13-16)	01/30/13	Soil	08/03/13			S 8081AOCP	
1302014-021A	AG1-17	01/30/13 11:19	Soil	08/03/13			0_000111001	
1302014-0224	۵G1-18	01/30/13 11.15	Soil	08/03/13			Composite	
1302014-0227		01/00/13 11.13	001	00/00/10			S_6010BAs/Pb	
1302014-023A	AG1-19	01/30/13 11:49	Soil	08/03/13			Composite	
							Composite	
1302014-024A	AG1-20	01/30/13 12:15	Soil	08/03/13			Composite	
1302014-025A	Composite (AG1-17-20)	01/30/13	Soil	08/03/13			Composito	
							S 8081AOCP	

ł

	То	rrent RATORY, INC. W	83 Sinclair Fronta filpitas, CA 95035 hone: 408.263.52 AX: 408.263.8293 ww.torrentlab.con	ge Road 58 1	٠N	C OTE: SHA	CHA		OF C	USTC	DY AB USE ONLY	LAB WORK ORDER NO
Compan	y Name:	MCI- Mc Closkey				Env.	н 🗋	Food	Special Loc	ation of Sam	oling: Riggin + A	Kers - Visalia
Address	420 3	Sycamore Valley Rol	West					Purpos	e: Soil	Sampling -	- Ala Sampling	
City:	Danville		State: CA	Zip	Code: 9	4526		Specia	Instruction	s / Comment	s: 4pt composite	e samples for OCP3
Telephor	ne: 925.7	86.2667 F	AX:									
REPORT	TO: Tom M	<u>cClosleey/(hris s</u>	SAMPLER: (Inis	Vertin	05000	FORMAT		P.O. #			EMAIL:	
10 Work	rk Days	: Vern 4 Work Days I 1 Work Day 3 Work Days Noon - Nxt Day 2 Work Days 2 - 8 Hours	ay Storm Water Ground Water Soil	Air Air Other		evel IV	CPs (8081)	lal - Arsenic				ANALYSIS REQUESTED
LAB ID	CANISTER I.D.	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	8	Mei				REMARKS
001A	Nurferen	NG1-1	1/30/13 827	Soil	١	402 Slass Dar		Х				
002A	and a line	AG1-2	9:12			1	V		ļ			24pt Composite 1
003A	A Contraction of the second	AG1-3	9:29				Λ		-	-005F		ORREI
004A		AG1-4	8:34				/					4
006A	A State	AG1-5	9:06				Λ	Х	h			
007 A		AG1-6	9:55				Y		ļ			\$ 4 pt composite
A800	and the second	AG1-7	8:43				Д			-01014		
009A	j.	AG1-8	9:01				/					
OIIA		AG1-9	9:47			3	\mathbb{N}	X	1	JIEN	5	? 4pt-romposte
01217	2	AG1-10	(8:50				Ň		5-	015H) w/AG1-11+AG1-12
1 Retino	uished By:	the Christopher Vor Print: Mo	nina Date:	13 JB	Time:	:43 29	Receiv	ved By:	B	Print: K	Uning Date: Uching Date: Date: 2	74/13 Time: 13 Time: 29
Were Sar NOTE: Sa Log In By	mples Receiv	ed in Good Condition?	Yes NO S Nory 30 days from da	amples on lot	ce? U Y unless oth Log In Rev	riewed By:	Metho	d of Shipr ts are ma	nent	Date:	Sample seals	s intact? Yes NO N/A Page, of7

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

		5.0								- 100 - 1 - 00	···	
	rrent	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.529 FAX: 408.263.8293	ge Road 58	- NC	CTE: SHA			OF C	USTOD	Y USE ONLY •	LAB WORK ORDER NO	
Company Name:	MOT M. C.	www.torrentlab.com	1	Accession of		1 11 []	Food	Special Loca	tion of Sampling	Ping + Ak	are-Vielia	1
Address: 110 <	Vict - Micclosley	11) L					Purpos	e: Sil	Sharpluis c	16 Smaller	ers- nsana	1
City: Dowyllo	ycamore lalley ha	State: A	Zip	Code: 94	576		Specia	I Instructions	/ Comments: 4	lat Company	sandoctor OCPA	1
Telephone: 925	78624.7	FAX:								the composit		1
REPORT TO: Jan M	c Closley / Chris Vertin	SAMPLER: (Uris	Vertin				P.O. #	:	2	EMAIL:		1
TURNAROUND TIME	:	SAMPLE TYPE	:	REPORT	FORMAT:							-
10 Work Days 7 Work Days 5 Work Days	4 Work Days 1 Work Day 3 Work Days Noon - Nxt D 2 Work Days 2 - 8 Hours	Day Storm Water Waste Water Ground Water X Soil	Air Dother	QC Le EDF EXcel	evel IV / EDD	3	1- Arsenc				ANALYSIS REQUESTED	
LAB ID CANISTER	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT	B	Mota			,	REMARKS]
013A	AG1-11	1/30/13 8:57	Soil	. 1	402gbss Jar	\bigvee		2	0150) 4pt composite	
014A	AG1-12	9:40				$\backslash \backslash$		}.) AG1-10	
016A	AG1-13	12:00				Λ /	Х	γ				
A TLO	AG-1-14	1:06						Ļ			2 4pt composite	
Palo	AG1-15	11:02				LĂ_			-020H			
019A	AG1-16	11:54				$ \rangle$		\downarrow				
>2 A	AG1-17	11:19				Λ)	(·			
022A	AG1-18	11:15				V	Х				54pt	
023A	AG1 - 19	11:49				\Box		/ -(25A		Composite	
0241	AG1 - 20	12:15	14	1		/ \		J				
Refinquished By; Witch off Relinquished By:	Christopher Ver Print: Mo	tin Date: Date: Date: Date:	4/13	Time: /0:0 Time:	43 ')9	Receiv	ved By: ed By:	(D)	Print: Monu Bucho Print:	Date: Drail 020 Date:	4/13 Time: 10'42	
Were Samples Receiv	red in Good Condition?	chong) (be	amples on l	<u> </u> 202 ∏ V		Metho	d of Ship	ment	-1-	Sample seals		
NOTE: Samples	are discarded by the labora	atory 30 days from dat	te of receipt	unless oth	er arrange	men	ts are ma	ide.	Temp Date:	-4 °C	Page 2	

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggins + Akers - Visalia

Work Order No.: 1302015

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 20 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Twenty discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

de She

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggins + Akers - Visalia Work Order: 1302015

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Sample Result Summary

Report prepared for:	Tom McCloskey McCloskey Consultants				Date Date	Received:	02/04/13
AG1-23	woolookoy oonoukanto				Duto	13	302015-003
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-c	letectable for this sample.						
AG1-(21, 22, 23, 24)						13	302015-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	24	ug/Kg
AG2-1						13	302015-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-c	letectable for this sample.						
AG2-(1, 2, 3, 4)						13	302015-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-c	letectable for this sample.						
AG2-8						13	302015-014
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-c	letectable for this sample.						
AG2-(5, 6, 7, 8)						13	302015-015
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	2.8	ug/Kg
AG2-10						13	302015-017
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Result Summary

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
AG2-(9, 10, 11, 12)	McCloskey Consultants				Date	Reported:	02/11/13 302015-020
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	2.6	ug/Kg
AG2-15						13	302015-023
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
AG2-(13, 14, 15, 16)						13	302015-025
Parameters:		<u>Analysis</u> <u>Method</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	9.6	ug/Kg

Report prepared for:	Tom McCloskey McCloskey Consult	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG1-23				Lab Sa	mple ID:	13020	15-003A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 12:2	3									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location: Project Number:	AG1-(21, 22, 2 Riggins + Aker	3, 24) rs - Visalia			Lab Sar Sample	mple ID: Matrix:	13020 Soil	15-005A			
Date/Time Sampled	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	24		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	74.3		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	71.9		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-1				Lab Sa	mple ID:	13020	15-006A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 16:4	9									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-(1, 2, 3, 4	.)			Lab Sa	mple ID:	13020)15-010A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	heir MDI									
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	ND		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	74.1		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	72.9		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-8				Lab Sa	mple ID:	13020	15-014A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	02/01/13 / 11:4	17									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	-	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	vived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-(5, 6, 7, 8	5)			Lab Sa	mple ID:	13020	015-015A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	heir MDI									<u> </u>
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	2.8	J	ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	73.0		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	70.6		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the na	ture of the s	ample m	atrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-10				Lab Sa	mple ID:	13020	15-017A			
Project Name/Location:	Riggins + Aker	rs - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 17:0	8									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND		mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-(9, 10, 11	, 12)			Lab Sa	mple ID:	13020)15-020A			
Project Name/Location:	Riggins + Aker	rs - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 /										
Tag Number:	Riggin + Akers	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	their MDL									<u> </u>
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	2.6	J	ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	72.0		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	71.6		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ture of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-15				Lab Sa	mple ID:	13020	15-023A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 15:2	21									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG2-(13, 14, 1	5, 16)			Lab Sa	mple ID:	13020 Sail	15-025A			
Project Name/Location: Project Number:	Riggins + Aker	s - visalia			Sample	e Matrix:	501				
Date/Time Sampled:	01/30/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	9.6		ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	67.6		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	66.3		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	atrix - viscou	ıs/dark

MB Summary Report

Work Order:	1302015	Prep l	Method:	3545_OCP	Prep	Date:	02/05/13	Prep Batch:	7767
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/04/13	Analytical	413816
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				68.0					
DCBP (S)				69.4					
Work Order:	1302015	Prep I	Method:	3050	Prep	Date:	02/04/13	Prep Batch:	7771
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/05/13	Analytical	413808
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Arsenic		0.25	1.7	ND					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Nork Order:	1302015		Prep Metho	d: 3545	_OCP	Prep Dat	te:	02/05/13	Prep Batch: 7767			
Matrix:	Soil		Analytical	SW80	081A	Analyze	d Date:	02/04/13	Analytical 413816		816	
Jnits:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
gamma-BHC		0.61	2.0	ND	20	85.1	88.8	4.30	56.9 - 120	30		_
Heptachlor		0.79	2.0	ND	20	88.0	91.7	4.15	63.6 - 117	30		
Aldrin		0.81	2.0	ND	20	82.8	85.6	3.29	53 - 123	30		
Dieldrin		0.58	2.0	ND	20	84.7	88.7	4.57	44 - 130	30		
Endrin		0.86	2.0	ND	20	94.8	101	6.18	44.1 - 121	30		
4,4'-DDT		0.67	2.0	ND	20	113	119	5.25	52.8 - 134	30		
TCMX (S)				ND	350	70.0	72.7		52.5 - 139			
DCBP (S)				ND	350	72.1	74.9		50.2 - 139			
Nork Order:	1302015		Prep Metho	d: 3050		Prep Dat	te:	02/04/13	Prep Batch: 7771			
Matrix:	Soil		Analytical	SW60	010B	Analyze	d Date:	02/05/13	Analytic	al 413	808	
Jnits:	mg/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
Arsenic		0.25	1.7	ND	50	96.1	96.1	0.0416	71 - 121	30	•	_

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29								
Project Name: <u>Riggins + Akers - Visalia</u>	Received By: <u>kb</u>								
Work Order No.: <u>1302015</u>	Physically Logged By: ng								
	Checklist Completed By: ng								
	Carrier Name: First Courier								
Chain of Custody (COC) Information								
Chain of custody present?	Yes								
Chain of custody signed when relinquished and received?	Yes								
Chain of custody agrees with sample labels?	Yes								
Custody seals intact on sample bottles?	Not Present								
Sample Receipt Information									
Custody seals intact on shipping container/cooler?	Not Present								
Shipping Container/Cooler In Good Condition?	Yes								
Samples in proper container/bottle?	Yes								
Samples containers intact?	Yes								
Sufficient sample volume for indicated test?	Yes								
Sample Preservation and H	old Time (HT) Information								
All samples received within holding time?	Yes								
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C								
Water-VOA vials have zero headspace?	No VOA vials submitted								
Water-pH acceptable upon receipt?	<u>N/A</u>								
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>								

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302015

WO Sample ID	<u>Client</u> Sample ID	<u>Colle</u> Date/	<u>ction</u> Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302015-001A	AG1-21	01/30/13	11:27	Soil	08/03/13				
								Courier Service	
1202015 0024	AC1 00	01/20/12	0.10	Coil	00/02/12			Composite	
1302015-002A	AG1-22	01/30/13	0.10	5011	00/03/13			Composite	
1302015-003A	AG1-23	01/30/13	12:23	Soil	08/03/13			Composito	
								S_6010BAs/Pb	
								Composite	
Sample Note:	As only.								
1302015-004A	AG1-24	01/30/13	11:34	Soil	08/03/13			0	
1302015-005A	AG1-(21 22 23 24)	01/30/13		Soil	08/03/13			Composite	
1002010 000/1	//01 (21, 22, 20, 24)	01/00/10		0011	00/00/10			S_8081AOCP	
Sample Note:	4pt composite. OCPs only.								
1302015-006A	AG2-1	01/31/13	16:49	Soil	08/03/13				
								S_6010BAs/Pb	
1000015 0074	100 0	04/04/40	47.00	Call	00/00/40			Composite	
1302015-007A	AG2-2	01/31/13	17:02	5011	08/03/13			Composite	
1302015-008A	AG2-3	02/01/13	12:12	Soil	08/03/13			Composito	
								Composite	
1302015-009A	AG2-4	02/01/13	11:31	Soil	08/03/13			Composito	
1302015-010A	AG2-(1 2 3 4)	01/30/13		Soil	08/03/13			Composite	
1002010 010/	102 (1, 2, 0, 1)	01/00/10		0011	00/00/10			S_8081AOCP	
1302015-011A	AG2-5	01/31/13	16:55	Soil	08/03/13				
4000045 0404	100.0	04/04/40	47.00	0	00/00/40			Composite	
1302015-012A	AG2-b	01/31/13	17:06	5011	08/03/13			Composite	
1302015-013A	AG2-7	01/31/13	17:25	Soil	08/03/13			Composito	
								Composite	
1302015-014A	AG2-8	02/01/13	11:47	Soil	08/03/13				
								S_6010BAS/PD Composite	
1302015-015A	AG2-(5, 6, 7, 8)	01/30/13		Soil	08/03/13			Composito	
	• • • • •							S 8081AOCP	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tal: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302015

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302015-016A	AG2-9	01/30/13 16:53	Soil	08/03/13				
1302015-017A	AG2-10	01/30/13 17:08	Soil	08/03/13			Composite	
							S_6010BAs/Pb	
1302015-018A	AG2-11	02/01/13 12:08	Soil	08/03/13			Composite	
							Composite	
1302015-019A	AG2-12	02/01/13 11:25	Soil	08/03/13				
1000015 0001	100 (0 10 11 10)	04/00/40	0 - 11	00/00/40			Composite	
1302015-020A	AG2-(9, 10, 11, 12)	01/30/13	Soll	08/03/13				
1302015-021A	AG2-13	01/30/13 17:00	Soil	08/03/13			5_0001AOOI	
			••••				Composite	
1302015-022A	AG2-14	01/30/13 17:13	Soil	08/03/13				
							Composite	
1302015-023A	AG2-15	01/31/13 15:21	Soil	08/03/13				
							S_6010BAS/PD Composite	
1302015-024A	AG2-16	02/01/13 11:42	Soil	08/03/13			Composite	
							Composite	
1302015-025A	AG2-(13, 14, 15, 16)	01/30/13	Soil	08/03/13				
							S_8081AOCP	

Company Name: MCT- Mc Closber	483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com		AIN OF CUSTODY REAS ARE FOR TORRENT LAB USE C	LAB WORK ORDER NO 1301215 19115 + Akers-Visalia.
Address: 420 Sycamore Valley Pol	ubst		Purpose: Soil Sampling - AG S	impling
City: Danville	State: (A Zip	Code: 94526	Special Instructions / Commetts: 4pt	Composite samples for OCR
REPORT TO: To: 4 (10 10 1/04 1/04	SAMPLER: Alex Vol		P.O. #: E	EMAIL:
TURNAROUND TIME:	SAMPLE TYPE:	REPORT FORMAT:		
10 Work Days 4 Work Days 1 Work D 7 Work Days 3 Work Days Noon - N: 5 Work Days 2 Work Days 2 - 8 Hou	ay Storm Water Air Waste Water Other rs Soil	QC Level IV EDF Excel / EDD	Scric	ANALYSIS REQUESTED
LAB ID CANISTER I.D. CLIENT'S SAMPLE I.	D. DATE / TIME MATRIX	# OF CONT CONT CONT TYPE	Y	REMARKS
001A AG1-21	1/30/13 11:27 Soil	1 402gbss		a a a a a a a a a a a a a a a a a a a
002A A61-22	12:10			Alpt Composite 5
003A A61-23	12:23		X 7-005A	
004A A61-24	11:34		J.	2
006A A62-1	1/31/13 16:49		Xh	Hot annete
007A AG2-2	1 17:02			for CCP3
008A AG2-3	2.1.13 12:17		7-010/1	
009A AG2-4	2.1.13 11:31			
011A A62-5	1/3/3 16:55		2 150	24pt Composite w
012A AGZ-6	17:06) A62-7+A62-8
Relinquished By: Print: Relinquished By: Print: Relinquished By: Print: Were Samples Received in Good Condition? NOTE: Samples are discarded by the labor Log In By: Image:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time: 70 '4'3 Time: 70 '4'3 Time: 70 '4'3 Received	ved By: Print: Morina Buchygu ved By: d of Shipment F. C.S ts are made. Temp F Date: 2 [41]	Date: D_{04}/B D_{04}/B D_{04}/B D_{04}/B Time: D_{04}/B D_{04}/B D_{04}/B Time: D_{04}/B D_{04}

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

|--|

1

.

	DRATORY, INC.	483 Sinclair Fro Milpitas, CA 95 Phone: 408.263 FAX: 408.263.8 www.torrentlab	ontage Road 5035 3.5258 3293 .com	(• N	C OTE: SHAD	HA DED AR	IN C	DF C	USTOD ORRENT LAB U	SE ONLY •	LAB WORK ORDER NO
Company Name:	MCI - McClosley				🖾 Env. 🗖	IH 🔲 Fo	ood 🔲 S	pecial Loca	tion of Sampling:	Riggin + Aker	s-Visalia'
Address: 420 S	France Valley Rd	West				F	Purpose	: Sol 5	Sampling -AGS	Sampling	
City: Danulle	•	State: ()	Zip	Code:94	526	5	Special	Instructions	/ Comments: 4	pt Compos	ite for OCB
Telephone: 925.	786.2667	FAX:	. / 1								
REPORT TO: CAN	Closley /ChrisVertm	SAMPLER:	<u>is Vertn</u>			_	P.O. #:			EMAIL:	
10 Work Days	E:] 4 Work Days ☐ 1 Work Day] 3 Work Days ☐ Noon - Nxt I] 2 Work Days ☐ 2 - 8 Hours	Day	ater Air /ater Other /ater		evel IV	3 (2081)	als-Arsenci				ANALYSIS REQUESTED
LAB ID CANISTER	CLIENT'S SAMPLE I.D.	DATE / TIM SAMPLED	MATRIX	# OF CONT	CONT TYPE	OCI	Met				REMARKS
013A	AG2-7	1/31/13 17:	25 Soil	1	Yozglass Jav	\vee		2	15A		24pt composte w/
014A	AG2-8	2.1.13 11:	47			\bigwedge	X	J			A62-5+A62-6
016A	AG2-9	1/30/13 16:5	53			Λ		\uparrow			
017A	AG2-10	1 17:0	8			Vľ	X	5	-020A		SADL COMPOSOE
0 18 A	A62-11	2.1.13 12	08			$A \bot$					
019A	A62-12	1 11:	25			$\langle \rangle$					/
021A	AG2-13	1/30/13 17:	00			Λ	r)/1+0-1
022 A	A62-14	1 17	:B			X	r	b			2 9pi Composite
023A	AG2-15	1/31/13 10	5:21			\square	X	-02	5H		
024A	AG2-16	2113 1	42					{			
Religiuished By	the Christopher Vir	tin 2 nina Date	14/13	Time: //:4 Time:	3	Receive Receive	d By: A By:		Print: Manine Buchorg	Date:	Time: 10:43
Were Samples Rece	jved in Good Condition?	Hungu 6	Samples on l			Method	of Shinm	ent C	<u>FD</u>	Sample seals	
NOTE: Samples	are discarded by the labora	atory 30 days from	n date of receipt	unless oth		ments	are mad	1/0	Temp	A Compre seals	Page <u>4</u> (of <u>7</u>
Log In By:	TTP:	Date: 2-4	13	Log In Rev	viewed By:	*	0	KB	Date: D	115	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggins + Akers - Visalia

Work Order No.: 1302016

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 20 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Twenty discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

de She

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggins + Akers - Visalia Work Order: 1302016

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Sample Result Summary

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
AG3-2						1:	302016-002
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG3-1-4)						1:	302016-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	46	ug/Kg
AG3-6						1:	302016-007
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG3-5-8)						1:	302016-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	51	ug/Kg
AG3-12						1:	302016-014
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG3-9-12)						1:	302016-015
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	37	ug/Kg
AG3-13						1:	302016-016
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Sample Result Summary

Report prepared for:	Tom McCloskey		Date	02/04/13			
Composite (AG3-12-16)	McCloskey Consultants				Date	Reported:	02/11/13
Parameters:		Analysis	DF	MDI	POI	Results	l Init
<u>r arameters.</u>		Method		MDL		Results	<u>om</u>
4,4'-DDE		SW8081A	4	2.0	8.0	47	ug/Kg
AG4-2						1:	302016-022
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (AG4-1-4)						1:	302016-025
Parameters:		<u>Analysis</u> <u>Method</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	3.8	ug/Kg

Report prepared for:	Tom McCloskey McCloskey Consult		Date Received: 02/04/13 Date Reported: 02/11/13								
Client Sample ID:	AG3-2				Lab Sa	mple ID:	13020	16-002A			
Project Name/Location:	Riggins + Aker	Riggins + Akers - Visalia					Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 15:2	6									
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants				Date Received: 02/04/13 Date Reported: 02/11/13					
Client Sample ID: Project Name/Location: Project Number:	Composite (AC Riggins + Aker	63-1-4) rs - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	16-005A			
Date/Time Sampled	02/04/13 /										
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	46		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	79.8		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	75.8		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG3-6				Lab Sa	mple ID:	13020 ⁻	16-007A			
Project Name/Location:	Riggins + Aker	s - Visalia		Sample	Matrix:	Soil					
Project Number:											
Date/Time Sampled:	01/30/13 / 15:3	4									
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants				Date Received: 02/04/13 Date Reported: 02/11/13					
Client Sample ID: Project Name/Location: Project Number:	Composite (AC Riggins + Aker	63-5-8) rs - Visalia			Lab Sar Sample	mple ID: Matrix:	13020 Soil	16-010A			
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	51		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	74.1		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	72.7		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult		Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13					
Client Sample ID:	AG3-12				Lab Sa	mple ID:	13020 ²	16-014A			
Project Name/Location:	Riggins + Aker	Riggins + Akers - Visalia					Soil				
Project Number:											
Date/Time Sampled:	02/01/13 / 12:5	2									
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants				Date Received: 02/04/13 Date Reported: 02/11/13					
Client Sample ID: Project Name/Location:	Composite (AC Riggins + Aker	63-9-12) rs - Visalia			Lab Sar Sample	mple ID: Matrix:	13020 Soil	16-015A			
Date/Time Sampled	02/04/13 /										
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	37		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	76.2		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	71.6		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult		Date Received: 02/04/13 Date Reported: 02/11/13								
Client Sample ID:	AG3-13				Lab Sa	mple ID:	13020	16-016A			
Project Name/Location:	Riggins + Aker	Riggins + Akers - Visalia					Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 16:0	9									
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND		mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants				Date Received: 02/04/13 Date Reported: 02/11/13					
Client Sample ID: Project Name/Location:	Composite (AC Riggins + Aker	63-13-16) rs - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	16-020A			
Date/Time Sampled	02/04/13 /										
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	47		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	74.5		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	70.9		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul		Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13					
Client Sample ID:	AG4-2				Lab Sa	mple ID:	13020	16-022A			
Project Name/Location:	Riggins + Aker	Sample	Matrix:	Soil							
Project Number:											
Date/Time Sampled:	02/01/13 / 13:3	32									
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants			Date Received: 02/04/13 Date Reported: 02/11/13						
Client Sample ID:	Composite (AC	3 4-1-4)			Lab Sa	mple ID:	13020	016-025A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggins + Aker	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	3.8	J	ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	80.2		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	71.1		%	413863	7777

MB Summary Report

Work Order:	1302016	Prep	Method:	3050	Prep	Date:	02/04/13	Prep Batch:	7771
Matrix:	Soil	Analy	rtical	SW6010B	Anal	yzed Date:	02/05/13	Analytical	413808
Units:	mg/Kg	Metho	od:		Lab			Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier	Lab Qualifier			
Arsenic		0.25	1.7	ND					
Work Order:	1302016	Prep	Method:	3545_OCP	Prep	Date:	02/05/13	Prep Batch:	7777
Matrix:	Soil	Analy	rtical	SW8081A	Analyzed Date:		02/06/13	Analytical	413863
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxid	e	0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
		0.62	2.0						
Fndrin aldebyda		0.07	2.0						
Endosulfan sulfate		0.40	2.0	ND					
Methoxychlor		0.61	2.0 5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)		5.2	100	70.1					
DCBP (S)				72.0					

LCS/LCSD Summary Report

								Raw values are used in quality control assessment.				
Work Order:	1302016		Prep Meth	od: 3050		Prep Dat	te:	02/04/13	Prep Bat	t ch: 777	1	
Matrix:	Soil		Analytical	SW6	010B	Analyze	d Date:	02/05/13	Analytic	al 413	808	
Units:	mg/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
Arsenic		0.25	1.7	ND	50	96.1	96.1	0.0416	71 - 121	30		
Work Order:	1302016		Prep Meth	od: 3545	_OCP	Prep Dat	te:	02/05/13	Prep Bat	ch: 777	7	
Matrix:	Soil		Analytical	SW8	081A	Analyzed	d Date:	02/06/13	Analytic	al 413	863	
Units:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
gamma-BHC		0.61	2.0	ND	20	88.7	84.5	4.74	56.9 - 120	30	L]	
Heptachlor		0.79	2.0	ND	20	92.8	89.0	4.09	63.6 - 117	30		
Aldrin		0.81	2.0	ND	20	87.2	83.1	4.88	53 - 123	30		
Dieldrin		0.58	2.0	ND	20	87.6	81.5	7.28	44 - 130	30		
Endrin		0.86	2.0	ND	20	96.4	93.0	3.57	44.1 - 121	30		
4,4'-DDT		0.67	2.0	ND	20	118	115	2.59	52.8 - 134	30		
TCMX (S)				ND	350	74.6	69.4		52.5 - 139			
DCBP (S)				ND	350	75.2	72.5		50.2 - 139			

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: <u>Riggins + Akers - Visalia</u>	Received By: <u>kb</u>
Work Order No.: <u>1302016</u>	Physically Logged By: <u>kb</u>
	Checklist Completed By: <u>kb</u>
	Carrier Name: First Courier
Chain of Custod	y (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Rec	eipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Not Present
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	d Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments:

Work Order # : 1302016

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302016-001A	AG3-1	01/30/13 15:04	Soil	08/03/13				
							Courier Service	
1302016-002A	AG3-2	01/30/13 15:26	Soil	08/03/13			Composite	
1002010 002/1	100 L	01/00/10 10.20	Con	00/00/10			S_6010BAs/Pb	
							Composite	
Sample Note:	Metals (As only)							
1302016-003A	AG3-3	01/30/13 15:49	Soil	08/03/13			0	
1302016-0044	AG3-/	02/01/13 12:27	Soil	08/03/13			Composite	
1302010-004A	A03-4	02/01/13 12.27	001	00/03/13			Composite	
1302016-005A	Composite (AG3-1-4)	02/04/13	Soil	08/03/13			•	
							S_8081AOCP	
Sample Note:	4pt composite. OCPs.							
1302016-006A	AG3-5	01/30/13 15:18	Soil	08/03/13			Composito	
1302016-007A	AG3-6	01/30/13 15:34	Soil	08/03/13			Composite	
							S_6010BAs/Pb	
1000010 0001	400.7	04/00/40 45-50	0 - 11	00/00/40			Composite	
1302016-008A	AG3-7	01/30/13 15:56	5011	08/03/13			Composite	
1302016-009A	AG3-8	02/01/13 12:35	Soil	08/03/13			Composito	
			.				Composite	
1302016-010A	Composite (AG3-5-8)	02/04/13	Soil	08/03/13			S 909140CD	
1302016-011A	AG3-9	01/30/13 16:15	Soil	08/03/13			5_0001A001	
							Composite	
1302016-012A	AG3-10	01/30/13 16:25	Soil	08/03/13			Composito	
1302016-013A	AG3-11	02/01/13 13:13	Soil	08/03/13			Composite	
							Composite	
1302016-014A	AG3-12	02/01/13 12:52	Soil	08/03/13			0.004004 (D)	
							S_6010BAS/PD Composite	
1302016-015A	Composite (AG3-9-12)	02/04/13	Soil	08/03/13			Composite	
							S_8081AOCP	

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments:

Work Order # : 1302016

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Sar</u> Disposal On	mple Hold	<u>Test</u> On Hold	<u>Requested</u> Tests	<u>Subbed</u>
1302016-016A	AG3-13	01/30/13 16:09	Soil	08/03/13			S_6010BAs/Pb	
1302016-017A	AG3-14	01/30/13 16:21	Soil	08/03/13			Composite	
1302016-018A	AG3-15	02/01/13 13:02	Soil	08/03/13			Composite	
1302016-019A	AG3-16	02/01/13 12:46	Soil	08/03/13			Composite	
1302016-020A	AG4-1	02/04/13	Soil	08/03/13			S_8081AOCP	
1302016-022A	AG4-2	02/01/13 13:32	Soil	08/03/13				
1302016-023A	AG4-3	02/01/13 13:35	Soil	08/03/13			S_6010BAs/Pb Composite	
1302016-024A	AG4-4	02/01/13 13:42	Soil	08/03/13			Composite	
1302016-025A	Composite (AG4-1-4)	02/04/13	Soil	08/03/13			Composite S 8081AOCP	

ų,

	483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com	AIN OF CUSTODY AREAS ARE FOR TORRENT LAB USE ONLY	LAB WORK ORDER NO
Company Name: MCI-MC (losky	🕅 Env. 🗋 IH	Food Special Location of Sampling: Rygin + Ake	urs - Visalig
Address: 420 Sycamore Velle, Rol	West	Purpose: Sil Sampling-AG Sampling	
City: Danville	State: ()A Zip Code: 94526	Special Instructions / Comments:	
Telephone: 925,786.2067	FAX:		
REPORT TO: BM Mc Closky / Chris Vertu	SAMPLER: (hris Vertin	P.O. #:EMAIL:	, ,
	SAMPLE TYPE: REPORT FORMAT:		
10 Work Days 4 Work Days 1 Work Days 1 Work Days 3 Work Days 0 Noon - Nut 5 Work Days 2 Work Days 2 - 8 Hours	Image: Water	s-Asuc	ANALYSIS REQUESTED
LAB ID CANISTER I.D. CLIENT'S SAMPLE I.D.	DATE / TIME MATRIX # OF CONT SAMPLED MATRIX CONT TYPE	Medi	REMARKS
0/3A AG3-11	2.1.13 13:13 Sol 1 90 ghus	2-015A	24 pt camposite w/
014A AG3-12	1 12:52	XJJJ	AG3-9+AG3-10
016A A63-13	1/30/13 16:09		ORRE ORRE
9 •7A AG3-14	1 16-21	20A	2 - prioritorie F
463-15	21.13 13:02		
019A A63-16	2.1.13 1246		A second se
021A A64-1	13:26) I st com Dast
022A AG4-2	13:32	X 7_025A	e qpi conque
023A AG4-3	13:35		1
024A AG4-4	13:42		
Relinquished By: Relinquished By: Relinquished By: Print: Mo	$\frac{d_{in}}{d_{in}} = \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} = \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} = \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} = \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} = \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}} = \frac{d_{in}}{d_{in}} \frac{d_{in}}{d_{in}$	reived By: Print: Men i, in Date: Buchens() 02/ Bived Bys Prints Date:	$\frac{1}{2}$ Time: $\frac{34/3}{12}$ Time: $\frac{34}{2}$
Were Samples Received in Good Condition?	(hang) 00/104/13 11.07 4/2	thod of Shipment Sample scal	s intact2 Yes NO N/A
NOTE: Samples are discarded by the labora	atory 30 days from cate as receipt unless other arrange n Date: Log In Reviewed By:	ents are made. TempOC Date:	, Page 6 51 J

	483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com	CHA •NOTE: SHADED A	AIN OF CUSTODY REAS ARE FOR TORRENT LAB USE ONLY	LAB WORK ORDER NO
Company Name: MCL Mc Closley		🔀 Env. 🔲 IH 🚺	Food D Special Location of Sampling: Riggin + Ak	iers-Visaliai
Address: 420 Sycamore Vallay Rol L	Vest		Purpose: Sail Sampling - AG Sanding	
City: Danville	State: CA Zip	Code: 94526	Special Instructions / Comments:	
Telephone: 925, 786. 2667	FAX:			
REPORT TO: Jun Mc Closky / Chris Yertin	SAMPLER: (Wis Vertin		P.O. #: EMAIL:	
10 Work Days 4 Work Days 1 Work Days 7 Work Days 3 Work Days Noon - Note 5 Work Days 2 Work Days 2 - 8 Hours	y Storm Water Air Day Waste Water Other Ground Water Soil		als-Nsenc	ANALYSIS REQUESTED
LAB ID CANISTER L.D. CLIENT'S SAMPLE I.D.	DATE / TIME MATRIX	# OF CONT	Ne	REMARKS
001A AG3-1	1/30/13 15:04 Soil	1 402 gless Jar	2	AB
002A AG3-2	15:26		X(-m5A	E4pT composile
003A A63-3	1 15:49	I I I X		Contraction of the second of t
004A A634	2113 12:27			
006A AG3-5	1/30/13 15:18		-7	A Constraint of the second sec
007A A63-6	15:34		\times $2 - 010A$	< 4pt composite
0081A AG3-7	15:56		7	
009A AG3-8	2.1.13 12:35			
011A AG3-9	1/30/13 16:15		2	24 pt composite
012A A63-10	1 1625 1.		7-015A) w/AG3-11+AG3+2
Relinquished By/ Relinquished By: Relinquished By: Print: M	214/13 Date: 214/13 Date: 10	Time: Receiv	red By: Print: Monina Date: By: Date: By: Print2 Date:	10.43
L BL	chory 02/04/13	11.29 9(-	T - p at	
NOTE: Samples Received in Good Condition?	ratory 30 days from date of receip	t unless other arrange men Log In Reviewed By:	ts are made. TempC Date:	- Page _5 0f _7_

....

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggin + Akers - Visalia

Work Order No.: 1302017

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 8 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Eight discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

de Bhi

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggin + Akers - Visalia Work Order: 1302017

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
AG4-8	-					13	302017-004
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
AG4-(5, 6, 7, 8)						13	302017-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	6.5	ug/Kg
AG4-11						13	302017-008
Parameters:		<u>Analysis</u> <u>Method</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
AG4-(9, 10, 11, 12)						13	302017-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
4.4'-DDE		SW8081A	4	2.0	8.0	7.1	ua/Ka

Report prepared for:	Tom McCloskey McCloskey Consult	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG4-8				Lab Sa	mple ID:	13020	17-004A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 14:4	0									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND	•	mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG4-(5, 6, 7, 8	3)			Lab Sa	mple ID:	13020)17-005A			
Project Name/Location:	Riggin + Akers	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/01/13 /										
Tag Number:	Riggin + Akers	s - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	their MDL									<u>. </u>
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	6.5	J	ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	70.6		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	69.8		%	413852	7767
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ture of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG4-11				Lab Sa	mple ID:	13020	17-008A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/30/13 / 14:1	1									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/4/13	02/05/13	1	0.28	1.7	ND		mg/Kg	413808	7771

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	AG4-(9, 10, 11	, 12)			Lab Sa	mple ID:	13020	017-010A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:					-						
Date/Time Sampled:	02/01/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	vare reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/05/13	4	2.4	8.0	ND		ug/Kg	413852	7767
gamma-BHC	SW8081A	2/5/13	02/05/13	4	2.5	8.0	ND		ug/Kg	413852	7767
beta-BHC	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
delta-BHC	SW8081A	2/5/13	02/05/13	4	1.6	8.0	ND		ug/Kg	413852	7767
Heptachlor	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Aldrin	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
Heptachlor epoxide	SW8081A	2/5/13	02/05/13	4	1.4	8.0	ND		ug/Kg	413852	7767
gamma-Chlordane	SW8081A	2/5/13	02/05/13	4	3.2	8.0	ND		ug/Kg	413852	7767
alpha-Chlordane	SW8081A	2/5/13	02/05/13	4	3.8	8.0	ND		ug/Kg	413852	7767
Endosulfan I	SW8081A	2/5/13	02/05/13	4	2.6	8.0	ND		ug/Kg	413852	7767
4,4'-DDE	SW8081A	2/5/13	02/05/13	4	2.0	8.0	7.1	J	ug/Kg	413852	7767
Dieldrin	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Endrin	SW8081A	2/5/13	02/05/13	4	3.4	8.0	ND		ug/Kg	413852	7767
4,4'-DDD	SW8081A	2/5/13	02/05/13	4	3.0	8.0	ND		ug/Kg	413852	7767
Endosulfan II	SW8081A	2/5/13	02/05/13	4	3.3	8.0	ND		ug/Kg	413852	7767
4,4'-DDT	SW8081A	2/5/13	02/05/13	4	2.7	8.0	ND		ug/Kg	413852	7767
Endrin aldehyde	SW8081A	2/5/13	02/05/13	4	1.8	8.0	ND		ug/Kg	413852	7767
Endosulfan sulfate	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Methoxychlor	SW8081A	2/5/13	02/05/13	4	2.5	20	ND		ug/Kg	413852	7767
Endrin Ketone	SW8081A	2/5/13	02/05/13	4	2.3	8.0	ND		ug/Kg	413852	7767
Chlordane	SW8081A	2/5/13	02/05/13	4	41	80	ND		ug/Kg	413852	7767
Toxaphene	SW8081A	2/5/13	02/05/13	4	33	400	ND		ug/Kg	413852	7767
TCMX (S)	SW8081A	2/5/13	02/05/13	4	52.5	139	58.9		%	413852	7767
DCBP (S)	SW8081A	2/5/13	02/05/13	4	50.2	139	56.6		%	413852	7767

MB Summary Report

Work Order:	1302017	Prep I	Method:	3545_OCP	Prep Date:		02/05/13	Prep Batch:	7767
Matrix:	Soil	Analy	tical	SW8081A	SW8081A Analyzed Date:		02/04/13	Analytical	413816
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				68.0					
DCBP (S)				69.4					
Work Order:	1302017	Prep I	Method:	3050	Prep	Date:	02/04/13	Prep Batch:	7771
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/05/13	Analytical	413808
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Arsenic		0.25	1.7	ND					

Work Order:	1302017		Prep Meth	od: 3545_	1: 3545_OCP		Prep Date:		Prep Batch: 7767			
Matrix:	Soil		Analytical	SW80)81A	Analyzed Date:		02/04/13	Analytical 413816			
Units:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
gamma-BHC		0.61	2.0	ND	20	85.1	88.8	4.30	56.9 - 120	30		
Heptachlor		0.79	2.0	ND	20	88.0	91.7	4.15	63.6 - 117	30		
Aldrin		0.81	2.0	ND	20	82.8	85.6	3.29	53 - 123	30		
Dieldrin		0.58	2.0	ND	20	84.7	88.7	4.57	44 - 130	30		
Endrin		0.86	2.0	ND	20	94.8	101	6.18	44.1 - 121	30		
4,4'-DDT		0.67	2.0	ND	20	113	119	5.25	52.8 - 134	30		
TCMX (S)				ND	350	70.0	72.7		52.5 - 139			
DCBP (S)				ND	350	72.1	74.9		50.2 - 139			
Work Order:	1302017		Prep Meth	od: 3050		Prep Da	te:	02/04/13	Prep Batch: 7771			
Matrix:	Soil		Analytical	SW60	010B	Analyze	d Date:	02/05/13	Analytic	al 4138	308	
Units:	mg/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
Arsenic		0.25	1.7	ND	50	96.1	96.1	0.0416	71 - 121	30		

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: <u>Riggin + Akers - Visalia</u>	Received By: <u>kb</u>
Work Order No.: <u>1302017</u>	Physically Logged By: ng
	Checklist Completed By: ng
	Carrier Name: First Courier
Chain of Custody (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Receip	ot Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and H	lold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers -	Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302017

WO Sample ID	<u>Client</u> Sample ID	<u>Colle</u> Date/	<u>ction</u> Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302017-001A	AG4-5	02/01/13	13:48	Soil	08/03/13				
								Composite	
1302017-002A	AG4-6	02/01/13	13:54	Soil	08/03/13			Composito	
1302017-003A	AG4-7	01/30/13	14:33	Soil	08/03/13			Composite	
								Composite	
1302017-004A	AG4-8	01/30/13	14:40	Soil	08/03/13				
								S_6010BAs/Pb	
								Composite	
Sample Note:	As only.								
1302017-005A	AG4-(5, 6, 7, 8)	02/01/13		Soil	08/03/13				
								S_8081AOCP	
Sample Note:	4pt composite. OCPs only.								
1302017-006A	AG4-9	02/01/13	14:00	Soil	08/03/13				
								Composite	
1302017-007A	AG4-10	01/30/13	14:22	Soil	08/03/13				
								Composite	
1302017-008A	AG4-11	01/30/13	14:11	Soil	08/03/13				
								S_6010BAs/Pb	
4000047 0004	AC4 42	04/20/42	40.00	Call	00/00/40			Composite	
1302017-009A	AG4-12	01/30/13	13.30	5011	06/03/13			Composite	
1302017-010A	AG4-(9 10 11 12)	02/01/13		Soil	08/03/13			Composite	
					00,00,10				

t

	Torrent Haboratory, INC.	Sinclair Frontage Road as, CA 95035 e: 408.263.5258 408.263.8293 torrentlab.com		IN OF CUSTODY REAS ARE FOR TORRENT LAB US	LAB WORK ORDER NO 1302017
l	Company Name: MCL - Mc (loskey Address: 40 Sycamore Valey Pol West City: Danulle State State Telephone: 425.786.246.7 FAX: REPORT TO: TURNAROUND TIME: State	ie: CA Zip Code: PLER: Chr.s Vertin SAMPLE TYPE: REP	04526	Purpose: Soll Sampling - Al Special Instructions / Comments: 4	iggin + Akers- Visa liq à Samplug pt composite - OCP Sample 3 EMAIL:
	10 Work Days 4 Work Days 1 Work Day 7 Work Days 3 Work Days 3 Work Days 2 Work Days 2 - 8 Hours CANISTER	Storm Water Storm Water Waste Water Ground Water Soil ATE / TIME 4		letal-Azenc	ANALYSIS REQUESTED
	LAB ID I.D. CLIENT'S SAMPLE I.D. D 001A AG4-5 2.1 002A AG4-6 1	SAMPLED MATRIX COL 13 13:48 Sil 1 13:54	NT TYPE S		REMARKS 2 4pt (omposite Composite
	003A A64-7 1/3 004A A64-8 4 006A A64-9 21	50/13 14:33 - 14:40 -13 14:00		X	
	087A AG4-10 13 0087A AG4-1/	14:22		X (-010A	6 (p) Composite
	AGTIZ	13:58			
r.	Relinquished By: Relinquished By: Print: Moning Print: Moning Buchows Ware Samples Boosing is Coad Condition?	$\begin{array}{c c} & \text{Date:} \\ 2/4/3 \\ \hline \\ Date: \\ 02/04/3 \\ \hline \\ \hline \\ NO \\ Samples on loss 6 \\ \hline \\ \end{array}$	Receive	ed By: Print: Manina Buchurg) By Print: Manina Buchurg) Bring Bring Bring	Date: Date: <th< td=""></th<>
	NOTE: Samples (are discarded by the laboratory 3 Log In By:	0 days from date of receipt unless 0.0 days from date of receipt unless	s other arrange ments Reviewed By:	are made. Temp / Bate: 2/	Page 7 6 of 7

we wanted a second seco

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggin + Akers

Work Order No.: 1302018 Rev: 2

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 16 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Sixteen discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att Sa.

March 05, 2013 Date

Patti Sandrock QA Officer

Client: McCloskey Consultants Project: Riggin + Akers Work Order: 1302018

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comments for method 8081A MS/MSD, QC Analytical Batch ID 414008, Note: The % recoveries for

Aldrin, Heptachlor, 4,4-DDT', and TCMX are outside of laboratory control limits but % RPD is within limits. The associated LCS/LCSD is within both % Recovery and %RPD limits. No corrective action required.

REVISIONS:

Additional analysis performed per client request. Samples were requested on a 5 day TAT and while every attempt was made to extract the samples within the remaining two days of holding time (14 days from collection) the holding time was exceeded by 1 day.

REV 1 (2/20/13)

Additional analysis performed per client request.

REV 2 (3/05/13)

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	03/05/13
HS-1						13	302018-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	25	mg/Kg
HS-2						13	302018-002
Parameters:		<u>Analysis</u> Method	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	23	mg/Kg
HS-3						13	302018-003
Parameters:		<u>Analysis</u> Method	DF	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	41	mg/Kg
HS-4						13	302018-004
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	9.5	mg/Kg
Composite (HS-1-4)						13	302018-005
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	10	5.1	20	54	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	76	ug/Kg
HS-5						13	302018-006
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	27	mg/Kg
4,4'-DDE		SW8081A	4	2.0	8.0	27	ug/Kg
Toxaphene		SW8081A	4	33	400	2300	ug/Kg

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	03/05/13
HS-6						1	302018-007
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	9.7	mg/Kg
4,4'-DDE		SW8081A	4	2.0	8.0	7.7	ug/Kg
4,4'-DDT		SW8081A	4	2.7	8.0	9.3	ug/Kg
HS-7						1	302018-008
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	130	mg/Kg
HS-8						1	302018-009
Parameters:		<u>Analysis</u> Method	DF	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	60	mg/Kg
Endosulfan I		SW8081A	20	13	40	650	ug/Kg
4,4'-DDE		SW8081A	20	10	40	340	ug/Kg
Endosulfan II		SW8081A	20	16	40	480	ug/Kg
Endosulfan sulfate		SW8081A	20	12	40	43	ug/Kg
Dieldrin		SW8081A	50	29	100	1400	ug/Kg
Composite (HS-5-8)						1	302018-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Endosulfan I		SW8081A	4	2.6	8.0	29	ug/Kg
4,4'-DDE		SW8081A	4	2.0	8.0	110	ug/Kg
Dieldrin		SW8081A	4	2.3	8.0	190	ug/Kg
Endosulfan II		SW8081A	4	3.3	8.0	54	ug/Kg
4,4'-DDT		SW8081A	4	2.7	8.0	38	ug/Kg
HS-9						1	302018-011
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	140	mg/Kg

Report prepared for:	Tom McCloskey			Date	Received:	: 02/04/13	
	McCloskey Consultants				Date	Reported:	03/05/13
HS-10						13	302018-012
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	110	mg/Kg
HS-11						13	302018-013
Parameters:		<u>Analysis</u> Method	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	88	mg/Kg
HS-12						13	302018-014
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	5.3	mg/Kg
Composite (HS-9-12)						1:	302018-015
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
gamma-Chlordane		SW8081A	10	7.9	20	12	ug/Kg
alpha-Chlordane		SW8081A	10	9.4	20	18	ug/Kg
4,4'-DDE		SW8081A	10	5.1	20	55	ug/Kg
Dieldrin		SW8081A	10	5.8	20	6.9	ug/Kg
Endosulfan II		SW8081A	10	8.2	20	11	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	120	ug/Kg
Chlordane		SW8081A	10	100	200	130	ug/Kg
HS-13						13	302018-016
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	110	mg/Kg
HS-14						13	302018-017
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	130	mg/Kg

Sample Result Summary

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	03/05/13
HS-15						1	302018-018
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	98	mg/Kg
HS-16						1	302018-019
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	59	mg/Kg
Composite (HS-13-16)						1	302018-020
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
gamma-Chlordane		SW8081A	10	7.9	20	8.4	ug/Kg
4,4'-DDE		SW8081A	10	5.1	20	51	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	37	ug/Kg

Report prepared for:	Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-1				Lab Sa	mple ID:	13020 ²	18-001A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 13:45	5									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	25	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-2				Lab Sa	mple ID:	130201	8-002A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 13:4	7									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	23	-	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-3				Lab Sa	mple ID:	13020 ²	18-003A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 13:49	9									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	41	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID: Project Name/Location:	HS-4 Riggin + Akers				Lab Saı Sample	mple ID: Matrix:	130201 Soil	8-004A			
Project Number: Date/Time Sampled: Tag Number:	01/31/13 / 13:5 Riggin + Akers	1									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	9.5		mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consul	tants			Date Received: 02/04/13 Date Reported: 03/05/13						
Client Sample ID:	Composite (HS	6-1-4)			Lab Sa	mple ID:	13020	18-005A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	10	5.6	20	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	10	4.0	20	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	10	8.1	20	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	10	3.6	20	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	10	9.4	20	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	10	6.4	20	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	10	5.1	20	54		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	10	8.6	20	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	10	7.6	20	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	10	8.2	20	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	10	6.7	20	76		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	10	4.6	20	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	10	6.1	50	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	10	100	200	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	10	82	1000	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	10	52.5	139	63.1		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	10	50.2	139	64.2		%	413863	7777

Report prepared for:	Tom McCloskey McCloskey Consul					Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13		
Client Sample ID:	HS-5				Lab Sa	mple ID:	13020	18-006A			
Project Name/Location:	Riggin + Akers	i			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:1	3									
Tag Number:	Riggin + Akers	i									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	27		mg/Kg	413842	7784
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	heir MDL									<u> </u>
alpha-BHC	SW8081A	2/15/13	02/17/13	4	2.4	8.0	ND		ug/Kg	414008	7848
gamma-BHC	SW8081A	2/15/13	02/17/13	4	2.5	8.0	ND		ug/Kg	414008	7848
beta-BHC	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
delta-BHC	SW8081A	2/15/13	02/17/13	4	1.6	8.0	ND		ug/Kg	414008	7848
Heptachlor	SW8081A	2/15/13	02/17/13	4	3.2	8.0	ND		ug/Kg	414008	7848
Aldrin	SW8081A	2/15/13	02/17/13	4	3.2	8.0	ND		ug/Kg	414008	7848
Heptachlor epoxide	SW8081A	2/15/13	02/17/13	4	1.4	8.0	ND		ug/Kg	414008	7848
gamma-Chlordane	SW8081A	2/15/13	02/17/13	4	3.2	8.0	ND		ug/Kg	414008	7848
alpha-Chlordane	SW8081A	2/15/13	02/17/13	4	3.8	8.0	ND		ug/Kg	414008	7848
Endosulfan I	SW8081A	2/15/13	02/17/13	4	2.6	8.0	ND		ug/Kg	414008	7848
4,4'-DDE	SW8081A	2/15/13	02/17/13	4	2.0	8.0	27		ug/Kg	414008	7848
Dieldrin	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
Endrin	SW8081A	2/15/13	02/17/13	4	3.4	8.0	ND		ug/Kg	414008	7848
4,4'-DDD	SW8081A	2/15/13	02/17/13	4	3.0	8.0	ND		ug/Kg	414008	7848
Endosulfan II	SW8081A	2/15/13	02/17/13	4	3.3	8.0	ND		ug/Kg	414008	7848
4,4'-DDT	SW8081A	2/15/13	02/17/13	4	2.7	8.0	ND		ug/Kg	414008	7848
Endrin aldehyde	SW8081A	2/15/13	02/17/13	4	1.8	8.0	ND		ug/Kg	414008	7848
Endosulfan sulfate	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
Methoxychlor	SW8081A	2/15/13	02/17/13	4	2.5	20	ND		ug/Kg	414008	7848
Endrin Ketone	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
Chlordane	SW8081A	2/15/13	02/17/13	4	41	80	ND		ug/Kg	414008	7848
Toxaphene	SW8081A	2/15/13	02/17/13	4	33	400	2300		ug/Kg	414008	7848
TCMX (S)	SW8081A	2/15/13	02/17/13	4	52.5	139	74.1		%	414008	7848
DCBP (S)	SW8081A	2/15/13	02/17/13	4	50.2	139	97.2		%	414008	7848
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-6				Lab Sa	mple ID:	13020	18-007A			
Project Name/Location:	Riggin + Akers	;			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:1	5									
Tag Number:	Riggin + Akers	5									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	9.7		mg/Kg	413842	7784
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	heir MDL					l			1	ļ
alpha-BHC	SW8081A	2/15/13	02/17/13	4	2.4	8.0	ND		ug/Kg	414008	7848
gamma-BHC	SW8081A	2/15/13	02/17/13	4	2.5	8.0	ND		ug/Kg	414008	7848
beta-BHC	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
delta-BHC	SW8081A	2/15/13	02/17/13	4	1.6	8.0	ND		ug/Kg	414008	7848
Heptachlor	SW8081A	2/15/13	02/17/13	4	3.2	8.0	ND		ug/Kg	414008	7848
Aldrin	SW8081A	2/15/13	02/17/13	4	3.2	8.0	ND		ug/Kg	414008	7848
Heptachlor epoxide	SW8081A	2/15/13	02/17/13	4	1.4	8.0	ND		ug/Kg	414008	7848
gamma-Chlordane	SW8081A	2/15/13	02/17/13	4	3.2	8.0	ND		ug/Kg	414008	7848
alpha-Chlordane	SW8081A	2/15/13	02/17/13	4	3.8	8.0	ND		ug/Kg	414008	7848
Endosulfan I	SW8081A	2/15/13	02/17/13	4	2.6	8.0	ND		ug/Kg	414008	7848
4,4'-DDE	SW8081A	2/15/13	02/17/13	4	2.0	8.0	7.7	J	ug/Kg	414008	7848
Dieldrin	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
Endrin	SW8081A	2/15/13	02/17/13	4	3.4	8.0	ND		ug/Kg	414008	7848
4,4'-DDD	SW8081A	2/15/13	02/17/13	4	3.0	8.0	ND		ug/Kg	414008	7848
Endosulfan II	SW8081A	2/15/13	02/17/13	4	3.3	8.0	ND		ug/Kg	414008	7848
4,4'-DDT	SW8081A	2/15/13	02/17/13	4	2.7	8.0	9.3		ug/Kg	414008	7848
Endrin aldehyde	SW8081A	2/15/13	02/17/13	4	1.8	8.0	ND		ug/Kg	414008	7848
Endosulfan sulfate	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
Methoxychlor	SW8081A	2/15/13	02/17/13	4	2.5	20	ND		ug/Kg	414008	7848
Endrin Ketone	SW8081A	2/15/13	02/17/13	4	2.3	8.0	ND		ug/Kg	414008	7848
Chlordane	SW8081A	2/15/13	02/17/13	4	41	80	ND		ug/Kg	414008	7848
Toxaphene	SW8081A	2/15/13	02/17/13	4	33	400	ND		ug/Kg	414008	7848
TCMX (S)	SW8081A	2/15/13	02/17/13	4	52.5	139	74.6		%	414008	7848
DCBP (S)	SW8081A	2/15/13	02/17/13	4	50.2	139	70.4		%	414008	7848
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	ce from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-7				Lab Sa	mple ID:	130201	8-008A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:17	7									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	130	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-8				Lab Sa	mple ID:	13020	018-009A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:1	9									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	60		mg/Kg	413842	7784
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									11
alpha-BHC	SW8081A	2/28/13	03/01/13	20	12	40	ND		ug/Kg	414258	7945
gamma-BHC	SW8081A	2/28/13	03/01/13	20	12	40	ND		ug/Kg	414258	7945
beta-BHC	SW8081A	2/28/13	03/01/13	20	11	40	ND		ug/Kg	414258	7945
delta-BHC	SW8081A	2/28/13	03/01/13	20	8.1	40	ND		ug/Kg	414258	7945
Heptachlor	SW8081A	2/28/13	03/01/13	20	16	40	ND		ug/Kg	414258	7945
Aldrin	SW8081A	2/28/13	03/01/13	20	16	40	ND		ug/Kg	414258	7945
Heptachlor epoxide	SW8081A	2/28/13	03/01/13	20	7.2	40	ND		ug/Kg	414258	7945
gamma-Chlordane	SW8081A	2/28/13	03/01/13	20	16	40	ND		ug/Kg	414258	7945
alpha-Chlordane	SW8081A	2/28/13	03/01/13	20	19	40	ND		ug/Kg	414258	7945
Endosulfan I	SW8081A	2/28/13	03/01/13	20	13	40	650		ug/Kg	414258	7945
4,4'-DDE	SW8081A	2/28/13	03/01/13	20	10	40	340		ug/Kg	414258	7945
Endrin	SW8081A	2/28/13	03/01/13	20	17	40	ND		ug/Kg	414258	7945
4,4'-DDD	SW8081A	2/28/13	03/01/13	20	15	40	ND		ug/Kg	414258	7945
Endosulfan II	SW8081A	2/28/13	03/01/13	20	16	40	480		ug/Kg	414258	7945
4,4'-DDT	SW8081A	2/28/13	03/01/13	20	13	40	ND		ug/Kg	414258	7945
Endrin aldehyde	SW8081A	2/28/13	03/01/13	20	9.2	40	ND		ug/Kg	414258	7945
Endosulfan sulfate	SW8081A	2/28/13	03/01/13	20	12	40	43		ug/Kg	414258	7945
Methoxychlor	SW8081A	2/28/13	03/01/13	20	12	100	ND		ug/Kg	414258	7945
Endrin Ketone	SW8081A	2/28/13	03/01/13	20	12	40	ND		ug/Kg	414258	7945
Chlordane	SW8081A	2/28/13	03/01/13	20	210	400	ND		ug/Kg	414258	7945
Toxaphene	SW8081A	2/28/13	03/01/13	20	160	2000	ND		ug/Kg	414258	7945
TCMX (S)	SW8081A	2/28/13	03/01/13	20	52.5	139	0.000	D	%	414258	7945
DCBP (S)	SW8081A	2/28/13	03/01/13	20	50.2	139	0.000	D	%	414258	7945
Dieldrin	SW8081A	2/28/13	03/01/13	50	29	100	1400		ug/Kg	414258	7945

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Dat Dat	te Rece te Repo	eived: 02/04	4/13 5/13
Client Sample ID:	Composite (HS	-5-8)			Lab Sar	mple ID:	13020	18-010A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	29		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	110		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	190		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	54		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	38		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	58.4		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	57.8		%	413863	7777

Report prepared for:	Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-9				Lab Sa	mple ID:	13020 ⁻	18-011A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:20)									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	140	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-10				Lab Sa	mple ID:	13020	18-012A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:2	2									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	110	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-11				Lab Sa	mple ID:	130201	18-013A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:25	5									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	88	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-12				Lab Sa	mple ID:	1302	018-014A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:2	7									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	5.3		mg/Kg	413842	7784
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/15/13	02/17/13	1	0.61	2.0	ND		ug/Kg	414008	7848
gamma-BHC	SW8081A	2/15/13	02/17/13	1	0.61	2.0	ND		ug/Kg	414008	7848
beta-BHC	SW8081A	2/15/13	02/17/13	1	0.56	2.0	ND		ug/Kg	414008	7848
delta-BHC	SW8081A	2/15/13	02/17/13	1	0.40	2.0	ND		ug/Kg	414008	7848
Heptachlor	SW8081A	2/15/13	02/17/13	1	0.79	2.0	ND		ug/Kg	414008	7848
Aldrin	SW8081A	2/15/13	02/17/13	1	0.81	2.0	ND		ug/Kg	414008	7848
Heptachlor epoxide	SW8081A	2/15/13	02/17/13	1	0.36	2.0	ND		ug/Kg	414008	7848
gamma-Chlordane	SW8081A	2/15/13	02/17/13	1	0.79	2.0	ND		ug/Kg	414008	7848
alpha-Chlordane	SW8081A	2/15/13	02/17/13	1	0.94	2.0	ND		ug/Kg	414008	7848
Endosulfan I	SW8081A	2/15/13	02/17/13	1	0.64	2.0	ND		ug/Kg	414008	7848
4,4'-DDE	SW8081A	2/15/13	02/17/13	1	0.51	2.0	ND		ug/Kg	414008	7848
Dieldrin	SW8081A	2/15/13	02/17/13	1	0.58	2.0	ND		ug/Kg	414008	7848
Endrin	SW8081A	2/15/13	02/17/13	1	0.86	2.0	ND		ug/Kg	414008	7848
4,4'-DDD	SW8081A	2/15/13	02/17/13	1	0.76	2.0	ND		ug/Kg	414008	7848
Endosulfan II	SW8081A	2/15/13	02/17/13	1	0.82	2.0	ND		ug/Kg	414008	7848
4,4'-DDT	SW8081A	2/15/13	02/17/13	1	0.67	2.0	ND		ug/Kg	414008	7848
Endrin aldehyde	SW8081A	2/15/13	02/17/13	1	0.46	2.0	ND		ug/Kg	414008	7848
Endosulfan sulfate	SW8081A	2/15/13	02/17/13	1	0.58	2.0	ND		ug/Kg	414008	7848
Methoxychlor	SW8081A	2/15/13	02/17/13	1	0.61	5.0	ND		ug/Kg	414008	7848
Endrin Ketone	SW8081A	2/15/13	02/17/13	1	0.58	2.0	ND		ug/Kg	414008	7848
Chlordane	SW8081A	2/15/13	02/17/13	1	10	20	ND		ug/Kg	414008	7848
Toxaphene	SW8081A	2/15/13	02/17/13	1	8.2	100	ND		ug/Kg	414008	7848
TCMX (S)	SW8081A	2/15/13	02/17/13	1	52.5	139	63.3		%	414008	7848
DCBP (S)	SW8081A	2/15/13	02/17/13	1	50.2	139	70.5		%	414008	7848

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	Composite (HS	S-9-12)			Lab Sa	mple ID:	13020)18-015A			
Project Name/Location:	Riggin + Akers	;			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers	;									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	vare reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	10	5.6	20	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	10	4.0	20	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	10	8.1	20	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	10	3.6	20	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	10	7.9	20	12	J	ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	10	9.4	20	18	J	ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	10	6.4	20	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	10	5.1	20	55		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	10	5.8	20	6.9	J	ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	10	8.6	20	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	10	7.6	20	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	10	8.2	20	11	J	ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	10	6.7	20	120		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	10	4.6	20	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	10	6.1	50	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	10	100	200	130		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	10	82	1000	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	10	52.5	139	71.4		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	10	50.2	139	73.0		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ture of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-13				Lab Sa	mple ID:	130201	18-016A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:29	9									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	110	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-14				Lab Sa	mple ID:	13020	18-017A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:31	1									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	130		mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-15				Lab Sa	mple ID:	13020 ²	18-018A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:3	4									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	98	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 03/0	4/13 5/13
Client Sample ID:	HS-16				Lab Sa	mple ID:	130201	8-019A			
Project Name/Location:	Riggin + Akers				Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 14:37	,									
Tag Number:	Riggin + Akers										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	59	•	mg/Kg	413842	7784

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	orted: 02/0	4/13 5/13
Client Sample ID:	Composite (HS	6-13-16)			Lab Sa	mple ID:	13020	18-020A			
Project Name/Location:	Riggin + Akers	;			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers	;									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	vare reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	10	5.6	20	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	10	4.0	20	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	10	8.1	20	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	10	3.6	20	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	10	7.9	20	8.4	J	ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	10	9.4	20	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	10	6.4	20	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	10	5.1	20	51		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	10	8.6	20	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	10	7.6	20	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	10	8.2	20	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	10	6.7	20	37		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	10	4.6	20	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	10	6.1	50	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	10	100	200	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	10	82	1000	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	10	52.5	139	74.4		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	10	50.2	139	78.1		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	s/dark

MB Summary Report

Work Order:	1302018	Prep	Method:	3545_OCP	Prep	Date:	02/05/13	Prep Batch:	7777
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/06/13	Analytical	413863
Units:	ug/Kg	Metho	od:					Batch:	
			-						
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				70.1					
DCBP (S)				72.0					

MB Summary Report

Work Order:	1302018	Prep I	Method:	3050	Prep	Date:	02/06/13	Prep Batch:	7784
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/07/13	Analytical	413842
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Antimony		0.20	5.0	0.24					
Arsenic		0.25	1.7	ND					
Barium		0.07	5.0	0.41					
Beryllium		0.0800	2.0	ND					
Cadmium		0.055	1.0	ND					
Chromium		0.050	5.0	0.11					
Cobalt		0.055	5.0	ND					
Copper		0.65	5.0	ND					
Lead		0.14	1.0	0.19					
Molybdenum		0.12	5.0	ND					
Nickel		0.050	5.0	0.080					
Selenium		0.42	5.0	ND					
Silver		0.37	1.0	ND					
Thallium		0.49	5.0	ND					
Vanadium		0.18	5.0	ND					
Zinc		0.25	5.0	0.38					

Work Order: 3545_OCP 02/15/13 1302018 Prep Method: Prep Date: Prep Batch: 7848 Matrix: Soil Analytical SW8081A 414008 Analyzed Date: 02/17/13 Analytical Method: Batch: Units: ug/Kg Method Lab MDL PQL Parameters Blank Qualifier Conc. alpha-BHC 0.61 2.0 ND gamma-BHC 0.61 2.0 ND beta-BHC ND 0.56 2.0 delta-BHC 0.40 2.0 ND Heptachlor 0.79 2.0 ND Aldrin 0.81 2.0 ND Heptachlor epoxide 0.36 2.0 ND gamma-Chlordane 0.79 2.0 ND alpha-Chlordane 0.94 2.0 ND Endosulfan I 0.64 2.0 ND 4,4'-DDE 0.51 2.0 ND Dieldrin 0.58 2.0 ND Endrin ND 0.86 2.0 4,4'-DDD 0.76 2.0 ND Endosulfan II 0.82 2.0 ND 4,4'-DDT 0.67 2.0 ND Endrin aldehyde 0.46 2.0 ND Endosulfan sulfate 0.58 2.0 ND Methoxychlor 0.61 5.0 ND Endrin Ketone 0.58 2.0 ND Chlordane 10 20 ND 8.2 100 ND Toxaphene TCMX (S) 75.8 DCBP (S) 76.1

MB Summary Report

Matrix:

Units:

Aldrin

Endrin

DCBP (S)

Work Order: 3545_OCP 02/28/13 1302018 Prep Method: Prep Date: Prep Batch: 7945 Soil Analytical SW8081A 03/01/13 414258 Analyzed Date: Analytical Method: Batch: ug/Kg Method Lab MDL PQL Parameters Blank Qualifier Conc. alpha-BHC 0.61 2.0 ND gamma-BHC 0.61 2.0 ND beta-BHC ND 0.56 2.0 delta-BHC 0.40 2.0 ND Heptachlor 0.79 2.0 ND 0.81 ND 2.0 Heptachlor epoxide 0.36 2.0 ND gamma-Chlordane 0.79 2.0 ND alpha-Chlordane 0.94 2.0 ND Endosulfan I 0.64 2.0 ND 4,4'-DDE 0.51 2.0 ND Dieldrin 0.58 2.0 ND ND 0.86 2.0 4,4'-DDD 0.76 2.0 ND Endosulfan II 0.82 2.0 ND 4,4'-DDT 0.67 2.0 ND Endrin aldehyde 0.46 2.0 ND Endosulfan sulfate 0.58 2.0 ND Methoxychlor 0.61 5.0 ND Endrin Ketone 0.58 2.0 ND Chlordane 10 20 ND 8.2 100 ND Toxaphene TCMX (S) 71.6

MB Summary Report

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel; 408.263.5258 | fax; 408.263.8293 | www.torrentlab.com

76.2

Nork Order:	1302018		Prep Metho	od: 3545	_OCP	Prep Dat	te:	02/05/13	Prep Bat	t ch: 7777	7
Matrix:	Soil		Analytical	SW80	081A	Analyze	d Date:	02/06/13	Analytic	al 4138	363
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	88.7	84.5	4.74	56.9 - 120	30	
Heptachlor		0.79	2.0	ND	20	92.8	89.0	4.09	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	87.2	83.1	4.88	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	87.6	81.5	7.28	44 - 130	30	
Endrin		0.86	2.0	ND	20	96.4	93.0	3.57	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	118	115	2.59	52.8 - 134	30	
TCMX (S)				ND	350	74.6	69.4		52.5 - 139		
DCBP (S)				ND	350	75.2	72.5		50.2 - 139		
Nork Order:	1302018		Prep Metho	od: 3050		Prep Dat	te:	02/06/13	Prep Bat	ch: 7784	4
Matrix: Jnits:	Soil mg/Kg		Analytical Method:	SW60	010B	Analyzee	d Date:	02/07/13	Analytica Batch:	al 4138	342
Paramotors		MDI	BOI	Method	Spike	LCS %	LCSD %	LCS/LCSD	%		Lab
rarameters		WDL	FQL	Conc.	conc.	Recovery	Recovery	% RPD	Limits	Limits	Qualifier
Antimony		0.20	5.0	0.24	50	102	103	0.684	Limits 30.7 - 130	30	Qualifier
Antimony Arsenic		0.20	5.0 5.7	0.24 ND	50 50	102 100	103 99.8	0.684 0.210	Limits 30.7 - 130 71 - 121	30 30	Qualifier
Antimony Arsenic Barium		0.20 0.25 0.07	5.0 1.7 5.0	0.24 0.41	50 50 50	102 100 106	103 99.8 104	0.684 0.210 1.71	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130	30 30 30 30	Qualifier
Antimony Arsenic Barium Beryllium		0.20 0.25 0.07 0.0800	5.0 1.7 5.0 2.0	0.24 ND 0.41 ND	50 50 50 50 50	102 100 106 100	103 99.8 104 98.4	0.684 0.210 1.71 1.62	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115	30 30 30 30 30 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium		0.20 0.25 0.07 0.0800 0.055	5.0 1.7 5.0 2.0 1.0	0.24 ND 0.41 ND ND ND	50 50 50 50 50 50	102 100 106 100 102	103 99.8 104 98.4 99.9	0.684 0.210 1.71 1.62 2.09	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110	30 30 30 30 30 30 30 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Chromium		0.20 0.25 0.07 0.0800 0.055 0.050	5.0 1.7 5.0 2.0 1.0 5.0	0.24 ND 0.41 ND ND 0.11	50 50 50 50 50 50 50	102 100 106 100 102 102 104	103 99.8 104 98.4 99.9 102	0.684 0.210 1.71 1.62 2.09 2.43	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116	% RPD Limits 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt		0.20 0.25 0.07 0.0800 0.055 0.050 0.055	5.0 1.7 5.0 2.0 1.0 5.0 5.0	0.24 ND 0.41 ND ND 0.11 ND	50 50 50 50 50 50 50 50	Recovery 102 100 106 100 102 104 103	103 99.8 104 98.4 99.9 102 101	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper		0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0	0.24 ND 0.41 ND ND 0.11 ND ND ND	50 50 50 50 50 50 50 50 50	Recovery 102 100 106 100 102 104	103 99.8 104 98.4 99.9 102 101 103	0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 1.0	0.24 ND 0.41 ND 0.11 ND 0.11 ND ND 0.19	50 50 50 50 50 50 50 50 50 50	Recovery 102 100 106 100 102 100 102 103 104 99.6	103 99.8 104 98.4 99.9 102 101 103 101	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.40	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14 0.12	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 1.0 5.0	0.24 ND 0.41 ND 0.11 ND 0.11 ND 0.19 ND	50 50 50 50 50 50 50 50 50 50 50 50	Recovery 102 100 106 100 102 104 99.6 102	103 99.8 104 98.4 99.9 102 101 103 101 103 101 102	0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.40 0.391	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118 62.9 - 123	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Cadmium Cobalt Cobalt Copper Lead Molybdenum Nickel		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14 0.12 0.050	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 1.0 5.0 5.0 5.0	0.24 ND 0.41 ND 0.11 ND 0.11 ND 0.19 ND 0.080	50 50 50 50 50 50 50 50 50 50 50 50 50	Recovery 102 100 106 100 102 104 103 104 99.6 102 102 102	103 99.8 104 98.4 99.9 102 101 103 101 102 100	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.45 1.40 0.391 1.78	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118 62.9 - 123 61.5 - 122	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Molybdenum Nickel Selenium		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14 0.12 0.050 0.42	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 1.0 5.0 5.0 5.0 5.0 5.0	0.24 ND 0.41 ND 0.11 ND 0.11 ND 0.19 ND 0.080 ND	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Recovery 102 100 106 100 102 104 99.6 102 102 102	103 99.8 104 98.4 99.9 102 101 103 101 102 100 97.4	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.40 0.391 1.78 0.866	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118 62.9 - 123 61.5 - 122 62 - 111	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Cadmium Cobalt Cobalt Copper Lead Molybdenum Nickel Selenium Silver		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14 0.12 0.050 0.42 0.37	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0	0.24 ND 0.41 ND 0.11 ND 0.19 ND 0.19 ND 0.080 ND ND	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Recovery 102 100 106 100 106 100 102 104 99.6 102 102 96.6 98.7	103 99.8 104 98.4 99.9 102 101 103 101 102 100 97.4 98.2	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.45 1.40 0.391 1.78 0.866 0.538	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118 62.9 - 123 61.5 - 122 62 - 111 81.1 - 109	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Cadmium Cobalt Cobalt Copper Lead Volybdenum Vickel Selenium Silver Thallium		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14 0.12 0.050 0.42 0.37 0.49	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 1.0 5.0 5.0 5.0	0.24 ND 0.41 ND 0.11 ND 0.11 ND 0.19 ND 0.080 ND ND ND ND	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Recovery 102 100 106 100 102 104 99.6 102 102 99.6 99.6 98.7 98.5	103 99.8 104 98.4 99.9 102 101 103 101 102 100 97.4 98.2 99.6	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.40 0.391 1.78 0.866 0.538 1.15	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118 62.9 - 123 61.5 - 122 62 - 111 81.1 - 109 39.2 - 125	% RPD Limits 30	Qualifier
Antimony Arsenic Barium Beryllium Cadmium Cadmium Cobalt Cobalt Copper Lead Molybdenum Nickel Selenium Silver Thallium Vanadium		MDL 0.20 0.25 0.07 0.0800 0.055 0.050 0.055 0.65 0.14 0.12 0.050 0.42 0.37 0.49 0.18	5.0 1.7 5.0 2.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.24 ND 0.41 ND 0.41 ND 0.11 ND 0.19 ND 0.080 ND ND ND ND ND ND	50 50 50 50 50 50 50 50 50 50 50 50 50 5	Recovery 102 100 106 100 106 100 102 104 99.6 102 102 96.6 98.7 98.5 105	103 99.8 104 98.4 99.9 102 101 103 101 102 100 97.4 98.2 99.6 104	% RPD 0.684 0.210 1.71 1.62 2.09 2.43 1.57 1.45 1.45 1.40 0.391 1.78 0.866 0.538 1.15 0.957	Recovery Limits 30.7 - 130 71 - 121 70.2 - 130 73.3 - 115 68.7 - 110 76 - 116 57.4 - 122 74.8 - 119 67.9 - 118 62.9 - 123 61.5 - 122 62 - 111 81.1 - 109 39.2 - 125 65.8 - 122	% RPD Limits 30	Qualifier

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302018		Prep Metho	od: 3545	_OCP	Prep Date:		02/15/13	Prep Batch: 7848		8
Matrix:	Soil		Analytical	SW8	081A	Analyze	d Date:	02/17/13	Analytic	al 414	008
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	89.8	88.9	0.922	56.9 - 120	30	•
Heptachlor		0.79	2.0	ND	20	90.7	90.4	0.339	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	85.1	84.7	0.508	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	87.8	86.2	1.85	44 - 130	30	
Endrin		0.86	2.0	ND	20	96.1	96.5	0.376	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	114	115	0.165	52.8 - 134	30	
TCMX (S)				ND	350	73.1	72.9		52.5 - 139		
DCBP (S)				ND	350	74.0	74.1		50.2 - 139		
Work Order:	1302018		Prep Metho	od: 3545	OCP	Prep Da	te:	02/28/13	Prep Ba	t ch: 794	5
Matrix:	Soil		Analytical	SW8	081A	Analyze	d Date:	03/01/13 Analytical 414		al 4142	258
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	87.5	84.1	3.96	56.9 - 120	30	•
Heptachlor		0.79	2.0	ND	20	90.4	87.4	3.42	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	84.8	82.4	2.89	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	80.9	78.2	3.45	44 - 130	30	
Endrin		0.86	2.0	ND	20	101	96.2	5.31	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	99.2	95.1	4.20	52.8 - 134	30	
TCMX (S)				ND	350	73.3	70.3		52.5 - 139		
DCBP (S)				ND	350	78.9	75.3		50.2 - 139		

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302018		Prep Metho	d: 3050		Prep Date:	02/06	6/13	Prep Batch:	7784	
Matrix:	Soil		Analytical	SW601	0B	Analyzed D	ate: 02/0	7/13	Analytical	413842	
Spiked Sample:	1302018-001A		Method:								
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Lead		0.14	1.0	0.50	50	80.6	86.1	3.82	67.9 - 118	30	
Work Order:	1302018		Prep Metho	d: 3545_C	CP	Prep Date:	02/1	5/13	Prep Batch:	7848	
Matrix: Soil			Analytical	SW808	1A	Analyzed D	ate: 02/1	7/13	Analytical	414008	
Spiked Sample:	Sample: 1302018-007A		Method:						Batch:		
Units:	ug/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Aldrin		3.2	8.0	0	20	68.7	51.3	28.9	53 - 123	30	S
gamma-BHC		2.5	8.0	0	20	116	87.3	28.6	56.9 - 120	30	
Heptachlor		3.2	8.0	0	20	59.7	73.2	20.3	63.6 - 117	30	S
Dieldrin		2.3	8.0	0	20	74.3	58.0	24.5	44 - 130	30	
		3.4	8.0	U 0.0470	20	73.1	58.7	21.8	44.1 - 121	30	0
4,4°-UUT		2.7	8.0	2.3178	20	76.1	44.9	29.2	52.8 - 134	30	5
DCBP (S)					350 350	66.1 57.7	46.3 57.5		52.5 - 139 50.2 - 139	, ,, ,	3

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Client Name: McCloskey Consultants

Project Name: <u>Riggin + Akers</u> Work Order No.: <u>1302018</u>

Sample Receipt Checklist

Date and Time Received: $2/4/2013$	<u>11:29</u>
Received By: <u>kb</u>	
Physically Logged By: <u>kb</u>	
Checklist Completed By: kb	
Carrier Name: First Courier	

Chain of Custody (COC) Information

Chain of custody present?	Yes		
Chain of custody signed when relinquished and received?	Yes		
Chain of custody agrees with sample labels?	Yes		
Custody seals intact on sample bottles?	Not Present		
Sample Re	eipt Information		
Custody seals intact on shipping container/cooler?	Not Present		
Shipping Container/Cooler In Good Condition?	Not Present		
Samples in proper container/bottle?	Yes		
Samples containers intact?	Yes		
Sufficient sample volume for indicated test?	Yes		
Sample Preservation a	d Hold Time (HT) Information		
All samples received within holding time?	Yes		
Container/Temp Blank temperature in compliance?	Yes Temperature:	4	°C
Water-VOA vials have zero headspace?	No VOA vials submitted		
Water-pH acceptable upon receipt?	<u>N/A</u>		
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>		

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers		TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	3/7/2013		Time Received:	11:29

Comments: 5day TAT. Send report to both Tom McCloskey and Chris Vertin.

Work Order # : 1302018

1302018-001A HS-1 01/31/13 13:45 Soil 08/03/13 Courter Service Composite Sample Note: Pb only. HS-2 01/31/13 13:47 Soil 08/03/13 S. 6010BAs/Pb Courter Service Composite 1302018-002A HS-2 01/31/13 13:47 Soil 08/03/13 S. 6010BAs/Pb Composite 1302018-002A HS-3 01/31/13 13:49 Soil 08/03/13 S. 6010BAs/Pb Composite 1302018-004A HS-4 01/31/13 13:51 Soil 08/03/13 S. 6010BAs/Pb Composite 1302018-005A Composite (HS-1-4) 02/04/13 13:51 Soil 08/03/13 S. 8081AOCP Sample Note: 4pt composite. OCPs only. S. 6010BAs/Pb Composite S. 8081AOCP S. 8081AOCP Sample Note: 4pt composite. OCPs only. HS-5 01/31/13 14:13 Soil 08/03/13 S. 6010BAs/Pb S. 8081AOCP Sample Note: For DILUTIONS: Report to MDL if everything is ND. 8/03/13 Soil 08/03/13 Soil S. 6010BAs/Pb S. 8081AOCP Sample Note: For DILUTIONS: Report to MDL if everything is ND. S. 6010BAs/Pb S. 8081AOCP S. 6010B	WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	ScheduledSampleDisposalOn Hold	<u>Test</u> On Hold	Requested Su Tests	ubbed
Sample Note: 1302018-002APb only.I1302018-002AHS-201/31/1313:47Soil08/03/131302018-003AHS-301/31/1313:49Soil08/03/131302018-004AHS-401/31/1313:51Soil08/03/13S_6010BAs/Pb Composite1302018-005AHS-401/31/1313:51Soil08/03/13S_6010BAs/Pb Composite1302018-005AComposite (HS-1-4)02/04/13Soil08/03/13S_6010BAs/Pb Composite1302018-005AHS-501/31/1314:13Soil08/03/13S_6010BAs/Pb S_8081AOCP1302018-006AHS-501/31/1314:15Soil08/03/13S_6010BAs/Pb S_8081AOCP1302018-007AFor DILUTIONS: Report to MDL if everything is ND. HS-601/31/1314:17Soil08/03/131302018-007AFor DILUTIONS: Report to MDL if everything is ND. HS-701/31/1314:17Soil08/03/131302018-007AHS-801/31/1314:17Soil08/03/13S_6010BAs/Pb S_8081AOCP Composite1302018-007AHS-801/31/1314:17Soil08/03/13S_6010BAs/Pb S_8081AOCP Composite1302018-007AHS-801/31/1314:19Soil08/03/13S_6010BAs/Pb 	1302018-001A	HS-1	01/31/13 13:45	Soil	08/03/13		S_6010BAs/Pb Courier Service Composite	
1302018-002A HS-2 01/31/13 13:47 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-003A HS-3 01/31/13 13:49 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-004A HS-4 01/31/13 13:51 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-005A Composite (OCPs only. Soil 08/03/13 S_6010BAs/Pb S	Sample Note:	Pb only.					·	
1302018-003A HS-3 01/31/13 13:49 Soil 08/03/13 Score	1302018-002A	HS-2	01/31/13 13:47	Soil	08/03/13			
1302018-003A HS-3 01/31/13 13:349 Soli 08/03/13 S_6010BAs/Pb 1302018-004A HS-4 01/31/13 13:51 Soil 08/03/13 S_6010BAs/Pb 1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 S_8081AOCP Sample Note: 4pt composite. OCPs only. S_8081AOCP S_8081AOCP 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 S_6010BAs/Pb Sample Note: 4pt composite. OCPs only. S_6010BAs/Pb S_8081AOCP Composite Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP Composite Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_6010BAs/Pb S_6010BAs/Pb 1302018-007A HS-7 01/31/13 14:17 Soil 08/03/13 S_6010BAs/Pb 1302018-008A HS-7 01/31/13 14:19 Soil 08/03/13 S_6010BAs/Pb 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 S_6010BAs/Pb 1302018-000	1000010 0001		04/04/40 40:40	0-1	00/00/40		S_6010BAs/Pb Composite	
1302018-004A HS-4 01/31/13 13:51 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 S_8081AOCP Sample Note: 4pt composite. OCPs only. 4pt composite. S_6010BAs/Pb S_8081AOCP 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 S_6010BAs/Pb 1302018-007A HS-5 01/31/13 14:15 Soil 08/03/13 S_6010BAs/Pb 1302018-007A For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 1302018-007A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Compos	1302018-003A	HS-3	01/31/13 13:49	Soll	08/03/13		S 6010BAs/Pb	
1302018-004A HS-4 01/31/13 13:51 Soil 08/03/13 1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-005A Composite. OCPs only. 4pt composite. OCPs only. Soil 08/03/13 S_8081AOCP 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 S_6010BAs/Pb S_8081AOCP 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 S_6010BAs/Pb S_8081AOCP Composite 1302018-007A For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP Composite S_6010BAs/Pb S_8081AOCP Composite 1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 1302018-007A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-008A HS-7 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 S							Composite	
1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 Composite Sample Note: 4pt composite. OCPs only. 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 S_6010BAs/Pb Sample Note: 4pt composite. OCPs only. 14:13 Soil 08/03/13 S_6010BAs/Pb Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_6010BAs/Pb 1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_6010BAs/Pb 1302018-007A HS-6 01/31/13 14:17 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_6010BAs/Pb 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 S_6010BAs/Pb 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 S_6010BAs/Pb 1302018-010A Composite (HS-5-8) 02/04/13 Soil <td< td=""><td>1302018-004A</td><td>HS-4</td><td>01/31/13 13:51</td><td>Soil</td><td>08/03/13</td><td></td><td></td><td></td></td<>	1302018-004A	HS-4	01/31/13 13:51	Soil	08/03/13			
1302018-005A Composite (HS-1-4) 02/04/13 Soil 08/03/13 Secondaria Sample Note: 4pt composite. OCPs only. 4pt composite. OCPs only. Soil 08/03/13 Secondaria 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 Secondaria Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-007A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A HS-8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S_6010BAS/PD Composite</td> <td></td>							S_6010BAS/PD Composite	
Sample Note: 4pt composite. OCPs only. Selection Select	1302018-005A	Composite (HS-1-4)	02/04/13	Soil	08/03/13		Composito	
Sample Note: 4pt composite. OCPs only. 1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP Sample Note: For DILUTIONS: Report to MDL if everything is ND. 08/03/13 S_6010BAs/Pb 1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-007A HS-6 01/31/13 14:17 Soil 08/03/13 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13 S_6010BAs/Pb 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13 Soil Soil 08/03/13							S_8081AOCP	
1302018-006A HS-5 01/31/13 14:13 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13	Sample Note:	4pt composite. OCPs only.						
Sample Note: 1302018-007AFor DILUTIONS: Report to MDL if everything is ND.08/03/131302018-007AHS-601/31/1314:15Soil08/03/13Sample Note: 1302018-008AFor DILUTIONS: Report to MDL if everything is ND.S_6010BAs/Pb S_8081AOCP Composite1302018-009AHS-701/31/1314:17Soil08/03/131302018-009AHS-801/31/1314:19Soil08/03/131302018-010AComposite (HS-5-8)02/04/13Soil08/03/13	1302018-006A	HS-5	01/31/13 14:13	Soil	08/03/13		S_6010BAs/Pb S_8081AOCP Composite	
1302018-007A HS-6 01/31/13 14:15 Soil 08/03/13 Sample Note: For DILUTIONS: Report to MDL if everything is ND. S_6010BAs/Pb S_8081AOCP 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13	Sample Note:	For DILUTIONS: Report to	MDL if everything	is ND.				
Sample Note: For DILUTIONS: Report to MDL if everything is ND. 1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13	1302018-007A	HS-6	01/31/13 14:15	Soil	08/03/13		S_6010BAs/Pb S_8081AOCP Composite	
1302018-008A HS-7 01/31/13 14:17 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 S_6010BAs/Pb Composite 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13 OB/03/13	Sample Note:	For DILUTIONS: Report to	MDL if everything	is ND.				
1302018-009A HS-8 01/31/13 14:19 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13 1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13	1302018-008A	HS-7	01/31/13 14:17	Soil	08/03/13		S_6010BAs/Pb	
S_6010BAs/Pb S_8081AOCP Composite (HS-5-8) 02/04/13 Soil 08/03/13	1302018-009A	HS-8	01/31/13 14.19	Soil	08/03/13		Composite	
1302018-010A Composite (HS-5-8) 02/04/13 Soil 08/03/13							S_6010BAs/Pb S_8081AOCP Composite	
	1302018-010A	Composite (HS-5-8)	02/04/13	Soil	08/03/13			

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers		TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	3/7/2013		Time Received:	11:29

Comments: 5day TAT. Send report to both Tom McCloskey and Chris Vertin.

Work Order # : 1302018

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	Scheduled Sample Disposal On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302018-0114	HS-9	01/31/13 14·20	Soil	08/03/13		S_8081AOCP	
1002010 011/		01/01/10 14.20	001	00,00,10		S_6010BAs/Pb Composite	
1302018-012A	HS-10	01/31/13 14:22	Soil	08/03/13		Composito	
						S_6010BAs/Pb Composite	
1302018-013A	HS-11	01/31/13 14:25	Soil	08/03/13			
				/ //		Composite	
1302018-014A	HS-12	01/31/13 14:27	Soil	08/03/13		S 6010BAs/Pb	
						S_8081AOCP	
						Composite	
Sample Note:	For DILUTIONS: Report	to MDL if everything	is ND.				
1302018-015A	Composite (HS-9-12)	02/04/13	Soil	08/03/13		0.000/1000	
1302018-0164	HQ-13	01/31/13 1/-20	Soil	08/03/13		S_8081AOCP	
1302010-010A	10-10	01/31/13 14.29	501	00/00/10		S_6010BAs/Pb	
						Composite	
1302018-017A	HS-14	01/31/13 14:31	Soil	08/03/13			
						S_6010BAs/Pb Composite	
1302018-018A	HS-15	01/31/13 14:34	Soil	08/03/13		Composite	
						S_6010BAs/Pb	
						Composite	
1302018-019A	HS-16	01/31/13 14:37	Soil	08/03/13			
						S_6010BAS/PD Composite	
1302018-020A	Composite (HS-13-16)	02/04/13	Soil	08/03/13		pooro	
	,					S 8081AOCP	

E		Drrent	483 Sinclair Fronta Milpitas, CA 95035 Phone: 408.263.52 FAX: 408.263.8293 www.torrentlab.com	ge Road 5 58 1 1	٠N	OTE: SHA	CHA Aded A	IN		CL DR TO	ISTO	DY B ÚSE C	NLY ·	LAB WORK ORDER	2 NO 0 8
Compar	ny Name:	MCI-McClosley] H 🚺	Food	Special	Locatio	on of Sampli	ng: Rige	ni + Ala	25 1302	018
Address	: 420	Sycamore Valley Rol	West	7:	Code O	11521		Purpos	se: Sn	1 Sa	npling -	Historica	1 Struct	tires	
Telenbo)anville	2 701 7117	FAX.	Zip	Code: 9	4520		Specia			Comments:	OCP	Sample	is are 4-pt	
REPORT	TO: To:	M. Chila / Chick +	SAMPLER:	1/2 t				P.O. #	n posike	5		F	MAIL	,	
TURNAR		ME:	SAMPLE TYPE	:	REPOR	T FORMAT:		1.0.#							
10 Wo 7 Wor 5 Wor	ork Days (k Days (k Days (4 Work Days 1 Work Day 3 Work Days Noon - Nxt 2 Work Days 2 - 8 Hours	Day Storm Water Ground Water Soil	Air Other	QC LI EDF Excel	evel IV	P3 (2081)	ad						ANALYSIS	S ED
LAB ID	CANISTE	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	8	7						REMARKS	
olia		HS-9	1/31/13 14:20	Sil	1	Yorglass Jar	$\backslash /$	Х		C),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
012A		HSID	14:22	1,			V	\times		/				(4p) Compo	cP.
013A	States of	HS-11	14:25				Ň	Х		7	-015	9		Out Ania	0
014A	14. W	HS-12	14:27				1/1	Х		J					
OIGA		145-13	14:29				Ń/	X	1)				Dilton	+
DITA	N.	45-14	14:21				V	X						J Only for O	CPS
018A		HS-15	14:24				\uparrow	X		7 -	02011				
olga		HS-16	14:57				#	X	[
" fird			11.57				'i	1							
	h	*						$\overline{)}$	-						
5.1	uished B	y: Arint: Avistodo	Vertin 2/4	/12	Time:	43	Receiv	red By:	(MB)		Print: Monit	1m	Date:	1/13 Time:	
1 Relin	tistent			1.	10.			X	-		und	10/190	tola	71- 10,7-	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

4

1

		Trent														
		rrent	183 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.525 FAX: 408.263.8293	e Road	• N	C	CHA		OF		STOI	DY BUSE (DNLY	13	AB WORK ORDER NO	
Compan	iy Name:	CE Mc Closkey				Env.) H 🚺	Food 🚺	Special	Location	of Samplin	ng: Rigg	in tAk	ërs	13020	8
Address	420 5	icamove Valley Rd 1	rest					Purpos	e: 561	I Sam	pling	00				
City:	mulle		State: CA	Zip	Code: 94	526		Specia		tions / C	omments:	OCP	Sample	Bare	4pt	-
Telepho	ne: 94	0.786.2467	FAX:	1/1				('our	105110	5					•	-
TURNAR		a losley/Chris Vertin	SAMPLER: (1/1/15	Vertin		FORMAT:		P.0. #				1]
10 Wo 7 Worl 5 Worl	nk Days 🔲 k Days 🔲 k Days 🚺	4 Work Days 1 Work Day 3 Work Days Noon - Nxt D 2 Work Days 2 - 8 Hours	ay Storm Water Waste Water Ground Water	Air Other	QC LO EDF Excel	evel IV / EDD	Ps (8081)	P							ANALYSIS REQUESTED	
LAB ID	CANISTER I.D.	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	8	Lea							REMARKS]
001A		HS-1	1/31/13 13:45	Soil	1	4029495 Tar		X))	学生	g
002 A	Sugar	HS-2	1 13:47	1	1	1	V	X		4				2	4pt Composite Sando only	11
003A	fill team	HS-3	13:49				Ā	Х		1-	005A			A West	for OCPs	RREI
004A	Arias -	HS-4	13:51				/	Х		\int						2
006A	The second	HS-5	14:13				$\langle \rangle$	X	1	2						
007A		HS-6	14:15				V	X		5	100			Ł	Semple only	1
008A		HS-7	14:17				$ \Lambda $	X			10/1-			1	for OCB	
009A		H5-8	14:19		1	1.		X	1							
														÷.		
*														en de		
1 Relife 2 Reline	quished By, 544 quished By	Print: Print: Mo Print: Mo But	prtin 2/4/1 nina Date: chory) 02/10	13 4/13	Time: /0:4 Time:	43 1.29	Receiv	ved By:	Pr) 2	F 	rint: Mər Bu Jint:	chòng)	Date: Date: Date: Date:	4/3 3	Time: /0.43 Time: []-29	-
Were Sa	mples Receiv	ved in Good Condition?	Yes NO Sa	imples on lo	ce? 🔲 Y	es 🔲 NO	Method	d of Shipr	nent			_, s	ample sea	ls intact?		4
NOTE: S Log In By	amples (are discarded by the labora	tory 30 days from date	e of receipt	unless oth Log In Rev	er arrange riewed By:	ment	ts are ma	de.	-	Tem Date:	<u>•</u> 4	°C	Page _	1 (, of 2	

1.....

	Requested Date	Requested Time	Extended Price
Client: McCloskey Consultants	Requested By: Chris Vertin		
Project Name: Riggin + Akers			
Work Order: 1302018	Serial #: CO13-0027	Print Date:	2/12/2013
Change Order			

2/12/2013

10:52:00AM

Additional Test OCPs on 5day TAT: 1302018-006, 007, 014

Page 1 of 1

2/12/13

Torrent Laboratory, Inc. Mail - Rec Final Report for WOs 1302018 1302020 1302021

And in case

and the second second

Tue, Feb 12, 2013 et 10:52 AM

Re: Final Report for WOs 1302018 1302020 1302021

Christopher Vertin <christ@evenvironmental.com> To: "Toment Laboratory, Inc." <pm@tomentlaboratory.com>

Dear PM Team,

For WO 1302018,

We need discrete samples HS-5, HS-6 and HS-12 analyzed tor OCPs (8081) on a 5 Day TAT.

Thank you!

Sincerely,

Christopher Vertin

chris@cvenvironmental.com 925.895.6628

MPORTANT NOTCE: The information contained in this electronic massage and/or its attachments is intended for the named raciplent only. The electronic massage and/or its attachments may contain confidential, non-public or privileged information disclosure of which is restricted by applicable law, including the federal securities laws. If you are not an intended raciplent, or the employee or agent responsible for delivering this measage to the intended raciplent, do not copy, distribute or rely on the information contained herein. If you here received this measage in error, please notify the sender immodiately by reply and immediately delate the measage and any attachments.

On Feb 11, 2013, at 5:48 PM, Torrent Laboratory, Inc. wrote:

Forwarded massage From: Torrent Laboratory, Inc. spm@torrentlaboratory.com> Date: Mon, Feb 11, 2013 at 5:36 PM Subject: Final Report for WOs 1302018 1302020 1302021 To: tom mecloskey spm@mccloskey.comsultants.com>

Best Regards,

Janice Winn-Shilling x206 and Karin Bernstein x204, x209

Toment's Project Management Team (408) 263-5258 ext 204, 206, 209

483 Sinclair Frontage Rd Milpitas, CA 95035 www.torrentlaboratory.com

pm@torrentlaboratory.com

The contents of this message are confidential and are bound by law from disclosure, tampering, or any other use by a third party.

If you are not the intended recipient of this message and its contents, please contact us immediately at $(406)\ 263-5250$ and delete the message and its contents.

https://mail.googla.com/mail/u0/?ui=28ik=e890e6e2e78view=pt&search=inbcs&th=13ccfof70596814

1/2

Change Order

Work O	rder: 1302018	Serial #: CO13-0039		Print Date	: 2/28/2013
Project	Name: Riggin + Akers				
Client:	McCloskey Consultants	Requested By: Christop	her Ve	ertin	
-		Reg	uested	Requested	Extended

Date

2/28/2013

Time

4:10:00PM

Price

Additional Test OCPs on 1302018-009A on 5day TAT

Page 1 of 1

^{2/28/19}

Torrent Laboratory, Inc. Mail - Re: 1302026, 1302018 - Riggins and Alexa

Re: 1302025, 1302018 - Riggins and Akers

Christopher Vertin <chils@cvenvironmental.com> To: "Toment Laboratory, inc." <pm@tomentiaboratory.com> Cc: tom mecioskey <tom@mecioskeyconsultants.com> Thu, Feb 28, 2013 at 4:10 PM

Dear PM team,

For WO 1302018, we need Discrete Sample HS-8 (-009A) analyzed for pesticides on a 5 day TAT. We know that it is out of hold time.

Sincerely,

Christopher Vertin

chris@cvenvironmental.com 925.895.6628

MPORTANT NOTICE. The information contained in this electronic massage and/or its attachments is intended for the named recipient only. The electronic massage and/or its attachments may contain confidential, non-public or privileged information disclosure of which is restricted by applicable law, including the federal securities laws. If you are not an intended recipient, or the employee or agent responsible for delivering this massage to the intended recipient, do not copy, distribute or rely on the information contained herein. If you have received this massage in error, please notify the sender immediately by reply and immediately delete this massage and any attachments.

On Feb 20, 2019, at 8:27 PM, Torrent Laboratory, Inc. wrote:

<1302018 MCI rev 1.pdf>

https://mail.google.com/rel/cat/s0/?ui=25/i=s800e5s2s/76/ex=_tileserer=inbos6ti=12d23490bbs11c5c

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggins + Akers - Visalia

Work Order No.: 1302020

Dear Chris Vertin:

Torrent Laboratory, Inc. received 12 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Twelve discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

de She

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggins + Akers - Visalia Work Order: 1302020

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Report prepared for:	Chris Vertin				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
FB-1						13	302020-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	7.4	mg/Kg
FB-2						13	302020-002
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.9	mg/Kg
FB-3						13	802020-003
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.9	mg/Kg
FB-4						13	802020-004
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.2	mg/Kg
Composite (FB-1-4)						13	802020-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	48	ug/Kg
FB-5						13	302020-006
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.3	mg/Kg
FB-6						13	802020-007
Parameters:		<u>Analysis</u> <u>Metho</u> d	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.9	mg/Kg

Report prepared for:	Chris Vertin				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
FB-7						13	02020-008
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	7.3	mg/Kg
FB-8						13	02020-009
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	8.0	mg/Kg
Composite (FB-5-8)						13	02020-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	40	ug/Kg
FB-9						13	02020-011
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	12	mg/Kg
FB-10						13	02020-012
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	8.5	mg/Kg
FB-11						13	02020-013
Parameters:		<u>Analysis</u> Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.7	mg/Kg
FB-12						13	02020-014
Parameters:		<u>Analysis</u> Method	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	6.2	mg/Kg

Report prepared for:	Chris Vertin				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
Composite (FB-9-12)						13	02020-015
Parameters:		<u>Analysis</u> Method	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	15	ug/Kg

Report prepared for:	Chris Vertin McCloskey Consul	tants				Da Da	te Rece te Repo	orted: 02/0	4/13 1/13		
Client Sample ID:	FB-1				Lab Sa	mple ID:	130202	20-001A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 15:2	21									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	7.4	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants					Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13	
Client Sample ID:	FB-2	х <i>и</i> : н			Lab Sa	mple ID:	130202	20-002A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 15:2	26									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.9	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants				Da Da	te Rece te Repo	orted: 02/0	4/13 1/13		
Client Sample ID:	FB-3				Lab Sa	mple ID:	130202	20-003A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 15:3	80									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.9	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants		Date Received: 0 Date Reported: 0						4/13 1/13	
Client Sample ID:	FB-4				Lab Sa	mple ID:	130202	20-004A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 15:3	3									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.2	-	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location: Project Number:	Composite (FB Riggins + Aker	8-1-4) is - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	20-005A			
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	48		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	64.3		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	73.0		%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Chris Vertin McCloskey Consul	tants					Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13	
Client Sample ID:	FB-5				Lab Sa	mple ID:	130202	20-006A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 15:5	60									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.3	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants					Da Da	te Rece te Repo	orted: 02/0	4/13 1/13	
Client Sample ID:	FB-6				Lab Sa	mple ID:	130202	20-007A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 15:4	6									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.9	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants					Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13	
Client Sample ID:	FB-7				Lab Sa	mple ID:	130202	20-008A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 15:4	2									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	7.3		mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants						Da Da	te Rece te Repo	orted: 02/0	4/13 1/13
Client Sample ID:	FB-8				Lab Sa	mple ID:	130202	20-009A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number: Date/Time Sampled:	01/31/13 / 15:3	39									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	8.0	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants				Date Received: 02/04/13 Date Reported: 02/11/13						
Client Sample ID: Project Name/Location:	Composite (FB Riggins + Aker	8-5-8) rs - Visalia			Lab Saı Sample	mple ID: Matrix:	13020: Soil	20-010A				
Date/Time Sampled	02/04/13 /											
Tag Number:	Riggin + Akers	- Visalia										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777	
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777	
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777	
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777	
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777	
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777	
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777	
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777	
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777	
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	40		ug/Kg	413863	7777	
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777	
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777	
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777	
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777	
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777	
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777	
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777	
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777	
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	75.1		%	413863	7777	
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	72.3		%	413863	7777	
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the natu	ure of the s	ample m	natrix - viscou	ıs/dark	

Report prepared for:	Chris Vertin McCloskey Consul	tants						Da Da	te Rece te Repo	orted: 02/0	4/13 1/13
Client Sample ID:	FB-9				Lab Sa	mple ID:	130202	20-011A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 15:5	56									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	12		mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location:	FB-10 Riggins + Aker	s - Visalia			Lab Saı Sample	mple ID: Matrix:	130202 Soil	20-012A			
Project Number: Date/Time Sampled: Tag Number:	01/31/13 / 16:0 Riggin + Akers	0 - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	8.5		mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants						Da Da	te Rece te Repo	orted: 02/0	4/13 1/13
Client Sample ID:	FB-11				Lab Sa	mple ID:	130202	20-013A			
Project Name/Location: Project Number:	Riggins + Aker	s - visalia			Sample	e Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 16:0	2									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.7	•	mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location: Project Number:	FB-12 Riggins + Aker	s - Visalia			Lab Saı Sample	mple ID: Matrix:	130202 Soil	20-014A			
Date/Time Sampled: Tag Number:	01/31/13 / 16:0 Riggin + Akers)7 - Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	6.2		mg/Kg	413844	7786

Report prepared for:	Chris Vertin McCloskey Consul	tants					Date Received: 02/04/13 Date Reported: 02/11/13					
Client Sample ID: Project Name/Location:	Composite (FB Riggins + Aker	s-9-12) s - Visalia			Lab Saı Sample	mple ID: Matrix:	13020 Soil	20-015A				
Date/Time Sampled	02/04/13 /											
Tag Number:	Riggin + Akers	- Visalia										
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch	
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777	
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777	
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777	
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777	
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777	
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777	
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777	
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777	
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777	
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	15		ug/Kg	413863	7777	
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777	
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777	
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777	
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777	
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777	
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777	
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777	
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777	
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777	
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	74.0		%	413863	7777	
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	69.7		%	413863	7777	
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark	

MB Summary Report

Work Order:	1302020	Prep I	Method:	3545_OCP	Prep Date:		02/05/13	Prep Batch:	7777
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/06/13	Analytical	413863
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4.4'-DDT		0.67	2.0	ND					
Endrin aldehvde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				70.1					
DCBP (S)				72.0					
Work Order:	1302020	Prep I	Method:	3050	Prep	Date:	02/06/13	Prep Batch:	7786
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/07/13	Analytical	413844
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Arsenic		0.25	1.7	ND					
Lead		0.14	1.0	0.39					

Work Order:	1302020		Prep Meth	Method: 3545_OCP		Prep Da	te:	02/05/13	Prep Batch: 7777		7	
Matrix:	Soil		Analytical	SW80	081A	Analyze	d Date:	02/06/13	Analytic	Analytical 413863		
Units:	ug/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
gamma-BHC		0.61	2.0	ND	20	88.7	84.5	4.74	56.9 - 120	30		
Heptachlor		0.79	2.0	ND	20	92.8	89.0	4.09	63.6 - 117	30		
Aldrin		0.81	2.0	ND	20	87.2	83.1	4.88	53 - 123	30		
Dieldrin		0.58	2.0	ND	20	87.6	81.5	7.28	44 - 130	30		
Endrin		0.86	2.0	ND	20	96.4	93.0	3.57	44.1 - 121	30		
4,4'-DDT		0.67	2.0	ND	20	118	115	2.59	52.8 - 134	30		
TCMX (S)				ND	350	74.6	69.4		52.5 - 139			
DCBP (S)				ND	350	75.2	72.5		50.2 - 139			
Work Order:	1302020		Prep Meth	od: 3050		Prep Da	te:	02/06/13	Prep Ba	tch: 778	3	
Matrix:	Soil		Analytical	SW60	010B	Analyze	d Date:	02/07/13	Analytic	al 4138	344	
Units:	mg/Kg		Method:						Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier	
Arsenic		0.25	1.7	ND	50	97.8	99.1	1.30	71 - 121	30		
Lead		0.14	1.0	0.39	50	99.9	98.7	1.24	67.9 - 118	30		

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302020		Prep Metho	d: 3050		Prep Date:	02/0	6/13	Prep Batch	7786	
Matrix:	Soil		Analytical	SW60 ²	10B	Analyzed D	Date: 02/0	07/13	Analytical	413844	
Spiked Sample:	1302020-001A	۱	Method:						Batch:		
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Lead		0.14	1.0	0.15	50	87.5	90.9	2.78	67.9 - 118	30	

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: <u>Riggins + Akers - Visalia</u>	Received By: <u>kb</u>
Work Order No.: <u>1302020</u>	Physically Logged By: <u>kb</u>
	Checklist Completed By: kb
	Carrier Name: First Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Rece	ipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Not Present
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302020

<u>WO Sample ID</u>	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Scheduled</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302020-001A	FB-1	01/31/13 15:21	Soil	08/03/13			S_6010BAs/Pb Courier Service Composite	
Sample Note:	Pb only						·	
1302020-002A	FB-2	01/31/13 15:26	Soil	08/03/13				
4000000 0004	50.0	04/04/40 45 00	0.1	00/00/40			S_6010BAs/Pb Composite	
1302020-003A	FB-3	01/31/13 15:30	Soll	08/03/13			S 6010BAs/Pb	
							Composite	
1302020-004A	FB-4	01/31/13 15:33	Soil	08/03/13				
							S_6010BAS/Pb Composite	
1302020-005A	Composite (FB-1-4)	02/04/13	Soil	08/03/13				
							S_8081AOCP	
Sample Note:	4pt composite. OCPs only.							
1302020-006A	FB-5	01/31/13 15:50	Soil	08/03/13				
							Composite	
1302020-007A	FB-6	01/31/13 15:46	Soil	08/03/13				
							S_6010BAs/Pb	
1302020-008A	FB-7	01/31/13 15:42	Soil	08/03/13			Composite	
							S_6010BAs/Pb	
1302020-0094	FB-8	01/31/13 15:39	Soil	08/03/13			Composite	
1002020 0007		01/01/10 10:00	001	00/00/10			S_6010BAs/Pb	
			o "				Composite	
1302020-010A	Composite (FB-5-8)	02/04/13	Soil	08/03/13			S 8081AOCP	
1302020-011A	FB-9	01/31/13 15:56	Soil	08/03/13			0_0001/1001	
							S_6010BAs/Pb	
1302020-0124	FB-10	01/31/13 16:00	Soil	08/03/13			Composite	
1002020 0128		01/01/10 10.00	001	00/00/10			S 6010BAs/Pb	

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302020

WO Sample ID	<u>Client</u> Sample ID	<u>Collection</u> Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302020-013A	FB-11	01/31/13 16:02	Soil	08/03/13			Composite	
							S_6010BAs/Pb Composite	
1302020-014A	FB-12	01/31/13 16:07	Soil	08/03/13			S_6010BAs/Pb	
1302020-015A	Composite (FB-9-12)	02/04/13	Soil	08/03/13			Composite	
							S_8081AOCP	

Æ	Torrent	483 Sinclair Frontage Roa Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com	d	CHAIN OF SHADED AREAS ARE FO	CUSTODY DR TORRENT LAB USE ONLY	LAB WORK ORDER NO
Compan Address City:	y Name: MT- MCCloske 420 Sycamore Valley R ANVILL SI ne: 9257862667 FAX	al Wast late: QA Zip Ci (;	Dide: 94526	ocation of Sampling: Rug Purpose: Sil Sumpline Special Instructions / Combo	ni+Akers-Visalia -Former Barn Ints: 4-pt Composite Sa	mples for OCPs
REPORT	TO: En McClosky/Chris	SAMPLER: Wis Ver	in I	P.O. #:	EMAIL:	
10 Wo 10 Wo 7 Work	OUND TIME: Yerror rk Days 3 Work Days Noon - N x Days 2 Work Days 2 - 8 Hou x Days 1 Work Day Other	SAMPLE TYPE: htt Day. Storm Water Waste Water Ground Water Soil	ther REPORT FORM	R3 (8051)		ANALYSIS REQUESTED
LAB ID	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED MATE	RIX # OF COI			REMARKS
00IA	FB-1	1/31/13 15:21 501	4029	glass / X -		
002A	FB-2	1 15:26	111	X		\$4 pt Campusite #
OOBA	FR-3	15:20		XXX	-005A	for OCPs I
004A	FB-4	16:23				Dury R
006A	FB-5	15:50		1/x 7		N .
007A	FRID	15:46		VX X		24pt Composte
008A	FR-7	15:42			-01014	for CCP3
009A	FR-8	15:20				Only
200 m 201		((5.5)				Jo(
	7					
Reling	Wished By: John Tark (Wrstop)	Partin 2/4/13	Time: 10:43	Received By:	Print: Monina Date: Budongs 02/	<u>Ч/13</u> Тіте: У//13 //0 ⁴ /23
2 Keiing	Print: A	Lonina Date: Licheng D2/04/13	Time:	9 Heeenverd By:	- CB 24	13 1:29
Were San	nples Received in Good Condition?	Yes NO Samples	on Ice? 🗹 Yes. [NO_Method of Shipment	Sample seal	s intact?
Log In By	Beneficial and a second by the lab	Date: 2413	Log In Reviewed I	By:	Date:	Page Of

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

2

i,

	Torrent	483 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.52 FAX: 408.263.8293 www.torrentlab.com	ge Road 58	(•N	(DTE: SH/	CHA Aded A	NIN REAS	OF ARE F		JST)Y USE (ONLY •		LAB WORK ORDER NO
Compan	Name: MCI-McClose		,		Locat	ion of S	ampling	Rig	gin't	Aler	s -	Isalic)		
ddress	420 Syramore Valley	1 Kd West		04-2	Purpo	ose:	Soil.	Sainj	ling.	- For	mer	Barn			A ACP
Lity:	CINVILL St	ate: (A	Zip Code	9452	2 Spec	al Instru	ictions /	Comm	ents?	4pt-	Con	pusil	e 54	imp ^l e	stor US
REPORT	TO: To: Un Un Jay Miles	SAMPLER:	Vat		P.0.	#:				F	MAIL				
URNAR	OUND TIME:	TA SAMPLE TYPE	:	REPORT	FORMAT		· , .	. 9	÷	~		11.5			ч
10 Wo 7 Worl	rk Days 📄 3 Work Days 📄 Noon - N k Days 📄 2 Work Days 📄 2 - 8 Hou k Days 📄 1 Work Day 📄 Other	xt Day Storm Water Ins Ground Water Soil	Air Other	CLA EDF EXCE	evel IV / EDD	5 (8081)	1		•	11	* * *		21 		ANALYSIS REQUESTED
LAB ID	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	8	Leac	• • •	 		ه . اند ر	• •		î -	REMARKS
>IIA	FB-9	1/31/13 15:56	Soul	1	Yoz glas	17	X)						1	
12A	FB-10	1 16:05	1		1	\mathbb{N}	X	ζ							Apticomposite
IBA	FB-II	1/:02				X	X	1	0	5/4					Sample for
14A	FB 12	1002				\wedge	Ŷ	\mathcal{F}_{i}		×					1 003
	10-12	1 (6.07				1									
517 (197					× *		,	· .						100	
		· · · · · · · · · · · · · · · · · · ·			-	ļ							· ·		
							1.								10[/
														-	4
an franc								ŕ						1	
	1													1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	""""
Relind	ushed By: ushed By: UB Print: A	topher lettin 1/2 2 Jonina Date:	14/13	Time:	13	Receiv Receiv	red By:	20		Print:	Moni/ Brhò	ng)	Date: Date: Date:	411	Time: 10:43 3 [[100]-9

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggins + Akers - Visalia

Work Order No.: 1302021

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 12 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Twelve discrete samples were received and composited 4:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

de Bhi

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggins + Akers - Visalia Work Order: 1302021

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Report prepared for:	Tom McCloskey				Date	Received: 0	2/04/13
	McCloskey Consultants				Date	Reported: 0	2/11/13
WS-1						130)2021-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Composite (WS-1-4)						130)2021-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
WS-6						130)2021-007
Parameters:		<u>Analysis</u> <u>Method</u>	DF	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
Composite (WS-5-8)						130)2021-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
WS-12						130)2021-014
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
Composite (WS-9-12)	•					130)2021-015
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	WS-1				Lab Sa	mple ID:	13020	21-001A			
Project Name/Location:	Riggins + Akers - Visalia					Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/29/13 / 16:1	8									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND		mg/Kg	413844	7786

Report prepared for:	Tom McCloskey McCloskey Consul	Date Received: 02/04/13 Date Reported: 02/11/13									
Client Sample ID:	Composite (W	S-1-4)			Lab Sa	mple ID:	13020	021-005A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown belov	v are reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	ND		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	95.6		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	69.2		%	413863	7777

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	WS-6				Lab Sa	mple ID:	13020	21-007A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/29/13 / 16:5	64									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND		mg/Kg	413844	7786

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	Composite (W	S-5-8)			Lab Sar	nple ID:	13020	021-010A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	ND		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	70.4		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	65.4		%	413863	7777

Report prepared for:	Tom McCloskey McCloskey Consul	tants				eived: 02/0 orted: 02/1	4/13 1/13				
Client Sample ID:	WS-12				Lab Sa	mple ID:	130202	21-014A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/29/13 / 17:2	24									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND		mg/Kg	413844	7786

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	Composite (W	S-9-12)			Lab Sar	mple ID:	13020)21-015A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/04/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	4	2.0	8.0	ND		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	4	3.3	8.0	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	4	2.5	20	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	4	41	80	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	4	33	400	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	4	52.5	139	68.5		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	4	50.2	139	62.0		%	413863	7777

MB Summary Report

Work Order:	1302021	Prep l	Method:	3545_OCP	Prep	Date:	02/05/13	Prep Batch:	7777
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/06/13	Analytical	413863
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				70.1					
DCBP (S)				72.0					
Work Order:	1302021	Prep I	Method:	3050	Prep	Date:	02/06/13	Prep Batch:	7786
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/07/13	Analytical	413844
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Arsenic		0.25	1.7	ND					
Lead		0.14	1.0	0.39					
		V . 1 1		0.00					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Work Order:	1302021		Prep Meth	od: 3545	_OCP	Prep Da	te:	02/05/13	Prep Ba	tch: 777	7
Matrix:	Soil		Analytical	SW80	081A	Analyze	d Date:	02/06/13	Analytic	al 4138	363
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	88.7	84.5	4.74	56.9 - 120	30	
Heptachlor		0.79	2.0	ND	20	92.8	89.0	4.09	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	87.2	83.1	4.88	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	87.6	81.5	7.28	44 - 130	30	
Endrin		0.86	2.0	ND	20	96.4	93.0	3.57	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	118	115	2.59	52.8 - 134	30	
TCMX (S)				ND	350	74.6	69.4		52.5 - 139		
DCBP (S)				ND	350	75.2	72.5		50.2 - 139		
Work Order:	1302021		Prep Meth	od: 3050		Prep Da	te:	02/06/13	Prep Ba	tch: 778	6
Matrix:	Soil		Analytical	SW60	010B	Analyze	d Date:	02/07/13	Analytic	al 4138	344
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Arsenic		0.25	1.7	ND	50	97.8	99.1	1.30	71 - 121	30	
Lead		0.14	1.0	0.39	50	99.9	98.7	1.24	67.9 - 118	30	

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: <u>Riggins + Akers - Visalia</u>	Received By: <u>kb</u>
Work Order No.: <u>1302021</u>	Physically Logged By: <u>kb</u>
	Checklist Completed By: <u>kb</u>
	Carrier Name: First Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Rece	eipt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Not Present
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302021

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>n Mat</u> e	rix <u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302021-001A	WS-1	01/29/13 16:	:18 Soi	08/03/13			S_6010BAs/Pb Courier Service Composite	
Sample Note:	As only						•	
1302021-002A	WS-2	01/29/13 16:	24 Soi	08/03/13			Composito	
1302021-003A	WS-3	01/29/13 16:	37 Soi	08/03/13			Composite	
1302021-004A	WS-4	01/29/13 16:	45 Soi	08/03/13			Composite	
1302021-0054	Composite (M/S_1_4)	02/04/13	Soi	08/03/13			Composite	
1002021-000A		02/04/10	001	00/03/13			S_8081AOCP	
Sample Note:	4pt composite. OCPs only.							
1302021-006A	WS-5	01/29/13 16:	51 Soi	08/03/13			Composite	
1302021-007A	WS-6	01/29/13 16:	54 Soi	08/03/13				
							S_6010BAs/Pb Composite	
1302021-008A	WS-7	01/29/13 17:	:00 Soi	08/03/13			o i	
1302021-009A	WS-8	01/29/13 17:	:06 Soi	08/03/13			Composite	
1202021 0104	$C_{\text{opposite}}(M \in \mathcal{S})$	02/04/12	Soi	08/02/12			Composite	
1302021-010A	Composite (WS-5-6)	02/04/13	301	06/03/13			S 8081AOCP	
1302021-011A	WS-9	01/29/13 17:	11 Soi	08/03/13			Composito	
1302021-012A	WS-10	01/29/13 17:	16 Soi	08/03/13			Composite	
1302021-013A	WS-11	01/29/13 17.	20 Soi	08/03/13			Composite	
1002021 0101		01/20/10 11.	20 001	00,00,10			Composite	
1302021-014A	WS-12	01/29/13 17:	24 Soi	08/03/13			S 6010BAs/Ph	
							Composite	
1302021-015A	Composite (WS-9-12)	02/04/13	Soi	08/03/13			S 8081AOCP	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tal: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

			483 Sind Milpitas, Phone: 4 FAX: 40 www.tor	clair Frontag CA 95035 408.263.52 8.263.8293 rentlab.com	ge Road 58	۰N	OTE: SHA	CHA Aded A	AIN AREAS	OF ARE FO	CUS	TOD' NT LAB U	Y SE ONLY •	L	AB WORK ORDER NO
ompar	ny Name:	1CI-McClosley					Env.] н 🗋	Food	Special L	ocation of s	Sampling:	Riggin +	Akers - V	Isalia
ddress	: 420 5	ycamore Valley Ro	d West						Purpos	se: Sil	Samp/m	<u>s'</u> -Wat	er Supply	Dtch	Sampling
ity: D	anulle		State:	0A	Zip	Code: 94	1526		Specia	Instruct	ions / Con	hents: 4	pt comp	usite s	iamples for OCPs
elepho	one:925.78	6.2667	FAX:	<u></u>											
EPORT	TO: BAN MO	Closley/Chris Vertin	SAMPLE	R: (hris	Vertin				P.O. #	: 			EMAIL:	<u> </u>	
10 Wor 7 Wor 5 Wor	rk Days	4 Work Days 1 Work Da 3 Work Days Noon - Nxt 2 Work Days 2 - 8 Hours	iy I Day s	Storm Water Waste Water Ground Water Soil	Air D Other		evel IV	PS (8081)	enc						ANALYSIS REQUESTED
AB ID	CANISTER I.D.	CLIENT'S SAMPLE I.	D. DAT	'E / TIME MPLED	MATRIX	# OF CONT	CONT TYPE	0	Ars				. •		REMARKS
DIA		105-1	1-29-13	16:18	Soll	۱	402 gloss	Λ	X	2					11 ton all
02A		1.6-7	1	16:24	1		1	IV		1				1	gpi composie
DBA		115-3		16:37				ΪÅ		5	105#	2		100 A	Only
04A		WS-4		16:45				/		(.				1 Million	
6A		\$ WS-5		16:51				Ň /		2				al and	
D7A		WS-6		16:54				\mathbb{N}	Х	$\left(\right)$	ola			4	Aptcomposite
08A		(4)5-7		17:00				ľŇ		7.	01011			1000	Only Only
P9A		WS-8		17:06				//							
+ +	ng sang li Ng ling	WS-9						/							
	An	605-10												1000 1000 1000 1000 1000 1000	
Reline	quished By:	tet Christoply,	Verta	Date: 2/4	13	Time: //:4	3	Recei	ved By:	tP)	Print	Manina Buchon	Date:	2/11/12	Time: 10:43
7	quished By	Print: M	mina	Date:		Time:	1 AG	Rece	yed By:	2	Print	R	Date:	1/12	Time:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

L	То LABO	FICE NO.	183 Sinclair Frontag Milpitas, CA 95035 Phone: 408.263.525 FAX: 408.263.8293 www.torrentlab.com	e Road 8	۰N	C DTE: SHA	CHA DED A	NIN REAS	OF ARE F	CL OR TO	JST PRRENT	ODY LAB USE	ONLY •	LA	B WORK ORDER NO	
Compan	iy Name: M	CI- Me Closley				Env.	н 🗋	Food	Special	Locati	on of Sa	mpling: Rg	an + A	bers-Usa	lig	
Address	:420 Syc	amore Valley Rol W	st					Purpos	se: S	IS	npling	- Water	Supply	Ditch		
City:	anville	1	State: QA	Zip	Code: 94	526		Specia	I Instru	ctions /	Comme	ents: 4pt C	omposil	esamples	for CCB	
Telepho	ne: 925.7	56-2667	FAX:					,				.)	1	Ÿ		
REPORT	TO: Jom M	Closkey /Chris Vertn	SAMPLER: Aris	Vertin				P.O. #	:			· · ·	EMAIL:			
TURNAR	OUND TIME		SAMPLE TYPE:		REPORT	FORMAT:										
10 Wo 7 Work	rk Days	4 Work Days 1 Work Day 3 Work Days Noon - Nxt D 2 Work Days 2 - 8 Hours	ay Storm Water Waste Water Ground Water Soil	Air D Other	C LO EDF Excel	evel IV / EDD	R (2081)	senc							ANALYSIS REQUESTED	
LAB ID	CANISTER I.D.	CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	8	Ars							REMARKS	
olia		WS-日 9	1/29/13 17:11	Sil	1	402 tars Slass	$\backslash /$)						Hot an orto	B
012A		WS-1210	17:16				\bigvee			-01	5A			3	Samples for	L L
OIBA		W5-11	17:20				Ň		ſ		- //				OCPs only	RE
014A		WS-12	17:24	Ι.		1	/	X-	J							ē
																-
	1															
1 Reline	uisted By	H Mristoher	Vern 2/4/	/3	Time:	43	Receiv	ved By:	(P)		Print:	Monina	Date:	2/NHR	Time:]
2 Reling	uished By	B Print/ M	ningi) Date:	DULA	Time:	:29	Recen	ed By:	ener Norder	-k	Print:	<u>~~~</u>	Dater	413	Time: 29	
Were Sar NOTE: Sa	mples Receiv amples	ed in Good Condition?	Yes NO Sa tory 30 days from tate	mples on lo	ce?	es 🔲 NO er arrange	Metho	d of Ship ts are ma	ment			Temp	Sample s	eals intact?		
Log In By	Alexandra and and a	γb	Date: 241	2	Log In Rev	iewed By:					Dat	e:			~ \ "	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggins + Akers - Visalia

Work Order No.: 1302022 Rev: 1

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 7 sample(s) on February 04, 2013 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

attes

Patti Sandrock QA Officer February 12, 2013 Date

Date: 2/12/2013

Client: McCloskey Consultants Project: Riggins + Akers - Visalia Work Order: 1302022

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comments for method S_TPHDO, 1302022-001 MS/MSD, QC Analytical Batch ID 413830, Note:The % recoveries for TPH as Diesel are outside of laboratory control limits but % RPD is within limits. The associated LCS/LCSD is within both % Recovery and %RPD limits. No corrective action required.

Analytical Comments for method S_6010B, 1302022-001 MS/MSD, QC Analytical Batch ID 413859, Note:The % recoveries for Arsenic are outside of laboratory control limits but % RPD is within limits. The associated LCS/LCSD is within both % Recovery and %RPD limits. No corrective action required.

Analytical Comments for S_1613, Note: Analysis subcontracted to CA ELAP approved laboratory #1122. Sub-contract data will follow under separate cover.

REVISIONS:

Report revused to include subcontracted 1613.

Rev 1 (2/26/2013)

Report prepared for:	Tom McCloskey McCloskey Consultants				Date Date	Received: Reported:	02/04/13 02/12/13
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	Results	<u>Unit</u>
TPH as Diesel (SG)		SW8015B(M)	10	8.7	20	45	mg/Kg
TPH as Motor Oil (SG)		SW8015B(M)	10	13	100	940	mg/Kg
Pyrene		SW8310	1	1.88	5.0	42	ug/Kg
Chrysene		SW8310	1	0.248	1.0	8.4	ug/Kg
Barium		SW6010B	1	0.07	5.0	130	mg/Kg
Chromium		SW6010B	1	0.0500	5.0	12	mg/Kg
Cobalt		SW6010B	1	0.055	5.0	6.7	mg/Kg
Copper		SW6010B	1	0.650	5.0	43	mg/Kg
Lead		SW6010B	1	0.14	1.0	130	mg/Kg
Nickel		SW6010B	1	0.0500	5.0	7.7	mg/Kg
Vanadium		SW6010B	1	0.18	5.0	31	mg/Kg
Zinc		SW6010B	1	0.25	5.0	120	mg/Kg
4,4'-DDE		SW8081A	20	10	40	200	ug/Kg
Dieldrin		SW8081A	20	12	40	24	ug/Kg
4,4'-DDT		SW8081A	20	13	40	98	ug/Kg

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/12/13
MS-1 @2 1/2-3						1	302022-002
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH(Gasoline)		8260TPH	1	30	100	100	ug/Kg
TPH as Diesel (SG)		SW8015B(M)	1	0.87	2.0	3.5	mg/Kg
Barium		SW6010B	1	0.07	5.0	130	mg/Kg
Chromium		SW6010B	1	0.0500	5.0	16	mg/Kg
Cobalt		SW6010B	1	0.055	5.0	8.5	mg/Kg
Copper		SW6010B	1	0.650	5.0	11	mg/Kg
Lead		SW6010B	1	0.14	1.0	4.7	mg/Kg
Nickel		SW6010B	1	0.0500	5.0	8.3	mg/Kg
Vanadium		SW6010B	1	0.18	5.0	45	mg/Kg
Zinc		SW6010B	1	0.25	5.0	38	mg/Kg

MS-2

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	PQL	<u>Results</u>	<u>Unit</u>
TPH as Diesel (SG)	SW8015B(M)	1	0.87	2.0	16	mg/Kg
TPH as Motor Oil (SG)	SW8015B(M)	1	1.3	10	100	mg/Kg
Barium	SW6010B	1	0.07	5.0	58	mg/Kg
Chromium	SW6010B	1	0.0500	5.0	11	mg/Kg
Cobalt	SW6010B	1	0.055	5.0	5.4	mg/Kg
Copper	SW6010B	1	0.650	5.0	8.8	mg/Kg
Lead	SW6010B	1	0.14	1.0	5.6	mg/Kg
Nickel	SW6010B	1	0.0500	5.0	6.0	mg/Kg
Vanadium	SW6010B	1	0.18	5.0	31	mg/Kg
Zinc	SW6010B	1	0.25	5.0	34	mg/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

1302022-003

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/12/13
MS-2 @2 1/2-3						1	302022-004
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH as Diesel (SG)		SW8015B(M)	1	0.87	2.0	4.8	mg/Kg
Barium		SW6010B	1	0.07	5.0	130	mg/Kg
Chromium		SW6010B	1	0.0500	5.0	17	mg/Kg
Cobalt		SW6010B	1	0.055	5.0	9.1	mg/Kg
Copper		SW6010B	1	0.650	5.0	12	mg/Kg
Lead		SW6010B	1	0.14	1.0	5.0	mg/Kg
Nickel		SW6010B	1	0.0500	5.0	9.1	mg/Kg
Vanadium		SW6010B	1	0.18	5.0	44	mg/Kg
Zinc		SW6010B	1	0.25	5.0	40	mg/Kg

1302022-005

Parameters:	<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
TPH as Diesel (SG)	SW8015B(M)	1	0.87	2.0	7.6	mg/Kg
Pyrene	SW8310	1	1.88	5.0	11	ug/Kg
Chrysene	SW8310	1	0.248	1.0	1.5	ug/Kg
Benzo(b)fluoranthene	SW8310	1	0.135	1.0	2.2	ug/Kg
Barium	SW6010B	1	0.07	5.0	56	mg/Kg
Chromium	SW6010B	1	0.0500	5.0	6.8	mg/Kg
Copper	SW6010B	1	0.650	5.0	17	mg/Kg
Lead	SW6010B	1	0.14	1.0	20	mg/Kg
Vanadium	SW6010B	1	0.18	5.0	17	mg/Kg
Zinc	SW6010B	1	0.25	5.0	49	mg/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

MS-3

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/12/13
MS-3 @2 1/2-3						13	302022-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
TPH as Diesel (SG)		SW8015B(M)	5	4.4	9.9	12	mg/Kg
TPH as Motor Oil (SG)		SW8015B(M)	5	6.7	51	390	mg/Kg
Barium		SW6010B	1	0.07	5.0	160	mg/Kg
Chromium		SW6010B	1	0.0500	5.0	17	mg/Kg
Cobalt		SW6010B	1	0.055	5.0	9.5	mg/Kg
Copper		SW6010B	1	0.650	5.0	11	mg/Kg
Lead		SW6010B	1	0.14	1.0	5.0	mg/Kg
Nickel		SW6010B	1	0.0500	5.0	9.0	mg/Kg
Vanadium		SW6010B	1	0.18	5.0	45	mg/Kg
Zinc		SW6010B	1	0.25	5.0	41	mg/Kg

BA-1

BA-1					13	02022-007
Parameters:	<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
2-Methylnapthalene	SW8310	1	7.08	40	61	ug/Kg

Report prepared for:	Tom McCloskey McCloskey Consult	Date Received: 02/04/13 Date Reported: 02/12/13									
Client Sample ID:	MS-1				Lab Sar	nple ID:	13020	22-001A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 10:0	8									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Antimony	SW6010B	2/6/13	02/07/13	1	0.20	5.0	ND		mg/Kg	413859	7788
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	ND		mg/Kg	413859	7788
Barium	SW6010B	2/6/13	02/07/13	1	0.07	5.0	130		mg/Kg	413859	7788
Beryllium	SW6010B	2/6/13	02/07/13	1	0.0800	2.0	ND		mg/Kg	413859	7788
Cadmium	SW6010B	2/6/13	02/07/13	1	0.0550	1.0	ND		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	12		mg/Kg	413859	7788
Cobalt	SW6010B	2/6/13	02/07/13	1	0.055	5.0	6.7		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	43		mg/Kg	413859	7788
Lead	SW6010B	2/6/13	02/07/13	1	0.14	1.0	130		mg/Kg	413859	7788
Molybdenum	SW6010B	2/6/13	02/07/13	1	0.120	5.0	ND		mg/Kg	413859	7788
Nickel	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	7.7		mg/Kg	413859	7788
Selenium	SW6010B	2/6/13	02/07/13	1	0.42	5.0	ND		mg/Kg	413859	7788
Silver	SW6010B	2/6/13	02/07/13	1	0.37	1.0	ND		mg/Kg	413859	7788
Thallium	SW6010B	2/6/13	02/07/13	1	0.49	5.0	ND		mg/Kg	413859	7788
Vanadium	SW6010B	2/6/13	02/07/13	1	0.18	5.0	31		mg/Kg	413859	7788
Zinc	SW6010B	2/6/13	02/07/13	1	0.25	5.0	120		mg/Kg	413859	7788
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Mercury	SW7471A	2/6/13	02/07/13	1	0.2	0.50	ND	•	mg/Kg	413853	7789

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-1				Lab Sa	mple ID:	13020)22-001A			
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 10:0	8									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	v are reported using t	heir MDL									
alpha-BHC	SW8081A	2/6/13	02/06/13	20	12	40	ND		ug/Kg	413851	7781
gamma-BHC	SW8081A	2/6/13	02/06/13	20	12	40	ND		ug/Kg	413851	7781
beta-BHC	SW8081A	2/6/13	02/06/13	20	11	40	ND		ug/Kg	413851	7781
delta-BHC	SW8081A	2/6/13	02/06/13	20	8.1	40	ND		ug/Kg	413851	7781
Heptachlor	SW8081A	2/6/13	02/06/13	20	16	40	ND		ug/Kg	413851	7781
Aldrin	SW8081A	2/6/13	02/06/13	20	16	40	ND		ug/Kg	413851	7781
Heptachlor epoxide	SW8081A	2/6/13	02/06/13	20	7.2	40	ND		ug/Kg	413851	7781
gamma-Chlordane	SW8081A	2/6/13	02/06/13	20	16	40	ND		ug/Kg	413851	7781
alpha-Chlordane	SW8081A	2/6/13	02/06/13	20	19	40	ND		ug/Kg	413851	7781
Endosulfan I	SW8081A	2/6/13	02/06/13	20	13	40	ND		ug/Kg	413851	7781
4,4'-DDE	SW8081A	2/6/13	02/06/13	20	10	40	200		ug/Kg	413851	7781
Dieldrin	SW8081A	2/6/13	02/06/13	20	12	40	24	J	ug/Kg	413851	7781
Endrin	SW8081A	2/6/13	02/06/13	20	17	40	ND		ug/Kg	413851	7781
4,4'-DDD	SW8081A	2/6/13	02/06/13	20	15	40	ND		ug/Kg	413851	7781
Endosulfan II	SW8081A	2/6/13	02/06/13	20	16	40	ND		ug/Kg	413851	7781
4,4'-DDT	SW8081A	2/6/13	02/06/13	20	13	40	98		ug/Kg	413851	7781
Endrin aldehyde	SW8081A	2/6/13	02/06/13	20	9.2	40	ND		ug/Kg	413851	7781
Endosulfan sulfate	SW8081A	2/6/13	02/06/13	20	12	40	ND		ug/Kg	413851	7781
Methoxychlor	SW8081A	2/6/13	02/06/13	20	12	100	ND		ug/Kg	413851	7781
Endrin Ketone	SW8081A	2/6/13	02/06/13	20	12	40	ND		ug/Kg	413851	7781
Chlordane	SW8081A	2/6/13	02/06/13	20	210	400	ND		ug/Kg	413851	7781
Toxaphene	SW8081A	2/6/13	02/06/13	20	160	2000	ND		ug/Kg	413851	7781
TCMX (S)	SW8081A	2/6/13	02/06/13	20	52.5	139	0.000	D	%	413851	7781
DCBP (S)	SW8081A	2/6/13	02/06/13	20	50.2	139	0.000	D	%	413851	7781
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	is/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Date Received: 02/04/13 Date Reported: 02/12/13					
Client Sample ID:	MS-1				Lab Sa	mple ID:	13020	22-001A					
Project Name/Location:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil						
Project Number:													
Date/Time Sampled:	01/31/13 / 10:0	8											
Tag Number:	Riggin + Akers	- Visalia											
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782		
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782		
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782		
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	ND		ug/Kg	413837	7782		
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782		
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782		
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782		
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782		
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782		
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	42		ug/Kg	413837	7782		
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782		
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	8.4		ug/Kg	413837	7782		
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	ND		ug/Kg	413837	7782		
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782		
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782		
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782		
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782		
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782		
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	60.9		%	413837	7782		
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
TPH(Gasoline)	8260TPH	NA	02/07/13	1	30	100	ND		ug/Kg	413880	NA		
(S) 4-Bromofluorobenzene	8260TPH	NA	02/07/13	1	43.9	127	29.6	S	%	413880	NA		
NOTE: S - Surrogate recovery	out of limits. Duplicat	e analysis	yielded simi	lar res	ults indica	ting a matr	rix effect.						
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch		
TPH as Diesel (SG)	SW8015B(M)	2/5/13	02/06/13	10	8.7	20	45	x	mg/Kg	413830	7774		
TPH as Motor Oil (SG)	SW8015B(M)	2/5/13	02/06/13	10	13	100	940		mg/Kg	413830	7774		
Pentacosane (S)	SW8015B(M)	2/5/13	02/06/13	10	49.9	144	179	S	%	413830	7774		

NOTE: x- Diesel result due to over-lapping of oil range organics within diesel quantified range; surrogate recovery outside the laboratory control limit due to matrix interference

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID: Proiect Name/Location:	MS-1 @2 1/2-3 Riggins + Akers	s - Visalia			Lab Sar Sample	nple ID: Matrix:	130202 Soil	22-002A			
Project Number:	35										
Date/Time Sampled:	01/31/13 / 10:3	6									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Antimony	SW6010B	2/6/13	02/07/13	1	0.20	5.0	ND		mg/Kg	413859	7788
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	ND		mg/Kg	413859	7788
Barium	SW6010B	2/6/13	02/07/13	1	0.07	5.0	130		mg/Kg	413859	7788
Beryllium	SW6010B	2/6/13	02/07/13	1	0.0800	2.0	ND		mg/Kg	413859	7788
Cadmium	SW6010B	2/6/13	02/07/13	1	0.0550	1.0	ND		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	16		mg/Kg	413859	7788
Cobalt	SW6010B	2/6/13	02/07/13	1	0.055	5.0	8.5		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	11		mg/Kg	413859	7788
Lead	SW6010B	2/6/13	02/07/13	1	0.14	1.0	4.7		mg/Kg	413859	7788
Molybdenum	SW6010B	2/6/13	02/07/13	1	0.120	5.0	ND		mg/Kg	413859	7788
Nickel	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	8.3		mg/Kg	413859	7788
Selenium	SW6010B	2/6/13	02/07/13	1	0.42	5.0	ND		mg/Kg	413859	7788
Silver	SW6010B	2/6/13	02/07/13	1	0.37	1.0	ND		mg/Kg	413859	7788
Thallium	SW6010B	2/6/13	02/07/13	1	0.49	5.0	ND		mg/Kg	413859	7788
Vanadium	SW6010B	2/6/13	02/07/13	1	0.18	5.0	45		mg/Kg	413859	7788
Zinc	SW6010B	2/6/13	02/07/13	1	0.25	5.0	38		mg/Kg	413859	7788
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Mercury	SW7471A	2/6/13	02/07/13	1	0.2	0.50	ND	•	mg/Kg	413853	7789

Report prepared for:	Tom McCloskeyDate Received: 02/04/13McCloskey ConsultantsDate Reported: 02/12/13										4/13 2/13
Client Sample ID:	MS-1 @2 1/2-3				Lab Sar	nple ID:	13020	22-002A			
Project Name/Location:	Riggins + Akers	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 10:30	6									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	ND		ug/Kg	413837	7782
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	ND		ug/Kg	413837	7782
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	ND		ug/Kg	413837	7782
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	ND		ug/Kg	413837	7782
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	112		%	413837	7782
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	02/07/13	1	30	100	100	x	ug/Ka	413880	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	02/07/13	1	43.9	127	81.6		%	413880	NA

Paramet	ers:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as D	Diesel (SG)	SW8015B(M)	2/5/13	02/06/13	1	0.87	2.0	3.5	х	mg/Kg	413830	7774
TPH as M	lotor Oil (SG)	SW8015B(M)	2/5/13	02/06/13	1	1.3	10	ND		mg/Kg	413830	7774
Pentacos	ane (S)	SW8015B(M)	2/5/13	02/06/13	1	49.9	144	87.4		%	413830	7774
NOTE:	x- Chromatographic pattern as diesel.	does not resemb	le typical c	liesel refere	nce sta	andard; un	ıknown org	anics within die	esel range	lighter th	an diesel qua	antified

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID: Project Name/Location: Project Number:	MS-2 Riggins + Aker	s - Visalia			Lab Sar Sample	nple ID: Matrix:	13020: Soil	22-003A			
Date/Time Sampled:	01/31/13 / 10:1	1									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Antimony	SW6010B	2/6/13	02/07/13	1	0.20	5.0	ND		mg/Kg	413859	7788
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	ND		mg/Kg	413859	7788
Barium	SW6010B	2/6/13	02/07/13	1	0.07	5.0	58		mg/Kg	413859	7788
Beryllium	SW6010B	2/6/13	02/07/13	1	0.0800	2.0	ND		mg/Kg	413859	7788
Cadmium	SW6010B	2/6/13	02/07/13	1	0.0550	1.0	ND		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	11		mg/Kg	413859	7788
Cobalt	SW6010B	2/6/13	02/07/13	1	0.055	5.0	5.4		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	8.8		mg/Kg	413859	7788
Lead	SW6010B	2/6/13	02/07/13	1	0.14	1.0	5.6		mg/Kg	413859	7788
Molybdenum	SW6010B	2/6/13	02/07/13	1	0.120	5.0	ND		mg/Kg	413859	7788
Nickel	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	6.0		mg/Kg	413859	7788
Selenium	SW6010B	2/6/13	02/07/13	1	0.42	5.0	ND		mg/Kg	413859	7788
Silver	SW6010B	2/6/13	02/07/13	1	0.37	1.0	ND		mg/Kg	413859	7788
Thallium	SW6010B	2/6/13	02/07/13	1	0.49	5.0	ND		mg/Kg	413859	7788
Vanadium	SW6010B	2/6/13	02/07/13	1	0.18	5.0	31		mg/Kg	413859	7788
Zinc	SW6010B	2/6/13	02/07/13	1	0.25	5.0	34		mg/Kg	413859	7788
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Mercury	SW7471A	2/6/13	02/07/13	1	0.2	0.50	ND	•	mg/Kg	413853	7789

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-2				Lab Sar	nple ID:	13020	22-003A			
Project Name/Location:	Riggins + Akers	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 10:1	1									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	ND		ug/Kg	413837	7782
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	ND		ug/Kg	413837	7782
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	ND		ug/Kg	413837	7782
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	ND		ug/Kg	413837	7782
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	112		%	413837	7782
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	02/07/13	1	30	100	ND		ug/Kg	413880	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	02/07/13	1	43.9	127	74.5		%	413880	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	2/5/13	02/06/13	1	0.87	2.0	16	х	mg/Kg	413830	7774
TPH as Motor Oil (SG)	SW8015B(M)	2/5/13	02/06/13	1	1.3	10	100		mg/Kg	413830	7774
Pentacosane (S)	SW8015B(M)	2/5/13	02/06/13	1	49.9	144	106		%	413830	7774
NOTE: x- Chromatographic p as diesel.	attern does not resemb	ole typical o	liesel refere	nce st	andard; ur	ıknown org	anics within di	esel range	lighter th	nan diesel qu	antified

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-2 @2 1/2-3	; ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Lab Sar	nple ID:	13020	22-004A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 10:5	8									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Antimony	SW6010B	2/6/13	02/07/13	1	0.20	5.0	ND		mg/Kg	413859	7788
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	ND		mg/Kg	413859	7788
Barium	SW6010B	2/6/13	02/07/13	1	0.07	5.0	130		mg/Kg	413859	7788
Beryllium	SW6010B	2/6/13	02/07/13	1	0.0800	2.0	ND		mg/Kg	413859	7788
Cadmium	SW6010B	2/6/13	02/07/13	1	0.0550	1.0	ND		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	17		mg/Kg	413859	7788
Cobalt	SW6010B	2/6/13	02/07/13	1	0.055	5.0	9.1		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	12		mg/Kg	413859	7788
Lead	SW6010B	2/6/13	02/07/13	1	0.14	1.0	5.0		mg/Kg	413859	7788
Molybdenum	SW6010B	2/6/13	02/07/13	1	0.120	5.0	ND		mg/Kg	413859	7788
Nickel	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	9.1		mg/Kg	413859	7788
Selenium	SW6010B	2/6/13	02/07/13	1	0.42	5.0	ND		mg/Kg	413859	7788
Silver	SW6010B	2/6/13	02/07/13	1	0.37	1.0	ND		mg/Kg	413859	7788
Thallium	SW6010B	2/6/13	02/07/13	1	0.49	5.0	ND		mg/Kg	413859	7788
Vanadium	SW6010B	2/6/13	02/07/13	1	0.18	5.0	44		mg/Kg	413859	7788
Zinc	SW6010B	2/6/13	02/07/13	1	0.25	5.0	40		mg/Kg	413859	7788
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Mercury	SW7471A	2/6/13	02/07/13	1	0.2	0.50	ND	-	mg/Kg	413853	7789

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-2 @2 1/2-3				Lab Sar	nple ID:	13020	22-004A			
Project Name/Location:	Riggins + Akers	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 10:5	8									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	ND		ug/Kg	413837	7782
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	ND		ug/Kg	413837	7782
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	ND		ug/Kg	413837	7782
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	ND		ug/Kg	413837	7782
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	108		%	413837	7782
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	02/07/13	1	30	100	ND		ug/Kg	413880	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	02/07/13	1	43.9	127	63.5		%	413880	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	2/5/13	02/06/13	1	0.87	2.0	4.8	x	mg/Kg	413830	7774
TPH as Motor Oil (SG)	SW8015B(M)	2/5/13	02/06/13	1	1.3	10	ND		mg/Kg	413830	7774
Pentacosane (S)	SW8015B(M)	2/5/13	02/06/13	1	49.9	144	90.1		%	413830	7774
NOTE: x- Chromatographic p as diesel.	battern does not resemb	le typical o	liesel refere	ence st	andard; ur	ıknown org	ganics within di	esel range	lighter tl	nan diesel qu	antified

Report prepared for:	Tom McCloskey McCloskey Consult	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID: Project Name/Location: Project Number:	MS-3 Riggins + Aker	s - Visalia			Lab Sar Sample	nple ID: Matrix:	13020: Soil	22-005A			
Date/Time Sampled:	01/31/13 / 11:0	4									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Antimony	SW6010B	2/6/13	02/07/13	1	0.20	5.0	ND		mg/Kg	413859	7788
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	ND		mg/Kg	413859	7788
Barium	SW6010B	2/6/13	02/07/13	1	0.07	5.0	56		mg/Kg	413859	7788
Beryllium	SW6010B	2/6/13	02/07/13	1	0.0800	2.0	ND		mg/Kg	413859	7788
Cadmium	SW6010B	2/6/13	02/07/13	1	0.0550	1.0	ND		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	6.8		mg/Kg	413859	7788
Cobalt	SW6010B	2/6/13	02/07/13	1	0.055	5.0	ND		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	17		mg/Kg	413859	7788
Lead	SW6010B	2/6/13	02/07/13	1	0.14	1.0	20		mg/Kg	413859	7788
Molybdenum	SW6010B	2/6/13	02/07/13	1	0.120	5.0	ND		mg/Kg	413859	7788
Nickel	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	ND		mg/Kg	413859	7788
Selenium	SW6010B	2/6/13	02/07/13	1	0.42	5.0	ND		mg/Kg	413859	7788
Silver	SW6010B	2/6/13	02/07/13	1	0.37	1.0	ND		mg/Kg	413859	7788
Thallium	SW6010B	2/6/13	02/07/13	1	0.49	5.0	ND		mg/Kg	413859	7788
Vanadium	SW6010B	2/6/13	02/07/13	1	0.18	5.0	17		mg/Kg	413859	7788
Zinc	SW6010B	2/6/13	02/07/13	1	0.25	5.0	49		mg/Kg	413859	7788
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Mercury	SW7471A	2/6/13	02/07/13	1	0.2	0.50	ND	•	mg/Kg	413853	7789

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-3				Lab Sar	nple ID:	13020	22-005A			
Project Name/Location:	Riggins + Akers	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 11:0	4									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	ND		ug/Kg	413837	7782
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	11		ug/Kg	413837	7782
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	1.5		ug/Kg	413837	7782
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	2.2		ug/Kg	413837	7782
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	122		%	413837	7782
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	02/11/13	1	30	100	ND	•	ug/Kg	413892	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	02/11/13	1	43.9	127	62.5		%	413892	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	2/5/13	02/06/13	1	0.87	2.0	7.6	-	mg/Kg	413830	7774
TPH as Motor Oil (SG)	SW8015B(M)	2/5/13	02/06/13	1	1.3	10	ND		mg/Kg	413830	7774
Pentacosane (S)	SW8015B(M)	2/5/13	02/06/13	1	49.9	144	73.2		%	413830	7774
NOTE: x- Chromatographic p as diesel.	battern does not resemb	ole typical o	liesel refere	nce st	andard; ur	ıknown org	anics within di	esel range	lighter th	nan diesel qu	antified

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-3 @2 1/2-3	5			Lab Sar	nple ID:	130202	22-006A			
Project Name/Location: Project Number:	Riggins + Akers	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 11:2	4									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Antimony	SW6010B	2/6/13	02/07/13	1	0.20	5.0	ND		mg/Kg	413859	7788
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	ND		mg/Kg	413859	7788
Barium	SW6010B	2/6/13	02/07/13	1	0.07	5.0	160		mg/Kg	413859	7788
Beryllium	SW6010B	2/6/13	02/07/13	1	0.0800	2.0	ND		mg/Kg	413859	7788
Cadmium	SW6010B	2/6/13	02/07/13	1	0.0550	1.0	ND		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	17		mg/Kg	413859	7788
Cobalt	SW6010B	2/6/13	02/07/13	1	0.055	5.0	9.5		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	11		mg/Kg	413859	7788
Lead	SW6010B	2/6/13	02/07/13	1	0.14	1.0	5.0		mg/Kg	413859	7788
Molybdenum	SW6010B	2/6/13	02/07/13	1	0.120	5.0	ND		mg/Kg	413859	7788
Nickel	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	9.0		mg/Kg	413859	7788
Selenium	SW6010B	2/6/13	02/07/13	1	0.42	5.0	ND		mg/Kg	413859	7788
Silver	SW6010B	2/6/13	02/07/13	1	0.37	1.0	ND		mg/Kg	413859	7788
Thallium	SW6010B	2/6/13	02/07/13	1	0.49	5.0	ND		mg/Kg	413859	7788
Vanadium	SW6010B	2/6/13	02/07/13	1	0.18	5.0	45		mg/Kg	413859	7788
Zinc	SW6010B	2/6/13	02/07/13	1	0.25	5.0	41		mg/Kg	413859	7788
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Mercury	SW7471A	2/6/13	02/07/13	1	0.2	0.50	ND	•	mg/Kg	413853	7789

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	MS-3 @2 1/2-3				Lab Sar	nple ID:	13020	22-006A			
Project Name/Location:	Riggins + Akers	s - Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 11:24	4									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	ND		ug/Kg	413837	7782
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	ND		ug/Kg	413837	7782
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	ND		ug/Kg	413837	7782
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	ND		ug/Kg	413837	7782
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	107		%	413837	7782
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH(Gasoline)	8260TPH	NA	02/07/13	1	30	100	ND	-	ug/Kg	413880	NA
(S) 4-Bromofluorobenzene	8260TPH	NA	02/07/13	1	43.9	127	69.4		%	413880	NA
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
TPH as Diesel (SG)	SW8015B(M)	2/5/13	02/06/13	5	4.4	9.9	12	x	mg/Kg	413830	7774
TPH as Motor Oil (SG)	SW8015B(M)	2/5/13	02/06/13	5	6.7	51	390		mg/Kg	413830	7774
Pentacosane (S)	SW8015B(M)	2/5/13	02/06/13	5	49.9	144	115		%	413830	7774
NOTE: x- Diesel result due to	o over-lapping of oil rang	ge organic	s within dies	sel qua	intified ran	ge.					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 2/13
Client Sample ID:	BA-1				Lab Sar	nple ID:	13020	22-007A			
Project Name/Location: Project Number:	Riggins + Aker	s - Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	02/01/13 / 11:0)1									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Naphthalene	SW8310	2/6/13	02/07/13	1	4.67	40	ND		ug/Kg	413837	7782
Acenapthylene	SW8310	2/6/13	02/07/13	1	8.69	40	ND		ug/Kg	413837	7782
1-Methylnapthalene	SW8310	2/6/13	02/07/13	1	4.51	40	ND		ug/Kg	413837	7782
2-Methylnapthalene	SW8310	2/6/13	02/07/13	1	7.08	40	61		ug/Kg	413837	7782
Acenaphthene	SW8310	2/6/13	02/07/13	1	4.37	40	ND		ug/Kg	413837	7782
Fluorene	SW8310	2/6/13	02/07/13	1	9.20	40	ND		ug/Kg	413837	7782
Phenanthrene	SW8310	2/6/13	02/07/13	1	0.2690	40	ND		ug/Kg	413837	7782
Anthracene	SW8310	2/6/13	02/07/13	1	0.154	5.0	ND		ug/Kg	413837	7782
Fluoranthene	SW8310	2/6/13	02/07/13	1	0.800	2.0	ND		ug/Kg	413837	7782
Pyrene	SW8310	2/6/13	02/07/13	1	1.88	5.0	ND		ug/Kg	413837	7782
Benzo(a)anthracene	SW8310	2/6/13	02/07/13	1	0.199	2.0	ND		ug/Kg	413837	7782
Chrysene	SW8310	2/6/13	02/07/13	1	0.248	1.0	ND		ug/Kg	413837	7782
Benzo(b)fluoranthene	SW8310	2/6/13	02/07/13	1	0.135	1.0	ND		ug/Kg	413837	7782
Benzo(k)fluoranthene	SW8310	2/6/13	02/07/13	1	0.125	1.0	ND		ug/Kg	413837	7782
Benzo(a)pyrene	SW8310	2/6/13	02/07/13	1	0.235	1.0	ND		ug/Kg	413837	7782
Dibenzo(a,h)anthracene	SW8310	2/6/13	02/07/13	1	1.03	20	ND		ug/Kg	413837	7782
Benzo(ghi)perylene	SW8310	2/6/13	02/07/13	1	1.66	20	ND		ug/Kg	413837	7782
Indeno(1,2,3-cd)pyrene	SW8310	2/6/13	02/07/13	1	1.41	20	ND		ug/Kg	413837	7782
Decafluorobiphenyl (S)	SW8310	2/6/13	02/07/13	1	60	140	116		%	413837	7782

Work Order:	1302022	Prep I	Method:	NA	Prep Date:		NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	8260TPH	Anal	yzed Date:	02/07/13	Analytical	413880
Units:	ug/Kg	Metho	od:		Lab			Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	benzene	30	100	58 74.5					
Work Order:	1302022	Prep I	Method:	NA	Prep	Date:	NA	Prep Batch:	NA
Matrix:	Soil	Analy	tical	8260TPH	Analyzed Date:		02/11/13	Analytical	413892
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH(Gasoline) (S) 4-Bromofluoro	benzene	30	100	64 74.7					
Work Order:	1302022	Prep I	Method:	3545_TPHSG	Prep	Date:	02/05/13	Prep Batch:	7774
Matrix:	Soil	Analy	tical	SW8015B(M)	Anal	yzed Date:	02/05/13	Analytical	413829
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
TPH as Diesel (SC	G)	0.87	2.0	1.6		•			
TPH as Motor Oil Pentacosane (S)	(SG)	1.3	10	3.8 95.0					

Work Order:	1302022	Prep	Method:	3545_OCP	Prep Date:		02/06/13	Prep Batch:	7781
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/06/13	Analytical	413851
Units:	ug/Kg	Metho	od:		Lab			Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide	9	0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				65.3					
DCBP (S)				71.1					

Work Order: 3545_PAH 02/06/13 7782 1302022 Prep Method: Prep Date: Prep Batch: Matrix: Soil Analytical SW8310 02/07/13 413837 Analyzed Date: Analytical Method: Batch: Units: ug/Kg Method Lab MDL PQL Parameters Blank Qualifier Conc. Naphthalene 4.67 40 ND Acenapthylene 8.69 200 ND ND 1-Methylnapthalene 4.51 40 2-Methylnapthalene 7.08 40 ND ND Acenaphthene 4.37 40 Fluorene 9.20 40 ND Phenanthrene 0.2690 40 ND Anthracene 0.154 5.0 ND Fluoranthene 0.800 2.0 ND 1.88 5.0 ND Pyrene Benzo(a)anthracene 2.0 ND 0.199 Chrysene 0.248 1.0 ND ND Benzo(b)fluoranthene 0.135 1.0 ND Benzo(k)fluoranthene 0.125 1.0 Benzo(a)pyrene 0.235 1.0 ND Dibenzo(a,h)anthracene 1.03 20 ND ND Benzo(ghi)perylene 1.66 20 Indeno(1,2,3-cd)pyrene 1.41 20 ND Decafluorobiphenyl (S) 119

Work Order:	1302022	Prep Method: Analytical Method:		3050	Prep Date: Analyzed Date:		02/06/13	Prep Batch:	7788 413859	
Matrix:	Soil			SW6010B			02/07/13	Analytical		
Units:	mg/Kg							Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier					
Antimony		0.20	5.0	ND						
Arsenic		0.25	1.7	ND						
Barium		0.07	5.0	0.51						
Beryllium		0.0800	2.0	ND						
Cadmium		0.055	1.0	ND						
Chromium		0.050	5.0	0.12						
Cobalt		0.055	5.0	ND						
Copper		0.65	5.0	ND						
Lead		0.14	1.0	0.23						
Molybdenum		0.12	5.0	ND						
Nickel		0.050	5.0	0.080						
Selenium		0.42	5.0	ND						
Silver		0.37	1.0	ND						
Thallium		0.49	5.0	ND						
Vanadium		0.18	5.0	ND						
Zinc		0.25	5.0	0.31						
Work Order:	1302022	Prep	Prep Method: 7		Prep Date:		02/06/13	Prep Batch:	7789	
Matrix:	Soil	Analy	tical	SW7471A Analyzed Date: 02/07/13 Analytical 4138		413853				
Units:	mg/Kg	Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier					
Mercury		0.2	0.50	ND	•					

LCS/LCSD Summary Report

				200/		ammary	nopon	Raw valu	es are used in	quality contro	ol assessment
Work Order:	1302022		Prep Meth	Prep Method: NA Analytical 8260TPH		Prep Date: Analyzed Date:		NA 02/07/13	Prep Batch: NA Analytical 413880		
Matrix:	Soil		Analytical								
Units:	ug/Kg	ıg/Kg							Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)	1	30	100	58	1000	95.3	123	25.1	64.0 - 133.2	30	
(S) 4-Bromofluor	robenzene			74.5	50	84.8	88.7		43.9 - 127		
Work Order:	1302022		Prep Meth	Prep Method: NA			te:	NA	Prep Batch: NA		
Matrix:	Soil		Analytical	8260TPH		Analyzed Date:		02/11/13	Analytical 413892 Batch:		
Units:	ug/Kg		Method:								
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		30	100	64	1000	80.6	92.4	13.6	64.0 - 133.2	30	
(S) 4-Bromofluorobenzene			74.7	50	105	94.6		43.9 - 127			
Work Order:	1302022		Prep Meth	Prep Method: 3545_TPHSG		Prep Date: 02		02/05/13	Prep Batch: 7774		
Matrix:	Soil		Analytical	SW8015B(M)		Analyzed Date:		02/05/13	Analytical 413829 Batch:		
Units:	mg/Kg		Method:								
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel (S	SG)	0.87	2.0	1.6	33.33	64.3	74.1	14.2	50.8 - 111	30	•
Pentacosane (S))			3.8	100	87.3	103		49.9 - 144		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Work Order:	1302022		Prep Meth	od: 3545	_OCP	Prep Da	te:	02/06/13	Prep Batch: 7781		I
Matrix:	Soil		Analytical	SW8	081A	Analyze	d Date:	02/06/13	Analytic	al 4138	351
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	66.0	62.4	5.69	56.9 - 120	30	
Heptachlor		0.79	2.0	ND	20	71.2	67.2	5.81	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	63.5	61.7	2.92	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	60.9	59.1	3.09	44 - 130	30	
Endrin		0.86	2.0	ND	20	71.6	66.9	6.87	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	79.2	77.0	2.79	52.8 - 134	30	
TCMX (S)				ND	350	56.1	53.7		52.5 - 139		
DCBP (S)				ND	350	56.0	53.2		50.2 - 139		
Work Order:	1302022		Prep Meth	od: 3545	_PAH	Prep Da	te:	02/06/13	Prep Bat	ch: 7782	2
Matrix:	Soil		Analytical	SW8	310	Analyze	d Date:	02/07/13	Analytic	al 4138	337
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Acenaphthene		4.37	40	ND	200	83.8	96.0	12	60 - 140	30	
Pyrene		1.88	5.0	ND	20	83.4	96.9	13	60 - 140	30	
Decafluorobiphen	yl (S)			119	2000	120	124		60 - 140		

LCS/LCSD Summary Report

LCS/LCSD Summary Report

Work Order:	1302022		Prep Metho	od: 3050	d: 3050 Prep Date: 02		e:	02/06/13	Prep Bat	t ch: 7788	3
Matrix:	Soil		Analytical	SW60	010B	Analyze	d Date:	02/07/13	Analytic	al 4138	359
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Antimony		0.20	5.0	ND	50	99.4	99.7	0.291	30.7 - 130	30	
Arsenic		0.25	1.7	ND	50	94.7	95.6	0.988	71 - 121	30	
Barium		0.07	5.0	0.51	50	104	104	0.000	70.2 - 130	30	
Beryllium		0.0800	2.0	ND	50	103	105	1.54	73.3 - 115	30	
Cadmium		0.055	1.0	ND	50	99.2	98.9	0.353	68.7 - 110	30	
Chromium		0.050	5.0	0.12	50	103	103	0.0971	76 - 116	30	
Cobalt		0.055	5.0	ND	50	100	101	0.797	57.4 - 122	30	
Copper		0.65	5.0	ND	50	104	103	0.579	74.8 - 119	30	
Lead		0.14	1.0	0.23	50	95.7	96.6	0.905	67.9 - 118	30	
Molybdenum		0.12	5.0	ND	50	99.7	99.8	0.120	62.9 - 123	30	
Nickel		0.050	5.0	0.080	50	99.6	101	1.10	61.5 - 122	30	
Selenium		0.42	5.0	ND	50	92.2	92.0	0.217	62 - 111	30	
Silver		0.37	1.0	ND	50	99.0	99.3	0.333	81.1 - 109	30	
Thallium		0.49	5.0	ND	50	95.8	95.6	0.199	39.2 - 125	30	
Vanadium		0.18	5.0	ND	50	104	104	0.000	65.8 - 122	30	
Zinc		0.25	5.0	0.31	50	97.1	98.3	1.25	59.9 - 122	30	
Work Order:	1302022		Prep Metho	od: 7471		Prep Dat	e:	02/06/13	Prep Bat	tch: 7789	9
Matrix:	Soil		Analytical	SW74	471A	Analyze	d Date:	02/07/13	Analytic	al 4138	353
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Mercury	·	0.2	0.50	ND	1.25	89.7	97.5	8.34	80.5 - 133	30	

MS/MSD Summary Report

Work Order:	1302022		Prep Method	I: 3545_T	PHSG	Prep Date:	02/05	5/13	Prep Batch:	7774	
Matrix:	Soil		Analytical	SW801	5B(M)	Analyzed D	ate: 02/00	6/13	Analytical	413830	
Spiked Sample:	1302022-001A		Method:						Batch:		
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH as Diesel (SG)		8.7	20	137.301	33.33	5.19	1.73	20.6	50.8 - 111	30	S
Pentacosane (S)					100	238	223		49.9 - 144		S
Work Order:	1302022		Prep Method	I: 3545_P	PAH	Prep Date:	02/06	6/13	Prep Batch:	7782	
Matrix:	Soil		Analytical	SW831	0	Analyzed D	ate: 02/0	7/13	Analytical	413837	
Spiked Sample:	1302022-005A		Method:						Batch:		
Units:	ug/Kg										
Parameters		MDI	DOL	Comula	Smiles				0/		
		MDL	PQL	Conc.	Conc.	Recovery	Recovery	% RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Acenaphthene		MDL 4.4	40	Conc.	Conc.	70.9	Recovery 67.6	% RPD 3.56	% Recovery Limits 60 - 140	% RPD Limits 30	Lab Qualifier
Acenaphthene Pyrene		4.4 1.9	40 5.0	0.00 011	200 20	70.9 89.9	67.6 73.5	3.56 12.1	% Recovery Limits 60 - 140 60 - 140	% RPD Limits 30 30	Lab Qualifier
Acenaphthene Pyrene Decafluorobiphenyl (S)	4.4 1.9	40 5.0	0.00 0.11	200 200 2000	70.9 89.9 117	67.6 73.5 101	3.56 12.1	% Recovery Limits 60 - 140 60 - 140 60 - 140	30 30	Lab Qualifier
Acenaphthene Pyrene Decafluorobiphenyl (S) 1302022	4.4 1.9	40 5.0 Prep Method	0.00 11 1: 7471	200 200 200 2000	Recovery 70.9 89.9 117 Prep Date:	67.6 73.5 101 02/06	3.56 12.1	% Recovery Limits 60 - 140 60 - 140 60 - 140 60 - 140 Prep Batch:	% RPD Limits 30 30 : 7789	Lab Qualifier
Acenaphthene Pyrene Decafluorobiphenyl (Work Order: Matrix:	S) 1302022 Soil	4.4 1.9	40 5.0 Prep Method Analytical	0.00 11 1: 7471 SW747	200 200 2000	70.9 89.9 117 Prep Date: Analyzed D	67.6 73.5 101 02/06 ate: 02/07	3.56 12.1	% Recovery Limits 60 - 140 60 - 140 60 - 140 Prep Batch: Analytical	% RPD Limits 30 30 : 7789 413853	Lab Qualifier
Acenaphthene Pyrene Decafluorobiphenyl (Work Order: Matrix: Spiked Sample:	S) 1302022 Soil 1302022-001A	4.4 1.9	40 5.0 Prep Method Analytical Method:	0.00 11 i: 7471 SW747	200 20 2000 2000	70.9 89.9 117 Prep Date: Analyzed D	67.6 73.5 101 02/06 ate: 02/07	3.56 12.1 5/13 7/13	% Recovery Limits 60 - 140 60 - 140 60 - 140 Prep Batch: Analytical Batch:	% RPD Limits 30 30 : 7789 413853	Lab Qualifier
Acenaphthene Pyrene Decafluorobiphenyl (Work Order: Matrix: Spiked Sample: Units:	S) 1302022 Soil 1302022-001A mg/Kg	4.4 1.9	40 5.0 Prep Method Analytical Method:	0.00 11 1: 7471 SW747	200 20 2000 2000	70.9 89.9 117 Prep Date: Analyzed D	67.6 73.5 101 02/06 Pate: 02/07	3.56 12.1 5/13 7/13	% Recovery Limits 60 - 140 60 - 140 60 - 140 Prep Batch: Analytical Batch:	% RPD Limits 30 30 : 7789 413853	Lab Qualifier
Acenaphthene Pyrene Decafluorobiphenyl (Work Order: Matrix: Spiked Sample: Units: Parameters	S) 1302022 Soil 1302022-001A mg/Kg	4.4 1.9 MDL	40 5.0 Prep Method Analytical Method:	0.00 11 1: 7471 SW747 Sample Conc.	200 20 2000 1A Spike Conc.	MS % Recovery 70.9 89.9 117 Prep Date: Analyzed D MS % Recovery	MSD % Recovery 67.6 73.5 101 02/06 ate: 02/07	MS/MSD % RPD 3.56 12.1 5/13 7/13 MS/MSD % RPD	% Recovery Limits 60 - 140 60 - 140 60 - 140 Prep Batch: Analytical Batch: % Recovery Limits	% RPD Limits 30 30 : 7789 413853 % RPD Limits	Lab Qualifier Lab Qualifier

MS/MSD Summary Report

Work Order:	1302022		Prep Method	1 : 3050		Prep Date:	02/06	6/13	Prep Batch:	7788	
Matrix:	Soil		Analytical	SW601	10B	Analyzed D	ate: 02/0	7/13	Analytical	413859	
Spiked Sample:	1302022-001A	4	Method:						Batch:		
Units:	mg/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Antimony		0.20	5.0	0.028	50	87.6	87.1	3.74	30.7 - 130	30	
Arsenic		0.25	1.7	0.00	50	71.8	70.2	2.30	71 - 121	30	S
Barium		0.07	5.0	2.5	50	91.1	90.8	0.0587	70.2 - 130	30	
Beryllium		0.0800	2.0	0.00	50	90.4	87.4	2.91	73.3 - 115	30	
Cadmium		0.055	1.0	0.00	50	92.6	90.7	2.08	68.7 - 110	30	
Chromium		0.050	5.0	0.25	50	96.0	87.4	7.37	76 - 116	30	
Cobalt		0.055	5.0	0.13	50	86.0	84.6	1.48	57.4 - 122	30	
Copper		0.65	5.0	0.87	50	113	97.4	8.12	74.8 - 119	30	
Lead		0.14	1.0	2.7	50	109	84.6	6.65	67.9 - 118	30	
Molybdenum		0.12	5.0	0.00	50	91.0	86.9	4.67	62.9 - 123	30	
Nickel		0.050	5.0	0.15	50	90.7	83.6	7.26	61.5 - 122	30	
Selenium		0.42	5.0	0.00	50	85.9	85.5	0.478	62 - 111	30	
Silver		0.37	1.0	0.00	50	89.5	86.4	3.51	81.1 - 109	30	
Thallium		0.49	5.0	0.00	50	77.3	75.5	2.38	39.2 - 125	30	
Vanadium		0.18	5.0	0.62	50	97.7	94.0	2.53	65.8 - 122	30	
Zinc		0.25	5.0	2.3	50	110	91.8	5.50	59.9 - 122	30	
Work Order:	1302022		Prep Method	I: NA		Prep Date:	NA		Prep Batch:	NA	
Matrix:	Soil		Analytical	8260TI	PH	Analyzed D	ate: 02/0	7/13	Analytical	413880	
Spiked Sample:	1302022-004A	4	Method:						Batch:		
Units:	ug/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
TPH(Gasoline)		30	100	0	1000	88.9	99.0	10.7	48.2 - 132	30	
(S) 4-Bromofluorob	enzene				50	74.8	79.8		43.9 - 127		

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: Riggins + Akers - Visalia	Received By: <u>kb</u>
Work Order No.: <u>1302022</u>	Physically Logged By: ng
	Checklist Completed By: ng
	Carrier Name: First Courier
Chain of Custody	(COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Recei	pt Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and	Hold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302022

WO Sample ID <u>Client</u> **Collection** <u>Matrix</u> Scheduled Sample Test **Requested** Subbed Sample ID Date/Time Disposal On Hold On Hold Tests 1302022-001A MS-1 01/31/13 10:08 Soil 08/03/13 S_6010BCAM17 S_7471BHG S_GCMS-GRO S_TPHDOSG S 8310 S_8081AOCP 1302022-002A MS-1 @2 1/2-3 01/31/13 10:36 Soil 08/03/13 S_6010BCAM17 S_7471BHG S_TPHDOSG S_8310 S_GCMS-GRO 01/31/13 10:11 1302022-003A MS-2 Soil 08/03/13 S_6010BCAM17 S_8310 S_TPHDOSG S_GCMS-GRO S_7471BHG 1302022-004A MS-2 @2 1/2-3 01/31/13 10:58 Soil 08/03/13 S_6010BCAM17 S_TPHDOSG S_8310 S_GCMS-GRO S_7471BHG MS-3 1302022-005A 01/31/13 11:04 Soil 08/03/13 S_6010BCAM17 S_GCMS-GRO S_7471BHG S_TPHDOSG S_8310 MS-3 @2 1/2-3 01/31/13 11:24 1302022-006A Soil 08/03/13 S_6010BCAM17 S_7471BHG S_GCMS-GRO S_8310 S_TPHDOSG

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggins + Akers	- Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29
Comments:	5day TAT. Send	I report to Tom McCloskey and Chris Vertin.		

Work Order # : 1302022

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> <u>On Hold</u>	<u>Test</u> <u>On Hold</u>	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302022-007A	BA-1	02/01/13 11:01	Soil	08/03/13			SUB_8280 Dioxins S_8310	Yes

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

	483 Sinclair Fronta Milpitas, CA 95035 Phone: 408.263.52 FAX: 408.263.8293 www.torrentlab.com	ge Road 58	• N	C OTE: SHA	CHA	NREAS	OF ARE F	CL OR TO		ODY	Y	LAB WORK ORDER	2
Company Name: MCI - McCloskey] н 🗋	Food	Special	Locati	on of Sa	mpling: Riggin	+ Allers	- Visalig	
Address: 420 Sycamore Valley Ro	West					Purpo	se: Sri	1 Sam	pling -	- Maintenance	Shed /	Burn Ala	
city: 1)anville	State: (1	Zip	Code: 9	4526		Specia	al Instru	ctions /	Comme	^{ents:} 8310 - R	L.20-2	20,mg/kg	
Telephone: 925. 781. 244.7	FAX:									1613 RL	0.1-1.	0 ng/kg	
REPORT TO: Ton Mclosley (Unis Vertin	SAMPLER: (Wig	Vertin		,		P.O. #	t:		<u> </u>	EMA	AL:	0.0	
TURNAROUND TIME:	SAMPLE TYPE	:	REPORT	FORMAT:									
10 Work Days 4 Work Days 1 Work Day	Storm Water	Air		evel IV	ao	agel	0	4k		<i>[P</i> 13		ANALYSIS	6
7 Work Days 3 Work Days Noon - Nxt	Day Ground Water	Uther		/ EDD	(85)	- mot	831	-Me		3()		REQUESTE	:D
5 Work Days D 2 Work Days 2 - 8 Hours	Soil				s.	ie sel -	4	4 17	2	· Y		· ·	
LAB ID CANISTER I.D. CLIENT'S SAMPLE I.D	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	HAT	12/2	A	B	0	De		REMARKS	
MS-1	1-31-13 10:00	Soil	1	402.91465 Ja.7	X	X	Х	Х	Х			erifikari menghan ti radjinan ti radjinan	AB
002A MS-1 c 21/2-3	10:36		2	Soliners	Х	Х	X	X				Alfan - Tan Alfan - Tan Alfan - Sala Alfan - Sala	NTL
603A MS-2	10:11		١	ase glass Jar	X	Х	Х	X	HHKA!			in bi si sultani filis er no filis er no	ORRE
004 A MS-2 021/2-3	10:56		2	35time.3	X	X	Х	X				and filter of a state of a state of a state of a state of a state of	TC TC
005A MS-3	(11:04 1000		1	402.9945 Th	X	X	Х	X	17KI			n and survey and survey of the	and the second
006A MS-3 e 21/2-3	11:24		2	Hluers	X	Х	Х	Х				and a state	きゃう 丁
international and a second and a			•									and the second sec	1
007A BA-1	2.1.13 11:01	Sil	١	9029645 Jir			Х			Х		New 10 19 - 10 19 - 10 19 - 10 19 - 10	
													ē.
ni.													a a S
1 Dister Tent around	rletin 2/4	13	Time: /Ø:	43	Receiv	ved By:	PP)		Print: /	Monina Da Buchungi)	1te: 02/04/11	3 Time: 10`4	3
Relinquished By: Print: A B	chonge) D2	104/13	Time:	1:29	Receiv	ved By:	~	-t	Print:	V Da	\$A/F	3 Time: 27	Ĩ
Were Samples Received in Good Condition?	Yes NO S	amples on lo	xe? PY	es 🔲 NO	Metho	d of Ship	ment			, Samp	le seals inta	ct? 🗌 Yes 🔲 NO 🚺	N/A
NOTE: Samples are discarded by the labor	atory 30 days from dat	e of receipt	unless oth	er arrange	men	ts are ma	ade.		····· 1		Pag	ge(,of	
Log In By:	Date: 2/4/1	3	.og In Rev	viewed By:			1/D		Dat	e: 9 /41/2	· ·		

.....

Torrent Laboratory, Inc. Mail - RE: Dioxins by 1613 list verification needed Page 1 of 2

Torrent Laboratory, Inc. <pm@torrentlaboratory.com>

RE: Dioxins by 1613 list verification needed 1 message

Tom McCloskey <tom@mccloskeyconsultants.com> To: "Torrent Laboratory, Inc." <pm@torrentlaboratory.com>

Wed, Feb 6, 2013 at 3:56 PM

DTSC oversight, so all 17 in case we need to calculate "equivalents"

Tom McCloskey, P.G., C.E.G., C.Hg.

President and Principal Geologist

(925)786-2667

tom@mccloskeyconsultants.com

McCloskey Consultants, Inc.

420 Sycamore Valley Road West

Danville, CA 94526

From : Toment Laboratory, Inc. [mailto:pm@tomentlaboratory.com] Sent: Wednesday, February 06, 2013 1:40 PM To: tom mccloskey Subject: Dloxins by 1613 list verification needed

Tom,

Did you want all 17 Congeners or just 2,3,7,8 TCDD?

Thanks,

Janice

Best Regards,

Janice Winn-Shilling x206 and Karin Bernstein x204, x209

Torrent's Project Management Team (408) 263-5258 ext 204, 206, 209 pm@torrentlaboratory.com

483 Sinclair Frontage Rd

https://mail.google.com/mail/u/0/?ui=2&ik=e890e6e2a7&view=pt&search=i... 2/6/2013

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

February 25, 2013

FAL Project ID: 7704

Ms. Janice Winn-Shilling Torrent Laboratory, Inc. 483 Sinclair Frontage Road Milpitas, CA 95035

Dear Ms. Winn-Shilling,

Enclosed are the results for Frontier Analytical Laboratory project **7704**. This corresponds to your Lab Work Order No. **CoC130205001**. One soil sample was received on 2/6/2013 in good condition. This sample was extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The 2005 World Health Organizations toxic equivalency factors (TEFs) were used to calculate the toxic equivalents (TEQs) on your report. Torrent Laboratory, Inc. requested a turnaround time of fifteen business days for project **7704**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our project-sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The attached results are specifically for the sample referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of California NELAP certificate number is **02113CA**. This report has been emailed to you as a PDF file. A hardcopy will not be sent to you unless specifically request

If you have any questions regarding project **7704**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

onas C. Cralitree

Thomas C. Crabtree Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 7704

	Received	on: <u>02/06/2013</u>		Project Due:	<u>02/28/2013</u>	Storage:	<u>R2</u>	
FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
7704-001-SA	0	CoC130205001	1302022-007A	EPA 1613 D/F	Soil	02/01/2013	11:01 am	02/03/2014

000002 of 000008

EPA Method 1613 PCDD/F

FAL ID: 7704-001-MB Client ID: Method Blank Matrix: Soil Batch No: X2772	Date Date Amou	Extracted: 02- Received: NA int: 5.00 g	19-2013	ICal: PCD GC Colum Units: pg/g	DFAL3-12-2a ın: DB5 g	8-12 / 2 1	2 Acquired: 02-20-2013 2005 WHO TEQ: 0.00 Basis: Dry Weight			
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HxCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NE NE NE NE NE NE NE NE NE NE NE NE NE N	0 0.164 0 0.225 0 0.464 0 0.501 0 0.466 0 0.656 0 0.129 0 0.154 0 0.152 0 0.222 0 0.212 0 0.248 0 0.252 0 0.252 0 0.252 0 0.2577 0 0.894	Qual		0.0414 0.0563 0.0747 0.0810 0.0748 0.138 0.248 0.0435 0.0608 0.0660 0.0484 0.0487 0.0531 0.0607 0.0642 0.0704 0.151	Total TCDD Total PeCDD Total HxCDD Total HpCDD Total HpCDD Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND ND ND ND	0.164 0.225 0.501 0.656 0.129 0.154 0.364 0.277		
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-0CDF	94.2 84.0 96.3 97.7 92.2 79.5 95.4 83.2 82.7 84.3 84.4 85.3 84.4 80.1 107 81.2	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Quai		A Isoto sign B Ana C Che D Pres E Ana J Ana M Max ND Ana NP Not P Pre- S Sarr X Matu * Res	ppic Labeled Star al to noise ratio is lyte is present in mical Interference sence of Dipheny lyte concentration lyte concentration lyte concentration lyte concentration lyte Not Detected Provided filtered through a nple acceptance of rix interferences ult taken from dilu	dard outside > 10:1 Method Blan Ethers is above ca on secondar is below cal oncentration Whatman 0. writeria not me	e QC range l k libration ran y column libration ran 7um GF/F f et ection	but ge ge ilter	
37CI-2,3,7,8-TCDD	101	35.0 - 197								

Analyst: 2/22/2013 Date:

Ũ Reviewed By: Date: 2/25/2013

EPA Method 1613 PCDD/F

FAL ID: 7704-001-OPR Client ID: OPR Matrix: Soil Batch No: X2772	Date Extracted: 02-19-20 Date Received: NA Amount: 5.00 g	13	ICal: PCDDFAL3-12-28-12 GC Column: DB5 Units: ng/ml	Acquired: 02-20-2013 2005 WHO TEQ: NA
Compound	Conc QC Limits	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Internal Standards	% Rec QC Limits	Qual		
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		 A Isotopic Labeled signal to noise ra B Analyte is present C Chemical Interfert D Presence of Dipht E Analyte concentration J Analyte concentration J Analyte concentration Maximum possibility ND Analyte Not Detet NP Not Provided P Pre-filtered throughts S Sample acceptant X Matrix interference 	Standard outside QC range but tio is >10:1 t in Method Blank ence enyl Ethers ation is above calibration range tion on secondary column ation is below calibration range le concentration cted gh a Whatman 0.7um GF/F filter ice criteria not met res
Cleanup Surrogate	107 21 0 101		* Result taken from	a dilution or reinjection
3701-2,3,7,8-10DD	107 31.0 - 191			

Analyst: 2/22/2013 Date:

0 Reviewed By: Date: 2/25/2013

EPA Method 1613 PCDD/F

FAL ID: 7704-001-SA Client ID: 1302022-007A Matrix: Soil Batch No: X2772	Date Date Amo % Sc	Extracted: 02- Received: 02-(unt: 5.01 g blids: 96.11	19-2013 06-2013	ICal: PCDDFAL3-12-28-12 GC Column: DB5 Units: pg/g			Acquired: 02-20-2013 2005 WHO TEQ: 0.158 Basis: Dry Weight		
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	Ni Ni Ni 5.2 33.	D 0.232 D 0.473 D 0.578 D 0.606 D 0.572 3 - 0 -		0.0523	0.0414 0.0563 0.0747 0.0810 0.0748 0.138 0.248	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 2.85 10.3	0.232 0.473 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.89 N N N N 0.63 N N	77 - D 0.360 D 0.369 D 0.450 D 0.452 D 0.522 D 0.755 12 - D 0.127 D 1.61	J	0.0897	0.0435 0.0608 0.0660 0.0484 0.0487 0.0531 0.0607 0.0642 0.0704 0.151	Total TCDF Total PeCDF Total HxCDF Total HpCDF	4.01 ND ND 1.24	0.369 0.755	Ŀ
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 95.6 88.0 94.2 99.7 93.9 90.7 95.5 85.5 84.8 85.3 84.5 83.8 82.7 81.0 107 88.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isoto sign B Anal C Che D Pres E Anal J Anal M Max ND Anal NP Not P Pre- S Sarr X Matu * Resi	ppic Labeled Stan al to noise ratio is lyte is present in M mical Interference sence of Diphenyl lyte concentration lyte concentration imum possible co lyte Not Detected Provided filtered through a uple acceptance co ix interferences ult taken from dilu	dard outside >10:1 /lethod Bland Ethers is above ca on secondary is below cal ncentration Whatman 0. riteria not mo	QC range l k libration ran y column ibration ran 7um GF/F f et	but ge ïlter
37CI-2,3,7,8-TCDD	107	35.0 - 197							

Analyst: 2/22/2013 Date:

Ũ Reviewed By: Date: 2/25/2013

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293 www.torrentlab.com

CHAIN OF CUSTODY

NOTE: SHADED AREAS ARE FOR TORRENT LAB USE ONLY

LAB WORK ORDER NO

CoC130205001

Company Name:	Torrent Laboratory, Inc.			Company	lamo [,]	Eroption Ar	alutical Labor	aton	
Address:	483 Sinclair Frontage Road			Address		5172 Hillso	alytical Labor	atory	
City: Milpitas	State: CA			City: FI	Dorado Hill	s	State: C/	7	Zin Code: 95762
Telephone: 40	8.263.5258 FAX:	408.263.8293		Telephone:	916-934	-0900	FA	K: 916-9	134-0999
Contact: J	Janice Winn-Shilling			Contact Na	me: San	nple Receiv	ina		
Contact Email: p	om@torrentlaboratory			Special Ins	tructions/Co	nments:	Pls.analyze sa TAT!!!!.Thank	mple for 16 s.	313 compounds on standard
				P.O. # :			EMAIL :		
TURNAROUND T 10 Work Days 7 Work Days 5 Work Days	TIME: 3 Work Days 2 Work Days 1 Work Days Other	SAMPLE TY Day Soil s らてつ	PE: TAT	REPORT FO	DRMAT:	EPA 1013 SUB_AMD Dioxins			ANALYSIS REQUESTED REMARKS
LAB ID	CLIENT'S SAMPLE I.D.	DATE/TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE				
	1302022-007A	2/1/2013/11:01	Soil	1	403. Jay	X			
	Janice to	Kathy	- 16	213 f	211 (Fist	2/6	(13.	

1 Relinquished By:	Print:	Date:	Time:	Received, By:	Print:	Date:	Time:
D.Z. Chodasara	NAVIN R.	2-5-13	5:10 P.M.	Lath	300 K.Z	IPP 2-6-13	1/35
2 Relinquished By:	Print:	Date:	Time:	Received By:	Stri (Date:	Time:
	•						
Were Samples Received in Good Condition	on?	O Samples on Ice?		Method of Shipment		Sample seals intact?	
NOTE: Samples are discarded by the lab	oratory 30 days from date	of receipt unless other a	rrangements are made.	· · · · ·			
N			Antoine and a second			000006 of 000008	Page 1 of 1

Log In By:

Date:

Date:

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 7704

Client:	Torrent Laboratory
Client Project ID:	CoC130205001
Date Received:	02/06/2013
Time Received:	11:35 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	1
Duplicates:	0
Storage Location:	R2

Method of Delivery:	Fed-Ex
Tracking Number:	96120192 2787481 15006089
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	3
Cooling Method	Blue Ice/Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test for residual Chlorine	No
Thiosulfate Added	No
Earliest Sample Hold Time Expiration	02/03/2014
Adequate Sample Volume	Yes
pH Range	N/A
Anomalies or additional comments:	

ress;	Torrent Laboratory, Inc.	incorrentiab.com	NOTE: SHADE	D AREAS ARE F	OR TORRENT LAP	CTODI	LAB WORK ORDER
Milpita	403 Sinclair Frontage Road		Con	pany Name:	Fronti	SEONLY	CoC130205001
ephone: 4	State: CA		Add	ess:	5172 Hillsdale Oi	aboratory	
itact:	Janico Mine Chart	408.263.8293	City	El Dorado, H	lills State		
tact Email	pm@torrantichend		Tele	phone: 916-93	4-0900	FAX: 010 000	Code: 95762
and an annual.	princetorrentiaboratory		Cont	act Name: Sa	ample Receiving	916-934-	0999
			spec	aai instructions/C	omments: Pls.analyz	e sample for 1613	Come
			P.0	. # :	EM	anks.	compounds on standar
RNAROUND	TIME:	SAMPLETYDE	1	and the second			
10 Work Day		Soil Soil	REPO	RT FORMAT:			
To Work Day	S Work Days	a Day OON TA	- Q	C Level IV	Suix		ANALY
I Work Days	2 Work Days	N' CLIC an		DF			REQUE
5 Work Days	1 Work Days		D	cel/EDD	E.		-
	and the second s				SUB		REMARKS
LAB ID	CLIENT'S SAMPLE I.D.	DATE/TIME M	ATRIX # C	F CONT			
		SAMPLED	CON	T TYPE			
	1302022-007A	2/1/2013/11:01	Soil 1	403. Jan	X		
	Janicet	Kathy -	16			13.	
1 Relinquis	ched By: Print: Chodasara Print:	Date: Time: 2-5-13 5: Date: Time:	IO P.M. John			PP 2-6-13 Date:	Time: //35 Time:
1 Relinquis 2 Relinquis	ihed By: Print: Bhadasara NAVIN R. Shed By: Print:	Date: Time: 2-5-13 5: Date: Time:	IO P.M.	nt lan		CP 2-6-/3 Date:	Time: 1/35 Time:
1 Relinquis Dr. K. C 2 Relinquis	thed By: Print	Date: Time: 2-5-13 5: Date: Time: 0 Samples on Ice? YE:	IO P.M.	nt Lap	- Anapart	CP Date: 2-6-13 Date: Sample seals intact?	Time: 1/.35 Time: YES NO NA
1 Relinquis D:E.S 2 Relinquis Were Samples Re	thed By: Print	Date: Time: 2-5-13 5: Date: Time: 0 Samples on ice? YE: e of receipt unless other arrangement	s No Rent	rt Lan 21/2013	Frontier Analytics	and the seals intact?	Time: 1/.35 Time: YES NO NA Page 1 of 1
1 Relinquis 37. E. Samples Re- NOTE Samples	thed By: Print: Print: Print: Shed By: Print: revived in Good Condition? YES The are discarded by the laboratory 30 days from dat Date:	Date: Time: 2-5-13 5 : Date: Time: 10 Samples on Ice? YE: e of receipt unless other arrangement Log in Reviewed By		rt Lan 211/2013	Frontier Analytics 1	Date: 2-6-/3 Date: Sample seals intact?	Time: 1/.35 Time: YES NO NA Page 1 of 1
1 Relinquis Jo: E. C. 2 Relinquis Were Samples Re- NOTE: Samples Log In By:	thed By: Print	Date: Time: 2-5-13 5: Date: Time: 0 Samples on Ice? YE: e of receipt unless other arrangement Log in Reviewed By		nt Las 2/1/2013	Frontier Analytica (1) 7704-001 101-130202240	Date: 2-6-13 Date: Sample seals intact?	Time: 1/.35 Time: Time: YES NO NA Page 1 of 1
1 Relinquis JB: E. S. 2 Relinquis Were Samples Re- NOTE: Samples Log In By:	thed By: Print: Schedasara NAVIN R. Shed By: Print: Shed By: Print: Shed By: Print: Shed By: Drint: Date: Date:	Date: Time: 2-5-13 5: Date: Time: O Samples on Ice? YE: e of receipt unless other arrangement Log in Reviewed By	s No	nt Las 2/1/2013	Frontier Analytical II Frontier Analytical II 7704-001 Client ID: 130202246 Client ID: 130202246 Client ID: 130202246	Date: 2-6-13 Date: Sample seals intact?	Time: 1/.35 Time: Yes NO INA Page 1 of 1

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggin + Akers - Visalia

Work Order No.: 1302024

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 10 sample(s) on February 04, 2013 for the analyses presented in the following Report.

Six discretes were composited 3:1 per CoC instructions.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

ge She

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggin + Akers - Visalia Work Order: 1302024

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Report prepared for:	Tom McCloskey				Date	Received: 0	2/04/13
	McCloskey Consultants				Date	Reported: 0	2/11/13
T-1						130	2024-001
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
T-(2, 3, 4)						130	2024-005
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
T-(5, 6, 7)						130	2024-009
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
All compounds were non-o	detectable for this sample.						
T-8						130	2024-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	T-1				Lab San	nple ID:	13020	24-001A			
Project Name/Location:	Riggin + Akers - Visalia			Sample	ble Matrix: Soil						
Project Number:											
Date/Time Sampled:	01/29/13 / 15:4	0									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Aroclor1016	SW8082	2/5/13	02/05/13	1	0.0230	0.10	ND		mg/Kg	413835	7775
Aroclor1221	SW8082	2/5/13	02/05/13	1	0.0920	0.20	ND		mg/Kg	413835	7775
Aroclor1232	SW8082	2/5/13	02/05/13	1	0.0460	0.10	ND		mg/Kg	413835	7775
Aroclor1242	SW8082	2/5/13	02/05/13	1	0.0430	0.10	ND		mg/Kg	413835	7775
Aroclor1248	SW8082	2/5/13	02/05/13	1	0.0360	0.10	ND		mg/Kg	413835	7775
Aroclor1254	SW8082	2/5/13	02/05/13	1	0.0240	0.10	ND		mg/Kg	413835	7775
Aroclor1260	SW8082	2/5/13	02/05/13	1	0.0270	0.10	ND		mg/Kg	413835	7775
TCMX (S)	SW8082	2/5/13	02/05/13	1	50.4	136	77.0		%	413835	7775
DCBP (S)	SW8082	2/5/13	02/05/13	1	44	128	103		%	413835	7775

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	T-(2, 3, 4)				Lab San	Lab Sample ID: 1302024-005					
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/29/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Aroclor1016	SW8082	2/5/13	02/05/13	1	0.0230	0.10	ND		mg/Kg	413835	7775
Aroclor1221	SW8082	2/5/13	02/05/13	1	0.0920	0.20	ND		mg/Kg	413835	7775
Aroclor1232	SW8082	2/5/13	02/05/13	1	0.0460	0.10	ND		mg/Kg	413835	7775
Aroclor1242	SW8082	2/5/13	02/05/13	1	0.0430	0.10	ND		mg/Kg	413835	7775
Aroclor1248	SW8082	2/5/13	02/05/13	1	0.0360	0.10	ND		mg/Kg	413835	7775
Aroclor1254	SW8082	2/5/13	02/05/13	1	0.0240	0.10	ND		mg/Kg	413835	7775
Aroclor1260	SW8082	2/5/13	02/05/13	1	0.0270	0.10	ND		mg/Kg	413835	7775
TCMX (S)	SW8082	2/5/13	02/05/13	1	50.4	136	76.8		%	413835	7775
DCBP (S)	SW8082	2/5/13	02/05/13	1	44	128	80.1		%	413835	7775

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	T-(5, 6, 7)				Lab San	nple ID:	13020	24-009A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/29/13 /										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Aroclor1016	SW8082	2/5/13	02/05/13	1	0.0230	0.10	ND	I	mg/Kg	413835	7775
Aroclor1221	SW8082	2/5/13	02/05/13	1	0.0920	0.20	ND		mg/Kg	413835	7775
Aroclor1232	SW8082	2/5/13	02/05/13	1	0.0460	0.10	ND		mg/Kg	413835	7775
Aroclor1242	SW8082	2/5/13	02/05/13	1	0.0430	0.10	ND		mg/Kg	413835	7775
Aroclor1248	SW8082	2/5/13	02/05/13	1	0.0360	0.10	ND		mg/Kg	413835	7775
Aroclor1254	SW8082	2/5/13	02/05/13	1	0.0240	0.10	ND		mg/Kg	413835	7775
Aroclor1260	SW8082	2/5/13	02/05/13	1	0.0270	0.10	ND		mg/Kg	413835	7775
TCMX (S)	SW8082	2/5/13	02/05/13	1	50.4	136	63.5		%	413835	7775
DCBP (S)	SW8082	2/5/13	02/05/13	1	44	128	61.5		%	413835	7775

Report prepared for:	Tom McCloskey McCloskey Consult	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	T-8				Lab Sar	nple ID:	13020	24-010A			
Project Name/Location: Project Number:	Riggin + Akers - Visalia			Sample	Matrix:	Soil					
Date/Time Sampled:	01/29/13 / 17:3	2									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Aroclor1016	SW8082	2/5/13	02/05/13	1	0.0230	0.10	ND		mg/Kg	413835	7775
Aroclor1221	SW8082	2/5/13	02/05/13	1	0.0920	0.20	ND		mg/Kg	413835	7775
Aroclor1232	SW8082	2/5/13	02/05/13	1	0.0460	0.10	ND		mg/Kg	413835	7775
Aroclor1242	SW8082	2/5/13	02/05/13	1	0.0430	0.10	ND		mg/Kg	413835	7775
Aroclor1248	SW8082	2/5/13	02/05/13	1	0.0360	0.10	ND		mg/Kg	413835	7775
Aroclor1254	SW8082	2/5/13	02/05/13	1	0.0240	0.10	ND		mg/Kg	413835	7775
Aroclor1260	SW8082	2/5/13	02/05/13	1	0.0270	0.10	ND		mg/Kg	413835	7775
TCMX (S)	SW8082	2/5/13	02/05/13	1	50.4	136	69.3		%	413835	7775
DCBP (S)	SW8082	2/5/13	02/05/13	1	44	128	78.4		%	413835	7775

MB Summary Report

Work Order:	1302024	Prep I	Prep Method:		Prep	Date:	02/05/13	Prep Batch:	7775
Matrix:	Soil	Analy	tical	SW8082	Anal	yzed Date:	02/05/13	Analytical	413826
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Aroclor1016		0.0230	0.10	ND					
Aroclor1221		0.0920	0.20	ND					
Aroclor1232		0.0460	0.10	ND					
Aroclor1242		0.0430	0.10	ND					
Aroclor1248		0.0360	0.10	ND					
Aroclor1254		0.0240	0.10	ND					
Aroclor1260		0.0270	0.10	ND					
TCMX (S)				78.2					
DCBP (S)				83.2					

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302024		Prep Metho	od: 3545	_PCB	Prep Da	te:	02/05/13	Prep Bat	t ch: 777	5
Matrix:	Soil		Analytical	Analytical SW8082		Analyzed Date:		02/05/13	Analytic	al 413	826
Units:	mg/Kg		Method:					Batch:			
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Aroclor1016		0.0230	0.10	ND	0.5	81.6	80.5	1.33	55.6 - 135	30	
Aroclor1260		0.0270	0.10	ND	0.5	79.3	79.2	0.111	65.6 - 132	30	
TCMX (S)				ND	0.25	72.7	73.8		50.4 - 136		
DCBP (S)				ND	0.250	74.2	74.3		44 - 128		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: <u>Riggin + Akers - Visalia</u>	Received By: <u>kb</u>
Work Order No.: <u>1302024</u>	Physically Logged By: ng
	Checklist Completed By: ng
	Carrier Name: First Courier
<u>Chain of Custody (</u>	COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Receip	ot Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and H	lold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers -	Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302024

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302024-001A	T-1	01/29/13 15:40	Soil	08/03/13				
1302024-002A	T-2	01/29/13 15:47	Soil	08/03/13			S_8082PCB	
		0.120,10	•••				Composite	
1302024-003A	T-3	01/29/13 15:50	Soil	08/03/13			Composito	
1302024-004A	T-4	01/29/13 15:53	Soil	08/03/13			Composite	
							Composite	
1302024-005A	T-(2, 3, 4)	01/29/13	Soil	08/03/13			S 8082PCB	
Sample Note:	Composite 3:1.						0_00021 00	
1302024-006A	T-5	01/29/13 16:00	Soil	08/03/13				
4202024 0074	Тс	04/00/40 40:04	Call	00/00/40			Composite	
1302024-007A	1-0	01/29/13 16:04	501	08/03/13			Composite	
1302024-008A	T-7	01/29/13 16:07	Soil	08/03/13				
1302024-0094	T-(5 6 7)	01/29/13	Soil	08/03/13			Composite	
1002024 000/1	1 (0, 0, 7)	01/23/10	001	00/00/10			S_8082PCB	
Sample Note:	Composite 3:1.							
1302024-010A	T-8	01/29/13 17:32	Soil	08/03/13			0.0000000	
							S_8082PCB	

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 FAX: 408.263.8293	CHA • NOTE: SHADED A	IN OF CUST		AB WORK ORDER NO
mpany Name: MCT_ McCaby		Food D Special Location of Sar	npling: Riggin + Akers -	-Vischa'
tress: 420 Sciamore Valley Rd West		Purpose: Sil Samolina	- Transformers	VI Striet
r: Danville State: (A Zip C	Code: 94526	Special Instructions / Comme	nts: D.L. ≤ 0.020	mg/kg
ephone: 925, 786,266,7 FAX:			-	0 J
PORT TO: TOM No (losky/ Chris Vertin SAMPLER: Chris Vertin		P.O. #:	EMAIL:	
RNAROUND TIME:	REPORT FORMAT:			
10 Work Days 4 Work Days 1 Work Day Storm Water Air)82		
7 Work Days 3 Work Days Noon - Nxt Day Ground Water Other		8		REQUESTED
5 Work Days 🔲 2 Work Days 🔲 2 - 8 Hours 🔯 Soil	2	B3		1
B ID CANISTER I.D. CLIENT'S SAMPLE I.D. DATE / TIME MATRIX	# OF CONT CONT TYPE	2		REMARKS
DIA T-1 K 1/29/13 15:48 Sul	1 402 glauss X	X	i i i i i i i i i i i i i i i i i i i	
2A 7-2 1 15:47	115	$\left \cdot \right $) 2nt-
3A T.5 15.6	1	1-005A	4	1 Composite
	5			
60 TE U.N.	+ $+$ $+$ $+$ $+$			
	-	Vianga		13pt
1-0 1604		A .= 00 m		Composite
571 1607 4	1 1 D			/
0A T-8 17:32	1 1	$X \mid \mid \mid \mid$		
				~ ~ ~ ~ ~ ~ ~ ~
1.				
Relipfunished By: / Print: / Date: .	Time; Receiv	ed By:	Achim Date:	Time:
1 Justin fort (hristigher Jortin 214/13	10:43	IM B	chungo 62/04/13	3 10:43
resinguisment BV' / Print's / J' Date'	Time: 1. Oc Receiv	ed by: Hrint	1319/12	Time: Sel

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

÷,

i

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggin + Akers - Visalia

Work Order No.: 1302025 Rev: 1

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 10 sample(s) on February 04, 2013 for the analyses presented in the following Report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

att S2

Patti Sandrock QA Officer February 20, 2013 Date

Date: 2/20/2013

Client: McCloskey Consultants Project: Riggin + Akers - Visalia Work Order: 1302025

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comments for method S_8081OCP, 1302025-007A MS/MSD, QC Analytical Batch ID 413863, Note:The % recoveries for

most compounds are outside of laboratory control limits but % RPD is within limits. The associated LCS/LCSD is within both % Recovery and %RPD limits. The sample and associated QC was re-extracted and the results yielded were similar. The original data is reported. No further corrective action required.

REVISIONS:

Report revised to include additional analysis (cleanup of Pesticide extracts and/or report at a lower dilution to achieve ESLs per client request).

Rev 1 (2/20/13)

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/20/13
BP-1	-					- 1	302025-001
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	10	5.1	20	530	ug/Kg
Dieldrin		SW8081A	10	5.8	20	27	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	270	ug/Kg
Lead		SW6010B	1	0.13	1.0	61	mg/Kg
BP-1 @ 5'						1	302025-002
Parameters:		<u>Analysis</u> Method	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	100	51	200	5600	ug/Kg
Dieldrin		SW8081A	10	5.8	20	22	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	250	ug/Kg
BP-2						1	302025-003
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	100	mg/Kg
		SW80814	20	10	40	190	ua/Ka
Dieldrin		SW8081A	20	10	40	63	ug/Kg
4,4'-DDT		SW8081A	20	13	40	100	ug/Kg
BP-2 @ 5'						1	302025-004
Parameters:		<u>Analysis</u> <u>Meth</u> od	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	17	mg/Kg

Report prepared for:	Tom McCloskey			Date	Received:	: 02/04/13	
	McCloskey Consultants				Date	Reported:	02/20/13
BP-3						1	302025-005
Parameters:		<u>Analysis</u> <u>Method</u>	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	26	mg/Kg
beta-BHC		SW8081A	10	5.6	20	340	ug/Kg
4,4'-DDE		SW8081A	10	5.1	20	42	ug/Kg
Dieldrin		SW8081A	10	5.8	20	29	ug/Kg
4,4'-DDD		SW8081A	10	7.6	20	14	ug/Kg
Endosulfan II		SW8081A	10	8.2	20	13	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	99	ug/Kg
Methoxychlor		SW8081A	10	6.1	50	1100	ug/Kg
BP-3 @ 5'						1	302025-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	4	2.0	8.0	23	ug/Kg
Dieldrin		SW8081A	4	2.3	8.0	15	ug/Kg
4,4'-DDD		SW8081A	4	3.0	8.0	10	ug/Kg
4,4'-DDT		SW8081A	4	2.7	8.0	110	ug/Kg
BP-4						1	302025-007
Parameters:		<u>Analysis</u> Method	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	100	mg/Kg
4,4'-DDE		SW8081A	10	5.1	20	100	ug/Kg
Dieldrin		SW8081A	10	5.8	20	29	ug/Kg
4,4'-DDD		SW8081A	10	7.6	20	8.9	ug/Kg
Endosulfan II		SW8081A	10	8.2	20	24	ug/Kg
4,4'-DDT		SW8081A	10	6.7	20	11	ug/Kg
BP-4 @ 5'						1:	302025-008
Parameters:		Analysis Method	DF	MDL	PQL	<u>Results</u>	<u>Unit</u>
Lead		SW6010B	1	0.13	1.0	79	mg/Kg

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/20/13
FP-1						13	302025-009
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Chromium		SW6010B	1	0.0500	5.0	11	mg/Kg
Copper		SW6010B	1	0.650	5.0	18	mg/Kg
FP-2						13	302025-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
Arsenic		SW6010B	1	0.25	1.7	17	mg/Kg
Chromium		SW6010B	1	0.0500	5.0	40	mg/Kg
Copper		SW6010B	1	0.650	5.0	33	mg/Kg

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Dat Dat	te Rece te Repo	orted: 02/0	4/13 0/13
Client Sample ID:	BP-1				Lab Sa	mple ID:	13020)25-001A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 9:10										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	61		mg/Kg	413844	7786
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using the	heir MDL								1	
alpha-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	10	5.6	20	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	10	4.0	20	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	10	8.1	20	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	10	3.6	20	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	10	9.4	20	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	10	6.4	20	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	10	5.1	20	530		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	10	5.8	20	27		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	10	8.6	20	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	10	7.6	20	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	10	8.2	20	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	10	6.7	20	270		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	10	4.6	20	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	10	6.1	50	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	10	100	200	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	10	82	1000	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	10	52.5	139	77.3		%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	10	50.2	139	57.6		%	413863	7777

Tom McCloskey McCloskey Consulta	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13					
BP-1 @ 5'				Lab Sar	nple ID:	1302	025-002A								
Riggin + Akers -	- Visalia			Sample	Matrix:	Soil									
01/31/13 / 9:13															
Riggin + Akers -	- Visalia														
Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch					
are reported using th	neir MDL				1										
SW8081A	2/14/13	02/15/13	100	51	200	5600		ug/Kg	414011	7840					
are reported using th	neir MDL														
SW8081A	2/14/13	02/15/13	10	6.1	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	6.1	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	5.6	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	4.0	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	7.9	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	8.1	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	3.6	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	7.9	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	9.4	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	6.4	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	5.8	20	22		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	8.6	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	7.6	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	8.2	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	6.7	20	250		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	4.6	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	5.8	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	6.1	50	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	5.8	20	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	100	200	ND		ug/Kg	414011	7840					
SW8081A	2/14/13	02/15/13	10	82	1000	ND		ug/Ka	414011	7840					
SW8081A	2/14/13	02/15/13	10	52.5	139	43.3	S	%	414011	7840					
SW8081A	2/14/13	02/15/13	10	50.2	139	31.2	S	%	414011	7840					
	Tom McCloskey McCloskey Consulta BP-1 @ 5' Riggin + Akers 01/31/13 / 9:13 Riggin + Akers Method are reported using th SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A SW8081A	Tom McCloskey Consultants BP-1 @ 5' Riggin + Akers - Visalia 01/31/13 / 9:13 Riggin + Akers - Visalia Analysis Prep Method Prep SW8081A 2/14/13 SW8081A 2/1	Tom McCloskey Consultants BP-1 @ 5' Riggin + Akers - Visalia 01/31/13 / 9:13 Riggin + Akers - Visalia 01/31/13 / 9:13 Riggin + Akers - Visalia Analysis Method Prep Date Date Analyzed Xare reported using t-tr MDL. SW8081A 2/14/13 02/15/13 SW8081A 2/14/13 02/15/13	Analysis Prep Riggin + Akers - Visalia 01/31/13 / 9:13 Riggin + Akers - Visalia 01/31/13 / 9:13 Riggin + Akers - Visalia Analysis Prep Date Date Analyzed Df Method 2/14/13 02/15/13 100 are reported using their MDL. SW8081A 2/14/13 02/15/13 100 are reported using their MDL. SW8081A 2/14/13 02/15/13 10 SW8081A 2/14/13 02/15/13 10	Tom McCloskey Consultants BP-1 @ 5' Lab Sar Riggin + Akers - Visalia Sample 01/31/13 / 9:13 Riggin + Akers - Visalia Method Date DF MDL SW8081A 2/14/13 02/15/13 100 5 Riggin + Akers - Visalia Date Date MDL SW8081A 2/14/13 02/15/13 100 5 SW8081A 2/14/13 02/15/13 100 6.1 SW8081A 2/14/13 02/15/13 10 6.1 SW8081A 2/14/13 02/15/13 10 6.1 SW8081A 2/14/13 02/15/13 10 6.1 SW8081A 2/14/13 02/15/13 <th 1<="" colspan="2" td=""><td>Tom McCloskey Consultants BP-1 @ 5' Lab Sample ID: Sample Matrix: Ditation 10/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: 01/31/13 / 9:13 Riggin + Akers - Visalia Date Method Date Analysis DF MDL PQL SW8081A 2/14/13 02/15/13 0 6 SW8081A 2/14/13 02/15/13 10 6.1 200 SW8081A 2/14/13 02/15/13 10 6.1 200 SW8081A 2/14/13 02/15/13 10 6.6 20 SW8081A 2/14/13 02/15/13 10 6.6 SW8081A 2/14/13 02/15/13 10 6.6 20 SW8081A 2/14/13 02/15/13 <th< td=""><td>Tom McCloskey Consultants BP-1 @ 5' Riggin + Akers - Visalia Lab Sample ID: 13024 Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: Soil Mathematical Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Date Analyzed DF MDL PQL Results SW8081A 2/14/13 02/15/13 100 51 200 5600 are reported using their MDL. SW8081A 2/14/13 02/15/13 10 6.1 200 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4 ND SW8081A 2/14/13 02/15/13 10 <th colspan<="" td=""><td>Tom McCloskey Consultants Date BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil Of MDL G1/31/13 / 9:13 Riggin + Akers - Visalia DF MDL PQL Results Lab Method Date Analyzed DF MDL PQL Results Lab SW8081A 2/14/13 02/15/13 100 51 200 5600 SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4</td><td>Date Record Date Report BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Prep Date Analyzed DF MDL Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td></th></td></th></td></th<></td></th>	<td>Tom McCloskey Consultants BP-1 @ 5' Lab Sample ID: Sample Matrix: Ditation 10/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: 01/31/13 / 9:13 Riggin + Akers - Visalia Date Method Date Analysis DF MDL PQL SW8081A 2/14/13 02/15/13 0 6 SW8081A 2/14/13 02/15/13 10 6.1 200 SW8081A 2/14/13 02/15/13 10 6.1 200 SW8081A 2/14/13 02/15/13 10 6.6 20 SW8081A 2/14/13 02/15/13 10 6.6 SW8081A 2/14/13 02/15/13 10 6.6 20 SW8081A 2/14/13 02/15/13 <th< td=""><td>Tom McCloskey Consultants BP-1 @ 5' Riggin + Akers - Visalia Lab Sample ID: 13024 Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: Soil Mathematical Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Date Analyzed DF MDL PQL Results SW8081A 2/14/13 02/15/13 100 51 200 5600 are reported using their MDL. SW8081A 2/14/13 02/15/13 10 6.1 200 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4 ND SW8081A 2/14/13 02/15/13 10 <th colspan<="" td=""><td>Tom McCloskey Consultants Date BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil Of MDL G1/31/13 / 9:13 Riggin + Akers - Visalia DF MDL PQL Results Lab Method Date Analyzed DF MDL PQL Results Lab SW8081A 2/14/13 02/15/13 100 51 200 5600 SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4</td><td>Date Record Date Report BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Prep Date Analyzed DF MDL Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td></th></td></th></td></th<></td>		Tom McCloskey Consultants BP-1 @ 5' Lab Sample ID: Sample Matrix: Ditation 10/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: 01/31/13 / 9:13 Riggin + Akers - Visalia Date Method Date Analysis DF MDL PQL SW8081A 2/14/13 02/15/13 0 6 SW8081A 2/14/13 02/15/13 10 6.1 200 SW8081A 2/14/13 02/15/13 10 6.1 200 SW8081A 2/14/13 02/15/13 10 6.6 20 SW8081A 2/14/13 02/15/13 10 6.6 SW8081A 2/14/13 02/15/13 10 6.6 20 SW8081A 2/14/13 02/15/13 <th< td=""><td>Tom McCloskey Consultants BP-1 @ 5' Riggin + Akers - Visalia Lab Sample ID: 13024 Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: Soil Mathematical Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Date Analyzed DF MDL PQL Results SW8081A 2/14/13 02/15/13 100 51 200 5600 are reported using their MDL. SW8081A 2/14/13 02/15/13 10 6.1 200 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4 ND SW8081A 2/14/13 02/15/13 10 <th colspan<="" td=""><td>Tom McCloskey Consultants Date BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil Of MDL G1/31/13 / 9:13 Riggin + Akers - Visalia DF MDL PQL Results Lab Method Date Analyzed DF MDL PQL Results Lab SW8081A 2/14/13 02/15/13 100 51 200 5600 SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4</td><td>Date Record Date Report BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Prep Date Analyzed DF MDL Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td></th></td></th></td></th<>	Tom McCloskey Consultants BP-1 @ 5' Riggin + Akers - Visalia Lab Sample ID: 13024 Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Lab Sample Matrix: Soil Mathematical Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Date Analyzed DF MDL PQL Results SW8081A 2/14/13 02/15/13 100 51 200 5600 are reported using their MDL. SW8081A 2/14/13 02/15/13 10 6.1 200 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4 ND SW8081A 2/14/13 02/15/13 10 <th colspan<="" td=""><td>Tom McCloskey Consultants Date BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil Of MDL G1/31/13 / 9:13 Riggin + Akers - Visalia DF MDL PQL Results Lab Method Date Analyzed DF MDL PQL Results Lab SW8081A 2/14/13 02/15/13 100 51 200 5600 SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4</td><td>Date Record Date Report BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Prep Date Analyzed DF MDL Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td></th></td></th>	<td>Tom McCloskey Consultants Date BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil Of MDL G1/31/13 / 9:13 Riggin + Akers - Visalia DF MDL PQL Results Lab Method Date Analyzed DF MDL PQL Results Lab SW8081A 2/14/13 02/15/13 100 51 200 5600 SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4</td> <td>Date Record Date Report BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Prep Date Analyzed DF MDL Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td></th></td>	Tom McCloskey Consultants Date BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil Of MDL G1/31/13 / 9:13 Riggin + Akers - Visalia DF MDL PQL Results Lab Method Date Analyzed DF MDL PQL Results Lab SW8081A 2/14/13 02/15/13 100 51 200 5600 SW8081A 2/14/13 02/15/13 10 6.1 20 ND SW8081A 2/14/13 02/15/13 10 7.9 20 ND SW8081A 2/14/13 02/15/13 10 6.4	Date Record Date Report BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 Riggin + Akers - Visalia Prep Date Analyzed DF MDL Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th colspa<="" td=""><td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td></th>	<td>Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th></td>	Date Received: 02/0 Date Received: 02/0 BP-1 @ 5' Lab Sample ID: 1302025-002A Riggin + Akers - Visalia Sample Matrix: Soil 01/31/13 / 9:13 miggin + Akers - Visalia Subscription Analyzed DF Date Analyzed DF Date Analyzed DF Date Colspan="2">Prep Date Analyzed DF Date Analyzed DF Date Colspan="2">Date Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <th cols<="" td=""></th>	

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	BP-2				Lab Sa	mple ID:	13020	025-003A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 9:16	5									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	100		mg/Kg	413844	7786
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL			I				l		I
The results shown below	are reported using t	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	20	12	40	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	20	12	40	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	20	11	40	ND		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	20	8.1	40	ND		ug/Kg	413863	7777
Heptachlor	SW8081A	2/5/13	02/06/13	20	16	40	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	20	16	40	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	20	7.2	40	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	20	16	40	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	20	19	40	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	20	13	40	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	20	10	40	190		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	20	12	40	63		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	20	17	40	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	20	15	40	ND		ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	20	16	40	ND		ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	20	13	40	100		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	20	9.2	40	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	20	12	40	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	20	12	100	ND		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	20	12	40	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	20	210	400	ND		ug/Kg	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	20	160	2000	ND		ug/Kg	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	20	52.5	139	0.000	D	%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	20	50.2	139	0.000	D	%	413863	7777
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the na	ture of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	BP-2 @ 5'				Lab Sa	mple ID:	130202	25-004A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 9:18	3									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/14/13	02/15/13	1	0.13	1.0	17		mg/Kg	413967	7843

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	BP-3				Lab Sa	mple ID:	13020	25-005A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 9:22										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	26		mg/Kg	413844	7786
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using t	heir MDL									<u> </u>
Heptachlor	SW8081A	2/5/13	02/06/13	100	79	200	ND		ug/Kg	413863	7777
Aldrin	SW8081A	2/5/13	02/06/13	100	81	200	ND		ug/Kg	413863	7777
NOTE: Reporting limits incr Aldrin.	eased due to necessary	dilution of	the sample.	Florisi	l clean up	attempted	but did not aff	ect the abil	ity to rec	over Heptach	lor or
The results shown below	are reported using the	heir MDL									
alpha-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
gamma-BHC	SW8081A	2/5/13	02/06/13	10	6.1	20	ND		ug/Kg	413863	7777
beta-BHC	SW8081A	2/5/13	02/06/13	10	5.6	20	340		ug/Kg	413863	7777
delta-BHC	SW8081A	2/5/13	02/06/13	10	4.0	20	ND		ug/Kg	413863	7777
Heptachlor epoxide	SW8081A	2/5/13	02/06/13	10	3.6	20	ND		ug/Kg	413863	7777
gamma-Chlordane	SW8081A	2/5/13	02/06/13	10	7.9	20	ND		ug/Kg	413863	7777
alpha-Chlordane	SW8081A	2/5/13	02/06/13	10	9.4	20	ND		ug/Kg	413863	7777
Endosulfan I	SW8081A	2/5/13	02/06/13	10	6.4	20	ND		ug/Kg	413863	7777
4,4'-DDE	SW8081A	2/5/13	02/06/13	10	5.1	20	42		ug/Kg	413863	7777
Dieldrin	SW8081A	2/5/13	02/06/13	10	5.8	20	29		ug/Kg	413863	7777
Endrin	SW8081A	2/5/13	02/06/13	10	8.6	20	ND		ug/Kg	413863	7777
4,4'-DDD	SW8081A	2/5/13	02/06/13	10	7.6	20	14	J	ug/Kg	413863	7777
Endosulfan II	SW8081A	2/5/13	02/06/13	10	8.2	20	13	J	ug/Kg	413863	7777
4,4'-DDT	SW8081A	2/5/13	02/06/13	10	6.7	20	99		ug/Kg	413863	7777
Endrin aldehyde	SW8081A	2/5/13	02/06/13	10	4.6	20	ND		ug/Kg	413863	7777
Endosulfan sulfate	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Methoxychlor	SW8081A	2/5/13	02/06/13	10	6.1	50	1100		ug/Kg	413863	7777
Endrin Ketone	SW8081A	2/5/13	02/06/13	10	5.8	20	ND		ug/Kg	413863	7777
Chlordane	SW8081A	2/5/13	02/06/13	10	100	200	ND		ug/Ka	413863	7777
Toxaphene	SW8081A	2/5/13	02/06/13	10	82	1000	ND		ug/Ka	413863	7777
TCMX (S)	SW8081A	2/5/13	02/06/13	10	52.5	139	826	S	%	413863	7777
DCBP (S)	SW8081A	2/5/13	02/06/13	10	50.2	139	200	S	%	413863	7777
NOTE: Florisil clean up app	lied to samples.			-	-			-			

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	BP-3 @ 5'				Lab Sa	mple ID:	13020	25-006A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:					-						
Date/Time Sampled:	01/31/13 / 9:24										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	ware reported using t	heir MDL									
alpha-BHC	SW8081A	2/14/13	02/15/13	4	2.4	8.0	ND		ug/Kg	414011	7840
gamma-BHC	SW8081A	2/14/13	02/15/13	4	2.5	8.0	ND		ug/Kg	414011	7840
beta-BHC	SW8081A	2/14/13	02/15/13	4	2.3	8.0	ND		ug/Kg	414011	7840
delta-BHC	SW8081A	2/14/13	02/15/13	4	1.6	8.0	ND		ug/Kg	414011	7840
Heptachlor	SW8081A	2/14/13	02/15/13	4	3.2	8.0	ND		ug/Kg	414011	7840
Aldrin	SW8081A	2/14/13	02/15/13	4	3.2	8.0	ND		ug/Kg	414011	7840
Heptachlor epoxide	SW8081A	2/14/13	02/15/13	4	1.4	8.0	ND		ug/Kg	414011	7840
gamma-Chlordane	SW8081A	2/14/13	02/15/13	4	3.2	8.0	ND		ug/Kg	414011	7840
alpha-Chlordane	SW8081A	2/14/13	02/15/13	4	3.8	8.0	ND		ug/Kg	414011	7840
Endosulfan I	SW8081A	2/14/13	02/15/13	4	2.6	8.0	ND		ug/Kg	414011	7840
4,4'-DDE	SW8081A	2/14/13	02/15/13	4	2.0	8.0	23		ug/Kg	414011	7840
Dieldrin	SW8081A	2/14/13	02/15/13	4	2.3	8.0	15		ug/Kg	414011	7840
Endrin	SW8081A	2/14/13	02/15/13	4	3.4	8.0	ND		ug/Kg	414011	7840
4,4'-DDD	SW8081A	2/14/13	02/15/13	4	3.0	8.0	10		ug/Kg	414011	7840
Endosulfan II	SW8081A	2/14/13	02/15/13	4	3.3	8.0	ND		ug/Kg	414011	7840
4,4'-DDT	SW8081A	2/14/13	02/15/13	4	2.7	8.0	110		ug/Kg	414011	7840
Endrin aldehyde	SW8081A	2/14/13	02/15/13	4	1.8	8.0	ND		ug/Kg	414011	7840
Endosulfan sulfate	SW8081A	2/14/13	02/15/13	4	2.3	8.0	ND		ug/Kg	414011	7840
Methoxychlor	SW8081A	2/14/13	02/15/13	4	2.5	20	ND		ug/Kg	414011	7840
Endrin Ketone	SW8081A	2/14/13	02/15/13	4	2.3	8.0	ND		ug/Kg	414011	7840
Chlordane	SW8081A	2/14/13	02/15/13	4	41	80	ND		ug/Kg	414011	7840
Toxaphene	SW8081A	2/14/13	02/15/13	4	33	400	ND		ug/Kg	414011	7840
TCMX (S)	SW8081A	2/14/13	02/15/13	4	52.5	139	56.5		%	414011	7840
DCBP (S)	SW8081A	2/14/13	02/15/13	4	50.2	139	65.5		%	414011	7840
NOTE: Reporting limits inc color extract)	creased due to necessary	dilution of	the sample	(poten	tial matrix	interferenc	e from the nat	ure of the s	ample m	natrix - viscou	ıs/dark

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	BP-4				Lab Sa	mple ID:	13020	025-007A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 9:27										
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/6/13	02/07/13	1	0.13	1.0	100		mg/Kg	413844	7786
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
The results shown below	are reported using th	heir MDL						1		1	
alpha-BHC	SW8081A	NA	02/06/13	10	6.1	20	ND		ug/Kg	413863	NA
gamma-BHC	SW8081A	NA	02/06/13	10	6.1	20	ND		ug/Kg	413863	NA
beta-BHC	SW8081A	NA	02/06/13	10	5.6	20	ND		ug/Kg	413863	NA
delta-BHC	SW8081A	NA	02/06/13	10	4.0	20	ND		ug/Kg	413863	NA
Heptachlor	SW8081A	NA	02/06/13	10	7.9	20	ND		ug/Kg	413863	NA
Aldrin	SW8081A	NA	02/06/13	10	8.1	20	ND		ug/Kg	413863	NA
Heptachlor epoxide	SW8081A	NA	02/06/13	10	3.6	20	ND		ug/Kg	413863	NA
gamma-Chlordane	SW8081A	NA	02/06/13	10	7.9	20	ND		ug/Kg	413863	NA
alpha-Chlordane	SW8081A	NA	02/06/13	10	9.4	20	ND		ug/Kg	413863	NA
Endosulfan I	SW8081A	NA	02/06/13	10	6.4	20	ND		ug/Kg	413863	NA
4,4'-DDE	SW8081A	NA	02/06/13	10	5.1	20	100		ug/Kg	413863	NA
Dieldrin	SW8081A	NA	02/06/13	10	5.8	20	29		ug/Kg	413863	NA
Endrin	SW8081A	NA	02/06/13	10	8.6	20	ND		ug/Kg	413863	NA
4,4'-DDD	SW8081A	NA	02/06/13	10	7.6	20	8.9	J	ug/Kg	413863	NA
Endosulfan II	SW8081A	NA	02/06/13	10	8.2	20	24		ug/Kg	413863	NA
4,4'-DDT	SW8081A	NA	02/06/13	10	6.7	20	11	J	ug/Kg	413863	NA
Endrin aldehyde	SW8081A	NA	02/06/13	10	4.6	20	ND		ug/Kg	413863	NA
Endosulfan sulfate	SW8081A	NA	02/06/13	10	5.8	20	ND		ug/Kg	413863	NA
Methoxychlor	SW8081A	NA	02/06/13	10	6.1	50	ND		ug/Kg	413863	NA
Endrin Ketone	SW8081A	NA	02/06/13	10	5.8	20	ND		ug/Kg	413863	NA
Chlordane	SW8081A	NA	02/06/13	10	100	200	ND		ug/Kg	413863	NA
Toxaphene	SW8081A	NA	02/06/13	10	82	1000	ND		ug/Kg	413863	NA
TCMX (S)	SW8081A	NA	02/06/13	10	52.5	139	55.2		%	413863	NA
DCBP (S)	SW8081A	NA	02/06/13	10	50.2	139	72.8		%	413863	NA

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	BP-4 @ 5'				Lab Sa	mple ID:	130202	25-008A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	01/31/13 / 9:29)									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Lead	SW6010B	2/14/13	02/15/13	1	0.13	1.0	79	•	mg/Kg	413967	7843

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID: Project Name/Location:	FP-1 Riggin + Akers	- Visalia			Lab Sar Sample	nple ID: Matrix:	13020 Soil	25-009A			
Date/Time Sampled: Tag Number:	01/31/13 / 9:41 Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic Chromium Copper	SW6010B SW6010B SW6010B	2/6/13 2/6/13 2/6/13	02/07/13 02/07/13 02/07/13	1 1 1	0.25 0.0500 0.650	1.7 5.0 5.0	ND 11 18	1	mg/Kg mg/Kg mg/Kg	413859 413859 413859	7788 7788 7788

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/2	4/13 0/13
Client Sample ID:	FP-2				Lab Sar	nple ID:	13020	25-010A			
Project Name/Location: Project Number:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Date/Time Sampled:	01/31/13 / 9:43	i i									
Tag Number:	Riggin + Akers	- Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.25	1.7	17		mg/Kg	413859	7788
Chromium	SW6010B	2/6/13	02/07/13	1	0.0500	5.0	40		mg/Kg	413859	7788
Copper	SW6010B	2/6/13	02/07/13	1	0.650	5.0	33		mg/Kg	413859	7788

MB Summary Report

Work Order:	1302025	Prep I	Method:	3545_OCP	Prep	Date:	02/05/13	Prep Batch:	7777
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/06/13	Analytical	413863
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				70.1					
DCBP (S)				72.0					
Work Order:	1302025	Prep I	Method:	3050	Prep	Date:	02/06/13	Prep Batch:	7786
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/07/13	Analytical	413844
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Arsenic		0.25	1.7	ND					
Lead		0.14	1.0	0.39					
2000		0.17	1.0	0.00					

MB Summary Report

Work Order:	1302025	Prep I	Method:	3050	Prep	Date:	02/06/13	Prep Batch:	7788
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/07/13	Analytical	413859
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Antimony		0.20	5.0	ND					
Arsenic		0.25	1.7	ND					
Barium		0.07	5.0	0.51					
Beryllium		0.0800	2.0	ND					
Cadmium		0.055	1.0	ND					
Chromium		0.050	5.0	0.12					
Cobalt		0.055	5.0	ND					
Copper		0.65	5.0	ND					
Lead		0.14	1.0	0.23					
Molybdenum		0.12	5.0	ND					
Nickel		0.050	5.0	0.080					
Selenium		0.42	5.0	ND					
Silver		0.37	1.0	ND					
Thallium		0.49	5.0	ND					
Vanadium		0.18	5.0	ND					
Zinc		0.25	5.0	0.31					

3545_OCP Work Order: 1302025 Prep Method: Prep Date: 02/14/13 Prep Batch: 7840 Matrix: Soil Analytical SW8081A Analyzed Date: 02/15/13 Analytical 414011 Method: Batch: Units: ug/Kg Method Lab PQL Parameters MDL Blank Qualifier Conc. alpha-BHC 0.61 2.0 ND gamma-BHC 0.61 2.0 ND beta-BHC 0.56 2.0 ND delta-BHC 0.40 2.0 ND Heptachlor 0.79 2.0 ND ND Aldrin 0.81 2.0 Heptachlor epoxide 0.36 2.0 ND gamma-Chlordane 0.79 ND 2.0 alpha-Chlordane 0.94 2.0 ND Endosulfan I 2.0 ND 0.64 4,4'-DDE ND 0.51 2.0 Dieldrin 0.58 2.0 ND Endrin ND 0.86 2.0 4,4'-DDD 0.76 2.0 ND Endosulfan II 0.82 2.0 ND 4.4'-DDT 0.67 2.0 ND Endrin aldehyde 0.46 2.0 ND Endosulfan sulfate 0.58 2.0 ND Methoxychlor 0.61 5.0 ND Endrin Ketone 0.58 ND 2.0 Chlordane 10 20 ND 8.2 100 ND Toxaphene TCMX (S) 66.4 DCBP (S) 65.5 Work Order: 1302025 Prep Method: 3050 Prep Date: 02/14/13 Prep Batch: 7843 Soil Matrix: Analytical SW6010B Analyzed Date: Analytical 413967 02/15/13 Method: Batch: Units: mg/Kg Method Lab MDL PQL Qualifier Parameters Blank Conc. Lead 0.14 1.0 ND

MB Summary Report

Work Order:	1302025		Prep Meth	od: 3545	_OCP	Prep Da	te:	02/05/13	Prep Ba	tch: 777	7
Matrix:	Soil		Analytical	SW80	081A	Analyze	d Date:	02/06/13	Analytic	al 4138	363
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	88.7	84.5	4.74	56.9 - 120	30	
Heptachlor		0.79	2.0	ND	20	92.8	89.0	4.09	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	87.2	83.1	4.88	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	87.6	81.5	7.28	44 - 130	30	
Endrin		0.86	2.0	ND	20	96.4	93.0	3.57	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	118	115	2.59	52.8 - 134	30	
TCMX (S)				ND	350	74.6	69.4		52.5 - 139		
DCBP (S)				ND	350	75.2	72.5		50.2 - 139		
Work Order:	1302025		Prep Meth	od: 3050		Prep Da	te:	02/06/13	Prep Ba	tch: 7786	6
Matrix:	Soil		Analytical	SW60	010B	Analyze	d Date:	02/07/13	Analytic	al 4138	344
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Arsenic		0.25	1.7	ND	50	97.8	99.1	1.30	71 - 121	30	
Lead		0.14	1.0	0.39	50	99.9	98.7	1.24	67.9 - 118	30	

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302025		Prep Methe	od: 3050		Prep Da	te:	02/06/13	Prep Bat	tch: 7788	3
Matrix:	Soil		Analytical	SW6	010B	Analyze	d Date:	02/07/13	Analytic	al 4138	359
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Antimony		0.20	5.0	ND	50	99.4	99.7	0.291	30.7 - 130	30	
Arsenic		0.25	1.7	ND	50	94.7	95.6	0.988	71 - 121	30	
Barium		0.07	5.0	0.51	50	104	104	0.000	70.2 - 130	30	
Beryllium		0.0800	2.0	ND	50	103	105	1.54	73.3 - 115	30	
Cadmium		0.055	1.0	ND	50	99.2	98.9	0.353	68.7 - 110	30	
Chromium		0.050	5.0	0.12	50	103	103	0.0971	76 - 116	30	
Cobalt		0.055	5.0	ND	50	100	101	0.797	57.4 - 122	30	
Copper		0.65	5.0	ND	50	104	103	0.579	74.8 - 119	30	
Lead		0.14	1.0	0.23	50	95.7	96.6	0.905	67.9 - 118	30	
Molybdenum		0.12	5.0	ND	50	99.7	99.8	0.120	62.9 - 123	30	
Nickel		0.050	5.0	0.080	50	99.6	101	1.10	61.5 - 122	30	
Selenium		0.42	5.0	ND	50	92.2	92.0	0.217	62 - 111	30	
Silver		0.37	1.0	ND	50	99.0	99.3	0.333	81.1 - 109	30	
Thallium		0.49	5.0	ND	50	95.8	95.6	0.199	39.2 - 125	30	
Vanadium		0.18	5.0	ND	50	104	104	0.000	65.8 - 122	30	
Zinc		0.25	5.0	0.31	50	97.1	98.3	1.25	59.9 - 122	30	
Work Order:	1302025		Prep Metho	od: 3545	_OCP	Prep Da	te:	02/14/13	Prep Bat	tch: 7840)
Matrix:	Soil		Analytical	SW8	081A	Analyze	d Date:	02/15/13	Analytic	al 4140)11
Units:	ug/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
gamma-BHC		0.61	2.0	ND	20	78.0	80.6	3.34	56.9 - 120	30	
Heptachlor		0.79	2.0	ND	20	79.4	81.6	2.83	63.6 - 117	30	
Aldrin		0.81	2.0	ND	20	74.8	77.0	3.00	53 - 123	30	
Dieldrin		0.58	2.0	ND	20	76.6	79.0	3.09	44 - 130	30	
Endrin		0.86	2.0	ND	20	84.7	87.3	3.05	44.1 - 121	30	
4,4'-DDT		0.67	2.0	ND	20	91.3	94.8	3.79	52.8 - 134	30	
TCMX (S)				ND	350	63.4	65.3		52.5 - 139		
DCBP (S)				ND	350	64.4	66.3		50.2 - 139		

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302025		Prep Meth	od: 3050		Prep Da	te:	02/14/13	Prep Bat	t ch: 784	3
Matrix:	Soil		Analytical	SW6	010B	Analyzed Date:		02/15/13	Analytic	al 413	967
Units:	mg/Kg		Method:						Batch:		
Parameters		MDL	PQL	Method Blank Conc.	Spike Conc.	LCS % Recovery	LCSD % Recovery	LCS/LCSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Lead		0.14	1.0	ND	50	90.9	94.4	3.76	67.9 - 118	30	

MS/MSD Summary Report

Raw values are used in quality control assessment.

Work Order:	1302025		Prep Metho	d: NA		Prep Date:	NA		Prep Batch:	NA	
Matrix:	Soil		Analytical	SW808	1A	Analyzed D	oate: 02/0	6/13	Analytical	413863	
Spiked Sample:	1302025-007A		Method:						Batch:		
Units:	ug/Kg										
Parameters		MDL	PQL	Sample Conc.	Spike Conc.	MS % Recovery	MSD % Recovery	MS/MSD % RPD	% Recovery Limits	% RPD Limits	Lab Qualifier
Aldrin		8.1	20	0	20	83.2	66.1	22.7	53 - 123	30	
gamma-BHC		6.1	20	0	20	49.9	45.1	9.29	56.9 - 120	30	S
Heptachlor		7.9	20	0	20	29.5	28.4	3.72	63.6 - 117	30	S
Dieldrin		5.8	20	2.9	20	213	94.7	39.5	44 - 130	30	S
Endrin		8.6	20	0	20	47.9	44.4	7.39	44.1 - 121	30	
4,4'-DDT		6.7	20	1.13	20	191	157	4.79	52.8 - 134	30	S
TCMX (S)					350	51.9	44.6		52.5 - 139	,"	S
DCBP (S)					350	84.5	43.8		50.2 - 139	,"	S

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/M3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards.

Further explanation may or may not be provided within the sample footnote and/or the case narrative.

Sample Receipt Checklist

Client Name: McCloskey Consultants	Date and Time Received: 2/4/2013 11:29
Project Name: <u>Riggin + Akers - Visalia</u>	Received By: <u>kb</u>
Work Order No.: <u>1302025</u>	Physically Logged By: ng
	Checklist Completed By: ng
	Carrier Name: First Courier
Chain of Custody (COC) Information
Chain of custody present?	Yes
Chain of custody signed when relinquished and received?	Yes
Chain of custody agrees with sample labels?	Yes
Custody seals intact on sample bottles?	Not Present
Sample Receip	ot Information
Custody seals intact on shipping container/cooler?	Not Present
Shipping Container/Cooler In Good Condition?	Yes
Samples in proper container/bottle?	Yes
Samples containers intact?	Yes
Sufficient sample volume for indicated test?	Yes
Sample Preservation and H	lold Time (HT) Information
All samples received within holding time?	Yes
Container/Temp Blank temperature in compliance?	Yes Temperature: <u>4</u> °C
Water-VOA vials have zero headspace?	No VOA vials submitted
Water-pH acceptable upon receipt?	<u>N/A</u>
pH Checked by: <u>n/a</u>	pH Adjusted by: <u>n/a</u>

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers -	Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/20/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302025

WO Sample ID	<u>Client</u> Sample ID	<u>Collec</u> Date/1	tion ime	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302025-001A	BP-1	01/31/13	9:10	Soil	08/03/13			S_6010BAs/Pb	
1302025-002A	BP-1 @ 5'	01/31/13	9:13	Soil	08/03/13			S_8081AOCP	
1202025 0024	0	01/21/12	0.16	Soil	00/02/12			S_8081AOCP	
1302025-003A	DF-2	01/31/13	9.10	3011	06/05/13			S_6010BAs/Pb S_8081A CU S_8081AOCP	
Sample Note:	Must report Sample at a 20. Chlordane exceeds the CH	X Dil or less HSL	cannot	report ND a	t a Diln.				
1302025-004A	BP-2 @ 5'	01/31/13	9:18	Soil	08/03/13			S_6010BAs/Pb	
Sample Note:	Pb only.								
1302025-005A	BP-3	01/31/13	9:22	Soil	08/03/13			S_6010BAs/Pb S_8081AOCP S_8081A CU	
Sample Note:	Must report Sample at a 20. Chlordane, Dieldrin and Tox	X Dil or less	cannot	report ND a	t a Diln.				
1302025-006A	BP-3 @ 5'	01/31/13	9:24	Soil	08/03/13			0.000/1000	
1302025-007A	BP-4	01/31/13	9:27	Soil	08/03/13			S_8081AOCP	
								S_6010BAs/Pb S_8081AOCP S_8081AOCP	
1302025-008A	BP-4 @ 5'	01/31/13	9:29	Soil	08/03/13			S_6010BAs/Pb	
Sample Note:	Pb only.								
1302025-009A	FP-1	01/31/13	9:41	Soil	08/03/13			0.0040000000	
1302025-010A	FP-2	01/31/13	9:43	Soil	08/03/13			S_6010BCAM17	
								S_6010BCAM17	

Д	- To	rront	483 Sii Milpita Phone	nclair Frontag s, CA 95035 : 408.263.52	ge Road 58		(СНА	١N	OF	CL	JSTC	DY			AB WORK ORDER NO
Ê		DRATORY, INC.	FAX: 4 www.to	08.263.8293 orrentlab.com	n	•N	OTE: SHA	ADED A	REAS	ARE F	ORTO	ORRENT L	AB USE	ONLY	13	302.025
Compar	y Name:	MCI-Mc (loskey] H 🚺	Food	Special	Locati	ion of Samp	oling: Ref	am + Ake	urs-	Visalia
Address	420 5	scamme Valley Rd	Was	+			W/20 .		Purpo	se: S	Soil	Sampling	-Build	ding Pe	nmer	pr/Pressure -
City:	Danville		State	: ('A	Zip	Code: 9	4526		Specia	al Instru	uctions	/ Comment	S:	0	· d	Treated tences
Telepho	ne: 925.	786.2667	FAX:	A	VI				PO +					EMAIL	· · ·	
TURNAR	OUND TIME	<u>(losloy /(hrsvenir</u> ::	SAMP	AMPLE TYPE	lerto	REPOR	FORMAT:		P.0. #			1				1
10 Wo 7 Wor 5 Wor	vrk Days 🗍 k Days 🗍 k Days 📮	4 Work Days 1 Work Day 3 Work Days Noon - Nxt 2 Work Days 2 - 8 Hours		Storm Water Waste Water Ground Water Soil	Air Other	QC L EDF Excel	evel IV / EDD	R (8081)	d	Luithi.	Ser-	enc				ANALYSIS REQUESTED
LAB ID	CANISTER I.D.	CLIENT'S SAMPLE I.D	. D/ S	ATE / TIME AMPLED	MATRIX	# OF CONT	CONT TYPE	8	Lea	Cher	Cop	As				REMARKS
GOIA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	RP I	1/31	13 7:0	Sil	1	402 9445	X	X							(The second
002A	landar a	BP-105	1	9:13	1	1	1	1							Constanting of the second seco	Hold
003A	10 m	BP-7		911.				X	X						a Strengton and	
004A	an magano in an antiban in an antiban in an antiban in	BP-205		9:18												HU
065A	· · · · · · · · · · · · · · · · · · ·	RP-2		9:12				X	X							
006A	4 5 8 5	BD-205		Q.21					/`			·				<u>e s e s e o s e e e</u> 11 A 1 2 5 2 5 6 5 5
0-07A		BP-4		9.27				X	X						-	<u>LING</u>
008A	104	BP-405'	+	9:29											-	HAN
009A		FRI		G:41						X	V	X				
	h	FP-7	+	9:43	-{					X	X	X		††		
010A	11	/ /Print:	Vi	Date:	3	Time:	27 27	Receiv	red By:	M)	Print: M	phipa	Date:	Youth	Time:

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

1

Change Order

Client:	McCloskey Consultants	Requested By:	Chris Vertin		
Client:	McCloskey Consultants	Requested By:	Chris Vertin		
Project N	ame: Riggin + Akers - Visalia				
Work Ore	der: 1302025	Serial #: CO13-0028		Print Date:	2/13/2013

Reanalyze samples 003 and 005 CHHSLs Exceeded Must report Samples at a 20X Dil or less 2/13/2013 1:00:00PM \$0.00 cannot report ND at a hi Diln.

Page 1 of 1

Change Order

Work Order: 1302025 Project Name: Riggin + Akers - Visalia	Serial #: CO13-0029	Print Date	: 2/14/2013
Client: McCloskey Consultants	Requested By: Christopher Ver	tin	
	Requested Date	Requested	Extended

Additional Test OCPs on -002A, -006A (extract today 2/14); Pb on -004A, -008A. 5day TAT 2/14/2013

Page 1 of 1

483 Sinclair Frontage Rd., Milpitas, CA 95035 | tel: 408.263.5258 | fax: 408.263.8293 | www.torrentlab.com

11:11:00AM

Torrent Laboratory, Inc. Mail - Re: Final Report - 1302025

Re: Final Report - 1302025

Christopher Vertin <chis@cvenvironmental.com> To: "Toment Laboratory, inc." <pm@tomentiaboratory.com> Cc: tom mecieskey <tom@mecieskeyconsuitants.com> Thu, Feb 14, 2013 at 11:11 AM

Dear PM Team,

Due to hold time issues for the pesticides, we need BP-1@5' and BP-3 @5' analyzed for OCPs with the extraction today and a 5 day TAT

We also need BP-2 @5 and BP-4@5 analyzed for lead on a 5 day TAT.

Sincerely,

Christopher Vertin

chris@cvenvironmental.com 925.895.6628

MPORTANT NOTICE: The information contained in this electronic message and/or its attachments is intended for the named recipient only. The electronic message and/or its attachments may contain confidential, non-public or privileged information disclosure of which is restricted by applicable law, including the federal securities laws. If you are not an intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, do not copy, distribute or rety on the information contained herein. If you have received this message in error, please notify the sender immediately by reply and immediately delete this message and any effortments.

On Feb 13, 2013, at 11:34 AM, Toment Laboratory, Inc. wrote:

<1302025 MCLpdf>

https://mail.google.com/mail/catu/0/7ul=22sit=u800e6s2s/7&dev=ptilesarsh=inbos6th=12oda1u2a6b40674

1/1

Tom McCloskey McCloskey Consultants 420 Sycamore Valley Road West Danville, California 94526 Tel: 925 786 2667 Email: tom@mccloskeyconsultants.com

RE: Riggin + Akers - Visalia

Work Order No.: 1302026

Dear Tom McCloskey:

Torrent Laboratory, Inc. received 20 sample(s) on February 04, 2013 for the analyses presented in the following Report.

20 Discretes received and composited 4:1 per CoC instruction.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Torrent Laboratory, Inc. is certified by the State of California, ELAP #1991. If you have any questions regarding these test results, please feel free to contact the Project Management Team at (408)263-5258; ext 204.

Janice Winn-Shilling Sr. Project Manager

February 11, 2013 Date

Date: 2/11/2013

Client: McCloskey Consultants Project: Riggin + Akers - Visalia Work Order: 1302026

CASE NARRATIVE

No issues encountered with the receiving, preparation, analysis or reporting of the results associated with this work order.

Unless otherwise indicated in the following narrative, no results have been method and/or field blank corrected.

Reported results relate only to the items/samples tested by the laboratory.

Analytical Comments for EPA Method 1613 for Tetra through Octa Chlorinated Dibenzo Dioxins and Furans, Note: Analysis subcontracted to CA ELAP approved laboratory #02113CA . Sub-contract data will follow under separate cover.

Sample Result Summary

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
DR-3						13	02026-003
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Comp DR(1-4)						13	02026-005
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	1	0.51	2.0	38	ug/Kg
4,4'-DDT		SW8081A	1	0.67	2.0	19	ug/Kg
DR-5						13	802026-006
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	<u>MDL</u>	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Comp DR (5-8)						13	02026-010
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	1	0.51	2.0	7.0	ug/Kg
DR-11						13	02026-013
Parameters:		<u>Analysis</u> Method	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Comp DR (9-12)						13	02026-015
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	PQL	<u>Results</u>	<u>Unit</u>
Endosulfan II		SW8081A	4	3.3	8.0	14	ug/Kg
DR-15						13	02026-018
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>

All compounds were non-detectable for this sample.

Sample Result Summary

Report prepared for:	Tom McCloskey				Date	Received:	02/04/13
	McCloskey Consultants				Date	Reported:	02/11/13
Comp DR (13-16)						13	302026-020
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	1	0.51	2.0	4.3	ug/Kg
DR-20						13	302026-024
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
All compounds were non-	detectable for this sample.						
Comp DR (17-20)						13	302026-025
Parameters:		<u>Analysis</u> <u>Method</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Results</u>	<u>Unit</u>
4,4'-DDE		SW8081A	1	0.51	2.0	21	ug/Kg
Endosulfan II		SW8081A	1	0.82	2.0	7.6	ug/Kg
4,4'-DDT		SW8081A	1	0.67	2.0	3.7	ug/Kg

Report prepared for:	Tom McCloskey McCloskey Consul		4/13 1/13								
Client Sample ID:	DR-3	Lab Sa	mple ID:	130202	26-003A						
Project Name/Location:	Riggin + Akers - Visalia					Sample Matrix: Soil					
Project Number:											
Date/Time Sampled:	02/01/13 / 9:28	3									
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND	•	mg/Kg	413859	7788

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Dat Da	te Rece te Repo	orted: 02/0	4/13 1/13
Client Sample ID:	Comp DR(1-4)				Lab Sa	mple ID:	13020	26-005A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/01/13 /										
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND		ug/Kg	413851	7781
gamma-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND		ug/Kg	413851	7781
beta-BHC	SW8081A	2/6/13	02/06/13	1	0.56	2.0	ND		ug/Kg	413851	7781
delta-BHC	SW8081A	2/6/13	02/06/13	1	0.40	2.0	ND		ug/Kg	413851	7781
Heptachlor	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
Aldrin	SW8081A	2/6/13	02/06/13	1	0.81	2.0	ND		ug/Kg	413851	7781
Heptachlor epoxide	SW8081A	2/6/13	02/06/13	1	0.36	2.0	ND		ug/Kg	413851	7781
gamma-Chlordane	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
alpha-Chlordane	SW8081A	2/6/13	02/06/13	1	0.94	2.0	ND		ug/Kg	413851	7781
Endosulfan I	SW8081A	2/6/13	02/06/13	1	0.64	2.0	ND		ug/Kg	413851	7781
4,4'-DDE	SW8081A	2/6/13	02/06/13	1	0.51	2.0	38		ug/Kg	413851	7781
Dieldrin	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Endrin	SW8081A	2/6/13	02/06/13	1	0.86	2.0	ND		ug/Kg	413851	7781
4,4'-DDD	SW8081A	2/6/13	02/06/13	1	0.76	2.0	ND		ug/Kg	413851	7781
Endosulfan II	SW8081A	2/6/13	02/06/13	1	0.82	2.0	ND		ug/Kg	413851	7781
4,4'-DDT	SW8081A	2/6/13	02/06/13	1	0.67	2.0	19		ug/Kg	413851	7781
Endrin aldehyde	SW8081A	2/6/13	02/06/13	1	0.46	2.0	ND		ug/Kg	413851	7781
Endosulfan sulfate	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Methoxychlor	SW8081A	2/6/13	02/06/13	1	0.61	5.0	ND		ug/Kg	413851	7781
Endrin Ketone	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Chlordane	SW8081A	2/6/13	02/06/13	1	10	20	ND		ug/Kg	413851	7781
Toxaphene	SW8081A	2/6/13	02/06/13	1	8.2	100	ND		ug/Kg	413851	7781
TCMX (S)	SW8081A	2/6/13	02/06/13	1	52.5	139	68.1		%	413851	7781
DCBP (S)	SW8081A	2/6/13	02/06/13	1	50.2	139	67.3		%	413851	7781

Report prepared for:	Tom McCloskey McCloskey Consul	Date Received: 02/04 Date Reported: 02/11									
Client Sample ID:	DR-5		Lab Sample ID: 13			26-006A					
Project Name/Location:	Riggin + Akers - Visalia					Sample Matrix: Soil					
Project Number:											
Date/Time Sampled:	02/01/13 / 10:1	4									
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND	•	mg/Kg	413859	7788

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Dat Dat	te Rece te Repo	vived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location:	Comp DR (5-8) Riggin + Akers	- Visalia			Lab Sa Sample	mple ID: Matrix:	13020 Soil	26-010A			
Project Number:	00/04/40 /										
Date/Time Sampled:	02/01/13 /										
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND	1	ug/Kg	413851	7781
gamma-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND		ug/Kg	413851	7781
beta-BHC	SW8081A	2/6/13	02/06/13	1	0.56	2.0	ND		ug/Kg	413851	7781
delta-BHC	SW8081A	2/6/13	02/06/13	1	0.40	2.0	ND		ug/Kg	413851	7781
Heptachlor	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
Aldrin	SW8081A	2/6/13	02/06/13	1	0.81	2.0	ND		ug/Kg	413851	7781
Heptachlor epoxide	SW8081A	2/6/13	02/06/13	1	0.36	2.0	ND		ug/Kg	413851	7781
gamma-Chlordane	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
alpha-Chlordane	SW8081A	2/6/13	02/06/13	1	0.94	2.0	ND		ug/Kg	413851	7781
Endosulfan I	SW8081A	2/6/13	02/06/13	1	0.64	2.0	ND		ug/Kg	413851	7781
4,4'-DDE	SW8081A	2/6/13	02/06/13	1	0.51	2.0	7.0		ug/Kg	413851	7781
Dieldrin	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Endrin	SW8081A	2/6/13	02/06/13	1	0.86	2.0	ND		ug/Kg	413851	7781
4,4'-DDD	SW8081A	2/6/13	02/06/13	1	0.76	2.0	ND		ug/Kg	413851	7781
Endosulfan II	SW8081A	2/6/13	02/06/13	1	0.82	2.0	ND		ug/Kg	413851	7781
4,4'-DDT	SW8081A	2/6/13	02/06/13	1	0.67	2.0	ND		ug/Kg	413851	7781
Endrin aldehyde	SW8081A	2/6/13	02/06/13	1	0.46	2.0	ND		ug/Kg	413851	7781
Endosulfan sulfate	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Methoxychlor	SW8081A	2/6/13	02/06/13	1	0.61	5.0	ND		ug/Kg	413851	7781
Endrin Ketone	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Chlordane	SW8081A	2/6/13	02/06/13	1	10	20	ND		ug/Kg	413851	7781
Toxaphene	SW8081A	2/6/13	02/06/13	1	8.2	100	ND		ug/Kg	413851	7781
TCMX (S)	SW8081A	2/6/13	02/06/13	1	52.5	139	62.9		%	413851	7781
DCBP (S)	SW8081A	2/6/13	02/06/13	1	50.2	139	69.7		%	413851	7781

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	vived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	DR-11			Lab Sample ID: 130			26-013A				
Project Name/Location:	Riggin + Akers - Visalia					Sample Matrix: Soil					
Project Number:											
Date/Time Sampled:	02/01/13 / 9:44	1									
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND		mg/Kg	413859	7788

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID: Project Name/Location: Project Number:	Comp DR (9-12) Riggin + Akers - Visalia					mple ID: Matrix:	13020 Soil	26-015A			
Date/Time Sampled	02/01/13 /										
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/6/13	02/06/13	4	2.4	8.0	ND		ug/Kg	413851	7781
gamma-BHC	SW8081A	2/6/13	02/06/13	4	2.5	8.0	ND		ug/Kg	413851	7781
beta-BHC	SW8081A	2/6/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413851	7781
delta-BHC	SW8081A	2/6/13	02/06/13	4	1.6	8.0	ND		ug/Kg	413851	7781
Heptachlor	SW8081A	2/6/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413851	7781
Aldrin	SW8081A	2/6/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413851	7781
Heptachlor epoxide	SW8081A	2/6/13	02/06/13	4	1.4	8.0	ND		ug/Kg	413851	7781
gamma-Chlordane	SW8081A	2/6/13	02/06/13	4	3.2	8.0	ND		ug/Kg	413851	7781
alpha-Chlordane	SW8081A	2/6/13	02/06/13	4	3.8	8.0	ND		ug/Kg	413851	7781
Endosulfan I	SW8081A	2/6/13	02/06/13	4	2.6	8.0	ND		ug/Kg	413851	7781
4,4'-DDE	SW8081A	2/6/13	02/06/13	4	2.0	8.0	ND		ug/Kg	413851	7781
Dieldrin	SW8081A	2/6/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413851	7781
Endrin	SW8081A	2/6/13	02/06/13	4	3.4	8.0	ND		ug/Kg	413851	7781
4,4'-DDD	SW8081A	2/6/13	02/06/13	4	3.0	8.0	ND		ug/Kg	413851	7781
Endosulfan II	SW8081A	2/6/13	02/06/13	4	3.3	8.0	14		ug/Kg	413851	7781
4,4'-DDT	SW8081A	2/6/13	02/06/13	4	2.7	8.0	ND		ug/Kg	413851	7781
Endrin aldehyde	SW8081A	2/6/13	02/06/13	4	1.8	8.0	ND		ug/Kg	413851	7781
Endosulfan sulfate	SW8081A	2/6/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413851	7781
Methoxychlor	SW8081A	2/6/13	02/06/13	4	2.5	20	ND		ug/Kg	413851	7781
Endrin Ketone	SW8081A	2/6/13	02/06/13	4	2.3	8.0	ND		ug/Kg	413851	7781
Chlordane	SW8081A	2/6/13	02/06/13	4	41	80	ND		ug/Kg	413851	7781
Toxaphene	SW8081A	2/6/13	02/06/13	4	33	400	ND		ug/Kg	413851	7781
TCMX (S)	SW8081A	2/6/13	02/06/13	4	52.5	139	69.6		%	413851	7781
DCBP (S)	SW8081A	2/6/13	02/06/13	4	50.2	139	70.3		%	413851	7781
NOTE: Reporting limits inc color extract)	reased due to necessary	dilution of	the sample	(poter	ntial matrix	interferen	ce from the na	ture of the	sample r	matrix - visco	us/dark

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	DR-15		Lab Sa	mple ID:	130202	26-018A					
Project Name/Location:	Riggin + Akers - Visalia					Sample Matrix: Soil					
Project Number:											
Date/Time Sampled:	02/01/13 / 10:3	30									
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND		mg/Kg	413859	7788

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Dat Dat	te Rece te Repo	eived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	Comp DR (13-	16)			Lab Sa	mple ID:	13020	26-020A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/01/13 /										
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND	1	ug/Kg	413851	7781
gamma-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND		ug/Kg	413851	7781
beta-BHC	SW8081A	2/6/13	02/06/13	1	0.56	2.0	ND		ug/Kg	413851	7781
delta-BHC	SW8081A	2/6/13	02/06/13	1	0.40	2.0	ND		ug/Kg	413851	7781
Heptachlor	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
Aldrin	SW8081A	2/6/13	02/06/13	1	0.81	2.0	ND		ug/Kg	413851	7781
Heptachlor epoxide	SW8081A	2/6/13	02/06/13	1	0.36	2.0	ND		ug/Kg	413851	7781
gamma-Chlordane	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
alpha-Chlordane	SW8081A	2/6/13	02/06/13	1	0.94	2.0	ND		ug/Kg	413851	7781
Endosulfan I	SW8081A	2/6/13	02/06/13	1	0.64	2.0	ND		ug/Kg	413851	7781
4,4'-DDE	SW8081A	2/6/13	02/06/13	1	0.51	2.0	4.3		ug/Kg	413851	7781
Dieldrin	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Endrin	SW8081A	2/6/13	02/06/13	1	0.86	2.0	ND		ug/Kg	413851	7781
4,4'-DDD	SW8081A	2/6/13	02/06/13	1	0.76	2.0	ND		ug/Kg	413851	7781
Endosulfan II	SW8081A	2/6/13	02/06/13	1	0.82	2.0	ND		ug/Kg	413851	7781
4,4'-DDT	SW8081A	2/6/13	02/06/13	1	0.67	2.0	ND		ug/Kg	413851	7781
Endrin aldehyde	SW8081A	2/6/13	02/06/13	1	0.46	2.0	ND		ug/Kg	413851	7781
Endosulfan sulfate	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Methoxychlor	SW8081A	2/6/13	02/06/13	1	0.61	5.0	ND		ug/Kg	413851	7781
Endrin Ketone	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Chlordane	SW8081A	2/6/13	02/06/13	1	10	20	ND		ug/Kg	413851	7781
Toxaphene	SW8081A	2/6/13	02/06/13	1	8.2	100	ND		ug/Kg	413851	7781
TCMX (S)	SW8081A	2/6/13	02/06/13	1	52.5	139	70.5		%	413851	7781
DCBP (S)	SW8081A	2/6/13	02/06/13	1	50.2	139	69.1		%	413851	7781

SAMPLE RESULTS

Report prepared for:	Tom McCloskey McCloskey Consul	tants						Da Da	te Rece te Repo	ived: 02/0 orted: 02/1	4/13 1/13
Client Sample ID:	DR-20				Lab Sa	mple ID:	130202	26-024A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:											
Date/Time Sampled:	02/01/13 / 10:5	53									
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
Arsenic	SW6010B	2/6/13	02/07/13	1	0.28	1.7	ND	•	mg/Kg	413859	7788

483 Sinclair Frontage Rd., Milpitas, CA 95035 | ral: 408.263.5258 | rax: 408.263.8293 | www.torrentlab.com

SAMPLE RESULTS

Report prepared for:	Tom McCloskey McCloskey Consult	ants						Dat Dat	te Rece te Repo	ived: 02/04 orted: 02/1	4/13 1/13
Client Sample ID:	Comp DR (17-2	20)			Lab Sa	mple ID:	13020	26-025A			
Project Name/Location:	Riggin + Akers	- Visalia			Sample	Matrix:	Soil				
Project Number:	00/04/40 /										
Date/Time Sampled:	02/01/13 /										
Tag Number:	Riggin + Akers	-Visalia									
Parameters:	Analysis Method	Prep Date	Date Analyzed	DF	MDL	PQL	Results	Lab Qualifier	Unit	Analytical Batch	Prep Batch
alpha-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND		ug/Kg	413851	7781
gamma-BHC	SW8081A	2/6/13	02/06/13	1	0.61	2.0	ND		ug/Kg	413851	7781
beta-BHC	SW8081A	2/6/13	02/06/13	1	0.56	2.0	ND		ug/Kg	413851	7781
delta-BHC	SW8081A	2/6/13	02/06/13	1	0.40	2.0	ND		ug/Kg	413851	7781
Heptachlor	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
Aldrin	SW8081A	2/6/13	02/06/13	1	0.81	2.0	ND		ug/Kg	413851	7781
Heptachlor epoxide	SW8081A	2/6/13	02/06/13	1	0.36	2.0	ND		ug/Kg	413851	7781
gamma-Chlordane	SW8081A	2/6/13	02/06/13	1	0.79	2.0	ND		ug/Kg	413851	7781
alpha-Chlordane	SW8081A	2/6/13	02/06/13	1	0.94	2.0	ND		ug/Kg	413851	7781
Endosulfan I	SW8081A	2/6/13	02/06/13	1	0.64	2.0	ND		ug/Kg	413851	7781
4,4'-DDE	SW8081A	2/6/13	02/06/13	1	0.51	2.0	21		ug/Kg	413851	7781
Dieldrin	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Endrin	SW8081A	2/6/13	02/06/13	1	0.86	2.0	ND		ug/Kg	413851	7781
4,4'-DDD	SW8081A	2/6/13	02/06/13	1	0.76	2.0	ND		ug/Kg	413851	7781
Endosulfan II	SW8081A	2/6/13	02/06/13	1	0.82	2.0	7.6		ug/Kg	413851	7781
4,4'-DDT	SW8081A	2/6/13	02/06/13	1	0.67	2.0	3.7		ug/Kg	413851	7781
Endrin aldehyde	SW8081A	2/6/13	02/06/13	1	0.46	2.0	ND		ug/Kg	413851	7781
Endosulfan sulfate	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Methoxychlor	SW8081A	2/6/13	02/06/13	1	0.61	5.0	ND		ug/Kg	413851	7781
Endrin Ketone	SW8081A	2/6/13	02/06/13	1	0.58	2.0	ND		ug/Kg	413851	7781
Chlordane	SW8081A	2/6/13	02/06/13	1	10	20	ND		ug/Kg	413851	7781
Toxaphene	SW8081A	2/6/13	02/06/13	1	8.2	100	ND		ug/Kg	413851	7781
TCMX (S)	SW8081A	2/6/13	02/06/13	1	52.5	139	71.3		%	413851	7781
DCBP (S)	SW8081A	2/6/13	02/06/13	1	50.2	139	70.5		%	413851	7781

MB Summary Report

Work Order:	1302026	Prep	Method:	3545_OCP	Prep	Date:	02/06/13	Prep Batch:	7781
Matrix:	Soil	Analy	tical	SW8081A	Anal	yzed Date:	02/06/13	Analytical	413851
Units:	ug/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
alpha-BHC		0.61	2.0	ND					
gamma-BHC		0.61	2.0	ND					
beta-BHC		0.56	2.0	ND					
delta-BHC		0.40	2.0	ND					
Heptachlor		0.79	2.0	ND					
Aldrin		0.81	2.0	ND					
Heptachlor epoxide		0.36	2.0	ND					
gamma-Chlordane		0.79	2.0	ND					
alpha-Chlordane		0.94	2.0	ND					
Endosulfan I		0.64	2.0	ND					
4,4'-DDE		0.51	2.0	ND					
Dieldrin		0.58	2.0	ND					
Endrin		0.86	2.0	ND					
4,4'-DDD		0.76	2.0	ND					
Endosulfan II		0.82	2.0	ND					
4,4'-DDT		0.67	2.0	ND					
Endrin aldehyde		0.46	2.0	ND					
Endosulfan sulfate		0.58	2.0	ND					
Methoxychlor		0.61	5.0	ND					
Endrin Ketone		0.58	2.0	ND					
Chlordane		10	20	ND					
Toxaphene		8.2	100	ND					
TCMX (S)				65.3					
DCBP (S)				71.1					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | ral: 408.263.5258 | rax: 408.263.8293 | www.torrentlab.com

MB Summary Report

Work Order:	1302026	Prep I	Method:	3050	Prep	Date:	02/06/13	Prep Batch:	7788
Matrix:	Soil	Analy	tical	SW6010B	Anal	yzed Date:	02/07/13	Analytical	413859
Units:	mg/Kg	Metho	od:					Batch:	
Parameters		MDL	PQL	Method Blank Conc.	Lab Qualifier				
Antimony		0.20	5.0	ND					
Arsenic		0.25	1.7	ND					
Barium		0.07	5.0	0.51					
Beryllium		0.0800	2.0	ND					
Cadmium		0.055	1.0	ND					
Chromium		0.050	5.0	0.12					
Cobalt		0.055	5.0	ND					
Copper		0.65	5.0	ND					
Lead		0.14	1.0	0.23					
Molybdenum		0.12	5.0	ND					
Nickel		0.050	5.0	0.080					
Selenium		0.42	5.0	ND					
Silver		0.37	1.0	ND					
Thallium		0.49	5.0	ND					
Vanadium		0.18	5.0	ND					
Zinc		0.25	5.0	0.31					

483 Sinclair Frontage Rd., Milpitas, CA 95035 | 7al: 408.263.5258 | 7ax: 408.263.8293 | www.torrentlab.com

Work Order: **Prep Method:** 3545_OCP 02/06/13 Prep Batch: 7781 1302026 Prep Date: Matrix: Analytical SW8081A Analyzed Date: 02/06/13 Analytical 413851 Soil Method: Batch: Units: ug/Kg LCS % LCSD % LCS/LCSD Method Spike % Parameters MDL PQL Blank Conc. Recovery Recovery % RPD Recovery % RPD Lab Limits Qualifier Conc. Limits gamma-BHC 0.61 2.0 ND 20 66.0 62.4 5.69 56.9 - 120 30 ND 71.2 63.6 - 117 30 Heptachlor 0.79 2.0 20 67.2 5.81 Aldrin 0.81 2.0 ND 20 63.5 61.7 2.92 53 - 123 30 Dieldrin 0.58 2.0 ND 20 60.9 59.1 3.09 44 - 130 30 Endrin 0.86 2.0 ND 20 71.6 66.9 6.87 44.1 - 121 30 4,4'-DDT 0.67 2.0 ND 20 79.2 77.0 2.79 52.8 - 134 30 TCMX (S) ND 350 56.1 53.7 52.5 - 139 DCBP (S) ND 350 56.0 53.2 50.2 - 139 Work Order: 1302026 Prep Method: 3050 Prep Date: 02/06/13 Prep Batch: 7788 Matrix: Analytical SW6010B Analyzed Date: 02/07/13 Analytical 413859 Soil Method: Batch: Units: mg/Kg LCS % LCSD % LCS/LCSD Method % Spike MDL PQL % RPD % RPD Parameters Blank Recovery Recovery Recovery I ab Conc. Conc. Limits Limits Qualifier ND Antimony 0.20 5.0 50 99.4 99.7 0.291 30.7 - 130 30 ND 71 - 121 30 Arsenic 0.25 1.7 50 94.7 95.6 0.988 Barium 0.51 0.000 70.2 - 130 30 0.07 5.0 50 104 104 Beryllium 0.0800 ND 50 103 105 2.0 1.54 73.3 - 115 30 Cadmium 0.055 1.0 ND 50 99.2 98.9 0.353 68.7 - 110 30 Chromium 0.050 5.0 0.12 50 103 103 0.0971 76 - 116 30 Cobalt 0.055 5.0 ND 50 100 101 0.797 57.4 - 122 30 0.65 5.0 ND 50 104 103 0.579 74.8 - 119 30 Copper Lead 0.23 50 95.7 96.6 0.905 67.9 - 118 30 0.14 1.0 Molybdenum ND 99.7 99.8 62.9 - 123 30 0.12 5.0 50 0.120 Nickel 0.080 99.6 101 61.5 - 122 0.050 5.0 50 1.10 30 ND 92.2 92.0 62 - 111 Selenium 0.42 5.0 50 0.217 30 Silver 0.37 1.0 ND 50 99.0 99.3 0.333 81.1 - 109 30 50 Thallium 0.49 5.0 ND 95.8 95.6 0.199 39.2 - 125 30 Vanadium ND 50 104 104 0.000 65.8 - 122 30 0.18 5.0 59.9 - 122 Zinc 0.25 5.0 0.31 50 97.1 98.3 1.25 30

LCS/LCSD Summary Report

Raw values are used in quality control assessment.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | Inl. 408.263.5258 | Iax, 408.263.8293 | www.torrentlab.com

Laboratory Qualifiers and Definitions

DEFINITIONS:

Accuracy/Bias (% Recovery) - The closeness of agreement between an observed value and an accepted reference value.

Blank (Method/Preparation Blank) -MB/PB - An analyte-free matrix to which all reagents are added in the same volumes/proportions as used in sample processing. The method blank is used to document contamination resulting from the analytical process.

Duplicate - a field sample and/or laboratory QC sample prepared in duplicate following all of the same processes and procedures used on the original sample (sample duplicate, LCSD, MSD)

Laboratory Control Sample (LCS ad LCSD) - A known matrix spiked with compounds representative of the target analyte(s). This is used to document laboratory performance.

Matrix - the component or substrate that contains the analyte of interest (e.g., - groundwater, sediment, soil, waste water, etc)

Matrix Spike (MS/MSD) - Client sample spiked with identical concentrations of target analyte (s). The spiking occurs prior to the sample preparation and analysis. They are used to document the precision and bias of a method in a given sample matrix.

Method Detection Limit (MDL) - the minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero

Practical Quantitation Limit (PQL) - a laboratory determined value at 2 to 5 times above the MDL that can be reproduced in a manner that results in a 99% confidence level that the result is both accurate and precise. PQLs reflect all preparation factors and/or dilution factors that have been applied to the sample during the preparation and/or analytical processes.

Precision (%RPD) - The agreement among a set of replicate/duplicate measurements without regard to known value of the replicates

Surrogate (S) or (Surr) - An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are used in most organic analysis to demonstrate matrix compatibility with the chosen method of analysis

Tentatively Identified Compound (TIC) - A compound not contained within the analytical calibration standards but present in the GCMS library of defined compounds. When the library is searched for an unknown compound, it can frequently give a tentative identification to the compound based on retention time and primary and secondary ion match. TICs are reported as estimates and are candidates for further investigation.

Units: the unit of measure used to express the reported result - mg/L and mg/Kg (equivalent to PPM - parts per million in liquid and solid), ug/L and ug/Kg (equivalent to PPB - parts per billion in liquid and solid), ug/m3, mg.m3, ppbv and ppmv (all units of measure for reporting concentrations in air), % (equivalent to 10000 ppm or 1,000,000 ppb), ug/Wipe (concentration found on the surface of a single Wipe usually taken over a 100cm2 surface)

LABORATORY QUALIFIERS:

B - Indicates when the anlayte is found in the associated method or preparation blank

D - Surrogate is not recoverable due to the necessary dilution of the sample

E - Indicates the reportable value is outside of the calibration range of the instrument but within the linear range of the instrument (unless otherwise noted) Values reported with an E qualifier should be considered as estimated.

H- Indicates that the recommended holding time for the analyte or compound has been exceeded

J- Indicates a value between the method MDL and PQL and that the reported concentration should be considered as estimated rather the quantitative

NA - Not Analyzed

N/A - Not Applicable

NR - Not recoverable - a matrix spike concentration is not recoverable due to a concentration within the original sample that is greater than four times the spike concentration added

R- The % RPD between a duplicate set of samples is outside of the absolute values established by laboratory control charts

S- Spike recovery is outside of established method and/or laboratory control limits. Further explanation of the use of this qualifier should be included within a case narrative

X -Used to indicate that a value based on pattern identification is within the pattern range but not typical of the pattern found in standards. Further explanation may or may not be provided within the sample footnote and/or the case narrative.

483 Sinclair Frontage Rd., Milpitas, CA 95035 | 7al. 408.263.5258 | 7ax, 408.263.8293 | www.torrentlab.com

Client Name: <u>McCloskey Consultants</u> Project Name: <u>Riggin + Akers - Visalia</u>

Work Order No.: <u>1302026</u>

Sample Receipt Checklist

Date and Time Received: 2/4/2013	<u>11:29</u>
Received By: <u>kb</u>	
Physically Logged By: Iorna	
Checklist Completed By: Iorna	
Carrier Name: First Courier	

Chain of Custody (COC) Information

Chain of custody present?	Yes			
Chain of custody signed when relinquished and received?	Yes			
Chain of custody agrees with sample labels?	Yes			
Custody seals intact on sample bottles?	Not Present			
Sample Rec	ceipt Information			
Custody seals intact on shipping container/cooler?	Not Present			
Shipping Container/Cooler In Good Condition?	Yes			
Samples in proper container/bottle?	Yes			
Samples containers intact?	Yes			
Sufficient sample volume for indicated test?	Yes			
Sample Preservation an	d Hold Time (HT) li	nformation		
All samples received within holding time?	Yes			
Container/Temp Blank temperature in compliance?	<u>Yes</u>	Temperature:	<u>4</u>	°C
Water-VOA vials have zero headspace?	<u>No VOA vials s</u>	<u>ubmitted</u>		
Water-pH acceptable upon receipt?	<u>N/A</u>			
pH Checked by: <u>n/a</u>	pH Adjusted by	: <u>n/a</u>		

483 Sinclair Frontage Rd., Milpitas, CA 95035 | 7al. 408.263.5258 | 7ax, 408.263.8293 | www.torrentlab.com

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers -	Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302026

WO Sample ID	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> Sample Test Disposal On Hold On I	<u>t Requested Subbed</u> Hold <u>Tests</u>
1302026-001A	DR-1	02/01/13 9:17	Soil	08/03/13	Courier Service
1302026-002A	DR-2	02/01/13 9:22	Soil	08/03/13	Composite
1302026-003A	DR-3	02/01/13 9:28	Soil	08/03/13	Composite
1202026 0044		02/04/42 0.22	Soil	08/02/12	S_6010BAs/Pb Composite
1302026-004A	DR-4	02/01/13 9.32	Soil	08/03/13	Composite
1302020-000A	DR-5	02/01/13 10.14	Soil	08/03/13	S_8081AOCP
	2				S_6010BAs/Pb Composite
1302026-007A	DR-6	02/01/13 10:10	Soil	08/03/13	Composite
1302026-008A	DR-7	02/01/13 10:06	Soil	08/03/13	Composite
1302026-009A	DR-8	02/01/13 10:02	Soil	08/03/13	Composite
1302026-010A	Comp DR (5-8)	02/01/13	Soil	08/03/13	S_8081AOCP
1302026-011A	DR-10	02/01/13 9.54	Soil	08/03/13	Composite
1302026-013A	DR-11	02/01/13 9:44	Soil	08/03/13	Composite
					S_6010BAs/Pb Composite
1302026-014A	DR-12	02/01/13 9:39	Soil	08/03/13	Composite
1302026-015A	Comp DR (9-12)	02/01/13	Soil	08/03/13	S_8081AOCP
1302026-016A	DR-13	02/01/13 10:24	Soil	08/03/13	Composite
1302026-017A	UK-14	02/01/13 10:27	Soll	08/03/13	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | ral: 408.263.5258 | Jax: 408.263.8293 | www.torrentlab.com

Login Summary Report

Client ID:	TL5324	McCloskey Consultants	QC Level:	
Project Name:	Riggin + Akers -	Visalia	TAT Requested:	5+ day:0
Project # :			Date Received:	2/4/2013
Report Due Date:	2/11/2013		Time Received:	11:29

Comments: 5day TAT. Send report to Tom McCloskey and Chris Vertin.

Work Order # : 1302026

<u>WO Sample ID</u>	<u>Client</u> Sample ID	Collection Date/Time	<u>Matrix</u>	<u>Scheduled</u> <u>Disposal</u>	<u>Sample</u> On Hold	<u>Test</u> On Hold	<u>Requested</u> <u>Tests</u>	<u>Subbed</u>
1302026-018A	DR-15	02/01/13 10:30	Soil	08/03/13			Composite	
							S_6010BAs/Pb Composite	
1302026-019A	DR-16	02/01/13 10:35	Soil	08/03/13			Composite	
1302026-020A	Comp DR (13-16)	02/01/13	Soil	08/03/13				
1302026-021A	DR-17	02/01/13 10:41	Soil	08/03/13				
1302026-022A	DR-18	02/01/13 10:45	Soil	08/03/13			Composite	
1302026-023A	DR-19	02/01/13 10:49	Soil	08/03/13			Composite	
1302026-024A	DR-20	02/01/13 10:53	Soil	08/03/13			Composite	
							S_6010BAs/Pb Composite	
1302026-025A	Comp DR (17-20)	02/01/13	Soil	08/03/13			S 909140CD	
							3_000TAUCF	

483 Sinclair Frontage Rd., Milpitas, CA 95035 | ral: 408.263.5258 | Jax: 408.263.8293 | www.torrentlab.com

	To	rrent	Alpitas, CA 95035 hone: 408.263.52	58		(CHA	IN (OF (CUSTO	DDY	F	LAB WORK ORDER N	10
6	LABO	RATORY, INC. W	AX: 408.263.8293 www.torrentlab.com		• N	OTE: SHA	DED A	REAS A	ARE FOR	TORRENT	AB USE ON	ILY.	302026	4
Compan	y Name: N	ICI-McCloskey				Env.] H 🖸	Food 🔲	Special Lo	ocation of Sam	pling: Rugg	in + Alters	s-Visaligi	
Address	: 420 Syc	camore Volley Rol West	0.	-1-				Purpos	e: Soil	Sampling	- Dirt Ro	ads	0.00	
City: 🐉	Danville		State: (A	Zip (Code:42	526		Special	Instructi	ons / Comme	15:4pt C	omposites -	for CCPs	_
Telepho	ne: 425.	786.2667	AX:	11				DO #						-
TUDNAD	TO: JAN MO	llosby/ChrisVarta 3	SAMPLER: CAPIS	Vertin	DEDOD	TEOPMAT	-	P.O. #:			EN	IAIL:	17	_
10 Wo 7 Work	rk Days 🔲 (Days 🔲 (Days 🔲	4 Work Days I Work Day 3 Work Days Noon - Nxt D 2 Work Days 2 - 8 Hours	ay Storm Water Waste Water Ground Water	Air Other	QCI EDF EXCE	Level IV	Rs (8081)	enc					ANALYSIS REQUESTED	,
LAB ID	ID CANISTER CLIENT'S SAMPLE I.D. DATE / TIME MATRIX # OF CONT I.D. DR-1 2:1.13 9:17 Soul 1 4029							Ars					REMARKS	
DIA	DR-1 2:1:13 9:17 Soil 1 429					4029645	$\backslash /$)					1. 1. 1.
02A		DR-Z	9:22	1	[V		(- 005A			Kapt 1.	al read
2000	100	DR-3	9:28				X	X	(Composite for O'Pr	1011
703H	6			1.			$ \rangle$)				Jum	1
004A		DR-54	9:32					1					/	10
104A		DR-554	9:32 10:14				$\left(\right)$	X	2				- multi-	Manufacture and
004A 106A 106A		DR-54 DR-5 DR-6	9:32 10:14 10:10				\bigvee	Х	3-	010A			{4, t	The sugar
1004A 1006A 1006A 1007A 1008A		DR-55 DR-6 DR-7	9:32 10:14 10:10 10:06				X	X	2-	010A			4 pt Composite	The Report Line and the
703A 706A 706A 707A 708A 708A		DR-55 DR-6 DR-7 DR-8	9:32 10:14 10:10 10:06 10:06					X	<u>}</u> -	010A			4 pt Composite for OCR	and the fight of the second with
004A 006A 007A 008A 009A 009A		DR-55 DR-6 DR-7 DR-8 DR-9	9:32 10:14 10:10 10:06 10:06 10:06 10:06					X	}_ } 2	010A			4 pt Composite for OCR 24 pt Composite	and the state of the state of the second state of the
004A 006A 006A 007A 008A 009A 011A 012A	5 100 4 sunt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DR-55 DR-6 DR-7 DR-7 DR-8 DR-9 DR-10	9:32 10:14 10:10 10:06 10:06 10:02 9:54 9:54 9:49				X	X	} }	010A 15A			4 pt Composite for OCR 24pt Composite) W/DR-11+DR-1	1 10 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1
003H 004A 006A 007A 008A 009A 011A 012A	Linghod By	DR-5 DR-5 DR-6 DR-7 DR-7 DR-8 DR-9 DR-10	9:32 10:14 10:10 10:06 10:06 10:02 9:54 9:54 9:54 9:49	//2	Time:	(3	Receiv	ed By:	}	DIOA 15A Print: M	lonina (Date:	4 pt Composite for OCR 24pt Composite) W/DR-11+DR-1 12 Time: 1/1/12	1 American 1

483 Sinclair Frontage Rd., Milpitas, CA 95035 | 1al: 408.263.5258 | Jax: 408.263.8293 | www.torrentlab.com

1

几	To	orrent	83 Sinclair Frontag hilpitas, CA 95035 hone: 408.263.525	e Road	<u></u>	C	HA	IN	OF	CUSTO	DY	LAB WORK ORDER NO	-
6	LAB	ORATORY, INC.	ww.torrentlab.com		(•N	STI SHA		REAS	ARE F	OR TORRENT L	AB USE ONLY	1000020	-
Address:	40x 4	MCL-Melloskey	labet					Purpos	special	Bul Surpluis	Det Prode	s-Visalia	-
City: () (nulle	VCINIMUM & VILING KOI	State: (A	Zip	Code: 94	526	1	Specia	I Instru	ictions / Comment	s:		1
Telephor	ne: 925.	786.2667	AX:										
REPORT	TO: Tom	Closkey / Chris Vertn :	SAMPLER: Christ	ertin			-	P.O. #	:		EMAIL:		
10 Work	k Days	4 Work Days 1 Work Day 3 Work Days Noon - Nxt D 2 Work Days 2 - 8 Hours	ay Storm Water Waste Water Ground Water	Air Other	QC Le EDF EXcel	evel IV / EDD	CR (8081)	duc				ANALYSIS REQUESTED	
LAB ID	k Days 3 Work Days Noon - Nxt Day Waste Water k Days 2 Work Days 2 - 8 Hours Ground Water k Days 2 Work Days 2 - 8 Hours Soil CANISTER CLIENT'S SAMPLE I.D. DATE / TIME MA I.D. DR-11 2.1:73 9:44 5 DD D 0 0 0 0			MATRIX	# OF CONT	CONT TYPE	ð	Are				REMARKS	
013A	and the second se	DR-11 2113 9244 Soil 1			1	402glass	V	X	2			24pt compose	0.0
14A		DR-12	9:39	1	1	5	Å		}	0154	114) W/DR-9+DR-10	
016A		DR-13	10:24)	1-1-1		1	11 - N
ALIC		DR-14	10:27			1	V		1			K4pt Composite	Contra la
A810		DR-15	10:20			1.00	X	X	7	-020A		for OCPS	1
DIGA	1.1.1	DP-16	10:35				/						
DZIA	- 1	De-17	10:41			1-2			5			1	2
022A		DR-18	10:45				V		5	-0750		K 4pt	
023A		DR-19	10:49		1.0		Å	121	(Composite	1
024A	2	18-20	10:53				/	X	J) for ocr	
1 Reling	uished By	Vot Christer Print Mo	loth Date: nha Date:	13	Time: //:C	t3 '29	Receiv	red By:	MB.	Print: Moi Bi	nina Date: uchango 020 Date: 4	12 Time: 10,43	7

483 Sinclair Frontage Rd., Milpitas, CA 95035 | 1al: 408.263.5258 | Jax: 408.263.8293 | www.torrentlab.com

APPENDIX C

Lead 95% Upper Confidence Limit Calculation, Former Residence Data

General UCL Statistics	for Full Da	nta Sets	
User Selected Options		•	
From File WorkSheet.wst			
Full Precision OFF			
Confidence Coefficient 95%			
Number of Bootstrap Operations 2000			
ער איז			
алан алан алан алан алан алан алан алан			
	alana (1997) - 11 (1997) - 12 (1997) - 1977) - 1977) -		
а ул ул ул арт ул шал ул дашалаа ал алаан ул амаламынынынын мөмөлөлөө шалалар жал алаал мөмөөл өмөө төөсөлө мөм			an gentange en en anderskepte f. f.
an an ann an an an an an ann an ann an a	General	Statistics	
Number of Valid Observations	37	Number of Distinct Observations	30
an a			
Raw Statistics	· · · · · · ·	Log-transformed Statistics	
Minimum	5.3	Minimum of Log Data	1.668
Maximum	140	Maximum of Log Data	4.942
Mean	45.77	. Mean of log Data	3.192
Geometric Mean	24.34	SD of log Data	1.2
Median	23	granden in en de linne internet en	
SD	46.32		
Std. Error of Mean	7.616	· · · · · · · · · · · · · · · · · · ·	
Coefficient of Variation	1.012	·	
Skewness	0.816		
R	elevant U	CL Statistics	
Normal Distribution Test		Lognormal Distribution Test	
Shapiro Wilk Test Statistic	0.791	Shapiro Wilk Test Statistic	0.852
Shapiro Wilk Critical Value	0.936	Shapiro Wilk Critical Value	0.936
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
95% Student's-t UCL	58.63	_ 95% H-UCL	84.57
95% UCLs (Adjusted for Skewness)	· •	95% Chebyshev (MVUE) UCL	99.02
95% Adjusted-CLT UCL (Chen-1995)	59.39	97.5% Chebyshev (MVUE) UCL	120.9
95% Modified-t UCL (Johnson-1978)	58.8	99% Chebyshev (MVUE) UCL	163.9
алан алан алан алан алан алан алан алан		in na na ann an tarthann ann ann ann ann ann ann ann ann ann	1 - An Alfred 1 - C - C - MA - C - MA
Gamma Distribution Test		Data Distribution	
k star (bias corrected)	0.866	Data do not follow a Discernable Distribution (0.05	5)
Theta Star	52.83	•	
MLE of Mean	45.77	Anno 1999 - An	
MLE of Standard Deviation	49.17	n na anna a channa ann an a	
nu star	64.11		
Approximate Chi Square Value (.05)	46.69	Nonparametric Statistics	
Adjusted Level of Significance	0.0431	95% CLT UCL	58.29
Adjusted Chi Square Value	46.04	95% Jackknife UCL	58.63
		95% Standard Bootstrap UCL	58.12
Anderson-Darling Test Statistic	2.03	95% Bootstrap-t UCL	59.71
Anderson-Darling 5% Critical Value	0.78	95% Hall's Bootstrap UCL	59.15
Kolmogorov-Smirnov Test Statistic	0.197	95% Percentile Bootstrap UCL	58.42
Kolmogorov-Smirnov 5% Critical Value	0.15	95% BCA Bootstrap UCL	59.47
Data not Gamma Distributed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	78.96
· · · · · · · · · · · · · · · · · · ·		97.5% Chebyshev(Mean, Sd) UCL	93.33

	·特殊意思。在1997年1月1日,1998年1月	· 영상 동양은 '유가 문제' 유가 관계	1 4 60 C
Assuming Gamma Distribution		99% Chebyshev(Mean, Sd) UCL	121.5
95% Approximate Gamma UCL (Use when n >= 40)	62.85		
95% Adjusted Gamma UCL (Use when n < 40)	63.73		
Potential UCL to Use	Űs	se 95% Chebyshev (Mean, Sd) UCL	78.96
· · · · · · · · · · · · · · ·			
te: Suggestions regarding the selection of a 95% L	JCL are provided to help the use	r to select the most appropriate 95	% UCL.
These recommendations are based upon the result	ts of the simulation studies sumn	narized in Singh, Singh, and laci (2002)
or service of an experimental service and the service of the servi	dillocat lock the user mouse	nt to concult a statistician	

.

,

.

,

•

		General UCL Statistics	for Full Data	Sets	
User Sel	ected Option:	5			
	From File	WorkSheet.wst		· · · · · · · · · · · · · · · · · · ·	
F	ull Precision	ÔFF		,	
Confidence	Full Precision OFF				
Number of Bootstrat	Operations	2000			
	••••••••••••••••••••••••••••••••••••••				
	r na san managana na kamatana ka ma	о с село само украните о напаса неготор таковане то какта о и насе токите о 1 от 50 миние о 1 о г	and a subgroup of a special data of a large set	איין איין איין איין איין איין איין איין	
:n	n na am na ambasa kan dang bahar	да алу турну улу на такжа на насто с сторатото с сторат на насто с стора. По подат		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			an gayan a an an an ag ga an ana a san e		
	aya an i i i i i i i i	a a construction of the state o	General Sta	atistics	
	Numb	er of Valid Observations	40	Number of Distinct Observations	32
	Raw S	Statistics		Log-transformed Statistics	، مرد رسم ار مرد
		Minimum	4.7	Minimum of Log Data	1.548
an the association is sold that the ave	gent is an isotropic and the first the	Maximum	140	Maximum of Log Data	4.942
· · · · · · · · · · · · · · · · · · ·		Mean	42.7	Mean of log Data	3.072
		Geometric Mean	21.59	SD of log Data	1.23
 A subscription contraction of the second seco		Median	18.5		
		SD	45.82	· · · · · · · · · · · · · · · · · · ·	
a a construction of the second de-	1.14. Soc. 117. Arts for an association of	Std. Error of Mean	7.245	and the second	
		Coefficient of Variation	1.073		
	·	Skewness	0.929	and the second	
					· ·
		R R	elevant UCL	Statistics	· · · · ·
	Normal Dis	tribution Test		Lognormal Distribution Test	
· · · · · · · · · · · · · · · · · · ·	SI	naniro Wilk Test Statistic	0.77	Shapiro Wilk Test Statistic:	0.85
and the second	Sr	aniro Wilk Critical Value	0.94	Shapiro Wilk Critical Value	0.94
Data n	ot Normal at	5% Significance Level		Data not Lognormal at 5% Significance Level	
			in sati fii		· ··· ·· ·
	ssuming Nor	mal Distribution		Assuming Lognormal Distribution	
	-	95% Student's-t UCL	54,91	95% H-UCL	78.05
954	% UCLs (Adii	usted for Skewness)		95% Chebyshev (MVUE) UCL	90.92
	95% Adjuster	d-CLT UCL (Chen-1995)	55.76	97.5% Chebyshev (MVUE) UCL	111
	95% Modifie	d-t UCL (Johnson-1978)	55.09	99% Chebyshev (MVUE) UCL	150.4
·····	Gamma Dis	tribution Test	<u>;</u>	Data Distribution	
t als the station as an		k star (bias corrected)	0.814	Data do not follow a Discernable Distribution (0.05	i)
		Theta Star	52.48		
		MI E of Mean	42.7		
	M	E of Standard Doviation	47.34	•••••••••••••••••••••••••••••••••••••••	
	141		+7.04		
			65.09		
	Approvimate	nu star	65.09 47.53	Nonparametric Statistics	
	Approximate	nu star → Chi Square Value (.05) ed Level of Significance	65.09 47.53 0.044	Nonparametric Statistics	54 62
	Approximate Adjust	nu star Chi Square Value (.05) ed Level of Significance	65.09 47.53 0.044 46.97	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	54.62 54.91
بر د مر بر د بر بر مر	Approximate Adjust Ad	nu star Chi Square Value (.05) ed Level of Significance iusted Chi Square Value	65.09 47.53 0.044 46.97	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	54.62 54.91 54.09
• • • • • • • • • • • • • • • • • • • •	Approximate Adjust Ad	nu star Chi Square Value (.05) Ed Level of Significance Justed Chi Square Value	65.09 47.53 0.044 46.97	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	54.62 54.91 54.09 55.54
· · · · · · · · · · · · · · · · · · ·	Approximate Adjus Ad Anders	nu star Chi Square Value (.05) ted Level of Significance justed Chi Square Value on-Darling Test Statistic ading 5% Critical Value	65.09 47.53 0.044 46.97 2.384 0.784	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	54.62 54.91 54.09 55.54 54.92
· · · · · · · · · · · · · · · · · · ·	Approximate Adjust Ad Anders Anderson-E	nu star e Chi Square Value (.05) led Level of Significance justed Chi Square Value on-Darling Test Statistic)arling 5% Critical Value	65.09 47.53 0.044 46.97 2.384 0.784	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	54.62 54.91 54.09 55.54 54.92 54.25
· · · · · · · · · · · · · · · · · · ·	Approximate Adjust Ad Anders Anderson-E Kolmogoro	nu star nu star Chi Square Value (.05) ted Level of Significance justed Chi Square Value on-Darling Test Statistic Darling 5% Critical Value v-Smirnov Test Statistic nirnov 5% Critical Value	65.09 47.53 0.044 46.97 2.384 0.784 0.214 0.144	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	54.62 54.91 54.09 55.54 54.92 54.25 55.49
K Data not Gar	Approximate Adjust Ad Anders Anderson-E Kolmogoro olmogorov-Sr	nu star nu star Chi Square Value (.05) led Level of Significance justed Chi Square Value on-Darling Test Statistic Darling 5% Critical Value w-Smirnov Test Statistic nirnov 5% Critical Value ed at 5% Significance Level	65.09 47.53 0.044 46.97 2.384 0.784 0.214 0.144 vel	Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebysbey(Mean_Sd) UCL	54.62 54.91 54.09 55.54 54.92 54.25 55.49 74.28

Assuming Gamma Distribution 99% Chebyshev(Mean, Sd) UCL 114.8 95% Approximate Gamma UCL (Use when n >= 40) 58.48 95% Adjusted Gamma UCL (Use when n < 40) 59.18 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 74.28 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003) For additional insight, the user may want to consult a statistician.		a set a tradition										
95% Approximate Gamma UCL (Use when n >= 40) 58.48 95% Adjusted Gamma UCL (Use when n < 40) 59.18 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 74.28 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003) For additional insight, the user may want to consult a statistician.	A	Assuming Gamma Distribution				99% Chebyshev(Mean, Sd) UCL 114.8						
95% Adjusted Gamma UCL (Use when n < 40) 59.18 Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 74.28 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003) For additional insight, the user may want to consult a statistician.	95% Approxim	nate Gamma UCL	(Use when n >= 40)	58.48								
Potential UCL to Use Use 95% Chebyshev (Mean, Sd) UCL 74.28 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003) For additional insight, the user may want to consult a statistician.	95% Adju	usted Gamma UC	L (Use when n < 40)	59.18								
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003) For additional insight, the user may want to consult a statistician		Potential UCL	to Use	00 000 A.V. SIMON PROVIDE 'N AN INCOM A MARKAN PROVIDE	Use	e 95% Cheb	yshev (Mea	n, Sd) UCL	74.28			
These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003) For additional insight, the user may want to consult a statistician	Note: Suggestion	ns regarding the	selection of a 95% U	CL are provide	d to help the user	to select th	e most app	ropriate 95%	6 UCL.			
and Singh and Singh (2003) For additional insight, the user may want to consult a statistician	These recomm	mendations are b	ased upon the result	s of the simula	tion studies summ	arized in Si	ngh, Singh,	and laci (2	002)			
and origin and origin (2000). The additional insight, the door may want to boliout a ballotionin	,	and Singh and S	ingh (2003). For ad	ditional insight,	the user may wan	t to consult	a statisticia	an.				
	a data sebagai a sebagai a deba ta an deba ta an dagai a	an ana again an taon 1 - 1 - 1944.	and permittan in a company contract of encoder and a			and the second second	ann a gur a' caithean	ta ination to to				
·			•									

.

,

、

•

.