Lead in Drinking Water Sampling Report

Oak Knoll Elementary School
1895 Oak Knoll Lane
Menlo Park, Ca 94025

Prepared For:
Menlo Park City School District
195 Encinal Ave,
Atherton, CA 94027

Prepared By:
Air & Water SCIENCES
Environmental Consultants
625 Second Street, Suite 210
Petaluma, CA 94952

November 2016

Heidi Bauer, PG
Chip Prokop, PE
DWTO T-1 #33506
WDO D-1 #42258
Lead in Drinking Water Sampling Report

Oak Knoll Elementary School

Introduction

The Menlo Park City School District (MPCSD) requested that the potable water at this school used for drinking and cooking by students and staff be tested for the presence of the heavy metal lead. Schools are not required under federal or state law to test potable water sources for lead if their water is supplied by a public water supply system. Federal law requires that the public water supply districts test water for lead and that lead levels in the drinking water supply have lead concentrations below the US Environmental Protection Agency (EPA) action level of 15 µg/L. However, the MPCSD recognizes that schools, particularly older facilities (pre-1990) may contain sources of lead in the plumbing pipes and fixtures which could contribute to lead levels in school drinking water. The presence of lead in drinking water can lead to adverse health effects in people, especially children. Therefore, AWS was requested to conduct sampling for the presence and/or amount of lead in the drinking water at outlets at this school designated by MPCSD.

Sources of Lead in Drinking Water at Schools

Lead can enter the drinking water at a school either by being present in the water entering the school from the municipal water source (i.e. public water supply agency) or through the plumbing system within the school where materials containing lead, such as lead pipes, lead solder and fluxes may be present. Stagnant water in the school pipes can have extended contact with lead containing materials and components. Due to these irregular use patterns elevated concentrations of lead could be present in the drinking water. Other factors such as the pH of the water and the temperature can also affect the rate at which lead is absorbed into the water.

Summary of Regulations to Reduce Lead in Drinking Water

In 1986 the Safe Water Drinking Act (SWDA) required the use of “lead-free” pipe, solder, and flux in the installation or repair of any public water system or any plumbing in a residential or non-residential facility providing water for human consumption. Solders and flux are considered to be lead-free when they contain less than 0.2% lead. Before this ban took effect on June 19, 1986, solders used to join water pipes typically contained about 50% lead. Pipes
and pipe fittings were considered “lead-free” under the Lead Ban when they contained less than 8% lead. In January 2010, California enacted a law which reduced the maximum allowable lead content of pipes, pipe fittings, plumbing fittings and fixtures used to convey water for human consumption to less than 0.25% lead of wetted surfaces as determined by a weighted average. On January 4, 2014 the "Reduction of Lead in Drinking Water Act", more commonly known as the Lead Free law, went into effect. This resulted in a national mandate requiring that every pipe, fixture, and fitting used to convey water for potable use contain less than 0.25% of lead by weight.

In 1988, the Lead Contamination Control Act (LCCA) was signed. This required the identification of water coolers that were not lead-free, the removal or repair of water coolers with lead lined tanks, banned the manufacture and sale of water coolers that are not lead-free and required the identification and resolution of lead problems in schools. The LCCA was aimed at secondary and primary schools, kindergartens, daycare centers, water cooler manufacturers and federal, state and local agencies.

In 1991 the Lead and Copper Rule (LCR) was signed into law. The LCR requires public water suppliers to monitor for lead and copper in drinking water at select residential dwellings supplied water by the public agency. If lead or copper are found above the EPA action levels, the water supply agency must provide corrosion treatment.

Lead Contaminant Levels in Drinking Water

The State of California and the City of Menlo Park must comply with the LCR which sets a regulatory action level for lead in water at 15 µg/L for public water supply systems. The regulatory action level is the concentration of a contaminant which, when exceeded, triggers treatment or other requirements that a water system must follow.

The lead testing protocol specified by the LCR and used by public water systems is aimed at identifying system-wide problems rather than problems at outlets in individual buildings. The LCR for public water systems established a lead action level of 15 µg/L for one liter samples collected at high-risk residences. If more than 10 percent of the samples at residences exceed 15 µg/L, system-wide corrosion control treatment may be necessary. The 15 µg/L action level for public water systems is the trigger level for treatment.

The EPA guidance document for testing for lead in the potable water supply at schools is entitled “3Ts for Reducing Lead in Drinking Water in Schools, Revised Technical Guidance,”
October 2006” (EPA 3T’s). This document recommends that water fountains and/or other outlets used for consumption be taken out of service if lead levels exceed 20 µg/L. This is based on the collection of 250 mL first-draw samples (i.e., samples of water that have remained stagnant for 8-18 hours prior to flushing or use occurs). The EPA recommends this first-draw sample combined with the 8-18 hour waiting period in order to maximize the likelihood that the highest concentrations of lead are found in the outlets being tested.

Although EPA recommends using a concentration of 20 µg/L as the trigger level to conduct additional testing to determine the source, AWS has recommended, with the school district’s concurrence, to use exceedances of 15 µg/L lead in drinking water in the schools as the trigger point to take an outlet out of service and to perform additional testing to determine the source of lead.

Purpose and Scope of Work

The scope of work is to determine if the drinking water in the school contains elevated levels of the heavy metal lead (Pb). The scope of work includes:

- Collect drinking water samples from representative priority outlets identified by a MPCSD representative.
- Compare water sampling results to EPA MCL of 15 µg/L for lead.
- Provide recommendations for additional sampling, if needed.

This sampling strategy, procedures and analytical tests were based on guidance provided by the *EPA 3T’s guidance document*.

Site Background

Oak Knoll Elementary School (OKS) is located 1895 Oak Knoll Lane in Menlo Park, CA. The school is an elementary school and serves children from kindergarten to 5th grade. The school opened in 1951. Any significant plumbing modifications to the school from its original construction are not known.

Drinking Water Outlet Selection Procedure

Water samples were collected from high priority drinking water outlets identified by MPCSD and AWS. High priority outlets are defined as those that are used regularly for cooking and
drinking. These include: drinking fountains (all types), classroom combination sinks with drinking fountains, sinks in teachers’ lounges, nurses’ offices, and special education rooms, and kitchen faucets used for drinking, cooking or washing food including home economic faucets. Water samples representative of the service connection and municipal water supply main were also collected during the testing.

Water Sampling Procedures

Drinking water samples were collected at OKS on October 7, 2016. The water samples were collected by an AWS environmental scientist in accordance with the EPA’s 3T’s guidance document.

AWS collected a first-draw water sample from each selected outlet, with the exception of the service connection samples, between the hours of 6:00AM-9:00AM. A first-draw sample of water is the first to come out of the tap after a period of inactivity. This water was stagnant; meaning that the outlet was not used for at least eight hours prior to sampling. Since the selected outlets were taped off after the end of the previous school day the outlets had remained stagnant for a period between 8 and 18 hours.

The two (2) samples collected from the water service connection were collected from the cold water outlet that was assumed to be closest to the service connection. Following the EPA’s 3 T’s sampling guidelines these samples were not first-draw. The first sample was collected approximately 30 seconds after running the water and the second sample was collected after approximately three minutes of running the water. These samples should be representative of the water quality entering the facility from the service connection and the municipal water supply main, respectively. A duplicate sample was collected with the municipal water supply main sample at each facility as a Quality Assurance/Quality Control (QA/QC) sample.

Samples were collected in a 250 milliliters (ml) laboratory provided container. The sample size is representative of a smaller section of plumbing primarily associated with the fixture providing the water and, therefore, more effective in identifying the source if elevated lead levels are identified if follow-up flush sampling is necessary.

AWS collected a total of forty (40) samples from OKS including the service connection samples (2) and the quality control sample (1). Samples were each given a unique sampling identification number. The sample location, date and time of collection, and the type of outlet were recorded.
and are shown on the attached chain-of-custody (COC) proceeded by the attached laboratory report.

Analytical Methods

Samples were delivered by courier to Alpha Analytical Laboratories in Ukiah, California under standard chain-of-custody procedures. This laboratory is certified by the State of California as part of the Environmental Laboratory Accreditation Program (ELAP# 1551). Water samples were analyzed for lead (Pb) by EPA Method 200.8 which is the determination of trace elements in waters and wastes by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The reporting limit as determined by the laboratory is 4 µg/L.

Analytical Results

The analytical results from the testing are shown on the attached table (Table 1). All of the samples collected from this site were below the EPA’s action level of 15 µg/L for lead in public water supply systems, as well as being below the EPA’s 20 µg/L recommendation for lead in school drinking water.

Conclusions and Recommendations

As mentioned above, the *EPA’s 3T’s guidance document* states that the sample results should be below 20 µg/L and that outlets that are found above these levels should be taken out of service until the source can be determined. The EPA’s action level for lead in public water supply systems is 15 µg/L and is used as a trigger to determine when system-wide corrosion control treatment may be necessary. AWS recommends using an exceedance of 15 µg/L of lead in drinking water in the schools as the trigger point to take an outlet out of service and to perform additional testing to determine the source.

None of the samples collected at the school site exceeded the MCL of 15 µg/L, therefore, no additional testing is warranted at this time. It is recommended that periodic monitoring of the outlets be performed at all of the schools built before 1990 to ensure that the older suspected lead containing fixtures and solders do not leach into the drinking water supply in the future.

In addition, the presence of aerators may contribute to lead in the water if lead-bearing solids have accumulated over time on the aerator; therefore, it is also recommended that all aerators
in the school be put on a regular maintenance schedule which includes the removal and cleaning of the aerator and that aerators be replaced if needed.

Limitations

The conclusions and results contained herein are based solely on the information presented in this report. Additional information or contamination that was hidden, undiscovered, inaccessible, or are not a part of the finding presented herein, would result in the modification of the conclusions and recommendations of this report. Any remediation guidelines are minimum general guidelines based solely on the findings contained herein and are not to be considered a complete or detailed set of remediation specifications. AWS is not responsible for the accuracy of information provided by others, or for conditions or consequences arising from relevant facts that were withheld, concealed, undiscovered or not fully disclosed.

The scope of services provided by AWS was limited to the sampling of drinking water outlets identified in this report. Drinking water outlets, hazardous materials or controlled substances not specifically mentioned in this report were not evaluated. AWS is not qualified to present medical advice. If any present or future health issues are in question, it is recommended that the findings in this report be presented to a qualified medical professional for evaluation. AWS is not a law firm and, therefore, makes no representations regarding any potential liability of any person or entity for site conditions.

References

3Ts for Reducing Lead in Drinking Water in Schools: Revised Technical Guidance
United States Environmental Protection Agency, October 2006.

Drinking Water Best Management Practices, United States Environmental Protection Agency, April 2013
LEGEND
- DW - Drinking Water Fountain
- DWS - Drinking Fountain in Sink
- KF - Kitchen Faucet
- NS - Nurse's Office Sink
- TL - Teacher/Staff Lounge Sink
- CF - Classroom Faucet
- EC - Home Economics Sink
- WC - Water Cooler Fountain
- SC - Service Connection
* New Faucet

OAK KNOLL SCHOOL
1895 Oak Knoll Lane
Menlo Park, CA 94025

SAMPLING LOCATION MAP
PROJECT NO. 1753

BASEMAP: MENLO PARK CITY SCHOOL DISTRICT
Table 1
Analytical Results
Lead (Pb) in Drinking Water
Encinal Elementary School

<table>
<thead>
<tr>
<th>Sample ID Number</th>
<th>Sample collection date</th>
<th>Type of Outlet</th>
<th>Sample Location</th>
<th>Type of Sample</th>
<th>Lead (Pb) (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-19-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 19</td>
<td>Initial</td>
<td>4.6</td>
</tr>
<tr>
<td>OKS-1S-DWS-F</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 19, assumed representative of service connection</td>
<td>Flush (30 sec)</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-1M-DWS-F</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 19, assumed representative of main</td>
<td>Flush (3 min)</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-1MQ-DWS-F</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 19, assumed representative of main</td>
<td>Flush (3 min)</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-17-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 21</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-12-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside Rm 21</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-16-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 23</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-13-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 26</td>
<td>Initial</td>
<td>5.0</td>
</tr>
<tr>
<td>OKS-7-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 17</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-8-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 16</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-10-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 14</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-11-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside rm 13</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-36-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 13</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-29-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 11</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-33-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 8</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-20-CF-P</td>
<td>10/7/2016</td>
<td>Faucet</td>
<td>Library</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-21-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside Rm 5</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-22-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 3</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-24-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 1</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-25-TL-P</td>
<td>10/7/2016</td>
<td>Faucet</td>
<td>Staff Room</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-26-NS-P</td>
<td>10/7/2016</td>
<td>Faucet</td>
<td>Nurse's station</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-30-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 6</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-27-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside Multi Use Rm</td>
<td>Initial</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes:
1) Primary= sampled at first draw. Flush= sampled after water running for time indicated.
2) EPA Action Level is 15 ug/L
3) ND = None detected
4) Samples analyzed by EPA Method 200.8. Reporting limit is 4 ug/L
Table 1
Analytical Results
Lead (Pb) in Drinking Water
Encinal Elementary School

<table>
<thead>
<tr>
<th>Sample ID Number</th>
<th>Sample collection date</th>
<th>Type of Outlet</th>
<th>Sample Location</th>
<th>Type of Sample</th>
<th>Lead (Pb) (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-32-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside Rm 7</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-37-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>K1</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-39-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>K3</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-42-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>K5</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-40-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside K3</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-49-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Outside Cafeteria</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-47-CF-P</td>
<td>10/7/2016</td>
<td>Faucet</td>
<td>Room 35</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-51-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 36</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-48-KF-P</td>
<td>10/7/2016</td>
<td>Faucet</td>
<td>Kitchen</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-50-DW-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain</td>
<td>Cafeteria</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-43-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 27</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-46-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 30</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-2-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 39</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-1-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 37</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-3-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 34</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-5-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 32</td>
<td>Initial</td>
<td>ND</td>
</tr>
<tr>
<td>OKS-6-DWS-P</td>
<td>10/7/2016</td>
<td>Drinking Water Fountain with Sink</td>
<td>Room 31</td>
<td>Initial</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes:
1) Primary= sampled at first draw.Flush= sampled after water running for time indicated.
2) EPA Action Level is 15 ug/L
3) ND = None detected
4) Samples analyzed by EPA Method 200.8. Reporting limit is 4 ug/L
21 October 2016

Air & Water Sciences
Attn: Aniko Molnar
625 2nd Street, Suite 210
Petaluma, CA 94952
RE: Lead Monitoring Project
Work Order: 16J0750

Enclosed are the results of analyses for samples received by the laboratory on 10/07/16 15:36. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jeanette L. Poplin
For Robbie C. Phillips
Project Manager
ANALYTICAL REPORT FOR SAMPLES

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Laboratory ID</th>
<th>Matrix</th>
<th>Date Sampled</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-19-DWS-P</td>
<td>16J0750-01</td>
<td>Water</td>
<td>10/07/16 05:51</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-18-DWS-F</td>
<td>16J0750-02</td>
<td>Water</td>
<td>10/07/16 05:52</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-1M-DWS-F</td>
<td>16J0750-03</td>
<td>Water</td>
<td>10/07/16 05:55</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-1MQ-DWS-F</td>
<td>16J0750-04</td>
<td>Water</td>
<td>10/07/16 05:55</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-17-DWS-P</td>
<td>16J0750-05</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-12-DW-P</td>
<td>16J0750-06</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-16-DWS-P</td>
<td>16J0750-07</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-13-DWS-P</td>
<td>16J0750-08</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-7-DWS-P</td>
<td>16J0750-09</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-8-DWS-P</td>
<td>16J0750-10</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-10-DWS-P</td>
<td>16J0750-11</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-11-DW-P</td>
<td>16J0750-12</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-36-DWS-P</td>
<td>16J0750-13</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-29-DWS-P</td>
<td>16J0750-14</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-33-DWS-P</td>
<td>16J0750-15</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-20-CF-P</td>
<td>16J0750-16</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-21-DW-P</td>
<td>16J0750-17</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-22-DWS-P</td>
<td>16J0750-18</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-24-DWS-P</td>
<td>16J0750-19</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-25-TL-P</td>
<td>16J0750-20</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-26-NS-P</td>
<td>16J0750-21</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-30-DWS-P</td>
<td>16J0750-22</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-27-DW-P</td>
<td>16J0750-23</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-32-DW-P</td>
<td>16J0750-24</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-37-DWS-P</td>
<td>16J0750-25</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-39-DWS-P</td>
<td>16J0750-26</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-42-DWS-P</td>
<td>16J0750-27</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
<tr>
<td>OKS-40-DW-P</td>
<td>16J0750-28</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>10/07/16 15:36</td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>ID Code</th>
<th>Type</th>
<th>Date Collected (UTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-49-DW-P</td>
<td>16J0750-29</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-47-CF-P</td>
<td>16J0750-30</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-51-DWS-P</td>
<td>16J0750-31</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-48-KF-P</td>
<td>16J0750-32</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-50-DW-P</td>
<td>16J0750-33</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-43-DWS-P</td>
<td>16J0750-34</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-46-DWS-P</td>
<td>16J0750-35</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-2-DWS-P</td>
<td>16J0750-36</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-1-DWS-P</td>
<td>16J0750-37</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-3-DWS-P</td>
<td>16J0750-38</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-5-DWS-P</td>
<td>16J0750-39</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
<tr>
<td>OKS-6-DWS-P</td>
<td>16J0750-40</td>
<td>Water</td>
<td>10/07/16 00:00</td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Type</th>
<th>Batch</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-12-DW-P (16J0750-06)</td>
<td>Water</td>
<td>1 A363436</td>
<td>02/15/16</td>
</tr>
<tr>
<td>OKS-16-DW-P (16J0750-07)</td>
<td>Water</td>
<td>1 A363436</td>
<td>02/15/16</td>
</tr>
<tr>
<td>OKS-13-DW-P (16J0750-08)</td>
<td>Water</td>
<td>1 A363436</td>
<td>02/15/16</td>
</tr>
<tr>
<td>OKS-7-DW-P (16J0750-09)</td>
<td>Water</td>
<td>1 A363436</td>
<td>02/15/16</td>
</tr>
<tr>
<td>OKS-8-DW-P (16J0750-10)</td>
<td>Water</td>
<td>1 A363436</td>
<td>02/15/16</td>
</tr>
<tr>
<td>OKS-10-DW-P (16J0750-11)</td>
<td>Water</td>
<td>1 A363436</td>
<td>02/15/16</td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Sample Results

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Type</th>
<th>Sampled Date</th>
<th>Reporting Limit</th>
<th>Dilution</th>
<th>Batch</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Method</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-10-DWS-P (16J0750-11)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923436</td>
<td>10/11/16 10:01</td>
<td>10/13/16 11:15</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-11-DW-P (16J0750-12)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923436</td>
<td>10/11/16 10:01</td>
<td>10/13/16 13:32</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-36-DWS-P (16J0750-13)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923436</td>
<td>10/11/16 10:01</td>
<td>10/13/16 13:37</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-29-DWS-P (16J0750-14)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923436</td>
<td>10/11/16 10:01</td>
<td>10/13/16 13:42</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-33-DWS-P (16J0750-15)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 15:15</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-20-CF-P (16J0750-16)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 15:34</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-21-DW-P (16J0750-17)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 15:54</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-22-DWS-P (16J0750-18)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 16:04</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-24-DWS-P (16J0750-19)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 16:09</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-25-TL-P (16J0750-20)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 16:14</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-26-NS-P (16J0750-21)</td>
<td>Water</td>
<td>10/07/16 00:00</td>
<td>Sampled: 10/07/16 00:00</td>
<td>4.0</td>
<td>1</td>
<td>A923437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 16:00</td>
<td>EPA 200.8</td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alpha Analytical Laboratories Inc.

Petaluma, CA 94952

Project Manager: Aniko Molnar

Project: Lead Monitoring Project

Project Number: MPCSD - Oak Knoll School

Reported:

10/21/16 10:05

*Corporate: 208 Mason St., Ukiah, CA 95482 • Phone: (707) 468-0401 • Fax: (707) 468-5267

Bay Area: 6398 Dougherty Rd., Suite 35, Dublin, CA 94568 • Phone: (925) 828-6226 • Fax: (925) 828-6309

Central Valley: 9090 Union Park Way, Suite 113, Elk Grove, CA 95624 • Phone: (916) 686-5190 • Fax: (916) 686-5192*
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Water</th>
<th>Sampled: 10/07/16 00:00</th>
<th>Reported:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Water</td>
<td>Sampled: 10/07/16 00:00</td>
<td>Reported:</td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
<table>
<thead>
<tr>
<th>Sample Type: Water</th>
<th>Result</th>
<th>Reporting Limit</th>
<th>Dilution</th>
<th>Batch</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>Method</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-51-DWS-P (16J0750-31)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 17:37</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-48-KF-P (16J0750-32)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 17:42</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-50-DW-P (16J0750-33)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 17:47</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-43-DWS-P (16J0750-34)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63437</td>
<td>10/11/16 10:02</td>
<td>10/13/16 15:20</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-46-DWS-P (16J0750-35)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63438</td>
<td>10/11/16 10:04</td>
<td>10/17/16 14:08</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-2-DWS-P (16J0750-36)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63438</td>
<td>10/11/16 10:04</td>
<td>10/17/16 15:03</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-1-DWS-P (16J0750-37)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63438</td>
<td>10/11/16 10:04</td>
<td>10/17/16 15:09</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-3-DWS-P (16J0750-38)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63438</td>
<td>10/11/16 10:04</td>
<td>10/17/16 15:15</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-5-DWS-P (16J0750-39)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63438</td>
<td>10/11/16 10:04</td>
<td>10/17/16 15:22</td>
<td>EPA 200.8</td>
</tr>
<tr>
<td>OKS-6-DWS-P (16J0750-40)</td>
<td>Metals by EPA Method 200.8 ICP/MS</td>
<td>Lead</td>
<td>ND μg/L</td>
<td>4.0</td>
<td>1 A63438</td>
<td>10/11/16 10:04</td>
<td>10/17/16 15:28</td>
<td>EPA 200.8</td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Metals by EPA Method 200.8 ICP/MS - Quality Control

<table>
<thead>
<tr>
<th>Analyte(s)</th>
<th>Reporting Limit</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC Limits</th>
<th>RPD Limit</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch AJ63436 - EPA 200 Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (AJ63436-BLK1)</td>
<td>ND</td>
<td>4.0 ug/L</td>
<td>Prepared: 10/11/16 Analyzed: 10/13/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (AJ63436-BS1)</td>
<td>21.4</td>
<td>4.0 ug/L</td>
<td>20.0</td>
<td>107</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td>Source: 16J0584-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (AJ63436-DUP1)</td>
<td>ND</td>
<td>4.0 ug/L</td>
<td>ND</td>
<td>1.65</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td>Source: 16J0584-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (AJ63436-MS1)</td>
<td>107</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>70-130</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td>Source: 16J0584-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (AJ63436-MS2)</td>
<td>114</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>113</td>
<td>70-130</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td>Source: 16J0750-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (AJ63436-MSD1)</td>
<td>109</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>70-130</td>
<td>2.72</td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td>Source: 16J0584-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch AJ63437 - EPA 200 Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (AJ63437-BLK1)</td>
<td>ND</td>
<td>4.0 ug/L</td>
<td>Prepared: 10/11/16 Analyzed: 10/13/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (AJ63437-BS1)</td>
<td>22.3</td>
<td>4.0 ug/L</td>
<td>20.0</td>
<td>111</td>
<td>85-115</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td>Source: 16J0750-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (AJ63437-DUP1)</td>
<td>ND</td>
<td>4.0 ug/L</td>
<td>ND</td>
<td>6.71</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
<table>
<thead>
<tr>
<th>Analyte(s)</th>
<th>Result</th>
<th>Reporting Limits</th>
<th>Spike Level</th>
<th>Source</th>
<th>%REC</th>
<th>%REC Limits</th>
<th>RPD</th>
<th>RPD Limit</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch AJ63437 - EPA 200 Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (AJ63437-MS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>109</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>109</td>
<td>70-130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (AJ63437-MS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>111</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>111</td>
<td>70-130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (AJ63437-MSD1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>111</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>70-130</td>
<td>1.24</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Batch AJ63438 - EPA 200 Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blank (AJ63438-BLK1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>ND</td>
<td>4.0 ug/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS (AJ63438-BS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>21.7</td>
<td>4.0 ug/L</td>
<td>20.0</td>
<td>109</td>
<td></td>
<td>85-115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate (AJ63438-DUP1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>ND</td>
<td>4.0 ug/L</td>
<td></td>
<td>ND</td>
<td></td>
<td>3.73</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (AJ63438-MS1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>106</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>106</td>
<td>70-130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike (AJ63438-MS2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>105</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>105</td>
<td>70-130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Spike Dup (AJ63438-MSD1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>108</td>
<td>4.0 ug/L</td>
<td>100</td>
<td>ND</td>
<td>108</td>
<td>70-130</td>
<td>2.23</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.
Notes and Definitions

P-02 Sample was received with insufficient preservative. Sample was preserved and allowed to sit 24 hours before further processing.

ND Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

REC Recovery

RPD Relative Percent Difference
Company: Air and Water Sciences
Contact: Aniko Molnar/Heidi Bauer
Attn: Heidi Bauer, Aniko Molnar, Chip Prokop and Becky Shelling
Address: 625 2nd Street, ste 210 Petaluma, CA 94952
Phone: 707-769-2289
Email Addresses for Reports: heidi@awsciences.com, amolnar@awsciences.com, cprokop@awsciences.com, becky@awsciences.com
Field Sampler - Printed Name & Signature: Bryn Kirk
PROJECT NAME: MPCSD - Oak Knoll School
TAT: Standard 10 days
Temp upon Receipt: Ukiah temp: 3.8°C
RUSH: 5 days
Other: 48 hours
Sample Notes or DDW Source Numbers:

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Container</th>
<th>Preservative</th>
<th>Matrix</th>
<th>Total Number of Containers per Sample ID</th>
<th>Load (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-19-DWS-P</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-15-DWS-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-11-DWS-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-1MG-DWS-F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-17-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-12-DW-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-16-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-13-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-7-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-8-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-10-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-11-DW-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relinquished by: Bryn Kirk
Received by: Pat Mathewson
Date: 10-7-16 10:00
State System Number: ________________
Travel and Site Time:
Mileage:
Misc. Supplies:
DDW Write On EDT Transmission? Yes
State System Number: ________________
If "Y" please enter the Source Number(s) in the column above
Received by: Pat Mathewson
Date: 10-7-16 15:36
Chain of Custody - Work Order

Reports and Invoices delivered by email in PDF format

Please also email EDF report

<table>
<thead>
<tr>
<th>Analysis Request</th>
<th>TAT</th>
<th>Temp upon Receipt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company: Air and Water Sciences</td>
<td>Standard 10 days</td>
<td>Ukiah temp:</td>
</tr>
<tr>
<td>Address: 625 2nd Street, ste 210 Petaluma, CA 94952</td>
<td>RUSH: 5 days</td>
<td>Dublin temp:</td>
</tr>
<tr>
<td>Contact: Aniko Molnar/Heidi Bauer</td>
<td>48 hours</td>
<td></td>
</tr>
<tr>
<td>Phone: 707-769-2289</td>
<td>Other:</td>
<td></td>
</tr>
<tr>
<td>INVOICE TO: lesley@awsciences.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attn: Lesley Hunter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph: 707-769-2289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project ID: MPCSD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project No: 1753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROJECT NAME: MPCSD – Oak Knoll School</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Identification

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Date</th>
<th>Time</th>
<th>Container</th>
<th>Preservative</th>
<th>Lead (200:8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-36-DWS-P</td>
<td>10/7/16</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td>OKS-29-DWS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-33-DWS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-20-CF-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-21-DW-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-22-DWS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-23-DWS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-24-DWS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-25-TL-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-26-NS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-31-DWS-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-27-DW-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OKS-32-DW-P</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Relinquished by: Bryn Kirk

Received by: Lateth Heilbrun

Date: 10-7-12 12:00

State System Number:

If "Y" please enter the Source Number(s) in the column above

Travel and Site Time: 10-7-12 15:36

Misc. Supplies:
<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sampling Date</th>
<th>Sampling Time</th>
<th>Container</th>
<th>Preservative</th>
<th>Matrix</th>
<th>Total Number of Containers per Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-27-DWS-P</td>
<td>10/7/16</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1 X</td>
</tr>
<tr>
<td>OKS-29-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-42-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-46-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-49-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-50-DW-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-51-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-51-KF-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-50-DW-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-43-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Notes or DDW Source Numbers:

Relinquished by:

<table>
<thead>
<tr>
<th>Bryn Kirke</th>
<th>date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-7-16</td>
<td>12:00</td>
</tr>
</tbody>
</table>

Received by:

<table>
<thead>
<tr>
<th>Bryn Kirke</th>
<th>date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-7-16</td>
<td>15:36</td>
</tr>
</tbody>
</table>

State System Number:

[If "Y" please enter the Source Number(s) in the column above]
<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Sampling</th>
<th>Container</th>
<th>Preservation</th>
<th>Matrix</th>
<th>Total Number of Containers per Sample ID</th>
<th>Lead (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKS-1-DWS-P</td>
<td>10/7/16</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1 X</td>
<td>Lead (2008)</td>
</tr>
<tr>
<td>OKS-2-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-5-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKS-6-DWS-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Sampler - Printed Name & Signature: Bryn Kirk

Guaranteed Under Terms Stated on Reverse Side

Analysis Request

TAT Standard 10 days

Temp upon Receipt

Ukiah temp: [Temperature]

Dublin temp: [Temperature]

Other: [If applicable]

Lab preapproval required: [Yes/No]

Sample Notes or DDW Source Numbers:

Relinquished by Bryn Kirk

Received by [Signature]

Date: 10-7-14 Time: 13:10

DDW Write On EDT Transmission? Yes

State System Number: [Number]

If "Y" please enter the Source Number(s) in the column above

Travel and Site Time: [Time]

Meals: [Number]

Misc. Supplies: [If applicable]