

"CEES

CHAPITRE 1 : LES NOMBRES ET LES OPERATIONS 1.1LA NUMERATION DECIMALE

I) Chiffre et nombre

En mathématiques, un chiffre est un signe utilisé pour l'écriture des nombres. Dans le langage courant, on utilise parfois le mot "chiffre" à la place du mot "nombre". On entend souvent dire : "les chiffres du loto" ou encore "les chiffres du chômage", alors qu'il s'agit de nombres dans ces cas-là. Il faut accepter l'idée que l'on ne parle pas exactement dans la vie de tous les jours comme en mathématiques.

Pour écrire les nombres, on utilise dix chiffres. C'est pourquoi l'on parle de **système décimal**¹. Ces chiffres sont 0, 1, 2, 3, 4, 5, 6, 7, 8, et 9.

Avec ces chiffres, on construit des **nombres** qui utilisent un ou plusieurs chiffres.

Le nombre 435 s'écrit avec trois chiffres.

Le nombre 5 s'écrit avec un seul chiffre.

On pense parfois à tort que les nombres ne commencent qu'à 10 (quand ils ont au moins deux chiffres). C'est une erreur.

Le chiffre est le signe, le nombre est la valeur.

Si l'on peut comparer, c'est comme avec les **lectres et les mots**. Notre alphabet comporte vingt-six lettres avec lesquelles nous formons des mots. Il y a des mots qui ne sont formés que d'une seule lettre. Par exemple, dans la phrase précédente, "y" et "a" sont des mots qui ne comportent qu'une seule lettre.

La valeur représentée par un chiffre dépend de sa **position** dans l'écriture du nombre.

Dans le nombre 838,78 le premier 8 est le chiffre des centaines et représente le nombre 800. Le deuxième 8 est le chiffre des unités et représente le nombre 8, le troisième 8 est le chiffre des centièmes et représente le nombre 0,08.

Chiffre des; nombre de

Il est e sentiel de bien connaître la distinction entre (par exemple pour 147 906) : Le **chière des centaines** est 9 (c'est le signe écrit à la position des centaines simples. Le **rombre de centaines** qui est 1 479, car 147 906 est égal à 1 479 centaines et 6 unités.

III) Ordres et classes

La valeur associée à un chiffre dépend de la position de ce chiffre dans l'écriture du nombre. Chaque chiffre tient la place d'une unité dont le nom change avec la place, et que l'on appelle l'**ordre**.

¹ Deci signifie dix en latin

Un nombre s'écrit par tranches de trois chiffres (en partant des unités simples) que l'on appelle les classes.

Chaque classe comprend donc trois ordres : les unités, les dizaines et les centaines.

Unités	de	Classe	des milli	ons	Classe des mille			Classe des unités simples			
milliards		Centaines	Centaines Dizaines l		Centaines	Dizaines	Unités	Centaines	Dizaines	Unités	
				5	0	2	8	5	7	3	
9		5	2	0	1	n	0	6	7	۵	

Ces deux nombres se lisent en les partageant en tranches de trois chiffres en commençant par 🔊 droite; puis on lit, en commençant par la gauche chaque tranche que l'on fait suivre de son nor 1 de classe.

5 028 573 : 5 millions 28 mille 573 unités.

9 520 100 679 : 9 milliards 520 millions 100 mille 679 unités.

IV) Vocabulaire

Tout nombre dont on peut donner une écriture complète au moyen des dix hiffres du système décimal est appelé nombre décimal.

Certains nombres décimaux nécessitent l'utilisation d'une virgule.

Les nombres décimaux qui n'utilisent pas de virgule sont appelés des **nombres entiers**.

On appelle nombre **pair** un nombre entier se terminant par 0, **Z**

Un nombre **impair** se termine lui par 1, 3, 5, 7 ou 9.

On dit que des nombres entiers sont **consécutifs** lors qu'ils se suivent de 1 en 1.

edure cours Par exemple : 56 et 57 sont deux entiers consécutifs. 102, 103 et 104 sont trois entiers consécutifs.

Exercice 1

Écrire avec des mots les nombres suivants:

7 2 1 8 10 120 448 80 388

Exercice 2

Donner l'écriture décimale des nombres :

Trois mille douze Cinq cent deux mille

Un milliard Trente deux mille neuf cent sept.

Exercice 3

Donner le chiffre des dizaines des nombres suivants :

8 693 111 4 404

Combien y a t-il de dizaines dans?

47 857 973 18 643 630

Exercice 4

Combien y a-t-il de dizaines dans 90 082? Combien de centaines dans 950 272? Combien de mille dans 10 208?

Exercice 5

iffr iffr Pour chacun des nombres suivants indiquer le chiffre des centaines, puis le nombre de centaines : 6342; 4225; 347; 15405; 18025

Exercice 6

Quels sont les nombres de trois chiffres différents que l'on peut écrire avec les trois chiffres : 6 ; 2 et 5

Quelle est l'égriture décimale des nombres donnés en écriture romaine :

MCMXCVIII MCCLIV

Écrip, en écriture romaine les nombres suivants : 354;912;2672

Exercice 8

Un livre contient 256 pages. On veut numéroter toutes les pages. Combien de fois utilisera-t-on le chiffre 4?

1.2 LES SIGNES DE COMPARAISON

I) L'égalité

Le signe d'égalité : = sépare deux expressions qui ont la même valeur mais (en général) des écritures ou des présentations différentes.

Par exemple: $6 \times 7 = 42$ que l'on lit « six fois sept **égale** quarante-deux » ou bien « six fois sept **égale** quarante-deux » égal à quarante-deux » et que l'on pourrait encore lire : « six fois sept et quarante-deux son égaux »

L'écriture $6 \times 7 = 42$ est une **égalité**.

6 × 7 est appelé le **premier membre** de l'égalité. 42 est le **second membre** de l'égalité.

Une égalité peut et doit être lue dans les deux sens.

 $6 \times 7 = 42$: en lisant ainsi, on effectue le calcul du produit.

 $42 = 6 \times 7$: en lisant ainsi, on décompose 42 en deux facteurs.

Opérations successives

Deux quantités séparées par un signe d'égalité sont deux quantités de même valeur.

On ne peut pas écrire les égalités suivantes, même si le résulta fina du calcul est correct : 12 + 58 +

$$68 + 32 = 70 + 68 = 138 + 32 = 170$$

En effet, 70 + 68 n'est pas égal aux autres quantités propusées.

Si l'on veut montrer que l'on effectue ce calcul par étages, on écrira :

$$12 + 58 + 68 + 32 = 70 + 68 + 32 = 138 + 32 = 170.$$

Ou encore:

C'est à dire que l'on reproduira ce qui n'a pas été modifié d'une étape à 12 + 58 + 68 + 32 =70 + 68 + 32 =la suivante. 138 + 32 =

170

II) Les valeurs app

Pour marquer que deux quantités ne sont pas égales, on utilise le signe ≠.

Par exemple : $3 \times 7 \neq 20$

Mais pour indiquer que des valeurs sont très proches, on utilise le signe \approx .

Par exemple: $47 - 9 \approx 5,22$

Ill Ces signes de comparaison

Il y a plusieurs manières d'ordonner des nombres : du plus petit au plus grand (ordre **croissant**) ou du plus grand au plus petit (ordre **décroissant**). On utilise alors pour cela les signes $<,>,\geq,\leq$.

6 < 13 se lit « 6 est plus petit que 13 » ou « 6 est inférieur à 13 »

> 9 > 8 se lit « 9 est plus grand que 8 » ou « 9 est supérieur à 8 ».

Les deux autres signes sont utilisés lorsqu'il s'agit de décrire une liste de nombres, afin d'y inclure le nombre de fin de liste (le plus petit ou le plus grand)

 $n \le 5$ (n est inférieur ou égal à 5) désigne tous les nombres plus petits que 5 (5 inclus).

n ≥ 12 (n est supérieur ou égal à 12) désigne tous les nombres plus grands que 12, en commençant à 12.

Exercices

Dresser la liste croissante des nombres entiers qui so it à la fois strictement² supérieurs à 7 et inférieurs ou égaux à 15

Exercice 12

Classer les nombres suivants par ordre décroiss 180; 205; 250; 32; 560; 241; 28; 034; 620; 602

Exercice 13

Dresser la liste décroissante de nombres entiers qui sont compris entre 19 et 30, strictement.

Exercice 14

Dresser la liste par ordre croissant de tous les nombres inférieurs à 1 000 que l'on peut écrire en utilisant au plus une rois l'un au moins des chiffres 3, 7 et 2.

Par exemple . (2): on a utilisé au moins un des chiffres (on en a utilisé deux : 7 et 2); on ne les a pas utilisés plus à une fois.

1.3 LES QUATRE OPERATIONS

Les opérations sont groupées en deux catégories :

Addition et soustraction

Multiplication et division

L'addition et la multiplication sont les opérations principales.

L'addition et la multiplication sont les opérations principales.

La soustraction découle directement de l'addition (quel nombre faut-il ajouter à ... pour obtenir ...?)

La division découle de la multiplication (Dans ... combien de fois ...?)

I) Addition et soustraction

Dans l'écriture 3 + 8 = 11,

l'addition est symbolisée par le signe + de l'opération.

3 + 8 est l'écriture de la somme (non effectuée) des deux nombres 3 et 8.

La valeur de la somme effectuée est 11.

Les deux nombres 3 et 8 sont appelés les termes de la somme.

De l'opération précédente découlent **deux soustractions** :

3 + 8 = 11, alors 11 - 3 = 811 - 8 = 3 8 est la **différence** entre 11 et 3.

3 est la **différence** entre 11 et 8.

Schématisation

II) Multiplication et division

Dans une écriture du type $5 \times 7 = 35$

la multiplication est symbolisée par le **signe** × de l'opération.

 5×7 est l'écriture du **prod**uit (pon effectué) des deux nombres 5 et 7.

La valeur du **produit effectué** est 35.

Les deux nombres 5 et 7 sont appelés les facteurs du produit.

De l'opération prétédente découlent deux divisions :

 $5 \times 7 = 35$

alors $35 \div 5 = 7$

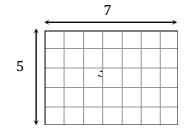
7 est le **quotient** de 35 par 5.

 $35 \div 7 = 5$

5 est le **quotient** de 35 par 7.

Il est recessaire de s'habituer à l'utilisation correcte des mots suivants : sonne, terme, produit, facteur, quotient, différence

hématisation



Exercice 15

Recopier et compléter les phrases suivantes avec les mots corrects :

- 1. 8 est la des deux nombres 3 et 5.
- 2. 9 × 7 est un de deux
- 3. La somme 4 + 8 + 16 + 7 est composée de quatre
- ves rentiorciees 4. Laentre 12 et 5 n'est pas identique à laentre 13 et 7.
- 5. Dans lede 16 par 4, 16 s'appelle le dividende.

Exercice 16

Écrire les expressions suivantes et les calculer :

- 1. Quotient de 15 520 par 40
- 2. produit des nombres 3, 7 et 68
- 3. Différence entre 108 et 47
- 4. Somme du produit de 5 par 9 et de 17

Exercice 17

Poser et effectuer les calculs suivants :

124 907 + 97 685 + 8 075 99 384 + 2 456 + 16 748 + 419 976 63 875 - 23 696 35 942 - 19 875

Exercice 18

Poser et effectuer les calculs suivants :

 89725×670 $75\ 304 \times 750$ $25678 \div 74$ 565 848 ÷ 87 $234764 \div 76$

Exercice 19

Traduire chaque phrase par une écriture mathématique :

Le produit de 5 par 9 est égal au produit de 9 par 5.

Le produit de 12 par la semme de 9 et 13 est égal à la somme des produits de 12 par 9 et de 12 par 13.

Exercice 10

Traduire chaque écriture mathématique par une phrase.

583 × 19 ~ 11 600

 $43 \times 17 \neq 47 \times 13$

 $\div 23 = 26 \div 13$

2.1PROPRIETES DE L'ADDITION ET DE LA **SOUSTRACTION**

Il est utile de rechercher des groupements simples : 24 + 13 + 16 + 7 = (24 + 16) + (13 + 7) = 40 + 20 = 60. On dit que l'addition est <u>associative</u>

Il) Dans une différence

La soustraction n'est pas commutative : 17 - 9 = 8, mais $9 - 17 \neq 8$.

La soustraction n'est pas associative : $125 - 17 - 4 - 8 \neq (125 - 17) - (4 - 9)$ Dans une suite de soustractions comme 125

de leur écriture de 5 de leur écriture de gauche à droite.

$$125 - 17 - 4 - 8 = 108 - 4 - 8 = 104 - 8 = 96$$

Soustraire plusieurs nombres est équivalent à soustraire leur somme.

$$125 - 17 - 4 - 8 = 125 - (17 + 4 + 8) = 125 - 29 = 96$$

Si on ajoute un même nombre aux deux termes d'une différence, cette différence est inchangée.

$$59 - 34 = (59 + 1) - (34 + 1) = 60 - 35 = 25$$

 $126 - 87 = (126 + 3) - (87 + 3) = 129 - 90 = 39$

Si on soustrait un même nombre aux deux ermes d'une différence, cette différence est inchangée.

$$63 - 38 = (63 - 3) - (38 - 3) = 60 - 35 = 25$$

 $141 - 76 = (141 - 1) - (76 - 1) = 110 - 75 = 65$

III)Utilisation de pareuthèses.

On utilise des parenthèses pour regrouper (on dit associer) les termes d'une somme ou d'une différence et ainsi montrer la manière de faire le calcul. Ces parenthèses donnent la **priorité** aux calculs qui y figurent. C'est-à-dire qu'ils sont à effectuer avant ceux qui ne sont pas regroupés dans des parenthèses.

Dans les additions, les parenthèses ne modifient en rien la valeur de la somme; elles n'ont d'utilité que pour l'organisation : si on veut insister, par exemple, sur certaines étapes du calcul.

$$a = 438 + 247 + 62$$

$$b = 24 + 13 + 16 + 7$$

$$c = 123 + 45 + 27 + 14 + 5 + 36$$

$$d = 37 + 56 + 121 + 44 + 79 + 63$$

Exercice 22

$$a = 45 + (27 + 57) + (157 + 92 + 76)$$

$$b = (47 + 521) + (64 + 942 + 87) + 66$$

$$c = 10 + (54 + 743) + (624 + 973 + 67)$$

Exercice 23

Calculer les sommes suivantes en cherchant des groupements intéressants $a = 438 + 247 + 62$ $b = 24 + 13 + 16 + 7$ $c = 123 + 45 + 27 + 14 + 5 + 36$ $d = 37 + 56 + 121 + 44 + 79 + 63$									
Exercice 22			300						
a = 45 + (27 + 57) + (157 - 64 + 521) + (64 + 942)	Mener ces calculs en respectant les modèles de la leçon: a = 45 + (27 + 57) + (157 + 92 + 76) b = (47 + 521) + (64 + 942 + 87) + 66 c = 10 + (54 + 743) + (624 + 973 + 67)								
Exercice 23			25						
Effectuer en ligne									
1	2	3 .	4						
a = 978 - 435	a = 796 - 342	a = 915 - 640	a = 6 541 - 5 078						
b = 659 - 536	b = 856 - 554	b = 845 - 671	b = 5 304 - 3 936						
c = 789 - 551	c = 935 - 471	c = 628 - 582	c = 7 604 - 5 948						
d = 967 - 421	d = 637 – 382	d = 1912 - 761	d = 4 310 - 3 928						
e = 875 - 412	e = 528 - 473	e = 2062 - 3575	e = 8 045 - 7 806						

Exercice 24

Regrouper tous les nombres à soustraire pour ne plus avoir qu'une seule soustraction :

$$a = 1875 - 65 - 857 - 352$$

$$b = 624 - 67 - 8 - 512$$

$$c = 3210 - 87 - 95 - 875 - 1215 - 637$$

Exercice 25

En ajoutant le même non bre aux deux termes de la différence, faire apparaître des différences plus simples à calculer.

$$a = 487 - 39$$

$$6 = 638 - 549$$

$$c = 30242 - 6654$$

$$d = 9661 - 548$$

Exercice 20

En soustravait le même nombre aux deux termes de la différence, faire apparaître des différences plus simples à calculer.

$$a = 4.3 - 68$$

$$b = 672 - 98$$

$$c = 967 - 129$$

$$d = 3248 - 635$$

PROPRIETES DE LA MULTIPLICATION A.

La multiplication est une opération qui permet de résumer, d'écrire plus simplement une suite d'additions pour laquelle tous les termes sont identiques.

$$12 c + 12 c + 12 c + 12 c + 12 c = 12 c \times 4$$

On la remplace par l'écriture plus courte 5×9 que l'on lit « neuf fois cinq », ou bien « cinq multiplié par neuf ». 9×5 est le produit non effectué de 6

45 est le produit effectué de 9 et 5

9 et 5 sont les facteurs du produit

On peut modifier l'ordre d'écriture des facteurs sans modifier la valeur du produit. On dit que la multiplication est **commutative**.

$$12 c \square \times 4 = 4 \times 12 c \square$$

$$9 \times 5 = 5 \times 9 = 45$$

Dans un produit de trois facteurs ou plus, on peut regrouper (associer) les facteurs sans se soucier de l'ordre de l'écriture. On dit que la multiplication est associative. Ce qui permet de mener les calculs des produits en recherchant ce qui semble le plus simple

$$25 \times 7 \times 4 \times 9 = (25 \times 4) \times (7 \times 9) = 100 \times 63 = 6300.$$

Un produit de deux facteurs est invariant (ne change pas de valeur) si l'un des facteurs est multiplié pendant que l'autre facteur est divisé par le même nombre.

$$48 \times 35 = (48 \div 2) \times (35 \times 2) = 24 \times 70$$

La connaissance <u>parfaite</u> des tables de <u>mutiplication</u> est indispensable pour permettre une certaine aisance dans tous les problèmes le mathématiques.

Connaître par cœur les tables, cela consiste à pouvoir dire sans réfléchir :

$$7 \times 8 = 56$$
 ou $56 \div 8 = 7$ ou $56 \div 7 = 8$

mais aussi : $42 = 6 \times 7$ ou 53 n'est pas un produit dans la table.

	1	2	3	4	(5)	6	7	8	9	10	11	12	13	14	15
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	2	4	6	2	10	12	14	16	18	20	22	24	26	28	30
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60
5	5	76	15	20	25	30	35	40	45	50	55	60	65	70	75
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90
7	1	14	21	28	35	42	49	56	63	70	77	84	91	98	105
8	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120
9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150

Pour multiplier par des nombres tels que 10, 100, 1 000, 10 000, etc.(que l'on appelle des puissances de 10), on ajoute à droite du nombre autant de zéros qu'en compte le facteur.

$$624 \times 100 = 62400$$

$$4\ 200 \times 1\ 000 = 4\ 200\ 000$$

Penser à conserver au produit une écriture traditionnelle avec un espace tous les trois chiffres, ce qui permet une lecture facile.

Exercices

Exercice 27

a) Écrire chacun de ces nombres sous la forme d'un **produit de deux facteurs** (donner dans chaque cas toutes les possibilités) :

12 30 45 62 78 104 1035

b) Écrire chacun de ces nombres sous la forme d'un **produit de trois facteurs** (donner dans chaque cas toutes les possibilités) :

12 30 45 80 1001 616

Exercice 28

Effectuer les produits suivants en faisant apparaître les regroupements qui permettent des calculs très simples.

 $a = 2 \times 39 \times 5$

 $b = 8 \times 125 \times 3$

 $c = 25 \times 58 \times 4$

 $d = 4 \times 6 \times 5 \times 3 \times 25 \times 2$

 $e = 4 \times 6 \times 5 \times 2 \times 8 \times 25 \times 7 \times 125$

 $f = 45 \times 4 \times 25 \times 6 \times 2 \times 5$

Exercice 29

Calculer les produits suivants sans poser les operations :

 47×10 23×100 95×1000 27×10

 52×100 87×1000 106×10 251×100

 139×1000 67×10 342×100 609×10

Exercice 30

Calculer les produits sui ants sans poser les opérations :

47 × 20 23 × 200 95 × 2 000 27 × 40 52 × 400 87 × 4 000

 106×80 251×800 139×8000 67×50 342×500 609×50

Exercise 31

 $12 \times 17 = 6 \times 34$ (12 est divisé par 2 pendant que 17 est multiplié par 2).

De la même manière : $12 \times 17 = 4 \times 51 = 3 \times 68 = 2 \times 102$

Sur ce principe, écrire tous les produits égaux à :

 $a = 25 \times 31$

 $b = 13 \times 64$

 $c = 14 \times 18$

 $d = 21 \times 35$

M1 METHODES DE VERIFICATION DU CALCUL DU PRODUIT

I) Position du problème :

Aucune des méthodes proposées dans cette leçon ne permet d'avoir la certitude que la valeur obtenue pour le résultat du calcul du produit est exacte.

Il s'agit surtout de pouvoir <u>écarter des résultats qui sont impossibles</u>.

L'usage de plus en plus répandu des calculatrices entraîne souvent une confiance aveugle dans les résultats affichés. Or des erreurs de tout type sont fréquentes. Il faut s'obliger à toujours prendre temps de tester la vraisemblance des résultats.

II) Ordre de grandeur

Calculer l'ordre de grandeur d'un produit, c'est déterminer la « taille » du résultat attendu, c'est à dire le nombre de chiffres qui le composent.

De plus, il est bon de connaître le premier de ces chiffres, ou à peu près.

Si un bâtiment mesure 53,40 m de hauteur, on peut dire que l'ordre de grandeur de la hauteur est 50 m.

Si un véhicule coûte 23 712 €, l'ordre de grandeur de son prix est 20 000 €.

Dans ce problème d'ordre de grandeur, il n'y a pas vraiment de méthode imposée, mais l'idée est la suivante :

Pour calculer l'ordre de grandeur du produit : 635 × 429

On remplace chacun des facteurs par un nombre « renu (un seul chiffre et des 0).

635 est compris entre 600 et 700, mais plus proche de 600. On le remplace par 600.

429 est compris entre 400 et 500, mais plus proche de 400. On le remplace par 400.

L'ordre de grandeur du produit : 635×429 est égal à : $600 \times 400 = 240000$.

On sait alors que le produit : 635×429 est un nombre de 6 chiffres, c'est à dire compris entre 100 000 et 1 000 000.

Les nombres intervenant dans le calcul exact étant plus grands que ceux utilisés pour le calcul de l'ordre de grandeur, le résultat exact sera plus grand que l'ordre de grandeur obtenu, c'est à dire 240 000.

D'autres exemples

 $5.687 \times 98 \rightarrow 6.000 \times 100 = 600.000$

 $6 \times 514 \rightarrow 6 \times 500 = 3000$

Ouelques comarques :

Dans tous les cas, le calcul de l'ordre de grandeur doit se faire **de tête, avant le calcul exact**.

En ger e al, si on augmente l'un des nombres, on diminue l'autre. Par exemple pour le produit 5 637×98 , on aurait pu calculer $5000 \times 100 = 500000$.

Connaissant l'ordre de grandeur d'un produit, on peut éliminer certains résultats évidemment faux :

Pour le calcul de 9 416 × 705 deux élèves ont proposé les résultats suivants :

6 638 280 pour l'un et 706 200 pour l'autre.

Le calcul de l'ordre de grandeur : $9\,000 \times 700 = 6\,300\,000$ permet d'éliminer la proposition 706 200 sans pour autant être certain que l'autre résultat soit exact.

Exercice 32

Calculer l'ordre de grandeur pour chacun des produits suivants :

 532×37

 964×321

 18×462

 3258×6542

 7×639

 6591×844

 8730×6

III) Chiffre des unités

entorcees Un autre moyen de voir qu'un résultat est faux lorsque l'on calcule un produit est de s'intéresser au chiffre des unités.

Il est effet obtenu en multipliant les derniers chiffres de chacun des facteurs du produit.

Par exemple, pour le produit : 18 × 462 , les chiffres des unités de checup des facteurs sont 8 et 2; 8 \times 2 = 16. Le produit se terminera donc par 6.

Exercice 33

En s'intéressant aux chiffres des unités de chacun des facteurs, déterminer le chiffre des unités du produit.

532 × 37	23×37
964 × 321	95 364 × 21
18 × 462	15 866 × 462
3 258 × 6 542	3 257 × 6 541
7 × 639	75 × 634
6 591 × 844	659 × 843
8 730 × 6	8 737 × 62

Exercice 34

Pour chaque produit proposé, éliminer toutes les valeurs sûrement impossibles d'après les deux méthodes proposées.

Produit	754 864	5325 × 49	719 × 8	659 × 37	413 × 69	2059 × 84	743 × 942	
Ś	883 424	265 627	6 215	22 328	209 407	17 856	845 236	
	68 424	37 965	6 352	24 383	19 547	17 256	702 304	
proposé	6 835 244	684 325	5 752	26 932	28 497	285 716	75 326	
	681 622	1 218 925	6 722	2 654	18 493	78 656	83 016	
Valeurs	683 424	485 655	3 628	2 343	12 328	172 956	28 358	
-	675 766	260 925	5 458	32 253	38 597	142 954	699 906	

576 424	280 632	9 420	12 510	28 457	174 515	700 024

B. LA REGLE DE DISTRIBUTIVITE

Rappelons la méthode classique pour "poser" une multiplication, afin d'en expliquer les raisons. Par exemple, lorsque l'on veut calculer 28×19 , on écrit

		2	8	Qu'écrit-on exactement sur chacune des lignes?	.'C
X		1_	9	_	(C)
	2	5	2	252 c'est 9 × 28	
	2	8	•	Le point représente un 0. Et 280, c'est 10 × 28	80.
	5	3	2	On ajoute les deux résultats précédents, c'est à dire	que l'on calcule
				$(9 \times 28) + (10 \times 28)$ car 19 est égal à $10 + 9$.(7)

Cette possibilité que l'on a de transformer un produit en somme est une corègles importantes des opérations.

On remplace 28×19 par $(9 \times 28) + (10 \times 28)$ car 19 est égal à 10 + 9.

Soit, finalement $28 \times 19 = 28 \times (10 + 9) = (9 \times 28) + (10 \times 28)$.

Pour exprimer cette propriété, on dit que la multiplication est discriputive sur l'addition. On utilise ce mot parce que l'on peut comprendre que l'on a distribué le fa teur 28 à chacun des termes 10 et 9 qui composent le nombre 19.

On généralise cette règle de la manière suivante

$$a \times (b + c) = (a \times b) - (a \times c)$$

ou aussi
 $a \times (b - c) = (a \times b) - (a \times c)$

En appliquant cette règle, on aura:

$$45 \times 24 = 45 \times (20 \times 4) = 45 \times 20 + 45 \times 4 = 900 + 180 = 1080$$

Mais aussi, en faisant apparaître une différence :

$$37 \times 99 = 37 \times (100 - 1) = 37 \times 100 - 37 \times 1 = 3700 - 37 = 3663$$

Dans les deux cas, on dit que l'on développe le produit.

On peut aussi utiliser la règle dans le sens contraire Par exemple :

$$6 \times 24 + 6 \times 36 = 6 \times (24 + 36) = 6 \times 60 = 360.$$

$$18 \times 59 - 18 \times 9 = 18 \times (59 - 9) = 18 \times 50 = 900.$$

Dans les deux cas, on dit que l'on factorise la somme.

Exercice 35

Poser les opérations pour calculer les produits suivants :

maindues renforcees

Anathernation

es ar 38×41 45×29 97×68 417×83 134×574 352×959 b)

Exercice 36

Calculer en ligne les produits en développant :

 $a = 38 \times 41 = 38 \times (40 + 1)$ $b = 45 \times 29 = 45 \times (30 - 1)$ $c = 97 \times 68 = (100 - 3) \times 68$ $d = 246 \times 78 = 246 \times (80 - 2)$ $e = 905 \times 23 = 905 \times (20 + 3)$ $f = 417 \times 83 = 417 \times (80 + 3)$

Exercice 37

Calculer en ligne les sommes en commençant par factoriser :

 $a = 29 \times 55 + 29 \times 45$ $b = 34 \times 17 + 166 \times 17$ $c = 491 \times 51 + 9 \times 51$ $d = 32 \times 86 + 114 \times 32$ $e = 66 \times 544 + 56 \times 66$ $f = 604 \times 41 + 604 \times 17 + 604 \times 42$ $q = 53 \times 18 + 53 \times 39 + 57 \times 47$ $h = 29 \times 68 + 37 \times 68 + 66 \times 32$

Exercice 38

EXITAIL

Un fleuriste compose des bouquets de roses avec trois couleurs de roses.

Il y en a des rouges des orange et des jaunes.

a) S'il compose des bouquets avoc 3 roses rouges, 5 roses orange et 2 roses jaunes, on écrira : b = 3r + 50 + 2i.

Combien a-t-il utilisé de chaque type de roses s'il a confectionné 12 bouquets de ce type ?

b) Comment peut-il composer des bouquets identiques si son stock comporte : 12 roses rouges, 18 roses orange et 24 roses jaunes?

Quel est le nombre de bouquets composés?

C. LA DIVISION EUCLIDIENNE

l) L'écriture en ligne de la division

On veut ranger des œufs dans des boîtes par douzaines. Si on a 80 œufs à ranger, on peut dire qu'il faut 6 boîtes (72 œufs) et que 8 œufs ne seront pas rangés; ou bien on peut considérer qu'il faut 7 boîtes mais qu'il manquera 4 œufs pour que la septième boîte soit pleine. Mais quelle que soit la solution adoptée, on n'aura jamais réussi à ranger tous ces œufs dans un ensemble de boîte pleines.

Le partage ne sera donc <u>pas exact</u>, et le nombre de boîtes ne peut être qu'une valeur <u>rar excès</u> (lorsque l'on compte la boîte non pleine) ou <u>par défaut</u> (lorsqu'il reste des œufs non ranges).

On ne pourra pas écrire que $80 \div 12 = 6$ ou que $80 \div 12 = 7$. Dans un cas de ce type on parle de division euclidienne. La seule **écriture en ligne** possible de cette opération do traire intervenir tous les éléments :

$$D = d \times q + r$$

 $80 = 12 \times 6 + 8$ est l'**écriture en ligne** de la division euclidienne de 80 par 12.

80 est le **dividende**; 12 est le **diviseur**; 6 est le **quotient euclidion**, 8 est le **reste**.

II) Le reste dans la division

La division est l'opération consistant à retirer d'une quantité (le dividende) un nombre de fois une autre quantité (le diviseur). Quand on en a retiré le bius grand nombre, la quantité restante est appelée le « reste ».

Le reste est un nombre entic strictement inférieur au diviseur. $r=D-d\times q$

Dans la division euclidienne par § le reste ne peut pas être plus grand que 5. Il y a donc six restes possibles : 0, 1, 2, 3, 4, et 5.

Toutefois lorsque le reste (aut) (il ne reste plus rien à diviser), la division se fait exactement. Le résultat est le quotient qu'il n'est plus nécessaire de préciser « euclidien ». Mais dans la pratique, on omet ce genre de subulité.

III) La division par 0

Lorsque l'on parle d'un quotient, il faut que ce quotient existe, d'une part, et qu'il n'ait qu'une seule valeur possible, d'autre part.

Si l'on veut calculer le quotient d'un nombre par 0, on cherche un nombre q, dont le produit par 0 soit égal au dividende. Or tout produit par 0 est égal à 0. Donc deux cas se présentent :

Si le dividende est 0, tout nombre peut être quotient; il n'y a pas un quotient unique. On pourrait dire : « En 0, combien de fois 0 ? ». La réponse pourrait être **n'importe quel nombre**.

Pour toute valeur du dividende autre que 0, on ne pourra pas trouver de valeur pour q. On pourrait dire : « En 7, combien de fois 0 ? ». **Aucun nombre** ne pourrait convenir.

Dans un cas comme dans l'autre, on convient que le quotient par 0 n'existe pas.

Exercice 39

Calculer le quotient euclidien et le reste en posant les opérations.

Doni	Donner dans chaque cas <u>l'écriture en ligne</u> .									
a)	205 par 3	318 par 5	437 par 9	698 par 6	782 par 4					
b)	285 par 3	1 087 par 7	4 345 par 25	2 005 par 13						
c)	1 848 par 27	987 par 30	1 253 par 95	7 253 par 78	5 874 par 106					
Exercice 40										
Dans un collège, 143 élèves sont inscrits en classe de sixième.										

Exercice 40

- 1. Combien peut-on former d'équipes de basket à 5 joueurs? Combien d'élèves de pourront pas être intégrés dans une équipe?
- 2. Combien peut-on former d'équipes de football à 11 joueurs? Combien d'elèves ne pourront pas être intégrés dans une équipe?
- 3. Combien peut-on former d'équipes de rugby à 15 joueurs? Combien a élèves ne pourront pas être intégrés dans une équipe?

Exercice 41

Quels sont les restes possibles dans la division euclidienne par

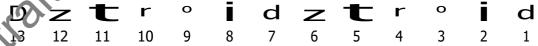
- 1. Quels sont les dividendes possibles dans la division euclidienne par 7 lorsque le quotient euclidien vaut 31?
- 2. Quels sont les dividendes possibles dans la division euclidienne par 7 lorsque le quotient euclidien vaut 43?
- 3. Quels sont les dividendes possibles tans la division euclidienne par 7 lorsque le quotient euclidien vaut 64?

Exercice 42

- 1. Dans une division euclidienne, le guotient euclidien est 13, le reste est 7 et le dividende est 202. Combien vaut le divise a ?
- 2. Dans une division euclidienne, le quotient euclidien est 18, le reste est 4 et le dividende est 238. Combien vaut le diviseur?
- 3. Dans une divinor euclidienne, le quotient euclidien est 4, le reste est 3 et le dividende est 203. Combien yaut le diviseur?

Exercic

Voici un curieux défilé d'animaux qui se déplace de la gauche vers la droite.



Le défilé est constitué de 200 animaux qui sont rangés toujours dans ce même ordre.

- Quelles sont les places occupées par les lapins entre la 10ème et la 30ème place?
- 2. Quel animal sera situé à la place n°43?
- 3. Quel animal sera situé à la place n°189?