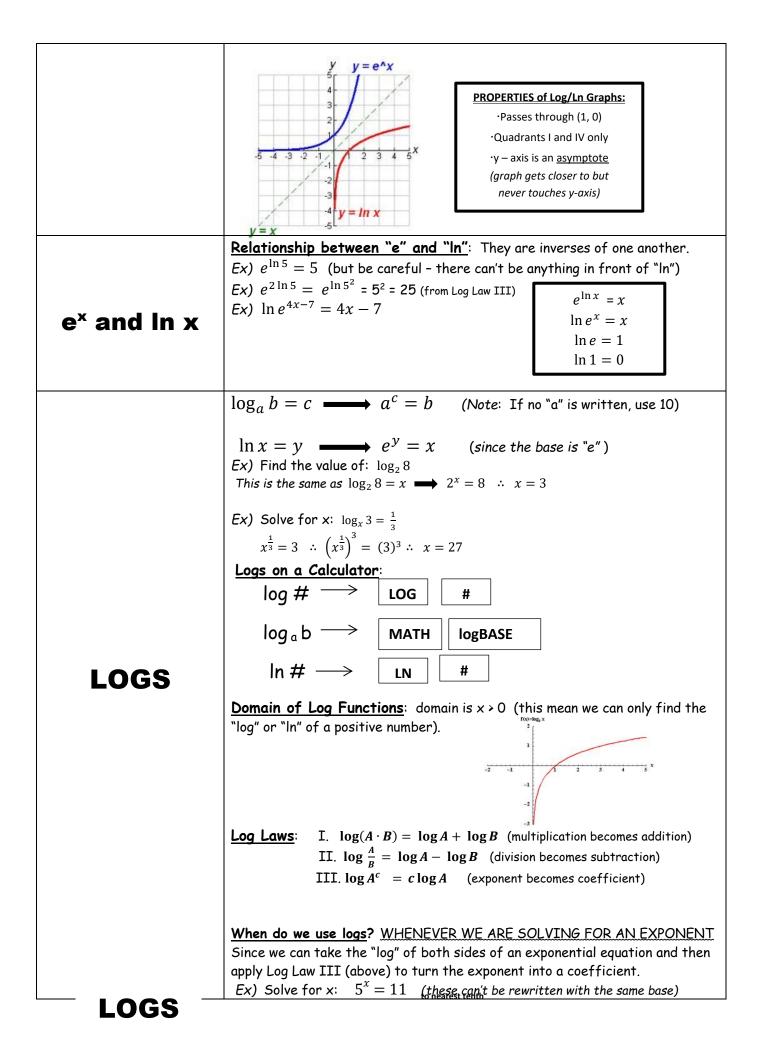
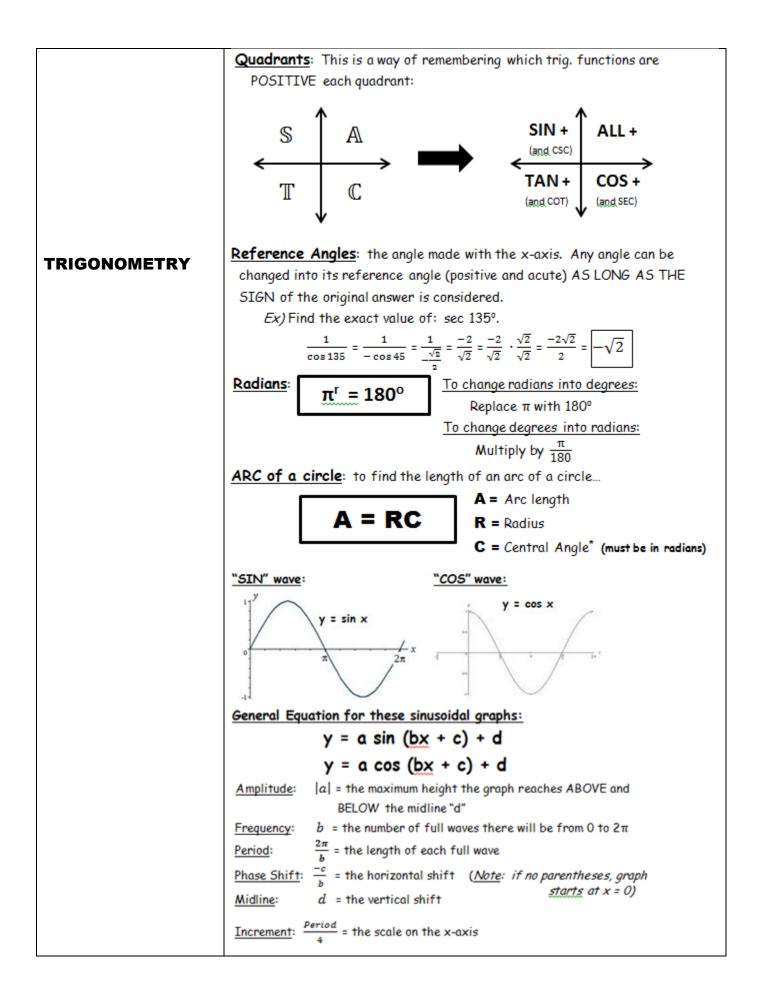
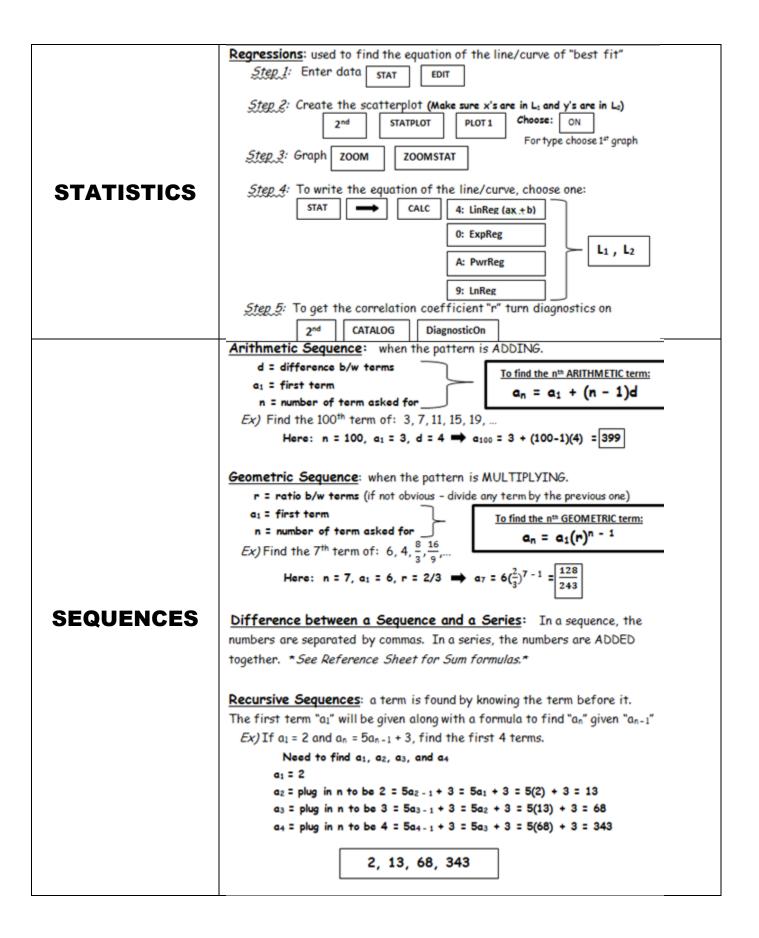
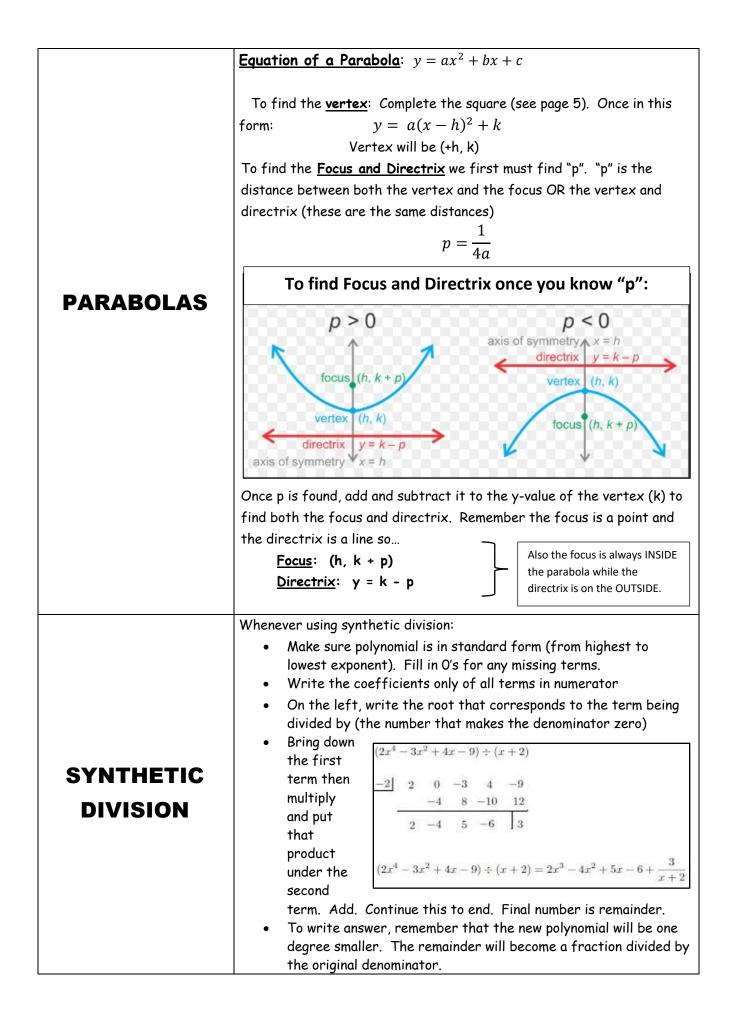

Things to Know for the Algebra II Regents Exam


	Simplifying Radicals: find two numbers that multiply to the number under the radical where one number must be a perfect square. (If there is a coefficient, it will multiply) Ex) $5\sqrt{32} = 5\sqrt{16}\sqrt{2} = 5 \cdot 4\sqrt{2} = 20\sqrt{2}$ Adding/Subtracting: Two radicals must have the SAME number under the radical. If so, add/subtract coefficients and leave common radical alone. Ex) $\sqrt{27} - 5\sqrt{12} = \sqrt{9}\sqrt{3} - 5\sqrt{4}\sqrt{3} = 3\sqrt{3} - 5 \cdot 2\sqrt{3} = -7\sqrt{3}$ Multiplying/Dividing: Any two radicals can mult/divide (do not have to be the same). Mult/divide the coefficients and mult/divide the radicands. Ex) Multiply and express result in simplest radical form: $9\sqrt{6} \cdot 7\sqrt{3} = 63\sqrt{18} = 63\sqrt{9}\sqrt{2} = 63 \cdot 3\sqrt{2} = 189\sqrt{2}$ Ex) Divide: $\frac{6\sqrt{32}}{2\sqrt{2}} = 3\sqrt{16} = 3 \cdot 4 = 12$ Conjugates: to find the conjugate, change the MIDDLE sign. The product of a number and its conjugate will always be a rational number (no $\sqrt{-}$). Ex) conjugate of $2 + \sqrt{5}$ is $2 - \sqrt{5}$ and $(2 + \sqrt{5})(2 - \sqrt{5}) = 4 - 5 = -1$ Rationalizing Denominators: we can never leave a radical in the denominator of a fraction. To get rid of it If there is only one term Multiply by the same radical on top & bottom $Ex) \frac{4}{\sqrt{2}} = \frac{4\sqrt{2}}{\sqrt{2}\sqrt{2}} = 2\sqrt{2}$ If there are two terms Multiply by the Conjugate of the denominator Equations with Radicals: Step 1: Get the radical alone. Step 2: Square BOTH sides to get rid of radical. Step 3: Solve for x and CHECK solution(s) in original eqn. $Ex)$ Solve: $\sqrt{x+7} - x = 1$ $\sqrt{x+7} = x+1$ $(\sqrt{x+7})^2 = (x+1)^2$ FOIL $x + 7 = x^2 + 2x + 1$ $0 = x^2 + x - 6$ 0 = (x + 3)(x - 2) $\sqrt{7-3+7} - (-3) = 1$ $\sqrt{4+3} = 1$ $2+3 \neq 1$ reject! 0 = (x + 3)(x - 2) $\sqrt{7-2} = 1$ 3-2 = 1
FRACTIONS	Equations : Step 1: Find LCD for all fractions. (FACTOR them if necessary) Step 2: Multiply each fraction by what it is "missing". Step 3: Cancel out all common denominators. Step 4: Solve equation. Step 5: CHECK Solution(s) and REJECT any that make a fraction undefined. $Ex) \frac{1}{x+1} + \frac{1}{x-1} = \frac{2}{x^2-1} \longrightarrow \frac{1}{x+1} + \frac{1}{x-1} = \frac{2}{(x+1)(x-1)}$ $\frac{1}{(x+1)(x-1)} + \frac{1}{(x-1)(x+1)} = \frac{2}{(x+1)(x-1)} \longrightarrow x - 1 + x + 1 = 2$ $\frac{CHECK: x = 1}{x-1} \qquad 2x = 2 \qquad x = 1$ $makes \frac{1}{x-1} undefined since it's \frac{1}{0} \therefore reject!$ Solution: Ø (empty set - there is NO solution)
	Probability Formula: <u>number of favorable outcomes</u>
	total number of outcomes

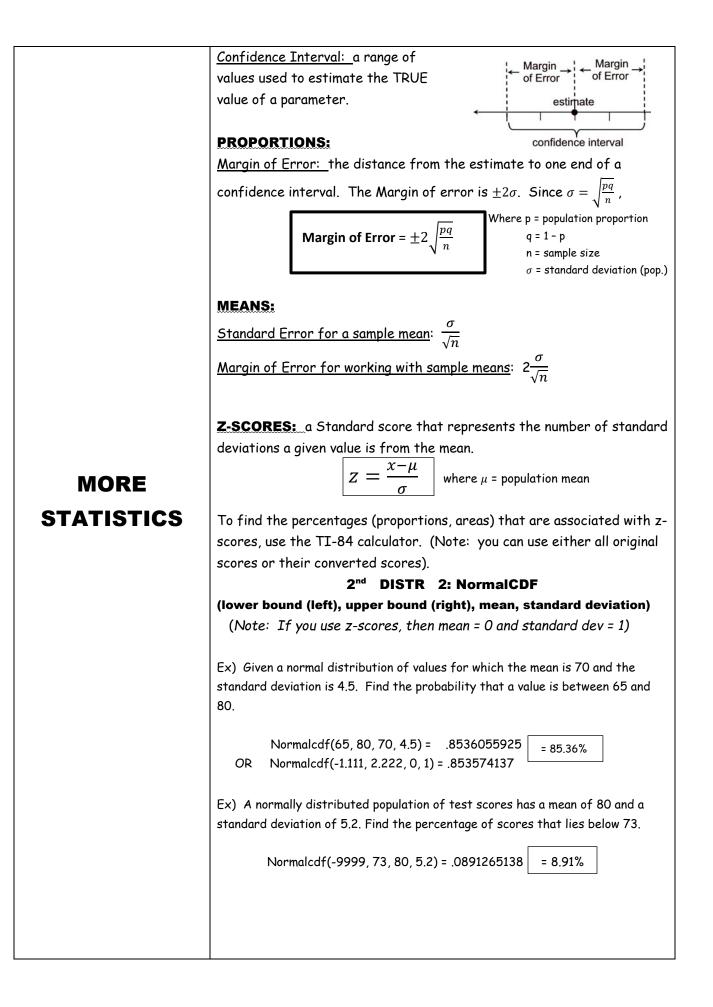
	occurs	$\begin{array}{l} \hline \begin{array}{l} \hline \textbf{Conditional Probability}: & \text{finds the probability of an event } (E_2) \\ \text{occurs GIVEN that another event } (E_1) & \text{already occurred} \\ \hline P(E_2 \ E_1) & = \frac{P(E_2 \ and \ E_1)}{P(E_1)} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{l} \hline \end{array} \\ \hline \begin{array}{l} \hline \end{array} \\ \hline \begin{array}{l} \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\						
PROBABILIT	probabi the stud Ex) Th (either	probability the student takes computers if 0.4. What is the probability t the student takes Spanish given that he/she takes computers? Answer: $\frac{15}{0.4} = .375$ Ex) The table below has information regarding the percent of people (either with or without children in college) and how affordable they feel college is or is not)						
		Too Exp	ensive Affo	rdable	Too Cheap			
	Child in College	55%	4%		0%			
	Child not in College	30%	8%		3%		expensive	
		$\frac{\text{Number who have charge and charge and charge its expensive}}{\text{Total number having children in college}} = \frac{.55}{.59}$						
			i otat nami	for naving (onege		
	Indepe	endent E	vents: w	hen occu	irrence o	f 1 event	does not	
	-							
	-	change the occurrence of another. If independent then: $P(A \mid B) = P(A)$						
	If ii	ndepende	ent then:	P(A and	l B) = P($A) \cdot P(B)$		
	Ex) This table shows favorite subjects. Does it appear that choosing math as a favorite subject is <u>dependent</u> on gender?							
				Social				
_		Math	English	Studies	Science	Total		
	emale	8	6	10	6	30		
	Male	10	4	9	4	27		
	otal	18	10	19 F (IIIIIII)	9	57		
	$\left \frac{8}{30} = \frac{18}{57} \text{ No!} \right $ $\therefore not independent, must be dependent$							

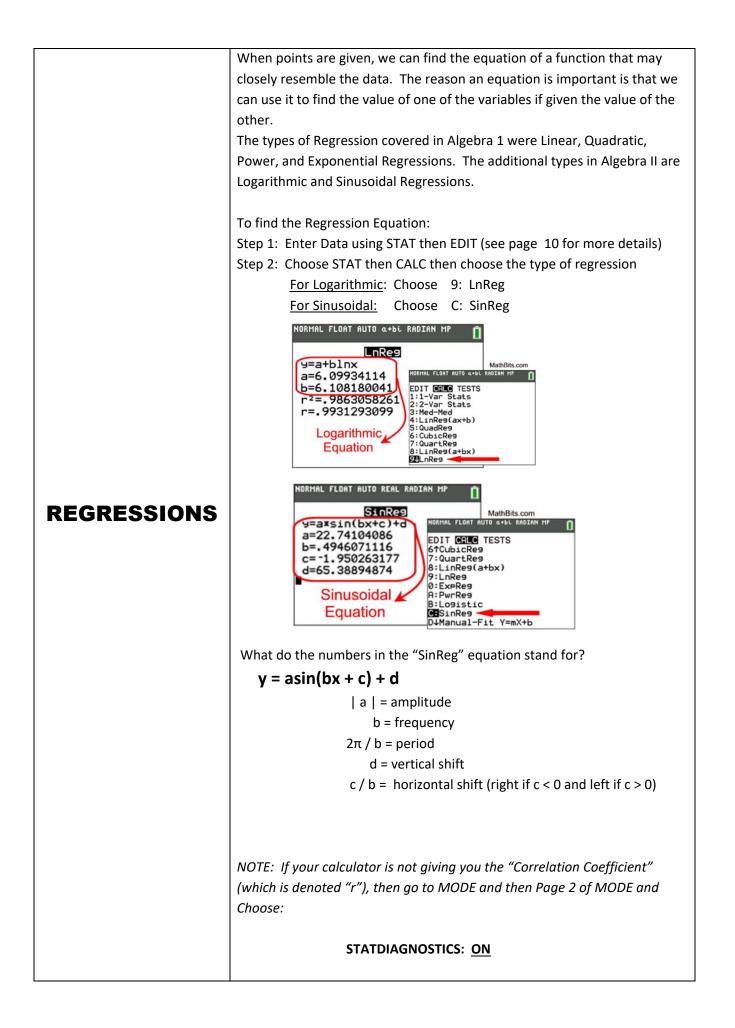



	$(3)^2$ 7 9 (1.5.11)				
EQUATIONS	$\left(x-\frac{3}{2}\right)^2 = \frac{7}{2} + \frac{9}{4}$ (left side is perfect square)				
	$\left(x - \frac{3}{2}\right)^2 = \frac{23}{4} (simplify)$				
	$\sqrt{\left(x-\frac{3}{2}\right)^2} = \pm \sqrt{\frac{23}{4}}$ (square root- don't forget \pm on right)				
	$x - \frac{3}{2} = \pm \sqrt{\frac{23}{4}}$ (drop the squared on left)				
	$\begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ 23 \\ 3 \\ 3 \\ 23 \\ 3 \\ 3$				
	$x = \frac{3}{2} \pm \sqrt{\frac{23}{4}} = \frac{3}{2} \pm \frac{\sqrt{23}}{2} \text{ or } \frac{3 \pm \sqrt{23}}{2}$				
	Zero and Negative Exponents:				
	$\mathbf{x}^{0} = 1$ $\mathbf{x}^{-n} = \frac{1}{x^{n}}$ $\frac{1}{x^{-n}} = \mathbf{x}^{n}$ $x^{\frac{p}{r}} = \sqrt[r]{x^{p}}$				
	Notice the Difference : $-3^2 \neq (-3)^2$ because $-3^2 = -9$ yet $(-3)^2 = +9$				
	Equations with Exponents:				
	Exponent is a VARIABLE: Rewrite one or both bases so that they are				
EXPONENTS	the same number. (Usually the larger gets rewritten in terms of the smaller or both get written smaller.) <u>Note: if this is not possible, use LOGS!!</u>				
	Then cancel out the like bases and solve the remaining equation (distribute if				
	necessary). Ex) Solve: $8^x = 4^{x+3}$				
	$(2^3)^x = (2^2)^{x+3}$				
	$(2^3)^x = (2^2)^{x+3}$ (distribute !)				
	3x = 2x + 6 ∴ x = 6 <u>Exponent is a NUMBER</u> : Get the variable alone then to get rid of its				
	exponent, raise both sides to the RECIPROCAL power.				
	<i>Ex</i>) Solve: $2x^{\frac{-2}{3}} + 7 = 25$				
	$2x^{\frac{-2}{3}} = 18$				
	$x^{\frac{-2}{3}} = 9$				
	$\left(x^{\frac{-2}{3}}\right)^{\frac{-3}{2}} = (9)^{\frac{-3}{2}} \longrightarrow \left[x = \frac{1}{27}\right]$				
	<u>Graph of Exponential Functions</u> : $y = b^x$ (b must be positive but \neq 1)				
EXPONENT	If 0 < b < 1 the graph represents DECAY (decreasing from left to right) If b > 1 the graph represents GROWTH (increasing from left to right)				
GRAPHS	$b = \frac{f(x)}{b} = 2$ PROPERTIES of				
	Exponential Growth Exponential Growth				
	Exponential Decay $\int_{1}^{5} \int_{1}^{1} \int_{1}^{1} Passes through (0, 1)$				
	·Quadrants I and II only				
	(<i>O</i> , 1) (<i>C</i> , 1) (<i>graph gets closer to</i>)				
	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \frac{1}$				
LOG					
	The number "e": $e \approx 2.71828$ (irrational #) "e" is the base of the				
GRAPHS	<u>The number "e"</u> : $e \approx 2.71828$ (irrational #) "e" is the base of the natural logarithm "ln x". That is $\log_e x = \ln x$. "e ^x " and "ln x" are inverses of one another (symmetric about the line y = x).				



	log 5 [×] = log 11 <u>Step 1</u> : Take "log" of both sides					
	x log 5 = log 11 Step 2: Apply Log Law III					
	$x = \frac{\log 11}{\log 5}$ Step 3: Divide					
	$x \approx 1.9$					
	Log Equations : Condense into a single logarithm (if necessary), then rewrite in exponential form and solve. CHECK in original equation. REJECT any value involving the log of a non-positive number (see Domain of Log Functions pg. 7)					
	$Ex) \log_3 x + \log_3 (x - 2) = 1 \log_3 x (x - 2) = 1 3^1 = x(x - 2) 0 = (x + 1)(x - 3) x = -1 or x = 3 CHECK x = -1: can't have \log_3(-1)$					
	$3 = x^2 - 2x$ <u>CHECK x = 3</u> : $\log_3 3 + \log_3 1 = 1$					
	$0 = x^2 - 2x - 3 \qquad 1 + 0 = 1 \ \blacksquare$					
	Polynomial Equations: an equation with positive integral exponents of x.					
	<i>Ex</i>) $y = 4x^5 - 3x^4 + x^3 - 7x - 9$ is an example of a polynomial function.					
	Zeros of a Function: the values of x where the graph intersects the					
	x-axis. THE MAXIMUM NUMBER OF ZEROS A POLYNOMIAL HAS IS					
	THE SAME AS THE HIGHEST EXPONENT IN ITS EQUATION.					
POLYNOMIALS	<i>Ex</i>) $y = 4x^5 - 3x^4 + x^3 - 7x - 9$ has a maximum of 5 zeros.					
POLINOMIALS	To find the zeros:					
	<u>Algebraically:</u> Set the function equal to zero and solve by factoring.					
	Ex) Find the zeros of $y = x^3 + x^2 - 12x$					
	$0 = x^3 + x^2 - 12x$ \gg $x = 0 \text{ or } x = -4 \text{ or } x = 3$					
	$0 = x(x^2 + x - 12)$					
	0 = x(x + 4)(x - 3)					
	<u>Graphically</u> : Make sure equation it equal to zero then graph.					
	Ex) Solve graphically: $-x^3 - 2x^2 + 5x = -6$					
	Graph: $y = -x^3 - 2x^2 + 5x + 6$ Negative Leading Coefficient y_{20}					
	Odd Degree 20 - 15 - 10					
	4.5					
	L -15					
	Definition of i : $i = \sqrt{-1}$					
	i an Coloulatory MODE a+bi					
	<u><i>i</i> on Calculator</u> : $a \neq b \neq a$ Powers of <i>i</i> : we can leave <i>i</i> in an answer, but not with an exponent					
	Powers of i : we can leave i in an answer, but not with an exponent.					
COMPLEX	Powers of <i>i</i> : we can leave <i>i</i> in an answer, but not with an exponent. On Calculator, MATH ➡ NUM "iPart"					
	 Powers of i: we can leave i in an answer, but not with an exponent. On Calculator, MATH → NUM "iPart" Additive Inverse: CHANGE BOTH SIGNS 					
COMPLEX NUMBERS	 Powers of <i>i</i>: we can leave <i>i</i> in an answer, but not with an exponent. On Calculator, MATH ⇒ NUM "iPart" Additive Inverse: CHANGE BOTH SIGNS Conjugate: CHANGE MIDDLE SIGN 					
	 Powers of i: we can leave i in an answer, but not with an exponent. On Calculator, MATH → NUM "iPart" Additive Inverse: CHANGE BOTH SIGNS 					
	 Powers of <i>i</i>: we can leave <i>i</i> in an answer, but not with an exponent. On Calculator, MATH ⇒ NUM "iPart" Additive Inverse: CHANGE BOTH SIGNS Conjugate: CHANGE MIDDLE SIGN 					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$ Arithmetic:Adding/Subtracting:Combine real parts (w/o i).Combine					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$ Arithmetic:Adding/Subtracting:Combine real parts (w/o i).Combineimaginary parts (with i)Ex) (-7 + 3i) - (-2 - 8i) = -7 + 3i + 2 + 8i = -5 + 11i					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$ Arithmetic:Adding/Subtracting:Combine real parts (w/o i).Combineimaginary parts (with i)Ex) (-7 + 3i) - (-2 - 8i) = -7 + 3i + 2 + 8i = -5 + 11iMultiplying:Distribute and/or FOIL if necessary.					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$ Arithmetic:Adding/Subtracting:Combine real parts (w/o i).Combineimaginary parts (with i) Ex) (-7 + 3i) - (-2 - 8i) = -7 + 3i + 2 + 8i = -5 + 11iMultiplying:Distribute and/or FOIL if necessary.Remember $i \cdot i = i^2 = -1$ Ex) (-7 + 3i) (-2 - 8i) = 14 + 56i - 6i - 24i^2					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$ Arithmetic:Adding/Subtracting:Combine real parts (w/o i).Combineimaginary parts (with i)Ex) (-7 + 3i) - (-2 - 8i) = -7 + 3i + 2 + 8i = -5 + 11iMultiplying:Distribute and/or FOIL if necessary.Remember $i \cdot i = i^2 = -1$ Ex) (-7 + 3i) (-2 - 8i) = 14 + 56i - 6i - 24i^2 $= 14 + 50i + 24 = 38 + 50i$					
	Powers of i:we can leave i in an answer, but not with an exponent.On Calculator, MATH \Rightarrow NUM "iPart"Additive Inverse:CHANGE BOTH SIGNSConjugate:CHANGE MIDDLE SIGNMult. Inverse:RECIPROCALAbsolute Value: $ a + bi = \sqrt{a^2 + b^2}$ Arithmetic:Adding/Subtracting:Combine real parts (w/o i).Combineimaginary parts (with i) Ex) (-7 + 3i) - (-2 - 8i) = -7 + 3i + 2 + 8i = -5 + 11iMultiplying:Distribute and/or FOIL if necessary.Remember $i \cdot i = i^2 = -1$ Ex) (-7 + 3i) (-2 - 8i) = 14 + 56i - 6i - 24i^2					


•	conto	nod at aniain:	$x^2 + x^2$	- ~2	
&		centered at origin: $x^2 + y^2 = r^2$ centered at (h, k): $(x - h)^2 + (y - k)^2 = r^2$			
TRANSFORMATIONS				. If no number is written (as in x²),	
				he equal sign is the radius after	
	squared.				
	Transformations: c	hanges in an ea	quation v	vill move every point on a graph.	
	f(x) + a : (outside a	change) moves	s the gra	ph UP or DOWN	
		ve: graph move			
		t <i>ive</i> : graph mov			
	f(x+a) : (inside cl				
	-	<i>tive</i> : graph mo			
		<i>itive</i> : graph mo			
	f(-x): (negative in		•		
	-f(x) : (negative in	n front of equa	ation) gr	aph reflects over X-AXIS	
	a f(x) : (a coefficient	ient in front o	f equatio	on) graph STRETCHES or	
	SHRINKS VERTICAL	LY. Multiply a	lly-coorc	linates by "a". (Points on x-axis will	
	therefore not move)				
	Trig. Values to ME	MORIZE			
		5° 60°		Recognize these decimals:	
	sin $\frac{1}{2}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$		$.707 = \frac{\sqrt{2}}{2}$	
	$\frac{2}{\sqrt{2}}$	$\frac{\sqrt{2}}{2} \qquad \frac{\sqrt{3}}{2} \\ \sqrt{2} \qquad \frac{1}{2}$	OR	$.866 = \frac{\sqrt{3}}{2}$	
	2	2 2		$.577 = \frac{\sqrt{3}}{3}$	
	tan $\frac{\sqrt{3}}{3}$	1 $\sqrt{3}$		$1.732 = \sqrt{3}$	
TRIGONOMETRY	Unit Circle: Each point on circle	e has coordinates (co	s ∢ , sin ∢)		
	Since radius is length 1, the sides	of the triangle are de	termined by	≪0	
	<i>y</i> (0, 1)	Â			
	(cos 0, sin 0	"		I	
	(-1, 0) 1 (1, 0)		$\overline{PR} = 0$ $\overline{QR} = 0$		
			$\overline{ST} = t$		
	(0, -1)				



	Another way of finding out a function's value for a particular value of x				
	is to find the REMAINDER using synthetic division.				
	When we divide a polynomial f(x) by x-c,				
REMAINDER	the remainder "r" is the same as f(c)				
THEOREM	Ex) What is the remainder when $2x^2 - 5x - 1$ is divided by -3 ?				
	Notice, instead of doing synthetic division we can just find $f(3)$				
	$2(3)^2 - 5(3) - 1 = 2$				
	In addition to the factoring techniques learned in Algebra 1 (Greatest				
	Common Factor (GCF), Difference of Two Squares (DOTS) and Trinomial you are expected to factor				
	Trinomial, you are expected to factor 1. <u>Sum/Difference of CUBES</u> :				
	$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$				
	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$				
	Ex) Factor: $8x^6 - 1$				
FACTORING	Since this is really $(2x^2)^3 - (1)^3$				
	So a = $2x^2$ b = 1 $(2x^2 - 1)((2x^2)^2 + (2x^2)(1) + 1^2)$ $(2x^2 - 1)(4x^4 + 2x^2 + 1)$				
	2. <u>Grouping</u> : used when there are 4 terms and, when grouped in				
	pairs, each pair has a common factor. <u>Step 1</u> : Factor out the				
	GCF of each pair. <u>Step 2</u> : What should be left in each of the				
	parentheses should be the same. Factor this parenthesis out. Ex) Factor: $6ax + 3bx - 10a - 5b$				
	= 3x(2a+b) - 5(2a+b)				
	$= \frac{3x(2a+b)-3(2a+b)}{(2a+b)(3x-5)}$				
	To solve for the 3 unknowns given 3 equations:				
	1. Pick any two pairs of equations from the system.				
	2. Eliminate the same variable from each pair using the				
	Addition/Subtraction method.				
	3. Solve the system of the two new equations using the Addition/Subtraction method. Notice: If we add the first 2 equations.				
	Addition/Subtraction method. Ex) $3x + 2y + z = 1$ y will cancel out. So let's get y to				
	x - 2y + 2z = 4 x - 2y + 2z = 4 x - 2y + 2z = 4				
SYSTEM OF 3	2x + 4y + 3z = 9 $4x + 3z = 5$				
EQUATIONS					
	$2(x - 2y + 2z = 4) \implies 2x - 4y + 4z = 8$				
	2x + 4y + 3z = 9				
	$\frac{2x+1y+3z}{4x+7z=17}$				
	Solving these equations by subtracting, we get $-4z = -12$				
	$z = 3, x = -1, y = \frac{1}{2}$				

	Continuous Growth/Decay:			
	A D rt			
	$A = Pe^{rt}$ where P = initial amount (principal)			
	r = <u>continuous</u> rate of interest (as a decimal) t = time (in years)			
	A = ending amount			
	Compound Interest:			
EXPONENTIAL				
GROWTH	$A = P(1 + rac{r}{n})^{nt}$ where P = initial amount (principal)			
GROWIN	r = interest rate (as a decimal)			
	*The value of n when compounding: n = # of compoundings in a year *			
	• annual (yearly)n=1t = time (in years)• semi-annualn = 2A = ending amount			
	• quarterly n = 4			
	monthly n = 12 daily n = 365			
	By looking at the degree of the polynomial (its Highest exponent) as well as			
	the Leading Coefficient, we can tell what the "ends" of the graph would			
	look like.			
	If the DEGREE is EVEN and			
	Leading coefficient is POSITIVE then ends would be UP-UP			
	Leading coefficient is NEGATIVE then ends would be DOWN-DOWN			
	MathBits.com			
	Ends $y = x^2 - 6x - 5$			
END				
	Both leading coefficient -			
BEHAVIOR	$y = x^{2} - 2x - 8$ Ends			
OF	leading coefficient + UP			
	If the DEGREE is ODD and			
POLYNOMIALS				
	Leading Coefficient is POSITIVE then ends would be DOWN-UP Leading Coefficient is NEGATIVE then ends would be UP-DOWN			
	degree odd y t degree odd			
	$y = x^{3} x^{4} + 4$			
	leading X MathBits.com			
	coefficient			
	positive left DOWN right UP left UP negative			

Table of Contents: Algebra II Summary

	010001	1.0900100
Absolute Value of Complex #s	8	Log Laws
Additive Inverse of Complex #s	7	Logs
Amplitude	9	Margin of Error
ARC of a circle	9	Midline
Arithmetic Sequences	10	Multiplicative Inve
Circles	8	Negative Exponent
Completing the Square	4, 5	Normal Distributio
Complex Numbers	7	One-to-one Functi
Compound Interest	14	Onto
Conditional Probability	2	Outside Changes in
Confidence Interval	13	Parabola
Conjugate of Complex #s	7	Period
Conjugates	1	Phase Shift
CONTINUOUS growth/decay	14	Polynomials
Correlation Coefficient	10, 15	Probability
Degree of Polynomials	14	Product of Roots of
Dependence in Probability	2	Quadrants - in Trig
Directrix of Parabola	11	Quadratic Equation
Domain of Function	3	Radians
e^x	6	Radicals
End Behavior of Polynomials	14	Range of Function
Exponent equations - solved w Logs	7	Rationalizing Deno
Exponential Growth/Decay	14	Recursive Sequence
Exponents	5	Reference Angles
Factoring	12	Regressions
Factoring by Cubes	12	Remainder Theore
Focus of Parabola	11	Roots of Quadration
Fractional Exponent	5	Sequences
Fractions	1	Sin, Cos, Tan
Frequency	9	Standard Deviation
Functions	3	Standard Error
Geometric Sequences	10	Statistics
Graphs of Exponential Functions	5	Sum of Roots of Q
Graphs of Logarithmic Functions	6	Synthetic Division
Graphs of Sin and Cos	9	System of 3 Equati
Grouping - Factoring	12	Transformations o
Imaginary Numbers	7	Trigonometry
Independence in Probability	2	Undefined Fraction
Inside Changes in a Function	8	Unit Circle
Inverse of a Function	3	Vertex of Parabola
ln x	6	Zero exponent
LnReg and SinReg	15	Zeros of a Polynon
Log Equations - solving	7	Z-scores
In x LnReg and SinReg	6 15	Zero exponent Zeros of a Polyno

Log Laws	6
Logs	6, 7
Margin of Error	13
Midline	9
Multiplicative Inverse of Complex #s	7
Negative Exponent	5
Normal Distribution	13
One-to-one Functions	3
Onto	3
Outside Changes in a Function	8
Parabola	11
Period	9
Phase Shift	9
Polynomials	7
Probability	2
Product of Roots of Quadratics	4
Quadrants - in Trigonometry	9
Quadratic Equations	4
Radians	9
Radicals	1
Range of Function	3
Rationalizing Denominators	1
Recursive Sequences	10
Reference Angles	9
Regressions	10, 15
Remainder Theorem	12
Roots of Quadratic Equations	4
Sequences	10
Sin, Cos, Tan	8
Standard Deviation	13
Standard Error	13
Statistics	10, 13
Sum of Roots of Quadratics	4
Synthetic Division	11
System of 3 Equations	12
Transformations of Functions	8
Trigonometry	8
Undefined Fractions	1
Unit Circle	8
Vertex of Parabola	11
Zero exponent	5
Zeros of a Polynomial	7
Z-scores	13