

ATANECONSULTING.COM

40 Wall Street, 11th Floor, New York, NY 10005 Phone: (212) 747-1997

EXCEL.TOGETHER.

October 10, 2022

Mr. Eugene H. Watts Senior Buyer Purchasing Department Greenwich Public Schools 290 Greenwich Avenue Greenwich, CT 06830

Reference: Preliminary Geotechnical Investigation for Central Middle School -

Greenwich Public Schools, Connecticut

Object: Transmission of the Preliminary Geotechnical Investigation Report

Dear Mr. Watts:

Atane Engineers, P.C. is pleased to submit the report of finding, analysis, and recommendations related to the preliminary geotechnical investigation for the referenced project site. Our work was initiated and conducted in accordance with Contract Supplement 7061-3 CS Soil (22404) dated June 8th, 2022, and Contract Supplement 7201-01 CS CMS (22404) dated August 24th, 2022.

Should you have any questions or need any additional information, I can be reached at 617-655-4758, or psousa@ataneconsulting.com. We thank you for the opportunity to assist you on this project and look forward to continuing our successful working relationship with Greenwich Public Schools on future projects.

Sincerely,

Paul G. Sousa, Jr.

Assistant Vice President

Paul Sousa₁₀₋₁₀₋₂₂

Director of Materials - New England Region

ATANE Engineers, Architects and Land Surveyors, P.C.

OCTOBER 10, 2022

CENTRAL MIDDLE SCHOOL

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT

Prepared for:

Greenwich Public Schools 290 Greenwich Avenue Greenwich, CT 06830

Prepared by:

TABLE OF CONTENTS

1.	I N	RODUCTION	
		E LOCATION	
2.	511	E LUCATION	3
3.	SC	OPE OF SERVICES	3
	3.1.	EXCLUSIONS	2
4.	GE	OTECHNICAL INVESTIGATION	4
5.	GE	OTECHNICAL CONDITIONS	6
	5.1.	GEOLOGY	£
	5.2.	SURFACE CONDITIONS	
	5.3.	SUBSURFACE CONDITIONS	
	5.4.	GROUNDWATER	
	5.5.	SEISMIC HAZARDS	14
	5.6.	SITE SEISMIC PARAMETERS	14
	5.7.	GROUND MOTION PARAMETERS	14
	5.8.	IDENTIFICATION OF CONTAMINATION PRESENT	15
	5.9.	STRENGTH AND DENSITY OF THE SOIL	16
6.	RE	COMMENDATIONS	17
	6.1.	RECOMMENDATIONS FOR FROST PROTECTION	17
	6.2.	RECOMMENDATIONS FOR EXCAVATION AND CONTROLLED FILL	
	6.2.		
	6.2.		
	6.2.	·	
	6.2.	4. Compacted fill material	18
	6.3.	RECOMMENDATIONS FOR FURTHER INVESTIGATIONS TO BE PERFORMED	19
	6.3.	1. Ground-water table	19
	6.3.	2. Seismic hazard assessment and design wind speed	19
	6.3.	3. Allowable bearing pressures	19
7.	CO	NCLUSION	20
8.	PE	RMITS	21
9.	AP	PENDICES	22

1. Introduction

ATANE Engineers, P.C., was retained by the client to perform a preliminary geotechnical investigation to gather initial geotechnical data regarding the possible location for the construction of a new building to locate the Central Middle School of Greenwich Public Schools.

Currently, no specific building layout or location was provided from the client for the construction of the proposed building. The preliminary geotechnical investigation was conducted at the site identified by KGD, the Master Plan Architect, as a possible location to construct the proposed middle school building. Also, it is important to note that the architectural and structural drawings are not yet finalized and are not considered for this preliminary geotechnical investigation.

The main goal of this preliminary geotechnical investigation is to inform the design team and client of the basic geotechnical properties and parameters of the areas under consideration for the construction of the proposed building and to determine whether a specific location warrants the completion of all investigations required to be in accordance with Sections 1803.3 through 1803.5 of the International Building Code (IBC).

2. SITE LOCATION

The location under consideration for the construction of the proposed school building consists of the areas within the property lines that surround the existing Central Middle School building located at 9 Indian Rock Lane, Greenwich, CT 06830 (see Site Location Map in Appendix 1). The buildings main access is located on Indian Rock Lane. However, pedestrians can access the athletic field from the North using Orchard Street. The site is situated in the Residential Zone R-12 as per the "Town of Greenwich, Connecticut, Building Zone Regulations Map, Rev. January 31, 2022".

3. SCOPE OF SERVICES

This report presents the findings regarding the preliminary geotechnical investigation performed as required and in accordance with our scope of work, which consists of the following:

- a) Geotechnical surface reconnaissance:
 - Identification of the type of soil
 - The strength and density of the soil
 - Identification of any organic material or contamination present
 - Recording of any shallow groundwater or perched water table encountered
- b) Limited subsurface exploration using soil borings and test pits,
- c) Representative soil samples collection,
- d) Laboratory testing including chemical testing,
- e) Analysis of the field and laboratory data, and
- f) A review of available geologic literature.

Limited soil borings and test pits were to be performed at specific locations to evaluate the geotechnical conditions beneath the proposed site for implantation of eventual shallow foundations.

Currently, a deep pile foundation system is not under consideration for support of the proposed structures.

3.1. Exclusions

The executed scope of work and the associated cost do not include services not specifically listed in the Contract including the following:

- a) Preparation of drawings or specifications,
- b) Design services,
- c) Any additional borings or permeability tests, if and as warranted or required,
- d) Any pavement cores, temporary or permanent wells, additional test pits, if and as warranted or required,
- e) Site specific seismic evaluation,
- f) Review of shop drawings or Request for Information (RFIs), and
- g) Construction oversight or inspection services.

4. GEOTECHNICAL INVESTIGATION

As part of this preliminary geotechnical investigation, twelve (12) Test Pits were excavated to a maximum depth of twelve (12) feet below ground surface (BGS) and fifteen (15) Boreholes were drilled to a maximum depth of sixteen (16) BGS were performed in the Athletic Field on the North side of the existing school building, and five (5) more Boreholes were completed in the South and Southwest sides of the existing school building.

All borings were drilled using a 4-1/4 inch hollow stem auger to advance and maintain the hole. Soil samples were collected using a 1-3/8 inch split-barrel sampler (SS) driven by a 140 pound hammer falling 30 inch for each hammer blow. The number of blows for each 6-inch increment was recorded, in accordance with procedures outlined in ASTM D1586, Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. An experienced geologist from SOILTESTING, INC. performed the classification of the soil samples. Most borings were sampled continuously from a depth of four (4) feet BGS to the depth of completion of the boring, except where large boulders or bedrock were encountered. The groundwater level BGS was recorded when encountered in each exploration.

Also, samples were collected at twelve (12) different locations for chemical testing (see Boring, Test Pit, and Sampling Location Plan in Appendix 2). Five of these twelve samples collected from Test Pit Locations were marked TP-SL-01 through TP-SL-05 and the remaining seven samples collected from Boreholes locations were marked B-SL-01 through B-SL-07. Additionally, other soil samples were collected for each type of soil encountered at potential shallow foundation depths (4 to 6 feet BGS) to identify geotechnical properties. The samples for identification of geotechnical properties were collected at the locations indicated below.

a. For moisture content, grain size analyses and specific gravity testing; samples were collected from the following locations: TP-1, TP-2, TP-3, TP-4, TP-5, TP-9, TP-12 and from B-17, B-18 and B-19 for a composite sample.

b. For Atterberg limits (plasticity indices) related to the clay materials encountered, samples were selected from the following locations: TP-8 and TP-9

Furthermore, all possible efforts were made to gather available pertinent data susceptible to help develop a broad understanding of the prevalent surface and subsurface materials in the vicinity of the existing school building. Among others, the following documents were reviewed:

- Bedrock Geological Map of Connecticut (1:125,000 scale), published in 1985 on behalf of the Connecticut Geological and Natural History Survey of the Connecticut Department of Environmental Protection, in Cooperation with the U.S. Geological Survey.
- Generalized Bedrock Geologic Map of Connecticut, published in 1990, reprinted 1996, revised 2013, Connecticut Geological Survey, Department of Energy and Environmental Protection.
- Connecticut Quaternary Geology Long Island Sound End Moraine Deposits, published in 2005, by Janet Radway Stone, John P. Schafer, Elizabeth Haley London, Mary L. DiGiacomo-Cohen, Ralph S. Lewis, and Woodrow B. Thompson on behalf of U.S. Geological Survey, State of Connecticut, Department of Environmental Protection, Geological and Natural History Survey
- Superficial Materials Map of Connecticut, published in 1992, by Janet Radway Stone, John P. Schafer, Elizabeth Haley London, and Woodrow B. Thompson, prepared in cooperation with the State of Connecticut, Department of Environmental Protection, Geological and Natural History Survey.
- The Geology of Greenwich, Connecticut (Reed A. Schwimmer), published in 1987 by The Greenwich Conservation Commission, Greenwich, Connecticut.
- Building Zone Regulations Map (1:2,000 scale), zoning district boundaries in the Town of Greenwich Building Zone Regulations as of December 31, 2002, revised January 31, 2022, Town of Greenwich, Connecticut
- Connecticut's 2010 Natural Hazard Mitigation Plan Update, published in December 2010, Prepared by the Department of Environmental Protection, Inland Water Resources Division, Bureau of Water Protection and Land Reuse, with Assistance from The Connecticut Department of Emergency Management and Homeland Security.
- Natural Hazard Mitigation Plan, 2016-2021 Update for the South Western Region, published in February 2016, prepared by the Western Connecticut Council of Governments (WCCOG).
- Water-Resources Investigations Report 03-4300, published in 2004, by John R. Mullaney, in cooperation with the town of Greenwich, Connecticut, U.S. Department of the Interior, U.S. Geological Survey.
- Historical aerials from Connecticut Environmental Conditions Online (CT ECO) covering the years: 1934, 1990, 1996, 2004, 2005, 2006, 2008, 2012, 2010, 2014, 2016, 2017, 2018, and 2019
- Preliminary Environmental Investigation at Central Middle School, Greenwich,
 Connecticut, MMI #5062-10-02, prepare in July 2019 by Milone & Macbroom, Inc.

5. GEOTECHNICAL CONDITIONS

5.1. Geology

As identified in the Bedrock Geologic Map of Connecticut (1985) by John Rodgers, the Central Middle School site is situated in the Iapetos (Oceanic) Terrane – Connecticut Valley Synclinorium. The Harrison Gneiss (interlayered dark-and light-gray, medium grain, foliated gneiss) is the dominant rock in the areas surrounding the existing building. As per the Bedrock Geologic Map of Connecticut (1985), foliation of bedrock typically strikes N-NE and dips west at 34 to 82 degrees. Apart from the Cameron's fault line on the Northeast of Greenwich, a High-Angle Fault (mostly Jurassic) is located in the vicinity of the site on the West side.

Based on their geographic coordinates and available geologic information collected, the superficial soil in areas surrounding the Central Middle School building can be assessed as glacial ice-laid deposits (tills) which consist of non-sorted, generally non-stratified mixtures of grain-sizes ranging from clay to large boulders. The matrix is composed dominantly of sand and silt.

As described in the "Superficial Materials Map of Connecticut (1992)" by Janet Radway Stone, John P. Schafer, Elizabeth Haley London, and Woodrow B. Thompson, the thickness of superficial materials in Connecticut varies considerably because of such factors as the high relief of the bedrock surface, changing conditions of deposition during deglaciation, and various effects of postglacial erosion and removal of glacial sediments. Glacial ice-laid deposits (tills) in Connecticut are grouped into upper till and lower till. The matrix of most tills is composed dominantly of sand and silt. The most extensive till is commonly observed in surface exposures. It is described as thin till in areas where till is generally less than 10 to 15 feet thick and including areas of bedrock outcrop where till is absent. It consists predominantly of upper till which is loose to moderate compact, generally sandy, commonly stony. The lower till (thick till) is generally overlain by upper till. Lower till does constitute the bulk of material in the areas where till thickness is greater than 15 feet. It has a patchier distribution and is principally a subsurface deposit. Lower till is moderately to very compact and is commonly finer-grained and less stony than upper till.

The Water-Resources Investigations Report 03-4300 By John R. Mullaney records that two types of aquifers are present in the Greenwich area: (1) aquifers in surficial deposits; and (2) aquifers in the fractured crystalline bedrock. Report 03-4300 furthermore points out that "The stream-drainage network apparently is strongly controlled by the underlying rock structure, and many streams are parallel to the strike of the foliation".

No landslide, rockfall or debris flow were identified at the site during the preliminary investigation.

Central Middle School at 9 Indian Rock Ln, Greenwich, CT Near: Cos Cob, CT, 06807 (Lng: -73.599, Lat: 41.045) Extract from: MapView Beta by the NGMDB

5.2. Surface Conditions

The areas surrounding the existing Central Middle School Building can be sorted in four main subareas consisting of: (1) the flat Athletic field, North of the existing Building; (2) the parking areas in the Southwest and the Southeast including an outcrop next to the building on the Southeast; (3) a hillock on the West side with some outcrops in the periphery of the property; and (4) a hillock located East including the existing tennis court and some outcrops in the periphery of the property as well. The subareas 3 and 4 are relatively wooded.

Based on data from "USGS The National Map", the athletic field on the North side of the existing school building has an average elevation of about 50 feet. The parking locations on the South of the building have an average elevation of about 60 feet with an outcrop on the Southeast of the existing school building. In general, the ground surface elevation increases when moving away from the existing building on the East and West sides of the property. Outcrops were noted as well on the East and West sides of the property.

Outcrop on the Southeast of the existing school building

Outcrop on the West side of the existing school building

Outcrop on the East side of the existing school building

Some stormwater drains were identified in the Athletic Field as shown in the drawing provided by the client. These stormwater drains are shown in the figure below using a Google Map background.

Blue lines showing the locations of the stormwater drains by the Athletic Field

The Athletic Field is relatively depressed below the surrounding areas which makes it prone to flooding in the event of heavy and prolonged storms. The area is of minimal flood hazard as per the FEMA National Flood Hazard Layer FIRMette (see Appendix 3).

5.3. Subsurface Conditions

The soils encountered beneath this site are largely consistent with the published geologic descriptions of thin till generally less than 10 to 15 feet thick and including areas of bedrock outcrop where till is absent. It consists predominantly of moderate compact mixture of gray and brown sand, silt, and gravel with inclusion of cobbles and boulders. Trace of organic matter and trace of clay were encountered as well.

In subarea (1) around the middle of the flat Athletic field on the North side of the existing school building, mostly dense dry and dense wet granular soils were encountered in boreholes B-02, B-03, B-04, B-05, B-06, and B-08 below the topsoil layer of the athletic field. Trace of cobbles and trace boulders were noted. These boreholes generally ended at 14 feet to 16 feet BGS. Ground water table was measured at 9 feet BGS in B-02, 10 feet BGS in B-03, 7 feet BGS in B-04, 8 feet BGS in B-05 & B-06, 10 feet BGS in B-08. The soils above a depth of 4 feet to 6 feet could be described as possible fill. The information collected using Test Pits performed in the athletic field is consistent with these findings (see APPENDIX 4: Test Pit Logs and APPENDIX 5: Boring Logs). Standard penetration test N-values were typically around 30 blows per foot (bpf) on average. N-Values greater than 50 blows per foot generally indicated the presence of cobbles and boulders. However, Boreholes B-04 and B-08 in the middle of the athletic field exhibited some layers with N-Values between 6 and 15 blows per foot at depth greater than 9 feet BGS. This can be correlated with the presence clay of low to medium plasticity, debris, and organics identified in the Test Pits TP-05, TP-08, and TP-09 located in the vicinity of Boreholes B-04 and B-08.

In subarea (2) by the parking areas in the Southwest and the Southeast of the existing school building, mostly brown and gray mixtures of sand, silt, and gravel were encountered in boreholes B-15, B-16, B-17, and B-18. No Test Pits was performed in this subarea with auger refusal in large boulders of bedrock. Trace of asphalt was noted in the top layers. The boreholes in subarea (2) generally ended at 8 feet to 14 feet BGS. Auger refusal was noted at 9 feet BGS in B-15 with no ground water observation. Partly weathered bedrock was noted at 12 feet BGS for B-16 with no ground water observation. Auger refusal was noted at 8 feet BGS for B-17 with no ground water observation. However, B-18 ended at nearly 14 feet BGS with ground water table observed at 9 feet BGS. Trace of organics along with cobbles (possible fill materials) were noted in B-18. Standard penetration test N-values were typically above 30 blows per foot on average for B-15 and B-16. On the Southeast side, N-values were typically about 7 blows per foot for B-15 upper soil layers, and between 12 and 27 blows per foot for B-16 upper soil layers.

<u>In subarea (3)</u> by the hillock on the West side with some outcrops in the periphery of the property, mostly brown mixtures of sand, silt, and gravel were encountered with trace of cobbles and boulders in boreholes B-09, B-10, B-11, B-12, B-13, and B-14. No ground water was observed in these boreholes. The boreholes in subarea (3) generally ended with auger refusal at 7 feet to 12 feet BGS in large boulders of bedrock. Standard penetration test N-values

were typically around 50 blows per foot on average at 8 feet or more BGS. N-Values recorded for the upper soil layers were between 20 to 30 blows per foot.

<u>In subarea (4)</u> by the hillock on the East side and some outcrops in the periphery of the property, mostly brown mixtures of sand, silt, and gravel were encountered with trace of cobbles and boulders in boreholes B-01, B-07, B-19, and B-20. Ground water table was observed at 7 feet BGS in B-01 and at 8 feet BGS in B-07. No ground water table was observed in B-19 and B-20. Bedrock refusal was noted at about 10.5 feet BGS in B-01. Refusal was noted at about 11.5 feet in B-07. Spoon refusal was noted at about 7.5 feet BGS in B-19. Auger refusal in bedrock was noted at 3 feet BGS in B-20. Standard penetration test N-values were typically above 30 blows per foot on average for the upper soil layers.

The individual boring logs containing specific information at each boring location are included in APPENDIX 5: Boring Logs.

5.4. Groundwater

The following table summarize the observed groundwater conditions from information collected during the explorations of the boreholes and test pits. The depth below ground surface provided represents the value measured when the anticipated water table was first encountered. Given the distribution of the different sizes of individual particles within the in-situ soils, and considering the relative consistency in readings, we expect these ground water table surface readings to properly represent stable groundwater conditions, and not perched conditions.

The approximative ground surface elevation is based on the "USGS The National Map". If more accurate elevation data are needed, the service of a third-party surveyor should be engaged by the owner. Ground water monitoring wells and soil permeability evaluation are not included in the scope of this preliminary geotechnical investigation.

Location: Borehole or Test Pit No.	Approximate Ground Surface Elevation (feet)	Groundwater Table Depth BGS (feet)	Date Measured	Notes
B-01	±50	7	08/23/2022	
B-02	±50	9	08/23/2022	
B-03	±50	10	08/23/2022	
B-04	±50	7	08/23/2022	
B-05	±50	8	08/23/2022	
B-06	±50	8	08/23/2022	
B-07	±50	8	08/24/2022	

Table 1 – Measured Groundwater Table

Location: Borehole or Test Pit No.	Approximate Ground Surface Elevation (feet)	Groundwater Table Depth BGS (feet)	Date Measured	Notes
B-08	B-08 ±50		08/24/2022	
B-09	±50	-	08/24/2022	No ground water observation
B-10	±50	-	08/24/2022	No ground water observation
B-11	±60	-	08/24/2022	No ground water observation
B-12	±50	-	08/24/2022	No ground water observation
B-13	±50	-	09/03/2022	No ground water observation
B-14	±60	-	08/25/2022	No ground water observation
B-15	±60	-	08/25/2022	No ground water observation
B-16	±60	-	08/25/2022	No ground water observation
B-17	±60	-	09/03/2022	No ground water observation
B-18	±60	9	09/03/2022	
B-19	±50	-	09/03/2022	No ground water observation
B-20	±50	-	09/03/2022	No ground water observation
TP-01	±50	6.5	08/12/2022	
TP-02	±50	6.5	08/12/2022	
TP-03	±50	7	08/12/2022	
TP-04	±50	8	08/12/2022	
TP-05	±50	6.2	08/12/2022	
TP-06	±50	7.5	08/12/2022	
TP-07	±50	9.5	08/12/2022	
TP-08	±50	9	08/12/2022	
TP-09	±50	8.5	08/12/2022	
TP-10	±50	-	08/12/2022	No ground water observation
TP-11	±50	9	08/12/2022	
TP-12	±50	-	08/12/2022	No ground water observation

Preliminary interpreted groundwater table elevations for design would require additional investigation not part of this preliminary investigation to identify the following information:

- Direction and gradient of groundwater, artesian conditions, and confined aquifers
- Eventual perched water tables
- Potentially significant seasonal variations
- Observed influences on the groundwater table
- Other features related to groundwater, streams, springs, seeps.

5.5. Seismic Hazards

The determination of the Seismic Design Category (SDC) involves the following three parameters: geographic location, underlying soils, and building use or occupancy category. Seismic hazard assessment is not included in the contract scope for this preliminary geotechnical investigation.

5.6. Site Seismic Parameters

The evaluation of the following site seismic parameters may be needed in relation with the SDC.

- Geospatial information (latitude/longitude in decimal degrees) of representative location(s) where VS30 values are evaluated.
- The time-averaged shear-wave velocity (VS30) for the top 30 m of the earth materials, and how it was determined (e.g., CPT or SPT correlations, Seismic CPT, and geophysical methods).

However, evaluation of site seismic parameters is not included in the contract scope for this preliminary geotechnical investigation.

5.7. Ground Motion Parameters

The evaluation of the following ground motion parameters may be needed in relation with the SDC.

- Design Horizontal Peak Ground Acceleration (HPGA),
- Mean earthquake moment magnitude (M), and
- Mean site to fault source distance (R) based on procedures described in Design Acceleration Response Spectrum

However, evaluation of ground motion parameters is not included in the contract scope for this preliminary geotechnical investigation.

5.8. <u>Identification of contamination present</u>

The chemical testing data are summarized in the following table. See APPENDIX 6 for Laboratory Test Results – Chemical Test Results

Table 2 – Chemical testing data summary

Parameter	Comments
Dibromotoluene-FID for samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Potential high bias
CT RCP Volatile Organics for samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Not detected (ND) at the reporting limit (RL) for the sample
CT RCP PAHs for samples B-SL-01 through B-SL - 06 and samples TP-SL-01 through TP-SL-05	Not detected (ND) at the reporting limit (RL) for the sample
CT RCP Semivolatile Organics for samples B-SL-01 through B-SL-06 and samples TP-SL-01 through TP-SL-05	Within the percentage recovery limits
Gasoline Range Organics for samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Not detected (ND) at the reporting limit (RL) for the sample
Diesel Range Organics for samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Not detected (ND) at the reporting limit (RL) for the sample
Volatile Petroleum Hydrocarbons for samples B-SL-01 through B-SL-06 and samples TP-SL-01 through TP-SL-05	Not detected (ND) at the reporting limit (RL) for the sample
Extractable Petroleum Hydrocarbons for samples B-SL-01 through B-SL-06 and samples TP-SL-01 through TP-SL-05 except for samples B-SL-04, B-SL-06, TP-SL-03	Not detected (ND) at the reporting limit (RL) for the sample
CT RCP Total Metals - Associated samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Within the percentage recovery limits
Ignitability of Solids for samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Not ignitable (NI)
<i>pH</i> for samples B-SL-01 through B-SL -06 and samples TP-SL-01 through TP-SL-05	Between 5.9 and 8.4

5.9. Strength and density of the soil

Initial value of the compressive strength of the cohesive soil and modulus of elasticity of granular soil (Es) can be approximated based on the Standard Penetration Test N-Values data collected during Boreholes explorations. However, a given soil does not have a unique bearing capacity; the bearing capacity is a function of the footing shape, depth, and width as well as load eccentricity.

As described in Table 4-1 of the Manual on Subsurface Investigations (Publication No. FHWA NHI-01-031, July 2001), for the coarse-grained soils with a standard penetration test N-values around 30 blows per foot, the coarse-grain soils can be described as firm to dense with a relative density of about 70%. Based on the boring logs, this is representative of most of the soil layers located at 6 to 7 feet BGS, with exception in boreholes B-14 and B-18. Using the Peck, Hanson, and Thornburn (1974) correlation, the average pick friction angle, $\phi'(\text{deg})$, can be approximated to roughly 36 degrees. Based on a first order estimation given by Kulhawy and Mayne (1990), the modulus of elasticity of the granular soils (E_s) is found to be approximately between 10,000 and 18,000 kPa for depth around 6 feet BGS. Also, based on the 2021 IBC Table 1806.2, the presumptive load-bearing values can be approximated between 95 and 140 kPa.

Similarly, as described in Table 4-2 of the Manual on Subsurface Investigations (Publication No. FHWA NHI-01-031, July 2001), for the fine-grained soils with a standard penetration test N-values around 6 and 10 blows per foot, the fine-grained soils can be described as firm to stiff with an unconfined compressive strength between 50 and 125 kPa. Based on the boring logs, this is representative of soil layers located at 10 to 12 feet BGS in borehole B-04 and at 9 to 11 feet BGS in borehole B-08.

Coarse-grained soils have high permeability which typically leads to immediate settlements. However, long term settlements can occur due to submergence, change in water level, blasting, machine vibration or earthquake loading. For the samples collected at depth ranging from 4 feet to 6 feet BGS, the average specific gravity was 2.674 and the natural moisture content was found to be between 4% and 6%. Since the sieve analysis revealed that more than 10 percent of the soil particles pass a No.200 sieve (75 µm) for samples collected in boreholes B-17, B-18 and B-19 and in Test Pits TP-01, TP-08, TP-09 and TP-12, it is likely to have expansive soil on the North and East side portions of the athletic field in subarea (1) and on the Southeast side of the existing school building in subarea (2). However, the values of 2.8 and 3.4 obtained for the plasticity index (PI) of the soil samples tested for TP-08 and TP-09 are indicative of low expansion potential. Hence, additional geotechnical investigations will be required in accordance with the 2021 IBC Section 1803.5.3 in case portion of the footprint of the proposed new building would have to be situated in said areas.

Also, fine-grained soils have very low permeability. The underlying silty clay soils layers in the vicinity of boreholes B-04 and B-08 on the North and East side portions of the athletic field in subarea (1) will require additional investigations to determine the magnitude and duration of settlement to be expected in said area.

As the range of applied loads for consolidation testing should cover the smallest and largest effective stresses anticipated in the field and will depend on depth, foundation loads, and excavations, additional investigations based on design information are needed to perform consolidation testing. Indeed, performance of consolidation tests can provide additional data that will be needed by the design engineer to estimate the magnitude and rate of both differential and total settlement if the decision was to be made to locate portion of the footprint of the proposed new school building structure or earthfill by the location of Test Pits TP-05, TP-08, and TP-09 and Boreholes B-04 and B-08 in the North and East side portions of the athletic field in subarea (1).

6. RECOMMENDATIONS

All soils and foundation work shall comply with the Chapter 18 of the 2022 Connecticut State Building Code and of the 2021 International Building Code (IBC). Additional studies shall be made as recommended to evaluate slope stability, soil strength, position and adequacy of load-bearing soils, the effect of moisture variation on soil-bearing capacity, compressibility, liquefaction, and expansiveness in accordance with the requirements of the 2021 IBC.

6.1. Recommendations for frost protection

As per the 2022 Connecticut State Building Code Section (Amd) 1809.5, except where otherwise protected from frost, foundations and other permanent supports of buildings and structures shall be protected from frost by one or more of the following methods:

- 1) Extending a minimum of 42 inches (1067 mm) below finished grade;
- 2) Constructing in accordance with ASCE 32; or
- 3) Erecting on solid rock.

Shallow foundations shall not bear or be installed on frozen soil.

6.2. Recommendations for excavation and controlled fill

The depth and slope of excavation and ground water conditions control the overall stability of open excavations. One of the main concerns would be the fluctuation of the ground water level, specifically ground water lowering. It is not yet known how the ground water table will fluctuate over time. Dewatering may be required during excavations if portions of the existing athletic field will be included in the footprint of the proposed new building. Additional investigation including permeability testing and ground water monitoring wells would be warranted.

In general, we recommend installing drainage to keep the depth of the water table dw > D (depth of footing). Shoring should be provided for excavation depth of 5 feet or greater unless the excavation is made entirely in stable rock.

The effects of excavation on adjacent structures should be evaluated by the design engineer to determine whether existing buildings in the vicinity are protected.

6.2.1. Excavation Difficulties

Cobbles and boulders encountered in subarea (1) – the flat Athletic field on the North side of the existing Building – will likely present excavation difficulties. Excavation difficulties will be particularly affected by the anticipated excavation size and depth. The speed and ease of excavation will depend on the type of equipment used and the skill of the operator.

The same level of difficulties is to be expected for the upper layers of soil in the remaining subareas (2), (3), and (4). In addition, the presence of the bedrock at shallow depth (3 to 7 feet BGS) may require additional heavier equipment.

6.2.2. Excavation near foundations

In accordance with 2021 IBC Section 1803.5.7, where excavations will reduce support from any foundation, a registered design professional shall prepare an assessment of the structure and shall determine the requirements for support and protection of any existing foundation and prepare site-specific plans, details and sequence of work for submission. Such support shall be provided by underpinning, bracing, excavation retention systems, or by other means acceptable to the local building official.

6.2.3. Surface Preparation/Proofrolling

In general, large size particles interfere with compaction of the finer soil fraction. It is recommended that the maximum cobble size should not exceed 3 inches or 50 percent of the compacted layer thickness.

All organics and any other deleterious material should be stripped and removed from the surface. All subsurface structures or debris which will interfere with the compaction of the area to be prepared should be removed. The soil should be scarified as needed and brought to optimum moisture content. Before performing fill placement, the newly exposed soil surface should be compacted to a firm and unyielding surface with several passes in two perpendicular directions. Additional investigations based on design information is needed to determine the minimum vibratory compactor needed to meet the requirements of the specifications.

6.2.4. Compacted fill material

As per 2021 IBC Section 1803.5.8, where shallow foundations will bear on compacted fill material more than 12 inches (305 mm) in depth, a geotechnical investigation shall be conducted and shall include Specifications for the preparation of the site prior to placement of compacted fill material, specifications for said fill material, the various test methods to be used and their frequency, maximum allowable thickness of each lift of compacted fill material, and the minimum acceptable in-place dry density. Additional investigations based on design information is needed regarding the proposed new building (such as loads, type and shape of proposed foundation system, etc.) to meet the requirements of the specifications.

6.3. Recommendations for further investigations to be performed

As per 2021 IBC Section 1803.6, where geotechnical investigations are required, a written report of the investigations shall be submitted to the building official by the permit applicant at the time of permit application. Among other requirements, the geotechnical report shall include bearing capacity of natural or compacted soil, expected total and differential settlement, effects of any adjacent loads, provisions to mitigate the effects of expansive soils, mitigation of the effects of liquefaction, differential settlement, and varying soil strength.

6.3.1. Ground-water table

According to 2021 IBC Section 1803.5.4 Ground-water table, "A subsurface soil investigation shall be performed to determine whether the existing ground-water table is above or within 5 feet (1524 mm) below the elevation of the lowest floor level where such floor is located below the finished ground level adjacent to the foundation." However, such subsurface soil investigation shall not be required where waterproofing is provided in accordance with Section 1805. Hence, unless the decision is made to provide waterproofing, ground water monitoring wells are recommended for estimation of the degree of fluctuation of the groundwater table elevations for design that would require the identification of the following information:

- Direction and gradient of groundwater, artesian conditions, and confined aquifers
- Eventual perched water tables
- Potentially significant seasonal variations
- Observed influences on the groundwater table
- Other features related to groundwater such as streams, springs, seeps.

6.3.2. Seismic hazard assessment and design wind speed

Preliminary seismic hazard assessment is not included in the contract scope for this preliminary geotechnical investigation. The evaluation of the site seismic parameters and the evaluation of the ground motion parameters would require additional geotechnical investigation.

Determination of wind characteristics is not part of this preliminary geotechnical investigation. However, it is worth noting that some basic design wind speed, V, for use in the design of Risk Category III buildings and structures can be obtained from Figures 1609.3(2), 1609.3(7) and 1609.3(8) of the 2021 International Building Code. (Ref.: 2021 International Building Code®)

6.3.3. Allowable bearing pressures

Allowable bearing pressures for shallow foundations are limited by two considerations. The safety factor against ultimate shear failure must be adequate, and settlements under allowable bearing pressure should not exceed tolerable values. In most cases, settlement governs the foundation pressures. (Ref.: pp151, Naval Facilities Engineering Command, Foundations & Earth Structures, Design Manual 7.02, September 1986)

In dense coarse-grained soils failure typically occurs along a well-defined failure surface. In loose coarse-grained soils, volumetric compression dominates and punching failures are common. Increased depth of overburden can change a dense sand to behave more like loose sand. In (homogeneous) fine-grained cohesive soils, failure occurs along an approximately circular surface.

However, as previously stated, a given soil does not have a unique bearing capacity; the bearing capacity is a function of the footing shape, depth, and width as well as load eccentricity. Since the bearing capacity is based on effective stress analysis, fluctuation of the groundwater table is expected to affect the value of the soil unit weight. Hence, additional design information regarding the proposed new building (such as loads, type and shape of proposed foundation system, etc.) will be needed to determine the expected settlement and the bearing capacity of the proposed footprint of the eventual new school building.

7. CONCLUSION

A preliminary geotechnical investigation was performed to inform the design process by identifying some basic geotechnical properties of the areas under consideration for the construction of the proposed building to allow the design engineer to determine whether a specific location warrants the completion of all investigations required in accordance with Sections 1803.3 through 1803.5 of the IBC.

The data collected suggests that the North and East side portions of the athletic field in subarea (1) and Southeast of the existing school building in subarea (2) may contain layers of expansive soil. Additional geotechnical investigations will be required in accordance with the 2021 IBC Section 1803.5.3 if the proposed new building would be located in said portions of the athletic field or by the Southeast of the existing school building.

The boreholes performed in subareas (2), (3), and (4) generally terminated with auger refusal at 7 to 12 feet BGS in large boulders of weathered bedrock. However, it is worth noting that in subarea (2), standard penetration test N-values were typically above 30 blows per foot on average for B-15 and B-16. On the Southeast side, N-values were typically about 7 blows per foot for B-15 upper soil layers, and between 12 and 27 blows per foot for B-16 upper soil layers. In subareas (3) and (4), N-Values recorded for the upper soil layers were between 20 to 30 blows per foot. Additional information regarding the proposed new building (such as loads, type and shape of proposed foundation system, etc.) will be needed to assess the allowable bearing capacity.

Also, it was determined that additional geotechnical investigation may be required to assess the seasonal degree of fluctuation of the underground water table level. Furthermore, additional investigation may be needed to assess seismic hazard and design wind speed along with specific recommendations for compacted fill and excavations. In addition, more investigations will be necessary to finalize specific recommendations to meet all requirements stipulated in the 2021 IBC Section 1803.6.

8. PERMITS

Any permit application shall be the responsibility of the owner. However, ATANE may provide some assistance regarding permit application, if warranted.

9. APPENDICES

APPENDIX 1: Site Location Map

APPENDIX 2: Boring and Test Pit Location Plan

APPENDIX 3: FEMA National Flood Hazard Layer FIRMette

APPENDIX 4: Test Pit Logs

APPENDIX 5: Boring Logs

APPENDIX 6: Laboratory Test Results

Geotechnical Test Results

Chemical Test Results

APPENDIX 1: Site Location Map

© Connecticut Environmental Conditions Online

Central Middle School - Site Location Map

THIS MAP IS NOT TO BE USED FOR NAVIGATION

CONNECTICUT

Legend

Town Line

- State Boundary
- Town Boundary
- Coastline

Geographic Names7 Geographic Place 3

Airport

- Airport
- Heliport

RailroadStreets

- Interstate Highway
- US Highway
- State Highway
- Primary limited-access
- __ Ramp
- _ Street
- Ferry crossing

County Line

- State Boundary
- County Boundary
- Coastline

County Name

Town Line

- State Boundary
- Town Boundary

Notes

only. Data shown on this map may not be complete or current. The data shown may have been compiled at different times and at different map scales, which may not match the

scale at which the data is shown on this map.

APPENDIX 2:Boring and Test Pit Location Plan

TEST PIT (12 LOCATIONS)

APPENDIX 3: FEMA National Flood Hazard Layer FIRMette

National Flood Hazard Layer FIRMette

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/22/2022 at 3:50 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

APPENDIX 4: Test Pit Logs

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35

Excavator Dig Depth in feet: 10'3"

PROJECT

Test Pit No: TP-01

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 1 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F Date Test Pit Started: 08/12/2022 Time Test Pit Started: 8:00 a.m. Time Test Pit Ended: 8:35 a.m.

Date Test Pit Completed: 08/12/2022

Surface (BGS) in feet Black; SILT; dry; loose to medium dense;		Subsurface Description	Excavation Effort	Boulder Qty/Class	Comments	
		Black; SILT; dry; loose to medium dense; with some fine Sand, with little Organics.	Е	None		
2	FILL	Brown; fine to medium SAND and SILT; dry; loose to medium dense; with some gravel.	E	None		
3	Silty SAND	Black; fine to coarse SAND; dry; loose to medium dense; with some silt, with some organic material.	E	None		
4	Silty SAND	Gray; fine to coarse SAND; dry; loose to medium dense; with some silt; with some gravel.	E	None		
5	Silty SAND	Gray; fine to coarse SAND; moist to saturated; loose to			Grab Sample	
6		medium dense; with some silt; with some gravel.			collected at ±6 feet BGS	
7						
8						
9						
10						
11		Bottom of Exploration ±10.0'				
12						

ground surface.

Note 2: Test pit backfilled with excavated soils and compacted with excavator bucket at ground surface.

Water Symbols ▼ = Groundwater

Note 3: Some cave-in was noticed in the sand at about 7 feet below ground surface.

Test Pit Dimensions &	BOULDER COUNT		PROPORTIONS USED		EXCAVATION EFFORT	
Orientation	Boulder	Class	< 10%	Trace	E = Easy	
6.0'	12"-24"	A	10-20%	Little	M = Moderate	
2.5' E	24"-36" >36"	В	20-35% 35-50%	Some And	D = Difficult	

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 8:00 a.m. Time Test Pit Ended: 8:35 a.m. Test Pit No: TP-01

Surface Elevation: ~ 50 Feet

Sheet 2 of 2

Drilling Method: Trench Excavation

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Date Test Pit Started: 08/12/2022 Date Test Pit Completed: 08/12/2022

In progress TP-01

Mixture of fine to coarse Sand, some Silt, and some Gravel

Short-term equilibrium groundwater level measured at approximately 6.5 feet below ground surfaces

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-02

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

Surface Elevation: ~ 50 Feet **Drilling Method:** Trench Excavation

9, Indian Rock Lane, Greenwich, CT 06830

Sampling Method: Grab Completion depth: 10.0 Feet BGS

Date Test Pit Started: 08/12/2022

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35 **Excavator Dig Depth in feet:** 10'3"

Weather: Sunny, 84 F Time Test Pit Started: 8:40 a.m. Time Test Pit Ended: 9:27 a.m.

Date Test Pit Completed: 08/12/2022

Sheet 1 of 2

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface Description	Excavation Effort	Boulder Qty/Class	Comments
1	TOPSOIL	Light brown; SILT; dry; loose to medium dense; with sor fine Sand, with little Organics.	ne E	None	
2	FILL	Light brown and gray; fine to medium SAND; dry; loose	to E	None	
3	TILL	medium dense; with some silt; with some gravel.	Е	None	
4	Gravelly SAND	Dark yellowish brown; mixture of SAND and GRAVEL; dry; loose to medium dense; trace of silt; trace of cobbles	E	None	
5	Gravelly SAND	Dark yellowish brown; mixture of SAND and GRAVEL;			Grab Sample collected at ±6 feet BGS
6	▼	moist to saturated; loose to medium dense; trace of silt; trace of cobbles.	Е	None	
7					
8					
9					
10					
11		Bottom of Exploration ±10.0'			
12					
ground	surface. backfilled with ex	oundwater level measured at approximately 6.5 feet below cavated soils and compacted with excavator bucket at	Water Symb	ools ▼ = Gro	oundwater
Test Pit Din Orientation	nensions &	BOULDER COUNT PROPORTIONS USED	EXC	EXCAVATION EFFORT	
Onemanon		Boulder Class < 10% Trace		E = Easy	
6.0'		12"-24" A 10-20% Little M = Moderate			
2.5' E		24"-36" B 20-35% Some 35-50% And	D = Difficult		

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 8:40 a.m. Time Test Pit Ended: 9:27 a.m. Sheet 2 of 2
Test Pit No: TP-02

Surface Elevation: ~ 50 Feet Drilling Method: Trench Excavation

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Date Test Pit Started: 08/12/2022 Date Test Pit Completed: 08/12/2022

In progress TP-02. - Short-term equilibrium groundwater level measured at approximately 6.5 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, some Gravel, and trace of cobbles

Trace of cobbles in mixture of sand and gravel

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-03 **Surface Elevation:** ~ 50 Feet

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

Drilling Method: Trench Excavation **Sampling Method:** Grab

9, Indian Rock Lane, Greenwich, CT 06830

Completion depth: 10.0 Feet BGS

Sheet 1 of 2

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

Weather: Sunny, 84 F
Time Test Pit Started: 9:30 a.m.
Time Test Pit Ended: 10:14 a.m.

Date Test Pit Started: 08/12/2022 **Date Test Pit Completed:** 08/12/2022

Depth Below Ground Surface (BGS) in feet	Ground Strata Change Subsurface Description		Excavation Effort	Boulder Qty/Class	Comments		
1	TOPSOIL	Light brown; SAND, GF dense; with little Organic		; dry; medium	E	None	
2	Silty GRAVEL		Light brown; Mixture of GRAVEL, SAND, and SILT; dry; medium dense; with little cobbles.			None	
3	Silty GRAVEL	Light brown; Mixture of medium dense; with little			M	2/C	
4	Silty GRAVEL	Light brown; Mixture of medium dense; with little trace of debris			M	2/C	
5							Grab Sample
6	SILTS & CLAYS	Gray; CLAYS of low to clays; little sandy clays;	Е	None	collected at ±6 feet BGS		
7	CLATS	clays, fittle salidy clays,	nttie snty ciays, ti	face of coopies.			
8	<u>-</u>						
9	Gravelly SAND	Gray; gravel-SAND-silt medium dense; trace of o					
10							
11		Bottom of Exploration ±10.0'					
12							
ground s	surface. backfilled with ex	oundwater level measured			Water Symb	ools ▼ = Gro	oundwater
Test Pit Dimensions &		BOULDER COUNT PROPORTIONS USED		EXCAVATION EFFORT		EFFORT	
Orientation		Boulder Class < 10% Trace			E = Easy		
6.0'	<u></u>	12 -24 A			M = Moderate		
†		24"-36" B	20-35%	Some	Ι	D = Difficult	
2.5'	Е	>36" C	35-50%	And			

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 9:30 a.m. Time Test Pit Ended: 10:14 a.m. Test Pit No: TP-03

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 2 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-03. - Short-term equilibrium groundwater level measured at approximately 7 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, some clay, some Gravel, little cobbles, little boulders

Boulder ±4.0 feet long

Gravel-sand-silt mixtures; little cobbles

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-04 **Surface Elevation:** ~ 50 Feet

PRELIMINARY GEOTECHNICAL INVESTIGATION
Greenwich Public Schools – Central Middle School

Drilling Method: Trench Excavation **Sampling Method:** Grab

9, Indian Rock Lane, Greenwich, CT 06830

Completion depth: 10.0 Feet BGS

Date Test Pit Started: 08/12/2022

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

Weather: Sunny, 84 F Time Test Pit Started: 10:15 a.m. Time Test Pit Ended: 11:10 a.m.

Date Test Pit Completed: 08/12/2022

Sheet 1 of 2

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface	Description	Excavation Effort	Boulder Qty/Class	Comments	
1	TOPSOIL	Light brown; SILT; dry; loos fine Sand, with some Organic	e to medium dense; with some es; trace of gravel.	Е	None		
2				M	1/B		
3				M	1/B		
4	Silty SAND	Light brown; fine to medium	SAND and SILT; dry; avel; with some cobbles; trace	M	1/B		
5	Shiy SAND	of boulders.	aver, with some coopies, trace			Crah Samula	
6				М	None	Grab Sample collected at ±6 feet BGS	
7							
8 – 8.5	Clayey SAND	Gray; sand-clay mixtures; mo with some silt; with some gra		1			
8.5 – 9	Silty SAND	Dark yellowish brown; fine to saturated; loose to medium do					
10	Sitty SAND	some gravel; trace of cobbles					
11		Bottom of Ex	ploration ±10.0'				
12							
ground s	backfilled with ex	Water Symb	Water Symbols ▼ = Groundwater				
Test Pit Din	nensions &	BOULDER COUNT	PROPORTIONS USED	EXC	AVATION E	EFFORT	
Orientation		Boulder <u>Class</u>	< 10% Trace		E = Easy		
6.0'		12"-24" A	10-20% Little		M = Moderate		
2.5'	E	24"-36" B >36" C	20-35% Some 35-50% And		D = Difficult		

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35 Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 10:15 a.m. Time Test Pit Ended: 11:10 a.m. Test Pit No: TP-04

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 2 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-04. - Short-term equilibrium groundwater level measured at approximately 8 feet below ground surfaces

Mixture of fine to coarse sand, some silt, and some gravel, trace of clay, some cobbles, trace of boulders

Mixture of sand and gravel, trace of silt, some cobbles, trace of boulders

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-05

PRELIMINARY GEOTECHNICAL INVESTIGATION
Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Surface Elevation: ~ 50 Feet **Drilling Method:** Trench Excavation

Sheet 1 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

Weather: Sunny, 84 F

Time Test Pit Started: 11:25 a.m.

Time Test Pit Ended: 11:50 a.m.

Date Test Pit Started: 08/12/2022 **Date Test Pit Completed:** 08/12/2022

Excavator Dig Depth in feet: 10		3' Time Test I	Pit Ended: 11:50 a.m.				
Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface	e Description	Excavation Effort	Boulder Qty/Class	Comments	
1	TOPSOIL	Light brown; SILT; dry; loog fine Sand, with little Organic		th some	E	None	
1 – 2.5	Silty SAND	Light brown; fine to medium to medium dense; with some		loose	E	None	
2.5 – 3					E	None	
4	Silty SAND	Gray; fine to coarse SAND;		E	None		
5		dense; with some silt; trace of odorous; trace of gravel; trace		E	None	Grab Sample	
6		C E A CAND		·	1	None	±6 feet BGS
7	Silty SAND	Gray; fine to coarse SAND; dense; with some silt; trace of		ıum	Е	None	
8	-						
9	Silty SAND	Gray; fine to coarse SAND; silt; trace of gravel.	saturated; loose; with so	Е	None		
10							
11		Bottom of Ex	xploration ±10.0'				
12							
ground s Note 2: Test pit ground s	surface. Water flow backfilled with ex surface.	oundwater level measured at a ws from Northwest to Southeas cavated soils and compacted	st before short-term equi with excavator bucket a	librium.	<u>Water Symbols</u> ▼ = Groundwater		
tote 3: Some c	ave-III was nouced	l in the sand at about 7 feet be					
Test Pit Din Orientation	mensions &	BOULDER COUNT Boulder Class	PROPORTIONS U < 10% Tra			<u>AVATION E</u> E = Easy	<u>FFORT</u>
6.0'		1	10-20% Lit			A = Lasy A = Moderate	
0.0		12"-24" A		me		O = Nioderate $O = Difficult$	
2.51		24"-36" B	20 3370 30.	D – Difficult			

35-50%

C

>36"

And

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 11:25 a.m. Time Test Pit Ended: 11:50 a.m. Test Pit No: TP-05

Surface Elevation: ~ 50 Feet Drilling Method: Trench Excavation

Sheet 2 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-05. - Short-term equilibrium groundwater level measured at approximately 6.2 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, some Gravel, some cobbles

Mixture of sand and gravel, trace of silt, trace of cobbles, trace of clay

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools - Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Test Pit No: TP-06

Surface Elevation: ~ 50 Feet **Drilling Method:** Trench Excavation

Sheet 1 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35 Excavator Dig Denth in feet: 10'3"

Weather: Sunny, 84 F

Time Test Pit Started: 11:50 a.m. Time Test Pit Ended: 12:10 p.m.

Date Test Pit Started: 08/12/2022 **Date Test Pit Completed:** 08/12/2022

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface Description	Excavation Effort	Boulder Qty/Class	Comments
1	TOPSOIL	Light brown; SILT; dry; loose to medium dense; with some fine Sand, with little Organics.	E	None	
2	CHA CAND	Light brown; fine to medium SAND and SILT; dry; loose	E	None	
3	Silty SAND	to medium dense; with some gravel; trace of cobbles.	Е	None	
4	CH4 CAND	Black and gray; SAND and silt mixture; dry; loose to			
5	Silty SAND	medium dense; with some organics; trace of gravel.	Е	None	
6	Silty SAND	Gray; fine to coarse SAND; moist to saturated; loose to			Grab Sample collected a ±6 feet BG
7	▼	medium dense; with some silt; with some gravel; trace of cobbles.	E	None	
8					
9	Silty SAND	Gray; fine to coarse SAND; saturated; loose to medium			
10	Sitty SAND	dense; with some silt; with some gravel; trace of cobbles.			
11		Bottom of Exploration ±10.0'			
12					

ground surface.

Note 2: Test pit backfilled with excavated soils and compacted with excavator bucket at ground surface.

Water Symbols ∇ = Groundwater

Note 3: Some cave-in was noticed in the sand at about 6 feet below ground surface.

Test Pit Dimensions &	BOULDER	COUNT	PROPORT	IONS USED	EXCAVATION EFFORT		
Orientation	<u>Boulder</u>	Class	< 10%	Trace	E = Easy		
6.0'	12"-24"	A	10-20%	Little	M = Moderate		
2.5' E	24"-36" >36"	B C	20-35% 35-50%	Some And	D = Difficult		

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 11:50 a.m. Time Test Pit Ended: 12:10 p.m. Test Pit No: TP-06

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 2 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-06. - Short-term equilibrium groundwater level measured at approximately 7.5 feet below ground surfaces

Mixture of fine to coarse sand, some silt, some gravel; some cobbles

Mixture of sand, silt, gravel, cobbles, trace of organics

Mixture of sand, silt, gravel, and cobbles

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-07

PRELIMINARY GEOTECHNICAL INVESTIGATION
Greenwich Public Schools – Central Middle School

Surface Elevation: ~ 50 Feet **Drilling Method:** Trench Excavation

Sheet 1 of 2

9, Indian Rock Lane, Greenwich, CT 06830

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

Weather: Sunny, 84 F

Date Test Pit Started: 08/12/2022
Date Test Pit Completed: 08/12/2022

Time Test Pit Started: 12:20 p.m. Time Test Pit Ended: 01:15 p.m.

Depth Below Ground Boulder Strata Change Excavation **Subsurface Description** Comments Surface & Water Level **Effort Qty/Class** (BGS) in feet Light brown; SILT; dry; loose to medium dense; with some 1 **TOPSOIL** Е None fine Sand, with little Organics. 2 3 Light brown; fine to medium SAND and SILT; dry; loose 5 to medium dense; with some gravel, trace of cobbles, trace Silty SAND M 4/A of boulders. Grab Sample collected at 6 ±6 feet BGS 7 8 9 SILT & CLAY Gray; sandy and silty CLAY; low to medium plasticity; Е None 10 Bottom of Exploration ±10.0' 11 12

Note 1: Short-term equilibrium groundwater level measured at approximately 9.5 feet below ground surface.

Water Symbols ▼ = Groundwater

Note 2: Test pit backfilled with excavated soils and compacted with excavator bucket at ground surface.

BOULDER COUNT PROPORTIONS USED EXCAVATION EFFORT Test Pit Dimensions & Orientation < 10% Trace E = Easy**Boulder** Class 6.0' 10-20% Little M = Moderate12"-24" Α 20-35% D = Difficult Some 24"-36" В 2.5' 35-50% And C >36"

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 12:20 p.m. **Time Test Pit Ended:** 1:15 p.m.

Test Pit No: TP-07

Surface Elevation: ~ 50 Feet

Sheet 2 of 2

Drilling Method: Trench Excavation **Sampling Method:** Grab

Completion depth: 10.0 Feet BGS

In progress TP-07. - Short-term equilibrium groundwater level measured at approximately 9.5 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, some Gravel, Trace of cobbles, trace of boulders

Trace of cobbles and boulders

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-08

PRELIMINARY GEOTECHNICAL INVESTIGATION
Greenwich Public Schools – Central Middle School

Drilling Method: Trench Excavation **Sampling Method:** Grab

Surface Elevation: ~ 50 Feet

9, Indian Rock Lane, Greenwich, CT 06830

Completion depth: 10.0 Feet BGS

Sheet 1 of 2

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

Weather: Sunny, 84 F Time Test Pit Started: 3:35 p.m. **Date Test Pit Started:** 08/12/2022 **Date Test Pit Completed:** 08/12/2022

Time Test Pit Ended: 4:03 p.m.

Depth Below Ground **Boulder** Strata Change **Excavation Subsurface Description** Comments Surface & Water Level **Effort Qty/Class** (BGS) in feet Light brown; SILT; dry; loose to medium dense; with some **TOPSOIL** 1 E None fine Sand, with little Organics. Light brown; fine to medium SAND and SILT; dry; loose 2 Silty SAND Е None to medium dense; with some gravel. Black and gray; Mixture of SAND and Silt; dry; loose to Е 2.5 **Silty SAND** None medium dense; with some organic materials. 3 4 Ε None Light brown; fine to medium SAND and SILT; dry; loose Silty SAND to medium dense; with some gravel. Grab Sample 5 collected at ±6 feet BGS 6 6.5 Black and Gray; fine to coarse SAND; dry; loose to 7 **Silty SAND** medium dense; with some silt; with trace of organics. Light brown; fine to medium SAND and SILT; dry; loose 8 Silty SAND to medium dense; with some gravel. 9 Gray; CLAYS of low to medium plasticity; moist to SILT & CLAY saturated; little sandy clays; little silty clays; 10 Bottom of Exploration ±10.0' 11 12

Note 1: Short-term equilibrium groundwater level measured at approximately 9.0 feet below ground surface.

Water Symbols ▼ = Groundwater

Note 2: Test pit backfilled with excavated soils and compacted with excavator bucket at ground surface.

BOULDER COUNT PROPORTIONS USED **EXCAVATION EFFORT** Test Pit Dimensions & Orientation < 10% Trace E = EasyBoulder Class 10-20% Little M = Moderate6.0' 12"-24" A D = Difficult20-35% Some 24"-36" В 2.5' Е 35-50% And \mathbf{C} >36"

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 3:35 p.m. Time Test Pit Ended: 4:03 p.m. Test Pit No: TP-08

Surface Elevation: ~ 50 Feet

Sheet 2 of 2

Drilling Method: Trench Excavation

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-08. - Short-term equilibrium groundwater level measured at approximately 9.0 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, and some Gravel, some clay

Mixture of Clay, silt, sand, trace of organics

Mixture of Sand, some Silt, some Gravel, some clay

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-09

PRELIMINARY GEOTECHNICAL INVESTIGATION
Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Surface Elevation: ~ 50 Feet **Drilling Method:** Trench Excavation

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Sheet 1 of 2

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

Weather: Sunny, 84 F

Time Test Pit Started: 4:04 p.m. **Time Test Pit Ended:** 4:20 p.m.

Date Test Pit Started: 08/12/2022 Date Test Pit Completed: 08/12/2022

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface Description	Excavation Effort	Boulder Qty/Class	Comments	
1	TOPSOIL	Light brown; SILT; dry; loose to medium dense; with some fine Sand, with little Organics.	E	None		
2	Silty SAND	Light brown; fine to medium SAND and SILT; dry; loose to medium dense; with some gravel.	Е	None		
2.5	Silty SAND	Dak brown; Mixture of SAND and Silt; dry; loose to medium dense; with roots and some organic materials.				
3			E	None		
4		Light brown; fine to medium SAND and SILT; dry; loose	E	None		
5	Silty SAND	to medium dense; with some gravel; trace of cobbles.				
6					Grab Sampl collected at ±6 feet BG	
7	SILT & CLAY	Gray; SILTS and CLAYS; dry to moist; low to medium plasticity; little sandy clays; little silty clays; trace of				
8		cobbles.	E	None		
9	SILT & CLAY	Gray; CLAYS of low to medium plasticity; moist to saturated; little sandy clays; little silty clays;	E	None		
11		Bottom of Exploration ±10.0'				
12						
ground	surface. backfilled with ex	oundwater level measured at approximately 8.5 feet below cavated soils and compacted with excavator bucket at	Water Symb	ools ▼ = Gro	oundwater	
Test Pit Dir	nensions &	BOULDER COUNT PROPORTIONS USED	EXC	AVATION E	EFFORT	
Orientation		<u>Boulder</u> <u>Class</u> < 10% Trace		E = Easy		
2.5'		12"-24" A 10-20% Little 24"-36" B 20-35% Some >36" C 35-50% And	M = Moderate D = Difficult			

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35 Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 4:04 p.m. Time Test Pit Ended: 4:20 p.m. Test Pit No: TP-09

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 2 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-09. - Short-term equilibrium groundwater level measured at approximately 8.5 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, some Gravel; some Cobbles, trace of Clay.

Mixture of Sand, Silt, Gravel, and Cobbles

Mixture of Sand, Silt, Gravel, Cobbles, and trace of Clay

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Surface Elevation: ~ 50 Feet **Drilling Method:** Trench Excavation

Sheet 1 of 2

Sampling Method: Grab

Test Pit No: TP-10

Completion depth: 10.0 Feet BGS

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F **Time Test Pit Ended:** 2:39 p.m.

Date Test Pit Started: 08/12/2022 Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35 **Time Test Pit Started:** 1:35 p.m. **Date Test Pit Completed:** 08/12/2022 **Excavator Dig Depth in feet:** 10'3"

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface Description	Excavation Effort	Boulder Qty/Class	Comments
1	TOPSOIL	Light brown; SILT; dry; loose to medium dense; with some fine Sand, with little Organics.	E	None	
3		Light brown; fine to medium SAND and SILT; dry; loose			
5.5	Silty SAND	to medium dense; with some gravel, with some cobbles, with some boulders.	M	>4/C	
6.5 7	Silty SAND	Dark gray and black; fine to coarse SAND; dry; loose to medium dense; with some silt, with some organic material.	Е	None	
8	SILT & CLAY	Gray; CLAYS of low to medium plasticity; dry to slightly moist; little sandy clays; little silty clays.	E	None	
10		Bottom of Exploration ±10.0'			
11		·			

Note 2: Test pit backfilled with excavated soils and compacted with excavator bucket at ground surface.

Water Symbols ∇ = Groundwater

Test Pit Dimensions &	BOULDER	COUNT	PROPORT	IONS USED	EXCAVATION EFFORT		
Orientation	<u>Boulder</u>	Class	< 10%	Trace	E = Easy		
6.0'	12"-24"	A	10-20%	Little	M = Moderate		
2.5' E	24"-36" >36"	B C	20-35% 35-50%	Some And	D = Difficult		

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 1:35 p.m. Time Test Pit Ended: 2:39 p.m. Test Pit No: TP-10

Surface Elevation: ~ 50 Feet

Sheet 2 of 2

Drilling Method: Trench Excavation **Sampling Method:** Grab

Completion depth: 10.0 Feet BGS

In progress TP-10

Mixture of fine to coarse Sand, some Silt, some Gravel, some Cobbles, some Boulders, little Clay, trace of Organics.

Class C Boulders

Mixture of Clay, Silt, Sand, and Gravel.

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION

Greenwich Public Schools – Central Middle School

Test Pit No: TP-11

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 1 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

9, Indian Rock Lane, Greenwich, CT 06830 Test Pit Subcontractor: J.J.K. Electric

Weather: Sunny, 84 F

Date Test Pit Started: 08/12/2022

Excavator Dig Depth in feet: 10'3"

Time Test Pit Ended: 4:50 p.m.

Compact Excavators: Bobcat E35 Time Test Pit Started: 4:22 p.m. **Date Test Pit Completed:** 08/12/2022

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Excavation Effort	Boulder Qty/Class	Comments			
1	TOPSOIL	Light brown; SILT; dry; loose to medium dense fine Sand, with little Organics.	e; with some	E	None		
2	CSIA C A NID	Light brown; fine to medium SAND and SILT;		E	None		
3	Silty SAND	to medium dense; with some gravel; with some some boulders.	E	>2/A			
4	GIV. GAND	Light brown; fine to medium SAND and SILT;		E	None		
5	Silty SAND	to medium dense; with some gravel; with some with some roots.	cobbles;	M None			
6	Silty SAND	Light brown; fine to medium SAND and SILT; to medium dense; with some gravel; with some	М	None	Grab Sampl collected at ±6 feet BGS		
7	an. a	Gray; fine to coarse SAND; dry; loose to media					
8	- Silty SAND	with some silt; with some gravel.	, u	Е	None		
9	_	Gray; CLAYS of low to medium plasticity; mo					
10	SILT & CLAY	saturated; little sandy clays; little silty clays.	150 00				
11		Bottom of Exploration ±10.0'					
12							
ground	surface. backfilled with ex	oundwater level measured at approximately 9.0 f		Water Symb	<u>ols</u> ▼ = Gro	undwater	
Test Pit Dir	nensions &	BOULDER COUNT PROPORTION	NS USED	EXC	AVATION E	FFORT	
Orientation		Boulder Class < 10%	Trace	E	E = Easy		
6.0'		12"-24" A 10-20%	Little	N	M = Moderate		
	<u> </u>	24"-36" B 20-35%	Some	Γ	D = Difficult		
2.5'	Е	>36" C 35-50%	And				

C

>36"

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 4:22 p.m. Time Test Pit Ended: 4:50 p.m. Test Pit No: TP-01

Surface Elevation: ~ 50 Feet

Sheet 2 of 2

Drilling Method: Trench Excavation

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-11. - Short-term equilibrium groundwater level measured at approximately 9.0 feet below ground surfaces

Mixture of fine to coarse Sand, some Silt, some Gravel, some Cobbles; some Boulders

Mixture of Clay, Silt, Sand, Gravel

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

PROJECT

Test Pit No: TP-12

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 1 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35 **Excavator Dig Depth in feet: 10'3"**

Weather: Sunny, 84 F

Time Test Pit Started: 1:20 p.m. **Time Test Pit Ended:** 1:35 p.m.

Date Test Pit Started: 08/12/2022 **Date Test Pit Completed:** 08/12/2022

Depth Below Ground Surface (BGS) in feet	Strata Change & Water Level	Subsurface Description	Excavation Effort	Boulder Qty/Class	Comments
1	TOPSOIL	Light brown; SILT; dry; loose to medium dense; with some fine Sand, with little Organics.	M	None	
2		Light brown; fine to medium SAND and SILT; dry;	M	None	
3	Silty SAND	medium dense; with some gravel; with some cobbles; with some boulders.	D	>3/C	Grab Sample collected at ±3 feet BGS
4		Bottom of Exploration ±3.0'			
5					
6					
7					
8					
9					
10					
11					
12					

Note 2: Test pit backfilled with excavated soils and compacted with excavator bucket at ground surface.

Water Symbols ∇ = Groundwater

Note 3: Excavation stopped at about 3 feet below ground surface. Excavator could not remove the boulders.

Test Pit Dimensions & Orientation	BOULDER	COUNT	PROPORT	IONS USED	EXCAVATION EFFORT	
Officiation	<u>Boulder</u>	Boulder Class		Trace	E = Easy	
6.0'	12"-24"	A	10-20%	Little	M = Moderate	
2.5' E	24"-36"	В	20-35% 35-50%	Some And	D = Difficult	
	>36"	C				

ATANE >

40 Wall Street, 11th Floor, New York, NY 10005 (212) 747-1997 | www.ATANEConsulting.com

Test Pit Subcontractor: J.J.K. Electric Compact Excavators: Bobcat E35
Excavator Dig Depth in feet: 10'3"

PROJECT

PRELIMINARY GEOTECHNICAL INVESTIGATION Greenwich Public Schools – Central Middle School

9, Indian Rock Lane, Greenwich, CT 06830

Weather: Sunny, 84 F

Time Test Pit Started: 1:20 p.m. Time Test Pit Ended: 1:35 p.m. Test Pit No: TP-12

Surface Elevation: ~ 50 Feet

Drilling Method: Trench Excavation

Sheet 2 of 2

Sampling Method: Grab

Completion depth: 10.0 Feet BGS

In progress TP-12. - Class C Boulders

Mixture of fine to coarse Sand, some Silt, some Gravel; some Cobbles

Class C Boulders

Mixture of Sand, some Silt, some Gravel; some Cobbles

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT Greenwich Public Schools – Central Middle School 9 Indian Rock Lane, Greenwich, CT 06830

APPENDIX 5: Boring Logs

90 DONOVAN ROAD - OXFORD, CONN. 06478-1028

GEOTECHNICAL / ENVIRONMENTAL SUBSURFACE INVESTIGATIONS - Test Borings - Core Drilling

Monitoring Wells - Recovery Wells - Direct Push/Probe Sampling

UNDERPINNING - HELICAL PILES - SOIL NAILS

September 19, 2022

ATANE Engineers 40 Wall St., 11th FL New York NY 10005

Attn.: Paul Sousa

G189-2236-22

Re: 9 Indian Rock Ln. Greenwich CT

Dear Mr. Sousa,

Attached please find the Test Boring Logs, and location plan for work in Greenwich CT.

If you have any questions, please do not hesitate to contact us.

Very truly yours,

James A. DeAngelis

President

JAD:mv

SOILTESTING, INC.

	ATANE Engineers	19-Sep-22
TO	40 Wall St., New York NY 10005	DATE
SITE LOCATION	9 Indian Roack Ln., Greenwich CT	
REPORT SENT TO	Paul Sousa	
SAMPLES SENT TO	Storage (Max 60 days)	

90 Donovan Road Oxford, Connecticut 06478-1028 203-262-9328

Branch Office: White Plains, New York 10607 914-946-4850 JOB NO. G189-2236-22

	SOI						CLIEN	IT:		A	TANE Eng	ineers		SHEET 1 OF 1 HOLE NO. B-1			
			NOV				PROJECT NO. G189-2236-22						HOLE NO. B-1				
			RD, C (3) 26				_					BORING LOCATIONS					
			4) 94				PROJECT NAME Central Middle School							Per Plan			
FO	REMAN -	_					LOCA	TION			ndian Roc						
INIC	AO/aa PECTOR				_		_				Greenwick CASING	SAMPLER	CORE BAR	OFFSET			
IINS	PECTOR							TYPE			HSA	SAMPLER	CORE BAR	DATE START 8/23/22			
GR	OUND W	ATER	OBSE	RVA	TIONS	S		SIZE I.	D.		4 1/4"	1 3/8"		DATE FINISH 8/23/22			
	7_FT_A							НАММ		Т.		140#	BIT	SURFACE ELEV.			
AT.	_FT AF	TER_	_HO	URS				HAMMER FALL				30"		GROUND WATER ELEV.			
				SAM	PLE												
DEPTH	CASING BLOWS PER FOOT		Туре	PEN	REC	DEPTH @ BOT	ON (FOR	WS PER SAMPL CE ON 6 - 12	ER TUBE)	CORE TIME PER FT (MIN)	DENSITY OR CONSIST MOIST	STRATA CHANGE DEPTH ELEV	- Comment of the comment	TIFICATION OF SOIL REMARKS INCL OSS OF WASH WATER, SEAMS IN ROCK, ETC.			
_		-		0.4"	A"	CIOII	47	00			dente						
5		1	SS	24"	4"	6'0"	17	29			dense dry		Blk F sand, F-C g	ravel			
		2	SS	24"	14"	8'0"	40	41			v dense						
		3	SS	23"	14"	9'11"	49	27 25		-	moist/wet dense	9'6"	Brn F sand & silt,	F-C gravel, trace cobbles			
10		4	SS	4"	4"	10'4"		100/5"			wet v dense/wet	10'4"	Poss partly weath Partly weathered	ered Bedrock or Boulder Bedrock			
													EOB 10'4"				
15																	
20																	
25																	
30																	
35																	
10																	
40	TE: 0	heai	Loon	ditio	ne -	ovesle	d by #	nie in	voctio	ation	represent						
VC.	COL	nditio	ons a	at sp	ecifi	evealed c locat ocation	ions a	and ma	ay no								
	OUND SU	RFAC	E TO		F	T. U	SED_			CASIN			ASING TO	_FT. HOLE NO. B-1			
	AUGER R = WEIG				RBED	PISTON WOH =		T = TH IT OF H			V = VANE T	EST		C = COARSE			
S	= SPLIT T	UBE	SAMP	LER		H.S.A. =	HOLL	OW ST	EM AU	JGER				M = MEDIUM			
PRO	OPORTIO	NS US	SED:	TRAC	CE = C	- 10%	LITTLE	= 10 - 2	20% 5	SOME =	20 - 35% A	ND = 35 - 5	0%	F = FINE			

	SOI	LTE	STI	NG,	INC).	CLIEN	IT:		AT	ANE Eng	ineers		SHEET 1 OF 1	
		DO	-		4.00						0400 000	0.00		HOLE NO.	B-2
		FOR						ECT NO			G189-223	6-22		DODING LOCATIONS	
		T (20 Y (91	,				PROJ	ECT NA	ME	Cent	ral Middle	School		BORING LOCATIONS Per Plan	
FO	REMAN -		_				LOCA	TION			ndian Roc				
INIC	AO/aa SPECTOR	_				_	_			(Greenwic CASING	SAMPLER	CORE BAR	OFFSET	
IIVC	BECTOR							TYPE			HSA	SS	COREBAN		3/22
GR	OUND WA	ATER	OBSE	ERVA	TIONS	3		SIZE I.	D.		4 1/4"	1 3/8"			3/22
	9_FT A				3			HAMM	IER W	Γ.		140#	BIT	SURFACE ELEV.	
AT.	_FT AF	TER_	_HOL	JRS				HAMM	IER FA	LL		30"		GROUND WATER ELEV.	
				SAM	PLE								FIELD IDENT	TELEVITION OF COIL DEMARKS	CINCI
DEPTH	CASING BLOWS PER FOOT	NO	Туре	PEN	REC	DEPTH @ BOT	ON (FOR	WS PER SAMPI CE ON 6 - 12	LER TUBE)	CORE TIME PER FT (MIN)	DENSITY OR CONSIST MOIST	STRATA CHANGE DEPTH ELEV	The second secon	TIFICATION OF SOIL REMARKS OSS OF WASH WATER, SEAN ROCK, ETC.	
												4"	Topsoil		
			-							-					
5		1	SS	24"	16"	6'0"	5	5			compact		0	come E graval trace els	
		2	SS	24"	16"	8'0"	10 35	14			dry dense		Jory r Sand & Silt,	some F gravel, trace clay	
							44	31			wet		Gry F-M sand, F-0	C gravel, trace silt	
10		3	SS	24"	18"	10'0"	15 56	72		-	v dense wet		Cny E cand & cilt	F-C gravel, trace cobbles	
10		4	SS	24"	16"	12'0"	7	32			v dense		ory i sand & sill,	1 -0 graver, trace cobbles	
							34	21			wet		Brn F sand & silt,	trace cobbles	
		5	SS	24"	14"	14'0"	20	28		-	v dense wet	14'	Brn F-C sand, F-C	: gravel	
15							21	LI			wot		EOB 14'	giavoi	
20		_													
25															
					_										
30															
25															
35															
40												-			
NC	cor	nditio	ons a	at sp	ecifi	c locat	ions a	and ma	ay no		represent esent				
CP	cor					ocation		imes.		CASIN	G THEN	C	ASING TO	FT. HOLE NO.	B-2
	AUGER						3ED	T = TH	INWAL		V = VANE		AUING TO		D-7
WC	R = WEIG	SHT O	FRO	DS		WOH =					DS			C = COARSE M = MEDIUM	
	= SPLIT T					H.S.A. =					20 - 35% A	ND =35 - 5	60%	F = FINE	

	SOI		STI			.	CLIEN	T:		<u>A</u> 7	TANE Eng	ineers		SHEET 1 OF 1 HOLE NO. B-3
	-		RD, C				DDO II	ECT NC			G189-223	6.22		B-3
	C	T (20	3) 26	62-93	328			ECT NA			tral Middle			BORING LOCATIONS
FO	REMAN -		4) 94 FR	16-4	350		LOCA	TION		9 11	ndian Roc	k Lane		Per Plan
	AO/aa	DIVILL					LOOM	11011			Greenwic			
INS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET
								TYPE			HSA	SS		DATE START 8/23/22
-	W DNUC					5		SIZE I		_	4 1/4"	1 3/8"	BIT	DATE FINISH 8/23/22
	10_FT <i>A</i> _FT AF				5			HAMM				140# 30"	DII	SURFACE ELEV. GROUND WATER ELEV.
		T		SAM	DIE			1 1/ (14/14)		T				
	CASING BLOWS PER				REC	DEPTH	ON (FOR	WS PER SAMPI CE ON 6 - 12	LER TUBE)	CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REMARKS INCL. OSS OF WASH WATER, SEAMS IN ROCK, ETC.
-	FOOT	_			-	@ BOT				(MIN)	MOIST	ELEV		
										-	1			
-				0.41	4.40	CIOII	40	20						
5		1	SS	24"	14"	6'0"	12	32 10			dense dry		Gry/brn F sand &	silt. F-C gravel
		2	SS	24"	18"	8'0"	12	6			compact			
				0.411	4.41	401011	14	17			dry/moist		Brn F-M sand, F-	C gravel, some silt
10		3	SS	24"	14"	10'0"	13 30	88 32			v dense dry		Same & cobbles,	houlders
"		4	SS	24"	14"	12'0"	14	14			dense			
		-		0.411	011	4.41611	27	19			wet		Brn F sand & silt,	F-C gravel
		5	SS	24"	8"	14'0"	18	17			dense wet	14'	Same	
15							20	20					EOB 14'	
20														
				_										
25														
25														
													-	
30														
35														
1														
40	TE A			1:41						-4:				
NC	COI	nditio	ons a	at sp	ecifi	evealed c locat ocation	ions a	and m	ay no		represent esent			
	DUND SU	IRFAC	E TO		F	T. U	SED_			CASIN			ASING TO	FT. HOLE NO. B-3
	AUGER R = WEIC				RBED	PISTON WOH = 1		T = TH			V = VANE	TEST		C = COARSE
	R = WEIC = SPLIT T					H.S.A. =					.50			M = MEDIUM
PRO	PORTIO	NS U	SED:	TRAC	CE = C	- 10%	LITTLE	= 10 - 2	20% 5	SOME =	20 - 35% A	ND =35 - 5	50%	F = FINE

	SOI	TE	STI	NG.	INC		CLIEN	T:		ΑΤ	ANE Eng	ineers		SHEET_1_OF	. 1
ocudioment and a second			NOV			-						io + Randolower and resources or re-		HOLE NO.	B-4
			≀D, C				PROJI	ECT NO) _		G189-223	6-22			
and the second s			3) 26 4) 94				PROJI	ECT NA	ME	Cent	ral Middle	e School		BORING LOCATIONS Per Plan	
FO	REMAN -	DRILL	.ER	aucuzacunky+tvn		orraniam (LOCA	TION			ndian Roc				rouse outside conference considerate from the constant
INS	AO/aa PECTOR	VEX. 634+X/330-0-0-0-0	The Industry Wood	aromoneowski		and the second s		School Section of the Control of the			Greenwick CASING	N C I SAMPLER	CORE BAR	OFFSET	ACCOUNT OF THE PROPERTY OF THE
	COTON						2000	TYPE			HSA	SS	331.12.23.31	DATE START	8/23/22
GR	OUND W	ATER	OBSI	ERVA	TIONS	5		SIZE I.	.D.		4 1/4"	1 3/8"	a punta atautaman manan maniferanta an manan di kata karan 14 mili mini kabili manan 14 mili mini kabili mini An manan manan dan karan mini kaban kabili mini karan manan di kabili mini kabili mini kabili mini kabili mini	DATE FINISH	8/23/22
1	7 * FT A				S			HAMM			Name and the same	140# 30"	BIT	SURFACE ELEV. GROUND WATER ELEV.	
	_FT_AF	IER_		*****				HAMM	IERFA	LL T		30		GROOND VALER ELEV.	
activities and	ran-a-Boyup your and a second	 		SAMI T	PLE T	T				and the same of th	DENSITY	STRATA	FIELD IDENT	TFICATION OF SOIL REMA	ARKS INCL.
EPT	CASING BLOWS PER	NO	Туре	PEN	REC	DEPTH	ON (FOR	WS PEF SAMPI CE ON 6 - 12	LER TUBE)	FT	OR CONSIST	CHANGE DEPTH	COLOR, LO	OSS OF WASH WATER, S ROCK, ETC.	EAMS IN
-	FOOT		ļ	ļ		@ BOT			I	(MIN)	MOIST	ELEV 8"	Topsoil		MACCANING WEEKENSTEIN TO THE PRESENTATION
opening a company			<u> </u>	<u> </u>	ļ						ora promoter and the second	0	гораон		
and the second			<u> </u>		ļ										
5		1	SS	24"	22"	6'0"	13	11			compact				
COMMUNICATION				0.41	001	01011	17	19			moist		Brn F sand & silt,	F-C gravel	
-	**************************************	2	SS	24"	20"	8'0"	42 40	53 34	-	-	v dense wet		Brn F-C snd, F-C	gravel, some silt	
		3	SS	24"	16"	10'0"	12	14			dense				
10	AND THE PROPERTY OF THE PARTY O	4	ss	24"	10"	12'0"	24 5	2 5		ano na manana na man	wet compact		Brn F-C sand, F-C	gravel, trace cobbles, trace silt	
NONE THE PROPERTY OF THE PROPE							7	5			wet		Same		
-0000000000000000000000000000000000000		5	SS	24"	22"	14'0"	10 7	7 8		ļ	compact wet		Gry F-C sand, F-C	Coravel	
15		6	SS	24"	24"	16'0"	15	10			compact		,		
en e			<u></u>	<u> </u>	<u> </u>		10	30		 	wet	16'	Same, gry silt, trad EOB 16'	ce clay	Marketti erresidenti subertaria
***************************************]		LOD IV		
20										<u> </u>					
20	NAMES AND TO PARTY OF THE PARTY	SECULAR SECULAR		***************************************			PERSONAL PROPERTY.	***************************************							
				ļ	<u> </u>										
	**************************************		<u> </u>	<u> </u>	<u> </u>										
25	BARASSAS PARIS (AKARAS)	DWAYS 910 SEA 40	acontocomos an	rasuparsers care	-	POARTS VILLE BUT AND A STATE OF THE STATE OF	ONE OF THE PROPERTY OF THE PRO	CANADA TRANSPORTATION CO.							
	***************************************			ļ	<u> </u>					<u> </u>					
30				<u> </u>											
		33000000000	usus (seesaa)		OMERICA SE	Sales and a second a second and		CORES CONSCIONAS ANDS							
			ļ		<u></u>					<u> </u>					
35		DESCRIPTION OF THE PERSON OF T	markenmarken	-	-		SUCH STRUCTURES	kan minintrakan alam	processimo/stopi/stable	Section Control of the Control	-				
annament of the second	2-0-7 -1 7-2-1		ļ	 	<u> </u>	<u> </u>			<u> </u>		•				
										ļ]		* Nata : Dellar	ar noted 2! absorvation	
40	Sample for the black of the color of the		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			Note, Driller I	og noted 3' observation.	Port Superior Control
NC											represent			отного это отнечны Ай обит Бенза, перенопория вырт, от нево у Врабовий в Соворие на совера на вей у Рабовий в Венза	Annual Control of the State of
	100	nditi	ons a	at ot	her l	c locat ocation	ns or t	imes.	•	•					
	OUND SU AUGER							T = TH			G THEN		ASING TO	FT. HOLE NO.	B-4
wo	R = WEIG	SHT C	F RO	DS		WOH =	WEIGH	IT OF H	IAMME	R&RO		•		C = COARSE	
E	= SPLIT T OPORTIO										20 - 35% A	ND =35 - 5	50%	M = MEDIUM F = FINE	

	SOI						CLIEN	T:		A	ANE Eng	ineers		SHEET_1_OF_	
		DO					DDO II	ECT NO			G189-223	6 22		HOLE NO.	B-5
	C	FOR T (20	3) 26	32-93	328			ECT NO			ral Middle			BORING LOCATIONS	
FO	REMAN -	Y (91	_	16-48	350		LOCA	TION			ndian Roc			Per Plan	_
гО	AO/aa	DKILL	.ER				LOCA	IION			Greenwich				
INS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET	
								TYPE			HSA	SS			8/23/22
	OUND W					5		SIZE I.			4 1/4"	1 3/8"	DIT		8/23/22
	<u>8</u> FT A _FT AF				5			HAMM				140# 30"	BIT	SURFACE ELEV. GROUND WATER ELEV.	
		TLIN_		SAMI				HAIVIIVI	LK FA	I I		30		OROGND WATER ELLV.	
		-		AIVII	LE						DENSITY	STRATA	FIELD IDENT	TIFICATION OF SOIL REMA	RKS INCL.
DEPTH	CASING BLOWS PER FOOT		Туре	PEN	REC	DEPTH @ BOT	ON (FOR	VS PEF SAMPL CE ON 7 6 - 12	ER TUBE)	CORE TIME PER FT (MIN)	OR CONSIST MOIST	CHANGE DEPTH	COLOR, L	OSS OF WASH WATER, SE ROCK, ETC.	EAMS IN
_	F001					@ 801				(IVIIN)	WOIST	ELEV			
5		1	SS	24"	24"	6'0"	8	9			compact				
							7	8			dry		Brn F sand, F-C g	ravel, some silt	
		2	SS	24"	16"	8'0"	16 11	20			dense moist		Gry/brn F sand &	silt trace clay	
		3	SS	24"	18"	10'0"	14	14			dense		Gry/bill F Sallu &	Sill, liace clay	
10							17	19			wet		Gry F sand, some	silt	
		4	SS	24"	24"	12'0"	20 14	14 22			compact		Cry E Moond E	C gravel, some silt	
		5	SS	24"	24"	14'0"	12	23			wet dense		Gry 1 -W Sanu, 1 -	5 graver, some sin	
							23	25			wet		Same		
15		6	SS	24"	24"	16'0"	15 46	25 23			v dense wet	16'	Same		
							40	23			wet	10	EOB 16'		
20															
25															
30															
25															
35															
					-										
40														74	
						evealed c locati					represent esent				
25	cor	nditio	ons a	at oth	ner le	ocation	s or t	imes.					CINIC TO	T IUNI E NA	B-5
	OUND SU AUGER							T = TH		_CASIN	G THEN _ V = VANE T		ASING TO	FT. HOLE NO.	D-0
NO	R = WEIG	SHT O	F ROI	DS		WOH =	WEIGH	T OF H	AMME	R & RO				C = COARSE	
	= SPLIT T										20 - 35% A	ND =35 - 5	0%	M = MEDIUM F = FINE	

	SOI) .	CLIEN	T;		<u>A</u> 1	TANE Eng	ineers		SHEET_1_C HOLE NO.	
			NOV RD, C				DDO II	ECT NC).		G189-223	6.22		HOLE NO.	B-6
	C	Γ (20	(a) 26 (4) 94	62-93	328			ECT NA			tral Middle			BORING LOCATIONS Per Plan	
FOF	REMAN -			+0-40	300		LOCA	ΓΙΟΝ		ıl e	ndian Roc	k Lane		rei riaii	
	AO/aa									(Greenwic	h CT			
NS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET	
_								TYPE			HSA	SS		DATE START	8/23/22
	OUND W/ 8_FT A					3		SIZE I.		-	4 1/4"	1 3/8"	BIT	DATE FINISH SURFACE ELEV.	8/23/22
	_FT AF		_		,			HAMM				30"	Dit	GROUND WATER ELEV.	
				SAMI	PLF									•	
DEF	CASING BLOWS PER FOOT	NO			REC	DEPTH @ BOT	ON (FOR	WS PER SAMPI CE ON 6 - 12	LER TUBE)	CORE TIME PER FT (MIN)	DENSITY OR CONSIST MOIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REI OSS OF WASH WATER, ROCK, ETC.	
	1001					@ BO1				(territy)	WOOT	8"	Topsoil		
5		1	SS	24"	14"	6'0"	4	6			compact				
						6:2:	22	10			dry		Brn F sand, F-C g	ravel	
		2	SS	24"	16"	8'0"	10	9			compact dry		Gry F sand & silt		
		3	SS	24"	10"	10'0"	10	15			dense		Gry i Sand & Sin		
0							20	16			wet		Brn F sand & silt,	F-C gravel	
		4	SS	24"	24"	12'0"	19-	25			v dense wet		Same		
		5	SS	24"	24"	14'0"	10	19			dense		Same		
							31	31			wet	14'	Same		
5													EOB 14'		
												-			
0															
5															
0															
5															
-							-								
	TE: Sul	nenil	con	ditio	ne r	evesler	l by th	nie im	estic	ation	represent				
U	cor	nditio	ons a	at sp	ecifi	c location	ions a	nd ma	ay no						
	DUND SU	RFAC	E TO		F	T. US	SED_			CASIN			ASING TO	_FT. HOLE NO	. B-6
	AUGER R = WEIG				RBED	PISTON WOH = 1		T = TH			V = VANE 1	EST		C = COARSE	
S:	= SPLIT T	UBE	SAMP	LER		H.S.A. =	HOLL	OW ST	EM AU	GER				M = MEDIUM	
RC	PORTIO	NS US	SED:	TRAC	CE = 0	- 10% I	ITTLE	= 10 - 2	20% 5	OME =	20 - 35% A	ND =35 - 5	0%	F = FINE	

	SOII						CLIEN	T:		A	TANE Eng	ineers		SHEET 1 OF 1
			NOV								0400 000	0.00		HOLE NO. B-7
			D, C				PROJE				G189-223	6-22		BORING LOCATIONS
			3) 26 4) 94				PROJE	CINA	ME	Cent	tral Middle	School		Per Plan
OF	REMAN -			-			LOCAT	TION		9 li	ndian Roc	k Lane		
	AO/aa										Greenwic			
NS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET
								TYPE	_		HSA 4 1/4"	SS 1 3/8"		DATE START 8/24/22 DATE FINISH 8/24/22
	OUND WA 8_FT A					5		SIZE I.		г	4 74	140#	BIT	SURFACE ELEV.
	_FT AF							HAMM				30"		GROUND WATER ELEV.
			- 5	SAMI	PLE					T			T	
7	CASING BLOWS PER	NO	Туре	PEN	REC	DEPTH	ON (FOR	VS PER SAMPI CE ON 6 - 12	LER TUBE)	CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REMARKS INCL OSS OF WASH WATER, SEAMS IN ROCK, ETC.
	FOOT					@ ВОТ	0-6	0 - 12	12- 10	(MIN)	MOIST	ELEV		
1		_								-				
_		-		04"	4011	CIOII	40	44						
5		1	SS	24"	16"	6'0"	12 16	11 31			compact		Brn/lt brn F sand	F-C gravel, some silt
		2	SS	24"	16"	8'0"	95	44			v dense			
		2		0411	408	101011	40 35	39 57		-	moist v dense		Brn F-C sand, F-0	C gravel, trace cobbles
0		3	SS	24"	18"	10'0"	42	38			wet		Brn F sand & silt,	F-C gravel, trace cobbles
		4	SS	15"	10"	11'3"	135	133			v dense			
							100/3"			_	wet	11'3"	Same EOB 11'3"	
									-	<u> </u>			LOBITS	
15														
									_	-				
20														
										_				
25														
30														
										-				
35										-				
10														
10		hsoil	con	ditio	ns r	evealer	d by fl	nis inv	/estic	ation	represent			
.0	COI	nditio	ons a	at sp	ecifi	c locat	ions a	ind m	ay no					
R	COI DUND SU					ocation				CASIN	G THEN	C	ASING TO	FT. HOLE NO. B-7
=	AUGER	UP =	UNDI	STUF	RBED	PISTON		T = TH	INWAI	L	V = VANE			
VO	R = WEIC	HT C	F RO	DS		WOH =	WEIGH	T OF H	EM AL	R & RC	DDS			C = COARSE M = MEDIUM
											20 - 35% A	AND =35 - 5	50%	F = FINE

	SOI	LTE					CLIEN	T:			ATAN	IE Engin	eers	SHEET 1 OF 1 HOLE NO. B-8
		FOR					PROJE	ECT NC).		G189-223	6-22		B-0
	C	T (20 Y (91	3) 26	62-93	328		_	ECT NA	_		tral Middle			BORING LOCATIONS Per Plan
FOI	REMAN -			10-40	,,,,		LOCAT	TION		9 li	ndian Roc	k Lane		T CI I IGH
	AO/aa										Greenwic			
NS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET
20	OUND W	ATED	ODCI	-D//V	TIONS			TYPE SIZE I.	D		HSA 4 1/4"	SS 1 3/8"		DATE START 8/24/22 DATE FINISH 8/24/22
	10 FT A					0		HAMM		Г.	4 /4	140#	BIT	SURFACE ELEV.
_	_FT AF							HAMM	IER FA	LL		30"		GROUND WATER ELEV.
			(SAMI	PLE			-						
EPT	CASING BLOWS PER		Туре	PEN	REC	DEPTH	ON (FOR	NS PER SAMPI CE ON 6 - 12	LER TUBE)	CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REMARKS INC OSS OF WASH WATER, SEAMS IN ROCK, ETC.
-	FOOT				-	@ ВОТ				(MIN)	MOIST	ELEV		
											-			
5		1	SS	24"	14"	6'0"	15	9		-	compact			
							8	15			moist		Gry F sand & silt,	F-C gravel
		2	SS	24"	14"	8'0"	105 65	64 17			v dense dry		Same, cobbles	
		3	SS	24"	12"	10'0"	16	5			loose		Carrie, cobbies	
10				0.411	401	400	3	3			moist		Gry silt, trace F g	
		4	SS	24"	10"	12'0"	9	9		-	compact	11'6"	Gry F-C sand, so Gry silt, trace clay	
		5	SS	24"	20"	14'0"	10	8			compact			
15		6	00	24"	24"	16'0"	7	65			wet v dense		Gry F-C sand & s	ilt, F-C gravel, trace clay
13		0	SS	24	24	100	19	45			wet	16'	Gry F sand & silt,	trace cobbles
													EOB 16'	
20														
25														
30														
35														
10														
40 10	TE: Su	bsoil	con	ditio	ns r	evealed	bv th	nis inv	estic	ation	represent			
	100	nditio	ons a	at sp	ecifi	c locat	ions a	nd m	ay no					
iR(COI DUND SU	REAC	ons a	at otl	her l	ocation	SED	imes.		CASIN	G THEN	CA	ASING TO	FT. HOLE NO. B-8
=	AUGER	UP =	UNDI	STUF	RBED	PISTON		T = TH		L	V = VANE T			
	R = WEIC = SPLIT T					WOH = 1					DS			C = COARSE M = MEDIUM
											20 - 35% A	ND =35 - 5	60%	F = FINE

	SOI		STI).	CLIEN	IT:			ATAN	IE Engin	eers	SHEET 1 OF 1 HOLE NO. B-9
			RD, C				PRO II	ECT NO			G189-223	6-22		= HOLL NO. B-9
	C	T (20	3) 26	62-93	328			ECT NA	_		tral Middle			BORING LOCATIONS Per Plan
0	REMAN -			10-40	330		LOCA	TION			ndian Roc			T CI T IAIT
-	AO/aa SPECTOR						_				Greenwic	SAMPLER	0005.040	OFFSET
-	PECTOR							TYPE			CASING HSA	SAMPLER	CORE BAR	DATE START 8/24/22
2	OUND W	ATER	OBSI	ERVA	TION	S	1	SIZE I.	D.		4 1/4"	1 3/8"		DATE FINISH 8/24/22
	none FT				IRS			HAMM				140#	BIT	SURFACE ELEV.
	FTAF	TER_						HAMM	ER FA	LL		30"		GROUND WATER ELEV.
			,	SAM	PLE						DEMONTH	077171	EIEI D IDENI	TIFICATION OF SOIL REMARKS INC
	CASING BLOWS PER		Туре	PEN	REC	DEPTH	ON (FOR	WS PER SAMPL CE ON 6 - 12	ER TUBE)	CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		OSS OF WASH WATER, SEAMS IN ROCK, ETC.
	FOOT			_		@ ВОТ	0-0	0-12	12- 10	(MIN)	MOIST	ELEV		
5					-					-	-			
,		1	SS	19"	19"	6'7"	95	75			v dense			
							95	100/1"			dry			gravel, trace cobbles
							-			-			Cobbles & boulde	PIS
0												10'	Cobbles & boulde	ers 6'6" - 10'
		2	SS	4"	4"	10'4"	100/4"				v dense/dry	4410"	Partly weathered	
										-		11'6"	EOB 11'6"	Auger Refusal
													200110	
5														
0														
0														
5														
										-				
)											1			
-														
5														
0														
	cor	nditio	ons a	at sp	ecifi	c locat	ions a	and ma			represent esent			
2	COI OUND SU					ocation	sed	imes.		CASIN	G THEN	C	ASING TO	FT. [HOLE NO. B-9]
=	AUGER	UP =	UNDI	STUF				T = TH	INWAL	-	V = VANE T		.0110 10	
	R = WEIG					WOH =					DS			C = COARSE
	= SPLIT T					H.S.A. =					20 - 35% Δ	ND -05 5	.00/	M = MEDIUM E = FINE

	SOI).	CLIEN	T:			ATA	IE Engin	eers	SHEET 1 OF 1 HOLE NO. B-10
			NOV.				DDO II	ECT NO			G189-223	6 22		HOLE NO. B-10
	C	T (20	3) 26	2-93	328			ECT NA			ral Middle			BORING LOCATIONS
F0!		_	4) 94	16-48	350		1.004	FIGN			ndian Roc			Per Plan
FOI	REMAN - AO/aa	DRILL	LEK				LOCA	HON			Greenwick			
INS	PECTOR								_		CASING	SAMPLER	CORE BAR	OFFSET
								TYPE			HSA	SS		DATE START 8/24/22
GR	OUND W	ATER	OBSE	RVA	TIONS	3		SIZE I	.D.		4 1/4"	1 3/8"		DATE FINISH 8/24/22
AT_	none FT	AFTI	ER_0	HOU	RS			HAMM	IER W	Γ.		140#	BIT	SURFACE ELEV.
AT_	_FT_AF	TER_	_HOI	JRS				HAMM	IER FA	LL		30"		GROUND WATER ELEV.
			5	SAMI	PLE									
EPT	CASING BLOWS PER FOOT		Туре	PEN	REC	DEPTH @ BOT	ON (FOR	NS PER SAMPI CE ON 6 - 12	LER TUBE)	CORE TIME PER FT (MIN)	DENSITY OR CONSIST MOIST	STRATA CHANGE DEPTH	111 111 111 1111 1111	TIFICATION OF SOIL REMARKS INCL OSS OF WASH WATER, SEAMS IN ROCK, ETC.
						0								
5														
		1	SS	24"	12"	7'0"	25	34			v dense			
				0.411	1.10	O.O.II	26	26			dry		Brn F-M sand, F-0	C gravel, some silt, trace cobbles
		2	SS	24"	14"	9'0"	35 76	64 65		-	v dense dry		Same	
10							70	00			uly	10'	Carrie	Auger Refusal
													EOB 10'	
- 4														
						-				_				
15														
		-			_									
20														
		_		_			_							
25														
30														
35														
					-									
40														
NO						evealed c locat					represent esent			
0:	cor	nditio	ons a	t otl	her l	ocation	s or t	imes.					101110 70	ET IIIOLENO BA
	OUND SU AUGER							T = TH	ΙΝWΑΙ	_CASIN	G THEN OF THE T		ASING TO	FT. HOLE NO. B-10
	R = WEIG					WOH = 1								C = COARSE
	= SPLIT T					H.S.A. =					00 050	ND 0= =	00/	M = MEDIUM
PR(PORTIO	NS US	SED:	IRAC	E = 0	- 10%	LITTLE	= 10 - 2	20% S	OME =	20 - 35% A	ND =35 - 5	U%	F = FINE

	SOI	LTE DO).	CLIEN	T:			ATA	NE Engin	eers	SHEET_1_C HOLE NO.	DF_1B-11
		FOF					PROJI	ECT NO			G189-223	6-22		1	2.11
	C	T (20 Y (91	3) 26	2-93	328			ECT NA			tral Middle	100		BORING LOCATIONS Per Plan	
0	REMAN -	_	_	10-40	,,,,,		LOCA	TION		9 1	ndian Roc	k Lane		T CI T IGIT	
	AO/aa										Greenwic	h CT			
NS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET	
								TYPE			HSA	SS		DATE START	8/24/22
	OUND W					S		SIZE I.		_	4 1/4"	1 3/8"	DIT	DATE FINISH	8/24/22
-	none_FT FTAF			_	RS			HAMM				140# 30"	BIT	SURFACE ELEV. GROUND WATER ELEV.	
_		T			DIE			I IAIVIIVI	LIVIA	T		30		ONCOND WATER ELEV.	
		-		SAMI	PLE						DENSITY	STRATA	FIELD IDEN	TIFICATION OF SOIL RE	MARKS INCL
DEPIH	CASING BLOWS PER		Туре	PEN	REC	DEPTH	ON (FOR	WS PER SAMPL CE ON 7 6 - 12	ER TUBE)	FT	OR CONSIST	CHANGE DEPTH		OSS OF WASH WATER, ROCK, ETC.	
_	FOOT				_	@ BOT				(MIN)	MOIST	ELEV			
5										-					
5		1	SS	22"	22"	6'8"	18	19			v dense				
							52	150/4"			dry	7'		F-C gravel, trace cobbles	Auger Refus
													EOB 7'		
0										-					
U															
_															
5										-					
20															
5															
0										-					
	7														
35															
10										-					
10	TE: O:	he si	0.51	4:4:		overla	d by A	ole in	roct:	l notice	roproser	-			
IC	COI	nditio	ons a	at sp	ecifi	evealed c locat ocation	ions a	and ma			represent esent				
	US DANC	IRFAC	E TO		F	T. U	SED_			_CASIN			ASING TO	_FT. HOLE NO). B-11
	AUGER							T = TH			V = VANE 7	TEST		C = COARSE	
	R = WEIC = SPLIT T					WOH =					D2			C = COARSE M = MEDIUM	
											20 - 35% A	ND =35 - 5	60%	F = FINE	

	SOI 90		STI).	CLIEN	IT:			ATAN	NE Engin	eers	SHEET 1 OF 1 HOLE NO. B-12
			RD, C				PROJ	ECT NO.			G189-223	6-22		
	C	T (20	3) 26	32-93	328			ECT NAM			tral Middle			BORING LOCATIONS Per Plan
FO	REMAN -	_	_				LOCA	TION			ndian Roc Greenwick			
INS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET
								TYPE			HSA	SS		DATE START 8/24/22
	OUND W					S		SIZE I.I		-	4 1/4"	1 3/8"	BIT	DATE FINISH 8/24/22 SURFACE ELEV.
	none_FT FT AF				KS			HAMME				30"	DII	GROUND WATER ELEV.
				SAMI	DIF				_,,,,,	T				
DEPTH	CASING BLOWS PER			PEN		DEPTH	ON (FOR	WS PER I SAMPL CE ON T 6 - 12 1	ER UBE)	CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REMARKS INCL OSS OF WASH WATER, SEAMS IN ROCK, ETC.
	FOOT					@ ВОТ	0-6	6-12 1	2- 18	(MIN)	MOIST	ELEV		
5													Boulders from 2' t	10 7'
												7'		Auger Refusal
10 15 20														
30														
35														
40														
40 NC	COL	nditi	ons a	at sp	ecifi	c locat	ions a	and ma			represent esent	1		
4 =	OUND SU AUGER PR = WEIG	RFAC UP =	UND	STUF	F RBED		SED _	T = THII			V = VANE T		ASING TO	_FT. HOLE NO. B-12 C = COARSE
SS	= SPLIT T	UBE	SAMF	LER		H.S.A. =					20 - 35% A	ND =35 - 5	0%	M = MEDIUM F = FINE

				NG, AN F			CLIEN	1.			AIAI	NE Engin		SHEET 1 OF 1 HOLE NO.
				T 06			PROJE	ECT NO	D.		G189-223	6-22		
				62-93 16-48			PROJ	ECT NA	AME	Cent	ral Middle	School		BORING LOCATIONS Per Plan
FO	REMAN -	DRILL	ER				LOCA	TION			ndian Roc		4	
INIS	SD/cp SPECTOR						_				Greenwick CASING	SAMPLER	CORE BAR	OFFSET
IIVO	FLOTOR							TYPE			HSA	SS	CONL DAIL	DATE START 9/3/
GR	OUND WA	ATER	OBSE	ERVA	TIONS	3		SIZE			4 1/4"	1 3/8"		DATE FINISH 9/3/
_	none FT				RS			HAMN	MER W	Γ.		140#	BIT	SURFACE ELEV.
AT_	FT_AF	TER_	_HO	URS				HAM	IER FA	LL		30"		GROUND WATER ELEV.
				SAMI	PLE									
EPT	CASING BLOWS PER	NO	Туре	PEN	REC	DEPTH	ON (FOR			CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		FIFICATION OF SOIL REMARKS OSS OF WASH WATER, SEAM ROCK, ETC.
	FOOT					@ BOT			Т	(MIN)	MOIST	ELEV		
5		1	SS	24"	18"	6'0"	9	13			dense	5'	Brn F-M sand & F	gravel, lit silt
							33	45			dry		Bedrock or Bould	er Fragments
					-							7'	Cobbles and/or fr	actured Bedrock 5-7'
													LOB /	
10														
				-	_				-					
													-	
15									_					
20								-	-	-				
20														
		_			_				-					
25														
													,	
30														
25														
35					_									
40														
	TE: Sul	ditio	ons a	at sp	ecifi	evealed c locat ocation	ions a	and m	ay no		represent esent		-	
GR	OUND SU	RFAC	E TO	at Otl	ier i	T. US	SED_	iiies.		CASIN	G THEN	C/	ASING TO	_FT. HOLE NO.
						PISTON		T = Th	HINWAL	L R & RO	V = VANE 7			C = COARSE

SOILTESTING, INC. 90 DONOVAN RD.							CLIENT: ATANE Engineers							SHEET 1 OF 1 HOLE NO. B-14	
			RD, C				PROJECT NO. G189-2236-22							511,	
CT (203) 262-9328 NY (914) 946-4850								ECT NA	ME	Cent	BORING LOCATIONS Per Plan				
FOREMAN - DRILLER AO/aa							LOCATION 9 Indian Rock Lane Greenwich CT								
VS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET	
								TYPE			HSA	SS		DATE START 8/25/22	
	OUND WA					S	SIZE I.D. HAMMER WT.				4 1/4"	1 3/8"	DATE FINISH 8/25/22 BIT SURFACE ELEV. GROUND WATER ELEV.		
	_FT AF				JNO		HAMMER FALL					30"			
			- 5	SAM	PLE										
EPT	CASING BLOWS PER	NO	Туре	PEN	I REC.	DEPTH @ BOT	BLOWS PER 6 IN ON SAMPLER (FORCE ON TUBE) 0 - 6 6 - 12 12-18			CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REMARKS INC LOSS OF WASH WATER, SEAMS IN ROCK, ETC.	
	FOOT						0-0	0 - 12	12- 10	(MIN)					
5		1	SS	24"	4"	6'0"	15	6			compact				
		2	00	24"	16"	8'0"	7	12 12			dry		Brn F sand, F-C g	gravel, trace silt, trace asphalt (fill)	
10			SS				17	32			dense dry		Brn F sand, F-C g	gravel, trace silt, trace cobbles	
		3	SS	24"	18"	10'0"	28 30	25 39			v dense	10'	Pro Found F Co	Brn F sand, F-C gravel, some silt, some weathered Bedrock fra Partly weathered Bedrock or Boulders	
		4	SS	4"	4"	10'4"	100/4"	39			dry v dense/dry	10			
												12'	EOB 12'	Auger Refusal	
15												p.	EOB 12		
20															
25															
30															
35															
			_ 9												
10	TE C			454.			l be di			-4:					
10						evealed c locat					represent esent				
P		ditio	ons a	t ot	ner le	ocation	s or t			CASIN		C	ASING TO	FT. HOLE NO. B-14	
=	AUGER	UP =	UNDI	STUF	RBED	PISTON		T = TH		L	V = VANE T		NO TO		
	R = WEIG = SPLIT T					WOH = 1					DS			C = COARSE M = MEDIUM	
											20 - 35% A	ND =35 - 5	60%	F = FINE	

	SOI					·.	CLIEN"	Τ:			ATAN	IE Engin	eers	SHEET 1 OF 1 HOLE NO. B-15
			NOV.				PROJE	CT NO			G189-223	6.22		HOLE NO. B-18
	C	T (20	3) 26	2-93	28		PROJE				ral Middle			BORING LOCATIONS
FO!	REMAN -	_	4) 94	16-48	350		LOCAT	ION		0 1	ndian Roc	k l ano		Per Plan
FUI	AO/aa	DRILL	LEK				LOCAT	ION			Greenwich			
INS	PECTOR										CASING	SAMPLER	CORE BAR	OFFSET
							TYPE				HSA	SS		DATE START 8/25/22
GR	OUND W	ATER	OBSE	RVA	TIONS	3		SIZE I	D.		4 1/4"	1 3/8"		DATE FINISH 8/25/22
	T <u>none_</u> FT_AFTER <u>_0_</u> HOURS TFT_AFTERHOURS							HAMM	ER W	Τ.		140#	BIT	SURFACE ELEV.
AT_	_FT AF	TER_	_HOI	URS				HAMM	ER FA	LL		30"		GROUND WATER ELEV.
			5	SAMI	PLE									SIELOATION OF OOU DEMARKS IN
	CASING BLOWS PER		Туре	PEN	REC	DEPTH	ON (FOR	VS PER SAMPI CE ON 6 - 12	LER TUBE)	FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH	The state of the s	FIFICATION OF SOIL REMARKS INC OSS OF WASH WATER, SEAMS IN ROCK, ETC.
-	FOOT					@ BOT				(MIN)	MOIST	ELEV		
	-													
5		1	-	24"	14"	6'0"	18	85		-	v dense			
5		-	SS	24	14	00	110	102			dry		Weathered Bedro	ck fragments
		2	SS	3"	0"	6'3"	100/3"				v dense/dry		No recovery	
10										-		9'	EOB 9'	Auger Refusal
10													LODS	
										-				
15														
		-												
20														
				_										
25													-	
30														
35														
55														
40														
						eveale c locat					represent			
						ocation								
	OUND SU	JRFAC	CE TO		F	T. U	SED_			CASIN			ASING TO	_FT. HOLE NO. B-1
	AUGER R = WEI				KRED	PISTON WOH =		T = TH T OF H			V = VANE T	IEST		C = COARSE
SS	= SPLIT	TUBE	SAMF	LER		H.S.A. =	HOLL	OW ST	EM AL	JGER				M = MEDIUM
PR	OPORTIC	NS U	SED:	TRAC	CE = C	- 10%	LITTLE	= 10 - 2	20% 5	SOME =	20 - 35% A	AND =35 - 5	50%	F = FINE

				NG, AN F			CLIEN				AIAI	NE Engin		SHEET 1 OF 1 HOLE NO.	
	ОХ	FOR	D, C	T 06	478		PROJI	ECT NO).		G189-223	6-22			
				62-93 46-48			PROJI	ECT NA	AME	Cent	ral Middle	e School		BORING LOCATIONS Per Plan	
FOR	REMAN -						LOCA	TION			ndian Roc				
13.10	AO/aa									(Greenwic			0.55057	
INS	PECTOR							TVDE			CASING	SAMPLER	CORE BAR	OFFSET DATE START 8/25	
CD	OUND WA	TED	OPCI	EDV/A	TIONS		TYPE HSA SS SIZE I.D. 4 1/4" 1 3/8"						DATE START 8/25 DATE FINISH 8/25		
	none_FT					5	HAMMER WT.				4 /4	140#	BIT	SURFACE ELEV.	
	_FT AF								IER FA		-	30"		GROUND WATER ELEV.	
	I SAMPLE									Г			T		
EPT	CASING BLOWS PER	NO		PEN		DEPTH @ BOT	ON (FOR	BLOWS PER 6 IN ON SAMPLER (FORCE ON TUBE) 0 - 6 6 - 12 12-18		CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		FIFICATION OF SOIL REMARKS II OSS OF WASH WATER, SEAMS ROCK, ETC.	
-	FOOT									(MIN)	MOIST	ELEV	-		
5		1	SS	24"	18"	6'0"	20	29			y donos				
0		-	55	24	10	00	25	9			v dense dry		Brn F sand, F-C o	gravel, trace asphalt (fill)	
		2	SS	24"	18"	8'0"	9	15			v dense	7'6"	Brn F sand & silt,	F-C gravel	
		3		2411	400	401011	39	83			moist/dry		Partly weathered I	Bedrock	
10		3	SS	24"	12"	10'0"	32	15			dense dry		Boulders or partly	weathered Bedrock	
		4	SS	22"	20"	11'10"	44	19			v dense		Dearasie of party	Trouble Boardon	
							32	100/4"			dry	12'		Sand, trace cobbles (parly weathered	
					_					-			EOB 12'		
15															
			_		_						-				
20															
		_		_											
25		_			_										
30		_													
30															
35													-		
-															
40															
NO	con	ditio	ns a	at sp	ecifi	evealed c location	ions a	ind m	ay no	ation t repre	represent esent				
	OUND SUI AUGER	RFAC	E TO		F	T. US	SED_		IINWAL	CASING	G THEN O		ASING TO	_FT. HOLE NO. E	
	R = WEIG					WOH = 1						201		C = COARSE	

	SOII						CLIEN	T:			ATAN	IE Engir	eers	SHEET 1 OF 1
			NOV				DDC "	TOT NO			G189-223	6 22		HOLE NO. B-17
			D, C 3) 26					ECT NO		-				BORING LOCATIONS
			4) 94				FROJE	ECT NA	IVIE	Cent	ral Middle	School		Per Plan
ORE	MAN -	_					LOCATION 9 Indian Rock Lane							
	D						Greenwich CT							
NSPE	ECTOR										CASING	SAMPLER	CORE BAR	OFFSET
NDO!	INID MA	TED	ODCE	-D\	TION			TYPE	D		HSA 4 1/4"	SS 1 3/8"		DATE START 9/3/22 DATE FINISH 9/3/22
	JND WA					5	SIZE I.D. HAMMER WT.				4 /4	140#	BIT	SURFACE ELEV.
	FT AF							HAMM				30"		GROUND WATER ELEV.
T			5	SAMI	PLE									
BI	CASING BLOWS NO Type PEN REC. PER FOOT DEPTH @ BOT		1 U - h h - 1/ 1/- 18 1			DENSITY OR CONSIST	STRATA CHANGE DEPTH	The second second	FIELD IDENTIFICATION OF SOIL REMARKS IN COLOR, LOSS OF WASH WATER, SEAMS II ROCK, ETC.					
F	TOC					@ BOT	0-0	0-12	12- 10	(MIN)	MOIST	ELEV		
-			_											
												3'	Auger Refusal at	3' (on Boulder) offset 5' to B-17A
-	B-17A	4	-	0.411	401	CIOII	4	2			lasse			
5		1	SS	24"	12"	6'0"	2	3			loose dry		Brn F-M sand & s	ilt, some F gravel
		2	SS	23"	14"	7'11"	4	31			v dense	7'3"	Same	
-							33	50/5"			dry	8'	Bedrock or boulde EOB 8'	er fragments Auger Refusal
10			_						-				EOB 8	
+										-				
15														
-														
20														
-														
-														
25														
30														
-														
-														
35														
-														
10														
	cor	ditio	ons a	t sp	ecifi	c locati	ions a	and ma	ay no		represent esent			
DOL	cor	ditio	ons a	t oth	ner l	ocation	s or t	imes.					A SING TO	FT. HOLE NO. B-17
						T. US		T = TH		_CASIN _L	G THEN _ V = VANE T		ASING TO	FT. HOLE NO. B-17
	= WEIG SPLIT T					WOH = 1	WEIGH	IT OF H	AMME	R & RO				C = COARSE
						H.S.A. =					20 - 35% A	ND -25 6	-00/	M = MEDIUM F = FINE

	SOI	LTE	STI	NG,	INC		CLIEN	T:			ATAN	NE Engin	eers	SHEET_1_0	DF_1
			NOV											HOLE NO.	B-18
			RD, C				PROJ	ECT NO).		G189-223	6-22			
			(3) 26 (4) 94				PROJI	ECT NA	ME		tral Middle			BORING LOCATIONS Per Plan	
FO	SD/cp	DRIL	LER				LOCA.	TION			ndian Roc Greenwich		*		
INS	PECTOR						CASING SAMPLER CORE BAR						OFFSET		
	-						TYPE			HSA	SS		DATE START	9/3/22	
	OUND W					S	SIZE I.D.			_	4 1/4"	1 3/8"	DIT	DATE FINISH SURFACE ELEV.	9/3/22
	<u>9</u> FT Al _FT AF							HAMN	IER W IER FA			140# 30"	BIT	GROUND WATER ELEV.	
		12.1		SAM	DIE		-	T D SIVILY	ILIX 17	T	T		T		
		-	T	I	LL	T	-				DENSITY	STRATA	FIELD IDENT	TIFICATION OF SOIL RE	MARKS INCL.
DEPTH	CASING BLOWS PER		Туре	PEN	REC	DEPTH	ON (FOR	WS PER SAMPI CE ON 6 - 12	LER TUBE)	FT	OR CONSIST	CHANGE DEPTH	COLOR, L	OSS OF WASH WATER ROCK, ETC.	, SEAMS IN
-	FOOT	-	-			@ ВОТ				(MIN)	MOIST	ELEV			
										-					
5		1	SS	24"	24"	6'0"	14	13			compact				
•			1 30	2.1	21	00	10	10			dry		Gry F-M sand & F	gravel, lit silt	
		2	SS	21"	12"	8'0"	11	14			compact	7'6"	Same		
			-	_			7	5		-	dry		Gry/blk F sand & : Cobbles 9'-10'	silt (gry/blk) trace organics, F g	ravel- (poss fil
10		-										10'	Cobbles 9-10		(poss III
		3	SS	24"	16"	12'0"	9	11			compact				
		4	-	22"	20"	13'10"	8	9		-	wet dense		Brn/tan F-M sand	& F gravel, lit silt	
		4	SS	22	20	13 10	20	50/4"		-	wet	13'10"	Same		
15													EOB 13'10"		
			-												
											1				
20										-	-				
25		_	-							-	-				
20															
30															
		-								-					
35															
		-								-					
40	-			11.11						<u></u>					
NC	100	nditi	ons a	at sp	ecifi	c locat	ions a	and m	ay no		represent esent				
GR	COI DUND SU					ocation	IS OF t	imes.		CASIN	G THEN	C	ASING TO	FT. HOLE NO	D. B-18
4 =	AUGER	UP =	UND	STUF		PISTON		T = TH		L	V = VANE T				
	R = WEIC = SPLIT T					WOH =					DS			C = COARSE M = MEDIUM	
						H.S.A. =					20 - 35% A	ND =35 - 5	50%	M = MEDIUM F = FINF	

OXF	ORD (203) (914)	CT 06	478		PROJE	90 DONOVAN RD. OXFORD, CT 06478 PROJECT NO. G189-2236-22							
CT NY OREMAN - D	(203) (914)	262-93							6-22				
OREMAN - D				PROJE	CT NA	ME	Cent	tral Middle	School		BORING LOCATIONS Per Plan		
SD	RILLER				LOCATION 9 Indian Rock Lane Greenwich CT								
ISPECTOR	-				CASING SAMPLER CORE BAR							OFFSET	
						TYPE			HSA	SS		DATE START 9/3/22	
ROUND WAT				S	SIZE I.D.			4 1/4"	1 3/8"	DIT	DATE FINISH 9/3/22		
T <u>none</u> FT TFT_AFT			JRS			HAMM HAMM				140# 30"	BIT	SURFACE ELEV. GROUND WATER ELEV.	
		SAM	PIF			1 17 AIVIIVI						GROOND WATER LLLV.	
CASING BLOWS PER	NO Ty	pe PEN		DEPTH	ON (FORC	VS PER SAMPL CE ON 1 6 - 12 1	ER (UBE)	CORE TIME PER FT	DENSITY OR CONSIST	STRATA CHANGE DEPTH		TIFICATION OF SOIL REMARKS INC OSS OF WASH WATER, SEAMS IN ROCK, ETC.	
FOOT		_		@ ВОТ	0-0	3 - 12	12- 10	(MIN)	MOIST	ELEV			
		-											
5	1 8	s 24"	18"	6'0"	9	14			compact			t, lit F gravel ulders and/or decomposed Bedrock	
	2 s	s 16"	16"	7'4"	14 30	14 33			dry v dense		Brn F-M sand & si		
	2 5	10	10	14	50/4"	33			moist	7'4"	Spoon Refusal	odiacio dilaroi decomposed Deditori	
											EOB 7'4"		
0	+												
	-	-											
5													
	-	-											
0	+	-											
5		-											
	-	-											
	+												
0													
	-	-											
5													
5													
	-												

	ILTE					CLIEN	T:			ATAN	NE Engine	eers	SHEET 1 OF 1
	0 DO									0400 000	2.00		HOLE NO. B-20
	XFOF						ECT NO			G189-223	6-22		PODING LOCATIONS
	T (20 IY (91				7	PROJE	ECT NA	ME	Cent	BORING LOCATIONS Per Plan			
OREMAN			10 10			LOCATION 9 Indian Rock Lane							
SD						Greenwich CT							
NSPECTO	3									CASING	SAMPLER	CORE BAR	OFFSET
							TYPE			HSA	SS		DATE START 9/3/22
GROUND V					S	SIZE I.D. HAMMER WT.			г	4 1/4"	1 3/8"	BIT	DATE FINISH 9/3/22 SURFACE ELEV.
	T <u>none_</u> FT_AFTER <u>0_</u> HOURS TFT_AFTERHOURS						HAMM				30"	DII	GROUND WATER ELEV.
T	1		SAME	OLE					_				
) (IVII			D. C.				DENSITY	STRATA	FIELD IDENT	TIFICATION OF SOIL REMARKS INCL
CASING BLOWS PER		Туре	PEN	REC	DEPTH	ON (FOR	N SAMPLER		CORE TIME PER FT	OR CONSIST	CHANGE DEPTH	COLOR, L	OSS OF WASH WATER, SEAMS IN ROCK, ETC.
FOOT	_				@ ВОТ	0-6	0 - 12	12- 10	(MIN)	MOIST	ELEV		
-	-								-				
	-										3'		Auger Refusal
												EOB 3'	Poss Bedrock
5													
10	-												
	-												
15	+												
	-												
	+												
20				1									
	+												
25													
20													
30													
35													
													~~
9													
10													
NOTE: Si	nditi	ons a	at sp	ecifi	c locat	ions a	nd m	ay no		represent esent			
CC	nditi	ons a	at oth	ner l	ocation	s or t	imes.		CASIN		C^	ASING TO	FT. HOLE NO. B-20
ROUND S							T = TH			G THEN. V = VANE 1		NOTING TO	FI. [HOLE NO. B-20
VOR = WE	GHT C	F RO	DS		WOH =	WEIGH	T OF H	AMME	R & RC				C = COARSE
S = SPLIT										20 - 35% A	ND -25 5	00/	M = MEDIUM F = FINE

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT Greenwich Public Schools – Central Middle School 9 Indian Rock Lane, Greenwich, CT 06830

APPENDIX 6:

Laboratory Test Results – Geotechnical Test Results

SIEVE ANALYSIS ASTM DESIGNATION C136

Client:	Town of Greenwich	Sample Source:	Sample Date: 08/12/22
	101 Field Point Road		Sample #: 220812-1
	Greenwich , CT 06830		Lab Tech: PJM
		Test Pit #1	Sampled by: MH
Project:	Greenwich Cen. Middle Sch.		
	9 Indian Rock Lane		
	Greenwich, CT 06830	Sample Use:	Material Type:
Project #:	2021-11-0386A02	Subgrade	Tan Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832

ATANE Report #: MA0386081222-1

			SPECIFICATIONS
SIEVE SIZE	WEIGHT	% PASSING	
(IN / NO.)	(Retained)	(Total Sample)	
5"	0.0	100	
3"	0.0	100	
2"	0.0	100	
1 1/2"	0.0	100	
1 1/4"			
1"	80.7	99	
3/4"	242.1	97	
1/2"	1022.1	86	
3/8"	1586.4	78	
1/4"	1810.8	75	
# 4	2108.5	71	
#8	2828.6	62	
# 10	3837.5	48	
# 30	4515.2	39	
# 40	5085.9	31	
# 50	5418.1	26	
#100	5854.5	21.0	
#200	6490.6	11.9	
PAN	7358.2	0.1	

 Wet Wash:	No

Reviewed by:

% Over #4, Under 3": 29.0

SIEVE ANALYSIS ASTM DESIGNATION C136

Client:	Town of Greenwich	Sample Source:	Sample Date: 08/12/22
	101 Field Point Road		Sample #: 220812-7
	Greenwich, CT 06830		Lab Tech: PJM
		Test Pit #2	Sampled by: MH
Project:	Greenwich Cen. Middle Sch.		
	9 Indian Rock Lane		
	Greenwich, CT 06830	Sample Use:	Material Type:
Project #:	2021-11-0386A01	Subgrade	Dark Brown Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832

ATANE Report #: MA0386081222-7

		į	SPECIFICATIONS EARTH MOVING
SIEVE SIZE	WEIGHT	% PASSING	31 20 00
(IN / NO.)	(Retained)	(Total Sample)	2.01.G.4
5"	0.0	100	
3"	0.0	100	70-100
2"	52.1	100	
1 1/2"	212.4	98	
1 1/4"			
1"	439.3	97	
3/4"	573.2	96	45-95
1/2"	782.1	94	
3/8"	884.7	93	
1/4"	1208.7	91	
# 4	1646.7	87	30-90
#8	3508.5	73	
# 10	4334.4	66	25-80
# 30	5526.9	57	
# 40	6199.2	52	10-50
# 50	7770.4	39	
#100	9997.2	22.0	
#200	11872.6	7.5	0-10
PAN	12814.1	0.1	

Wet Wash: No
% Over #4, Under 3": 13.0

	ATANE SIEVE ANALYSIS ASTM DESIGNATION C136 Split Sample										
	Lab Work Sheet										
Client:	Town of Greenwich	Sample Source:	Sample Date:	8/12/2022							
	101 Field Point Road		Sample #:	220812-8							
	Greenwich, CT 06830		Lab Tech:	PJM							
		Test Pit #3	Sampled by:	МН							
Project:	Greenwich Cen. Middle Sch.										
	9 Indian Rock Lane										
	Greenwich, CT 06830	Sample Use:	Material T	Гуре:							
Project #:	2021-11-0386A02	Subgrade	Tan Gra	vel							

ATANE Report #: MA00386081222-8

Sample Initial Dry Weight: 15,289.40

SIEVE SIZE	WEIGHT	% PASSING
(IN / NO.)	(Retained)	(Total Sample)
5"	0.0	100.0
3"	0.0	100.0
2"	50.1	99.7
1 1/2"	173.8	98.9
1 1/4"	-	
1"	748.9	95.1
3/4"	878.4	94.3
1/2"	1095.2	92.8
3/8"	1268.1	91.7

Split sample to size appropriate for smaller sieves here

Wt of -3/8":	14021.3
Weight of New	
Split Sample:	692.7

SIEVE SIZE	WEIGHT	%Passing	% Passing
(IN / NO.)	(Retained)	(Split Sample)	(Total Sample)
Split Sampl	e		
1/4"	45.3	93.5	85.7
# 4	72.4	89.5	82.1
# 8	169.5	75.5	69.3
# 10	215.3	68.9	63.2
# 30	299.5	56.8	52.1
# 40	338.5	51.1	46.9
# 50	425.7	38.5	35.3
#100	517.8	25.2	23.2
#200	624.7	9.8	9.0
PAN	692.3	0.1	0.1

SIEVE ANALYSIS ASTM DESIGNATION C136

Client: Town of Greenwich	Sample Source:	Sample Date: 08/12/22
101 Field Point Road		Sample #: 220812-2
Greenwich , CT 06830		Lab Tech: PJM
	Test Pit #4	Sampled by: MH
Project: Greenwich Cen. Middle Sch.		
9 Indian Rock Lane		
Greenwich, CT 06830	Sample Use:	Material Type:
Project #: 2021-11-0386A02	Subgrade	Tan Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832 ATANE Report #: MA0386081222-2

			SPECIFICATIONS
SIEVE SIZE	WEIGHT	% PASSING	
(IN / NO.)	(Retained)	(Total Sample)	
5"	0.0	100	
3"	0.0	100	
2"	0.0	100	
1 1/2"	0.0	100	
1 1/4"			
1"	190.2	98	
3/4"	266.3	97	
1/2"	412.8	95	
3/8"	516.4	93	
1/4"	774.4	90	
# 4	1134.4	86	
#8	1958.4	75	
# 10	3089.4	61	
# 30	4671.9	41	
# 40	5391.8	32	
# 50	6000.5	24	
#100	6742.3	15.0	
#200	7145.0	9.9	
PAN	7927.4	0.1	

Wet Wash: No
% Over #4, Under 3": 14.0

SIEVE ANALYSIS ASTM DESIGNATION C136

Client:	Town of Greenwich	Sample Source:	Sample Date: 08/12/22
	101 Field Point Road		Sample #: 220812-11
	Greenwich, CT 06830		Lab Tech: PJM
		Test Pit #6	Sampled by: MH
Project:	Greenwich Cen. Middle Sch.		
	9 Indian Rock Lane		
	Greenwich, CT 06830	Sample Use:	Material Type:
Project #	2022-22-0386402	Subgrade	Brown Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832

ATANE Report #: MA0386081222-11

			SPECIFICATIONS
SIEVE SIZE	WEIGHT	% PASSING	
(IN / NO.)	(Retained)	(Total Sample)	
5"	0.0	100	Ī
3"	0.0	100	
2"	0.0	100	
1 1/2"	0.0	100	
1 1/4"			j
1"	378.3	97	
3/4"	612.7	96	
1/2"	831.4	94	
3/8"	1072.8	92	
1/4"	2138.9	84	j
# 4	2903.8	79	
#8	4136.0	70	
# 10	6483.5	53	
# 30	8181.2	40	
# 40	9338.6	32	
# 50	11169.6	19	
#100	12193.7	11.0	
#200	13073.6	4.8	
PAN	13717.9	0.1	

Wet Wash:	No	

% Over #4, Under 3": **21.0**

SIEVE ANALYSIS ASTM DESIGNATION C136

Client: Town of Greenwich	Sample Source:	Sample Date : 08/12/22
101 Field Point Road		Sample #: 220812-3
Greenwich , CT 06830		Lab Tech: PJM
	Test Pit #8	Sampled by: MH
Project: Greenwich Cen. Middle Sch.		
9 Indian Rock Lane		
Greenwich, CT 06830	Sample Use:	Material Type:
Project #: 2021-11-0386A02	Subgrade	Tan Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832 ATANE Report #: MA0386081222-3

		i	SPECIFICATIONS
SIEVE SIZE	WEIGHT	% PASSING	į
(IN / NO.)	(Retained)	(Total Sample)	
5"	0.0	100	
3"	0.0	100	
2"	0.0	100	
1 1/2"	0.0	100	
1 1/4"			
1"	239.2	97	
3/4"	548.1	94	
1/2"	703.2	92	
3/8"	845.7	91	
1/4"	1232.8	87	
# 4	2556.1	73	
#8	3399.1	64	
# 10	3784.9	60	
# 30	4636.4	50	
# 40	5591.2	40	
# 50	6102.3	35	
#100	6983.4	25.0	
#200	7879.1	15.8	
PAN	9347.5	0.1	

Wet Wash: No

% Over #4, Under 3": *27.0*

SIEVE ANALYSIS ASTM DESIGNATION C136

Client:	Town of Greenwich	Sample Source:	Sample Date: 08/12/22
	101 Field Point Road		Sample #: 220812-9
	Greenwich, CT 06830		Lab Tech: PJM
		Test Pit #9	Sampled by: MH
Project:	Greenwich Cen. Middle Sch.		
	9 Indian Rock Lane		
	Greenwich, CT 06830	Sample Use:	Material Type:
Project #	2021 11 0204402	Subgrade	Brown Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832 ATANE Report #: MA0386081222-9

			SP
SIEVE SIZE	WEIGHT	% PASSING	! !
(IN / NO.)	(Retained)	(Total Sample)	
5"	0.0	100	
3"	0.0	100	! !
2"	0.0	100	
1 1/2"	0.0	100	
1 1/4"			İ
1"	482.3	96	i
3/4"	567.8	95	
1/2"	789.2	93	
3/8"	893.1	92	
1/4"	1074.0	90	İ
# 4	2077.5	82	
#8	2813.3	75	i
# 10	3840.6	66	
# 30	4498.6	60	<u> </u>
# 40	5496.1	51	
# 50	6311.1	44	ĺ
#100	7797.6	31.0	i I
#200	9315.5	17.4	! !
PAN	11261.0	0.1	

% Over #4, Under 3": 18.0)

Wet Wash: No

SIEVE ANALYSIS ASTM DESIGNATION C136

Client: Town of Greenwich	Sample Source:	Sample Date: 08/12/22
101 Field Post Road		Sample #: 220812-12
Greenwich, CT 06830		Lab Tech: PJM
	Test Pit #12	Sampled by: MH
Project: Greenwich Cen. Middle Sch.		
9 Indian Rock Lane		
Greenwich, CT 06830	Sample Use:	Material Type:
Project #: 2021-11-0386A02	Subgrade	Tan Gravel

ENGINEERS,

P.C.

56 Roland Street Suite 202 Boston, MA 617/778-7300 FAX 617/268-7832

ATANE Report #: MA0386081222-12

			SPECIFICATIONS
SIEVE SIZE	WEIGHT	% PASSING	
(IN / NO.)	(Retained)	(Total Sample)	
5"	0.0	100	
3"	0.0	100	
2"	0.0	100	
1 1/2"	143.2	99	
1 1/4"	-		
1"	387.1	97	
3/4"	589.2	95	
1/2"	677.3	94	
3/8"	802.4	93	
1/4"	1338.8	89	
# 4	2699.6	77	
#8	3702.3	68	
# 10	5218.0	56	
# 30	6042.4	49	
# 40	6523.3	44	
# 50	7707.2	34	
#100	8421.9	28.0	
#200	10067.7	14.2	
PAN	11731.1	0.1	

% Over #4, Under 3":	23.0	

Wet Wash:

MATERIAL TESTING GROUP

TEL: (914) 945- 9010 FAX: (914) 945-9012

SIEVE ANALYSIS

Report: G-008 **ATANE Project #:** 2111-386A02

Sample Date General Location: Greenwich Central

Middle School Greenwich CT

Test Date: 10/7/2022

Sample Id: Sample #8

Source: Composite/ combined

sample B-17-B-18& B-19

Sieve #	Weight, gms	% Retained	% Passing
2"	0.0	0.0	100
11/2"	0.0	0.0	100
1"	0.0	0.0	100
3/4"	60.4	3.8	96.2
1/2"	96.9	6.2	90.0
3/8"	64.0	4.1	85.9
1/4"	81.5	5.2	80.7
#4	47.8	3.0	77.7
#8	105.1	6.7	71.0
#16	109.4	7.0	64.0
#20	64.6	4.1	59.9
#30	66.7	4.2	55.7
#40	94.6	6.0	49.7
#60	151.0	9.5	40.2
#80	28.5	1.8	38.4
#100	99.3	6.3	32.0
#200	232.1	14.7	17.3
Material passing No 200 sieve by washing	258.6		
PAN	12.4	17.3	
TOTAL	1573.9		

Nature: Natural Soil. (Moisture Content # 5.3 %) Color/ Odor / Impurities: Brownish /None /None

Sample free from larger gravel, debris, waste vegetation, frozen materials, organic materials & other deleterious matter.

MATERIAL TESTING GROUP

47 HUDSON STREET, OSSINING, NY 10562 TEL: (914)945-9010 FAX: (914)945-9012

SPECIFIC GRAVITY SOILS TEST REPORT (ASTM D 854)

Client: Town of Greenwich

Project: Greenwich Central Middle School
Address: 9, Indian rock Lane, Greenwich CT.

Date Sampled: Various Dates

Test Date: 10/05/22 & 10/06/22

Report #: 01

HAKS Project # 2021-11-0386A02

SAMPLE No.	LOCATION	Specific Gravity
1	Test Pit # 1	2.653
2	Test Pit # 2	2.659
3	Test Pit # 3	2.681
4	Test Pit # 4	2.677
5	Test Pit # 5	2.668
6	Test Pit # 9	2.680
7	Test Pit # 12	2.678
8	Composite / Combined Sample of B-17, B-18 & B-19	2.695

Lab Tech: <u>NK</u>	Lab Director:SG
---------------------	-----------------

MATERIAL TESTING GROUP

47 HUDSON STREET, OSSINING, NY 10562 TEL: (914)945-9010 FAX: (914)945-9012

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX OF SOILS TEST REPORT (ASTM D 4318)

Client: Town of Greenwich

Project: Greenwich Central Middle School Address: 9, Indian rock Lane, Greenwich CT.

Date Sampled: Various Dates

Test Date: 10/07/22 & 10/10/22

Report #: 02

HAKS Project # 2021-11-0386A02

LOCATION	Test Pit # 8	Test Pit # 9
Liquid Limit	21.1	22.5
Plastic Limit	18.3	19.1
Plasticity Index	2.8	3.4

Lab Tech: _	NK	Lab Director:	SG

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT Greenwich Public Schools – Central Middle School 9 Indian Rock Lane, Greenwich, CT 06830

APPENDIX 6:

Laboratory Test Results – Chemical Test Results

ANALYTICAL REPORT

Lab Number: L2243810

Client: ATANE Engineering PC

56 Roland Street, Suite 202

Boston, MA 02129

ATTN: Peter McCarthy Phone: (617) 778-7300

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified Report Date: 09/07/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810 **Report Date:** 09/07/22

Alph Sam	a ole ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L224	3810-01	TP-SL1	SOIL	GREENWICH, CT	08/12/22 08:30	08/13/22
L224	3810-02	TP-SL2	SOIL	GREENWICH, CT	08/12/22 10:30	08/13/22
L224	3810-03	TP-SL3	SOIL	GREENWICH, CT	08/12/22 12:30	08/13/22
L224	3810-04	TP-SL4	SOIL	GREENWICH, CT	08/12/22 14:30	08/13/22
L224	3810-05	TP-SL5	SOIL	GREENWICH, CT	08/12/22 16:30	08/13/22

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

CT DEP Reasonable Confidence Protocols Laboratory Analysis QA/QC Certification Form

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed (including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents)?	YES
1a	Were the method specified preservation and holding time requirements met?	YES
1b	VPH & EPH Methods Only: Was the VPH or EPH Method conducted without significant modifications (see Section 11.3 of respective Methods)?	YES
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	YES
3	Were all samples received at an appropriate temperature (<6°C)?	NO
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	NO
5a	Were reporting limits specified or referenced on the chain-of-custody?	NO
5b	Were these reporting limits met?	N/A
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	NO
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	NO

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or question B is "No", the data package does not meet the requirements for "Reasonable Confidence".

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810Project Number:Not SpecifiedReport Date:09/07/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.						

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810Project Number:Not SpecifiedReport Date:09/07/22

Case Narrative (continued)

RCP Related Narratives

Report Submission

In reference to question 5a:

Reporting limits were not specified.

Sample Receipt

In reference to question 3:

The samples were received at the laboratory above the required temperature range and were not on ice.

Volatile Organics

In reference to question 4:

L2243810-01 through -05: Initial Calibration Verification outside criteria: dichlorodifluoromethane (124%)

PAHs

In reference to question 6:

At the client's request, all submitted samples were not analyzed for the full RCP list of constituents identified in the method specific analyte list presented in the RCP documents.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/07/22

Melissa Sturgis Melissa Sturgis

ALPHA

QC OUTLIER SUMMARY REPORT

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2243810

Project Number: Not Specified

Report Date:

09/07/22

					Recovery/RP	D QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
Volatile Petr	oleum Hydrocarbons - Westboroug	h Lab						
VPH-18-2.1	TP-SL1	L2243810-01	2,5-Dibromotoluene-FID	Surrogate	137	70-130	-	potential high bias
VPH-18-2.1	TP-SL3	L2243810-03	2,5-Dibromotoluene-FID	Surrogate	131	70-130	-	potential high bias
VPH-18-2.1	TP-SL4	L2243810-04	2,5-Dibromotoluene-FID	Surrogate	137	70-130	-	potential high bias
VPH-18-2.1	TP-SL5	L2243810-05	2,5-Dibromotoluene-FID	Surrogate	133	70-130	-	potential high bias

ORGANICS

VOLATILES

L2243810

09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

L2243810-01

GREENWICH, CT

TP-SL1

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/12/22 08:30

Lab Number:

Report Date:

Date Received: 08/13/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 08/23/22 20:18

Analyst: JC 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 L	ow - Westbore	ough Lab				
Methylene chloride	ND		ug/kg	4.3		1
1,1-Dichloroethane	ND		ug/kg	0.86		1
Chloroform	ND		ug/kg	1.3		1
Carbon tetrachloride	ND		ug/kg	0.86		1
1,2-Dichloropropane	ND		ug/kg	0.86		1
Dibromochloromethane	ND		ug/kg	0.86		1
1,1,2-Trichloroethane	ND		ug/kg	0.86		1
Tetrachloroethene	ND		ug/kg	0.43		1
Chlorobenzene	ND		ug/kg	0.43		1
Trichlorofluoromethane	ND		ug/kg	3.4		1
1,2-Dichloroethane	ND		ug/kg	0.86		1
1,1,1-Trichloroethane	ND		ug/kg	0.43		1
Bromodichloromethane	ND		ug/kg	0.43		1
trans-1,3-Dichloropropene	ND		ug/kg	0.86		1
cis-1,3-Dichloropropene	ND		ug/kg	0.43		1
1,3-Dichloropropene, Total	ND		ug/kg	0.43		1
1,1-Dichloropropene	ND		ug/kg	0.43		1
Bromoform	ND		ug/kg	3.4		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.43		1
Benzene	ND		ug/kg	0.43		1
Toluene	ND		ug/kg	0.86		1
Ethylbenzene	ND		ug/kg	0.86		1
Chloromethane	ND		ug/kg	3.4		1
Bromomethane	ND		ug/kg	1.7		1
Vinyl chloride	ND		ug/kg	0.86		1
Chloroethane	ND		ug/kg	1.7		1
1,1-Dichloroethene	ND		ug/kg	0.86		1
trans-1,2-Dichloroethene	ND		ug/kg	1.3		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-01 Date Collected: 08/12/22 08:30

Client ID: TP-SL1 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab								
Trichloroethene	ND		ua/ka	0.43		1		
1,2-Dichlorobenzene	ND		ug/kg	1.7		1		
1,3-Dichlorobenzene	ND		ug/kg	1.7		1		
1,4-Dichlorobenzene	ND ND		ug/kg	1.7		1		
Methyl tert butyl ether	ND		ug/kg	1.7		1		
			ug/kg					
p/m-Xylene	ND		ug/kg	1.7		1		
o-Xylene	ND		ug/kg	0.86		1		
Xylenes, Total	ND		ug/kg	0.86		1		
cis-1,2-Dichloroethene	ND		ug/kg	0.86		1		
1,2-Dichloroethene, Total	ND		ug/kg	0.86		1		
Dibromomethane	ND		ug/kg	1.7		1		
1,2,3-Trichloropropane	ND		ug/kg	1.7		1		
Styrene	ND		ug/kg	0.86		1		
Dichlorodifluoromethane	ND		ug/kg	8.6		1		
Acetone	ND		ug/kg	22		1		
Carbon disulfide	ND		ug/kg	8.6		1		
2-Butanone	ND		ug/kg	8.6		1		
4-Methyl-2-pentanone	ND		ug/kg	8.6		1		
2-Hexanone	ND		ug/kg	8.6		1		
Acrylonitrile	ND		ug/kg	3.4		1		
Tetrahydrofuran	ND		ug/kg	3.4		1		
2,2-Dichloropropane	ND		ug/kg	1.7		1		
1,2-Dibromoethane	ND		ug/kg	0.86		1		
1,3-Dichloropropane	ND		ug/kg	1.7		1		
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.43		1		
Bromobenzene	ND		ug/kg	1.7		1		
n-Butylbenzene	ND		ug/kg	0.86		1		
sec-Butylbenzene	ND		ug/kg	0.86		1		
tert-Butylbenzene	ND		ug/kg	1.7		1		
o-Chlorotoluene	ND		ug/kg	1.7		1		
p-Chlorotoluene	ND		ug/kg	1.7		1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.6		1		
Hexachlorobutadiene	ND		ug/kg	3.4		1		
Isopropylbenzene	ND		ug/kg	0.86		1		
p-Isopropyltoluene	ND		ug/kg	0.86		1		
Naphthalene	ND		ug/kg	3.4		1		
n-Propylbenzene	ND		ug/kg	0.86		1		
	110		ug/Ng	0.00		·		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-01 Date Collected: 08/12/22 08:30

Client ID: TP-SL1 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	35 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	1.7		1	
1,2,4-Trichlorobenzene	ND		ug/kg	1.7		1	
1,3,5-Trimethylbenzene	ND		ug/kg	1.7		1	
1,2,4-Trimethylbenzene	ND		ug/kg	1.7		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.3		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	3.4		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	103	70-130	

L2243810

09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

L2243810-02

GREENWICH, CT

TP-SL2

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/12/22 10:30

Lab Number:

Report Date:

Date Received: 08/13/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 08/23/22 20:45

Analyst: JC Percent Solids: 95%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 503	5 Low - Westbor	ough Lab				
Methylene chloride	ND		ug/kg	2.1		1
1,1-Dichloroethane	ND		ug/kg	0.42		1
Chloroform	ND		ug/kg	0.63		1
Carbon tetrachloride	ND		ug/kg	0.42		1
1,2-Dichloropropane	ND		ug/kg	0.42		1
Dibromochloromethane	ND		ug/kg	0.42		1
1,1,2-Trichloroethane	ND		ug/kg	0.42		1
Tetrachloroethene	ND		ug/kg	0.21		1
Chlorobenzene	ND		ug/kg	0.21		1
Trichlorofluoromethane	ND		ug/kg	1.7		1
1,2-Dichloroethane	ND		ug/kg	0.42		1
1,1,1-Trichloroethane	ND		ug/kg	0.21		1
Bromodichloromethane	ND		ug/kg	0.21		1
trans-1,3-Dichloropropene	ND		ug/kg	0.42		1
cis-1,3-Dichloropropene	ND		ug/kg	0.21		1
1,3-Dichloropropene, Total	ND		ug/kg	0.21		1
1,1-Dichloropropene	ND		ug/kg	0.21		1
Bromoform	ND		ug/kg	1.7		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.21		1
Benzene	ND		ug/kg	0.21		1
Toluene	ND		ug/kg	0.42		1
Ethylbenzene	ND		ug/kg	0.42		1
Chloromethane	ND		ug/kg	1.7		1
Bromomethane	ND		ug/kg	0.84		1
Vinyl chloride	ND		ug/kg	0.42		1
Chloroethane	ND		ug/kg	0.84		1
1,1-Dichloroethene	ND		ug/kg	0.42		1
trans-1,2-Dichloroethene	ND		ug/kg	0.63		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-02 Date Collected: 08/12/22 10:30

Client ID: TP-SL2 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab								
Trichloroethene	ND		//	0.21		1		
1,2-Dichlorobenzene	ND		ug/kg	0.84		1		
1,3-Dichlorobenzene	ND		ug/kg	0.84		1		
1,4-Dichlorobenzene	ND ND		ug/kg	0.84		1		
Methyl tert butyl ether	ND ND		ug/kg	0.84	 	1		
			ug/kg					
p/m-Xylene	ND		ug/kg	0.84		1		
o-Xylene	ND		ug/kg	0.42		1		
Xylenes, Total	ND		ug/kg	0.42		1		
cis-1,2-Dichloroethene	ND		ug/kg	0.42		1		
1,2-Dichloroethene, Total	ND		ug/kg	0.42		1		
Dibromomethane	ND		ug/kg	0.84		1		
1,2,3-Trichloropropane	ND		ug/kg	0.84		1		
Styrene	ND		ug/kg	0.42		1		
Dichlorodifluoromethane	ND		ug/kg	4.2		1		
Acetone	ND		ug/kg	10		1		
Carbon disulfide	ND		ug/kg	4.2		1		
2-Butanone	ND		ug/kg	4.2		1		
4-Methyl-2-pentanone	ND		ug/kg	4.2		1		
2-Hexanone	ND		ug/kg	4.2		1		
Acrylonitrile	ND		ug/kg	1.7		1		
Tetrahydrofuran	ND		ug/kg	1.7		1		
2,2-Dichloropropane	ND		ug/kg	0.84		1		
1,2-Dibromoethane	ND		ug/kg	0.42		1		
1,3-Dichloropropane	ND		ug/kg	0.84		1		
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.21		1		
Bromobenzene	ND		ug/kg	0.84		1		
n-Butylbenzene	ND		ug/kg	0.42		1		
sec-Butylbenzene	ND		ug/kg	0.42		1		
tert-Butylbenzene	ND		ug/kg	0.84		1		
o-Chlorotoluene	ND		ug/kg	0.84		1		
p-Chlorotoluene	ND		ug/kg	0.84		1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	1.2		1		
Hexachlorobutadiene	ND		ug/kg	1.7		1		
Isopropylbenzene	ND		ug/kg	0.42		1		
p-Isopropyltoluene	ND		ug/kg	0.42		1		
Naphthalene	ND		ug/kg	1.7		1		
n-Propylbenzene	ND		ug/kg	0.42		1		
	110		ug/Ng	J. 12		•		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-02 Date Collected: 08/12/22 10:30

Client ID: TP-SL2 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab										
4.0.0 Tricklersk same	ND		4	0.04		_				
1,2,3-Trichlorobenzene	ND		ug/kg	0.84		1				
1,2,4-Trichlorobenzene	ND		ug/kg	0.84		1				
1,3,5-Trimethylbenzene	ND		ug/kg	0.84		1				
1,2,4-Trimethylbenzene	ND		ug/kg	0.84		1				
trans-1,4-Dichloro-2-butene	ND		ug/kg	2.1		1				
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	1.7		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	105	70-130	

L2243810

09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

TP-SL3

L2243810-03

GREENWICH, CT

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/12/22 12:30

Lab Number:

Report Date:

Date Received: 08/13/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 08/23/22 21:12

Analyst: JC Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 Lc	w - Westbor	ough Lab				
Methylene chloride	ND		ug/kg	9.3		1
1,1-Dichloroethane	ND		ug/kg	1.9		1
Chloroform	ND		ug/kg	2.8		1
Carbon tetrachloride	ND		ug/kg	1.9		1
1,2-Dichloropropane	ND		ug/kg	1.9		1
Dibromochloromethane	ND		ug/kg	1.9		1
1,1,2-Trichloroethane	ND		ug/kg	1.9		1
Tetrachloroethene	ND		ug/kg	0.93		1
Chlorobenzene	ND		ug/kg	0.93		1
Trichlorofluoromethane	ND		ug/kg	7.4		1
1,2-Dichloroethane	ND		ug/kg	1.9		1
1,1,1-Trichloroethane	ND		ug/kg	0.93		1
Bromodichloromethane	ND		ug/kg	0.93		1
trans-1,3-Dichloropropene	ND		ug/kg	1.9		1
cis-1,3-Dichloropropene	ND		ug/kg	0.93		1
1,3-Dichloropropene, Total	ND		ug/kg	0.93		1
1,1-Dichloropropene	ND		ug/kg	0.93		1
Bromoform	ND		ug/kg	7.4		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.93		1
Benzene	ND		ug/kg	0.93		1
Toluene	ND		ug/kg	1.9		1
Ethylbenzene	ND		ug/kg	1.9		1
Chloromethane	ND		ug/kg	7.4		1
Bromomethane	ND		ug/kg	3.7		1
Vinyl chloride	ND		ug/kg	1.9		1
Chloroethane	ND		ug/kg	3.7		1
1,1-Dichloroethene	ND		ug/kg	1.9		1
trans-1,2-Dichloroethene	ND		ug/kg	2.8		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA	5035 Low - Westboro	ugh Lab				
Trichloroethene	ND		ug/kg	0.93		1
1,2-Dichlorobenzene	ND		ug/kg	3.7		1
1,3-Dichlorobenzene	ND		ug/kg	3.7		1
1,4-Dichlorobenzene	ND		ug/kg	3.7		1
Methyl tert butyl ether	ND		ug/kg	3.7		1
p/m-Xylene	ND		ug/kg	3.7		1
o-Xylene	ND		ug/kg	1.9		1
Xylenes, Total	ND		ug/kg	1.9		1
cis-1,2-Dichloroethene	ND		ug/kg	1.9		1
1,2-Dichloroethene, Total	ND		ug/kg	1.9		1
Dibromomethane	ND		ug/kg	3.7		1
1,2,3-Trichloropropane	ND		ug/kg	3.7		1
Styrene	ND		ug/kg	1.9		1
Dichlorodifluoromethane	ND		ug/kg	19		1
Acetone	ND		ug/kg	46		1
Carbon disulfide	ND		ug/kg	19		1
2-Butanone	ND		ug/kg	19		1
4-Methyl-2-pentanone	ND		ug/kg	19		1
2-Hexanone	ND		ug/kg	19		1
Acrylonitrile	ND		ug/kg	7.4		1
Tetrahydrofuran	ND		ug/kg	7.4		1
2,2-Dichloropropane	ND		ug/kg	3.7		1
1,2-Dibromoethane	ND		ug/kg	1.9		1
1,3-Dichloropropane	ND		ug/kg	3.7		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.93		1
Bromobenzene	ND		ug/kg	3.7		1
n-Butylbenzene	ND		ug/kg	1.9		1
sec-Butylbenzene	ND		ug/kg	1.9		1
tert-Butylbenzene	ND		ug/kg	3.7		1
o-Chlorotoluene	ND		ug/kg	3.7		1
p-Chlorotoluene	ND		ug/kg	3.7		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.6		1
Hexachlorobutadiene	ND		ug/kg	7.4		1
Isopropylbenzene	ND		ug/kg	1.9		1
p-Isopropyltoluene	ND		ug/kg	1.9		1
Naphthalene	ND		ug/kg	7.4		1
n-Propylbenzene	ND		ug/kg	1.9		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	035 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	3.7		1	
1,2,4-Trichlorobenzene	ND		ug/kg	3.7		1	
1,3,5-Trimethylbenzene	ND		ug/kg	3.7		1	
1,2,4-Trimethylbenzene	ND		ug/kg	3.7		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	9.3		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	7.4		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	107	70-130	

L2243810

09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

TP-SL4

L2243810-04

GREENWICH, CT

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/12/22 14:30

Lab Number:

Report Date:

Date Received: 08/13/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 08/23/22 21:38

Analyst: JC Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 L	ow - Westbor	ough Lab				
Methylene chloride	ND		ug/kg	6.9		1
1,1-Dichloroethane	ND		ug/kg	1.4		1
Chloroform	ND		ug/kg	2.1		1
Carbon tetrachloride	ND		ug/kg	1.4		1
1,2-Dichloropropane	ND		ug/kg	1.4		1
Dibromochloromethane	ND		ug/kg	1.4		1
1,1,2-Trichloroethane	ND		ug/kg	1.4		1
Tetrachloroethene	ND		ug/kg	0.69		1
Chlorobenzene	ND		ug/kg	0.69		1
Trichlorofluoromethane	ND		ug/kg	5.5		1
1,2-Dichloroethane	ND		ug/kg	1.4		1
1,1,1-Trichloroethane	ND		ug/kg	0.69		1
Bromodichloromethane	ND		ug/kg	0.69		1
trans-1,3-Dichloropropene	ND		ug/kg	1.4		1
cis-1,3-Dichloropropene	ND		ug/kg	0.69		1
1,3-Dichloropropene, Total	ND		ug/kg	0.69		1
1,1-Dichloropropene	ND		ug/kg	0.69		1
Bromoform	ND		ug/kg	5.5		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.69		1
Benzene	ND		ug/kg	0.69		1
Toluene	ND		ug/kg	1.4		1
Ethylbenzene	ND		ug/kg	1.4		1
Chloromethane	ND		ug/kg	5.5		1
Bromomethane	ND		ug/kg	2.8		1
Vinyl chloride	ND		ug/kg	1.4		1
Chloroethane	ND		ug/kg	2.8		1
1,1-Dichloroethene	ND		ug/kg	1.4		1
trans-1,2-Dichloroethene	ND		ug/kg	2.1		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-04 Date Collected: 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 Lov	v - Westbor	ough Lab				
Trichloroethene	ND		ua/ka	0.69		1
1,2-Dichlorobenzene	ND		ug/kg	2.8		1
1,3-Dichlorobenzene	ND		ug/kg	2.8		1
	ND ND		ug/kg	2.8		1
1,4-Dichlorobenzene			ug/kg			
Methyl tert butyl ether	ND		ug/kg	2.8		1
p/m-Xylene	ND		ug/kg	2.8		1
o-Xylene	ND		ug/kg	1.4		1
Xylenes, Total	ND		ug/kg	1.4		1
cis-1,2-Dichloroethene	ND		ug/kg	1.4		1
1,2-Dichloroethene, Total	ND		ug/kg	1.4		1
Dibromomethane	ND		ug/kg	2.8		1
1,2,3-Trichloropropane	ND		ug/kg	2.8		1
Styrene	ND		ug/kg	1.4		1
Dichlorodifluoromethane	ND		ug/kg	14		1
Acetone	ND		ug/kg	35		1
Carbon disulfide	ND		ug/kg	14		1
2-Butanone	ND		ug/kg	14		1
4-Methyl-2-pentanone	ND		ug/kg	14		1
2-Hexanone	ND		ug/kg	14		1
Acrylonitrile	ND		ug/kg	5.5		1
Tetrahydrofuran	ND		ug/kg	5.5		1
2,2-Dichloropropane	ND		ug/kg	2.8		1
1,2-Dibromoethane	ND		ug/kg	1.4		1
1,3-Dichloropropane	ND		ug/kg	2.8		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.69		1
Bromobenzene	ND		ug/kg	2.8		1
n-Butylbenzene	ND		ug/kg	1.4		1
sec-Butylbenzene	ND		ug/kg	1.4		1
tert-Butylbenzene	ND		ug/kg	2.8		1
o-Chlorotoluene	ND		ug/kg	2.8		1
p-Chlorotoluene	ND		ug/kg	2.8		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.2		1
Hexachlorobutadiene	ND		ug/kg	5.5		1
Isopropylbenzene	ND		ug/kg	1.4		1
p-Isopropyltoluene	ND		ug/kg	1.4		1
Naphthalene	ND		ug/kg	5.5		1
n-Propylbenzene	ND		ug/kg	1.4		 1
	110		ug/Ng	1.7		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-04 Date Collected: 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 5035 I	ow - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	2.8		1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.8		1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.8		1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.8		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.9		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	5.5		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	107	70-130	

L2243810

09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

TP-SL5

L2243810-05

GREENWICH, CT

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/12/22 16:30

Lab Number:

Report Date:

Date Received: 08/13/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 08/23/22 22:05

Analyst: JC Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 Lo	ow - Westbore	ough Lab				
Methylene chloride	ND		ug/kg	5.0		1
1,1-Dichloroethane	ND		ug/kg	1.0		1
Chloroform	ND		ug/kg	1.5		1
Carbon tetrachloride	ND		ug/kg	1.0		1
1,2-Dichloropropane	ND		ug/kg	1.0		1
Dibromochloromethane	ND		ug/kg	1.0		1
1,1,2-Trichloroethane	ND		ug/kg	1.0		1
Tetrachloroethene	ND		ug/kg	0.50		1
Chlorobenzene	ND		ug/kg	0.50		1
Trichlorofluoromethane	ND		ug/kg	4.0		1
1,2-Dichloroethane	ND		ug/kg	1.0		1
1,1,1-Trichloroethane	ND		ug/kg	0.50		1
Bromodichloromethane	ND		ug/kg	0.50		1
trans-1,3-Dichloropropene	ND		ug/kg	1.0		1
cis-1,3-Dichloropropene	ND		ug/kg	0.50		1
1,3-Dichloropropene, Total	ND		ug/kg	0.50		1
1,1-Dichloropropene	ND		ug/kg	0.50		1
Bromoform	ND		ug/kg	4.0		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		1
Benzene	ND		ug/kg	0.50		1
Toluene	ND		ug/kg	1.0		1
Ethylbenzene	ND		ug/kg	1.0		1
Chloromethane	ND		ug/kg	4.0		1
Bromomethane	ND		ug/kg	2.0		1
Vinyl chloride	ND		ug/kg	1.0		1
Chloroethane	ND		ug/kg	2.0		1
1,1-Dichloroethene	ND		ug/kg	1.0		1
trans-1,2-Dichloroethene	ND		ug/kg	1.5		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05 Date Collected: 08/12/22 16:30

Client ID: TP-SL5 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035	Low - Westbore	ough Lab				
Trichloroethene	ND		a/I.ca	0.50		1
1,2-Dichlorobenzene	ND		ug/kg	2.0		1
1,3-Dichlorobenzene	ND		ug/kg	2.0		1
1,4-Dichlorobenzene	ND ND		ug/kg	2.0		1
Methyl tert butyl ether	ND		ug/kg	2.0		1
			ug/kg			
p/m-Xylene	ND		ug/kg	2.0		1
o-Xylene	ND		ug/kg	1.0		1
Xylenes, Total	ND		ug/kg	1.0		1
cis-1,2-Dichloroethene	ND		ug/kg	1.0		1
1,2-Dichloroethene, Total	ND		ug/kg	1.0		1
Dibromomethane	ND		ug/kg	2.0		1
1,2,3-Trichloropropane	ND		ug/kg	2.0		1
Styrene	ND		ug/kg	1.0		1
Dichlorodifluoromethane	ND		ug/kg	10		
Acetone	ND		ug/kg	25		1
Carbon disulfide	ND		ug/kg	10		1
2-Butanone	ND		ug/kg	10		1
4-Methyl-2-pentanone	ND		ug/kg	10		1
2-Hexanone	ND		ug/kg	10		1
Acrylonitrile	ND		ug/kg	4.0		1
Tetrahydrofuran	ND		ug/kg	4.0		1
2,2-Dichloropropane	ND		ug/kg	2.0		1
1,2-Dibromoethane	ND		ug/kg	1.0		1
1,3-Dichloropropane	ND		ug/kg	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50		1
Bromobenzene	ND		ug/kg	2.0		1
n-Butylbenzene	ND		ug/kg	1.0		1
sec-Butylbenzene	ND		ug/kg	1.0		1
tert-Butylbenzene	ND		ug/kg	2.0		1
o-Chlorotoluene	ND		ug/kg	2.0		1
p-Chlorotoluene	ND		ug/kg	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1
Hexachlorobutadiene	ND		ug/kg	4.0		1
Isopropylbenzene	ND		ug/kg	1.0		1
p-Isopropyltoluene	ND		ug/kg	1.0		1
Naphthalene	ND		ug/kg	4.0		1
n-Propylbenzene	ND		ug/kg	1.0		1
	110		ug/Ng			·

08/12/22 16:30

Date Collected:

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05

Client ID: TP-SL5 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	35 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	4.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	104	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8260C Analytical Date: 08/23/22 19:52

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MD	L
CT RCP Volatile Organics by EP. NG1679071-5	A 5035 Low -	Westboroug	h Lab fo	r sample(s):	01-05	Batch:
Methylene chloride	ND		ug/kg	5.0		
1,1-Dichloroethane	ND		ug/kg	1.0		
Chloroform	ND		ug/kg	1.5		
Carbon tetrachloride	ND		ug/kg	1.0		
1,2-Dichloropropane	ND		ug/kg	1.0		
Dibromochloromethane	ND		ug/kg	1.0		
1,1,2-Trichloroethane	ND		ug/kg	1.0		
Tetrachloroethene	ND		ug/kg	0.50		
Chlorobenzene	ND		ug/kg	0.50		
Trichlorofluoromethane	ND		ug/kg	4.0		
1,2-Dichloroethane	ND		ug/kg	1.0		
1,1,1-Trichloroethane	ND		ug/kg	0.50		
Bromodichloromethane	ND		ug/kg	0.50		
trans-1,3-Dichloropropene	ND		ug/kg	1.0		
cis-1,3-Dichloropropene	ND		ug/kg	0.50		
1,3-Dichloropropene, Total	ND		ug/kg	0.50		
1,1-Dichloropropene	ND		ug/kg	0.50		
Bromoform	ND		ug/kg	4.0		
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		
Benzene	ND		ug/kg	0.50		
Toluene	ND		ug/kg	1.0		
Ethylbenzene	ND		ug/kg	1.0		
Chloromethane	ND		ug/kg	4.0		
Bromomethane	ND		ug/kg	2.0		
Vinyl chloride	ND		ug/kg	1.0		
Chloroethane	ND		ug/kg	2.0		
1,1-Dichloroethene	ND		ug/kg	1.0		
trans-1,2-Dichloroethene	ND		ug/kg	1.5		
Trichloroethene	ND		ug/kg	0.50		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8260C Analytical Date: 08/23/22 19:52

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	
CT RCP Volatile Organics by EPA WG1679071-5	5035 Low - '	Westboroug	h Lab fo	r sample(s):	01-05	Batch:
1,2-Dichlorobenzene	ND		ug/kg	2.0		
1,3-Dichlorobenzene	ND		ug/kg	2.0		
1,4-Dichlorobenzene	ND		ug/kg	2.0		
Methyl tert butyl ether	ND		ug/kg	2.0		
p/m-Xylene	ND		ug/kg	2.0		
o-Xylene	ND		ug/kg	1.0		
Xylenes, Total	ND		ug/kg	1.0		
cis-1,2-Dichloroethene	ND		ug/kg	1.0		
1,2-Dichloroethene, Total	ND		ug/kg	1.0		
Dibromomethane	ND		ug/kg	2.0		
1,2,3-Trichloropropane	ND		ug/kg	2.0		
Styrene	ND		ug/kg	1.0		
Dichlorodifluoromethane	ND		ug/kg	10		
Acetone	ND		ug/kg	25		
Carbon disulfide	ND		ug/kg	10		
2-Butanone	ND		ug/kg	10		
4-Methyl-2-pentanone	ND		ug/kg	10		
2-Hexanone	ND		ug/kg	10		
Acrylonitrile	ND		ug/kg	4.0		
Tetrahydrofuran	ND		ug/kg	4.0		
2,2-Dichloropropane	ND		ug/kg	2.0		
1,2-Dibromoethane	ND		ug/kg	1.0		
1,3-Dichloropropane	ND		ug/kg	2.0		
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50		
Bromobenzene	ND		ug/kg	2.0		
n-Butylbenzene	ND		ug/kg	1.0		
sec-Butylbenzene	ND		ug/kg	1.0		
tert-Butylbenzene	ND		ug/kg	2.0		
o-Chlorotoluene	ND		ug/kg	2.0		

L2243810

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8260C Analytical Date: 08/23/22 19:52

Analyst: AJK

Parameter	Result	Qualifier	Units	RL	MDL	
CT RCP Volatile Organics by EPA 5 WG1679071-5	5035 Low - \	Westborou	gh Lab for	sample(s):	01-05 Batch:	
p-Chlorotoluene	ND		ug/kg	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		
Hexachlorobutadiene	ND		ug/kg	4.0		
Isopropylbenzene	ND		ug/kg	1.0		
p-Isopropyltoluene	ND		ug/kg	1.0		
Naphthalene	ND		ug/kg	4.0		
n-Propylbenzene	ND		ug/kg	1.0		
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	4.0		

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	102	70-130

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
CT RCP Volatile Organics by EPA 5035 Low	- Westborough	Lab Associated	sample(s): 01-	05 Batch:	WG1679071-3	WG1679071	1-4
Methylene chloride	96		96		70-130	0	30
1,1-Dichloroethane	104		104		70-130	0	30
Chloroform	106		104		70-130	2	30
Carbon tetrachloride	110		108		70-130	2	30
1,2-Dichloropropane	105		104		70-130	1	30
Dibromochloromethane	110		109		70-130	1	30
1,1,2-Trichloroethane	109		108		70-130	1	30
Tetrachloroethene	115		116		70-130	1	30
Chlorobenzene	107		107		70-130	0	30
Trichlorofluoromethane	112		110		70-130	2	30
1,2-Dichloroethane	102		101		70-130	1	30
1,1,1-Trichloroethane	111		109		70-130	2	30
Bromodichloromethane	104		105		70-130	1	30
trans-1,3-Dichloropropene	113		112		70-130	1	30
cis-1,3-Dichloropropene	98		98		70-130	0	30
1,1-Dichloropropene	115		116		70-130	1	30
Bromoform	105		106		70-130	1	30
1,1,2,2-Tetrachloroethane	102		106		70-130	4	30
Benzene	107		109		70-130	2	30
Toluene	108		107		70-130	1	30
Ethylbenzene	111		111		70-130	0	30
Chloromethane	109		110		52-130	1	30
Bromomethane	104		104		57-147	0	30

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
CT RCP Volatile Organics by EPA 5035 Low	- Westborough	Lab Associate	ed sample(s): 01	-05 Batch:	WG1679071-3	WG1679071	-4
Vinyl chloride	120		120		70-130	0	30
Chloroethane	112		112		70-130	0	30
1,1-Dichloroethene	110		112		70-130	2	30
trans-1,2-Dichloroethene	107		107		70-130	0	30
Trichloroethene	113		112		70-130	1	30
1,2-Dichlorobenzene	105		106		70-130	1	30
1,3-Dichlorobenzene	107		107		70-130	0	30
1,4-Dichlorobenzene	105		105		70-130	0	30
Methyl tert butyl ether	104		104		70-130	0	30
p/m-Xylene	115		115		70-130	0	30
o-Xylene	116		114		70-130	2	30
cis-1,2-Dichloroethene	105		106		70-130	1	30
Dibromomethane	104		103		70-130	1	30
1,2,3-Trichloropropane	100		101		70-130	1	30
Styrene	107		107		70-130	0	30
Dichlorodifluoromethane	117		117		30-146	0	30
Acetone	105		104		54-140	1	30
Carbon disulfide	98		99		59-130	1	30
2-Butanone	108		104		70-130	4	30
4-Methyl-2-pentanone	94		95		70-130	1	30
2-Hexanone	92		94		70-130	2	30
Acrylonitrile	98		97		70-130	1	30
Tetrahydrofuran	96		96		70-130	0	30

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
RCP Volatile Organics by EPA 5035 Low	- Westborough	Lab Associat	ed sample(s): 01-	05 Batch:	WG1679071-3	WG1679071	-4	
2,2-Dichloropropane	111		110		70-130	1		30
1,2-Dibromoethane	100		101		70-130	1		30
1,3-Dichloropropane	106		107		70-130	1		30
1,1,1,2-Tetrachloroethane	110		108		70-130	2		30
Bromobenzene	104		104		70-130	0		30
n-Butylbenzene	114		114		70-130	0		30
sec-Butylbenzene	112		114		70-130	2		30
tert-Butylbenzene	111		112		70-130	1		30
o-Chlorotoluene	105		106		70-130	1		30
p-Chlorotoluene	109		108		70-130	1		30
1,2-Dibromo-3-chloropropane	102		105		68-130	3		30
Hexachlorobutadiene	108		109		70-130	1		30
Isopropylbenzene	111		112		70-130	1		30
p-Isopropyltoluene	115		116		70-130	1		30
Naphthalene	110		112		70-130	2		30
n-Propylbenzene	110		111		70-130	1		30
1,2,3-Trichlorobenzene	109		110		70-130	1		30
1,2,4-Trichlorobenzene	111		113		70-130	2		30
1,3,5-Trimethylbenzene	109		110		70-130	1		30
1,2,4-Trimethylbenzene	110		110		70-130	0		30
trans-1,4-Dichloro-2-butene	106		105		70-130	1		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	113		113		70-130	0		30

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2243810

Project Number: Not Specified

Report Date:

09/07/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 01-05 Batch: WG1679071-3 WG1679071-4

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	96	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	97	97	70-130

SEMIVOLATILES

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-01 Date Collected: 08/12/22 08:30

Client ID: TP-SL1 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 08/25/22 23:35
Analytical Date: 08/27/22 01:26

Analyst: CMM Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	140		1
Fluoranthene	ND		ug/kg	110		1
Naphthalene	ND		ug/kg	180		1
Benzo(a)anthracene	ND		ug/kg	110		1
Benzo(a)pyrene	ND		ug/kg	140		1
Benzo(b)fluoranthene	ND		ug/kg	110		1
Benzo(k)fluoranthene	ND		ug/kg	110		1
Chrysene	ND		ug/kg	110		1
Acenaphthylene	ND		ug/kg	140		1
Anthracene	ND		ug/kg	110		1
Benzo(ghi)perylene	ND		ug/kg	140		1
Fluorene	ND		ug/kg	180		1
Phenanthrene	ND		ug/kg	110		1
Dibenzo(a,h)anthracene	ND		ug/kg	110		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1
Pyrene	ND		ug/kg	110		1
2-Methylnaphthalene	ND		ug/kg	220		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	100		30-130	
2-Fluorobiphenyl	73		30-130	
4-Terphenyl-d14	59		30-130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2243810

Project Number: Report Date: Not Specified 09/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/12/22 10:30 L2243810-02

Date Received: Client ID: TP-SL2 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 08/25/22 23:35 Analytical Method: 79,8270D Analytical Date: 08/27/22 01:50

Analyst: CMM 95% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	140		1	
Fluoranthene	ND		ug/kg	100		1	
Naphthalene	ND		ug/kg	180		1	
Benzo(a)anthracene	ND		ug/kg	100		1	
Benzo(a)pyrene	ND		ug/kg	140		1	
Benzo(b)fluoranthene	ND		ug/kg	100		1	
Benzo(k)fluoranthene	ND		ug/kg	100		1	
Chrysene	ND		ug/kg	100		1	
Acenaphthylene	ND		ug/kg	140		1	
Anthracene	ND		ug/kg	100		1	
Benzo(ghi)perylene	ND		ug/kg	140		1	
Fluorene	ND		ug/kg	180		1	
Phenanthrene	ND		ug/kg	100		1	
Dibenzo(a,h)anthracene	ND		ug/kg	100		1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1	
Pyrene	ND		ug/kg	100		1	
2-Methylnaphthalene	ND		ug/kg	210		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	95	30-130	
2-Fluorobiphenyl	73	30-130	
4-Terphenyl-d14	65	30-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 08/25/22 23:35
Analytical Date: 08/27/22 03:49

Analyst: CMM
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	150		1	
Fluoranthene	ND		ug/kg	110		1	
Naphthalene	ND		ug/kg	180		1	
Benzo(a)anthracene	ND		ug/kg	110		1	
Benzo(a)pyrene	ND		ug/kg	150		1	
Benzo(b)fluoranthene	ND		ug/kg	110		1	
Benzo(k)fluoranthene	ND		ug/kg	110		1	
Chrysene	ND		ug/kg	110		1	
Acenaphthylene	ND		ug/kg	150		1	
Anthracene	ND		ug/kg	110		1	
Benzo(ghi)perylene	ND		ug/kg	150		1	
Fluorene	ND		ug/kg	180		1	
Phenanthrene	ND		ug/kg	110		1	
Dibenzo(a,h)anthracene	ND		ug/kg	110		1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150		1	
Pyrene	ND		ug/kg	110		1	
2-Methylnaphthalene	ND		ug/kg	220		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	119	30-130	
2-Fluorobiphenyl	86	30-130	
4-Terphenyl-d14	76	30-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-04 Date Collected: 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 08/25/22 23:35
Analytical Date: 08/27/22 03:02

Analyst: CMM
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	140		1
Fluoranthene	ND		ug/kg	110		1
Naphthalene	ND		ug/kg	180		1
Benzo(a)anthracene	ND		ug/kg	110		1
Benzo(a)pyrene	ND		ug/kg	140		1
Benzo(b)fluoranthene	ND		ug/kg	110		1
Benzo(k)fluoranthene	ND		ug/kg	110		1
Chrysene	ND		ug/kg	110		1
Acenaphthylene	ND		ug/kg	140		1
Anthracene	ND		ug/kg	110		1
Benzo(ghi)perylene	ND		ug/kg	140		1
Fluorene	ND		ug/kg	180		1
Phenanthrene	ND		ug/kg	110		1
Dibenzo(a,h)anthracene	ND		ug/kg	110		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1
Pyrene	ND		ug/kg	110		1
2-Methylnaphthalene	ND		ug/kg	220		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	92	30-130	
2-Fluorobiphenyl	67	30-130	
4-Terphenyl-d14	57	30-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05 Date Collected: 08/12/22 16:30

Client ID: TP-SL5 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 08/25/22 23:35
Analytical Date: 08/27/22 02:38

Analyst: CMM
Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	140		1	
Fluoranthene	ND		ug/kg	110		1	
Naphthalene	ND		ug/kg	180		1	
Benzo(a)anthracene	ND		ug/kg	110		1	
Benzo(a)pyrene	ND		ug/kg	140		1	
Benzo(b)fluoranthene	ND		ug/kg	110		1	
Benzo(k)fluoranthene	ND		ug/kg	110		1	
Chrysene	ND		ug/kg	110		1	
Acenaphthylene	ND		ug/kg	140		1	
Anthracene	ND		ug/kg	110		1	
Benzo(ghi)perylene	ND		ug/kg	140		1	
Fluorene	ND		ug/kg	180		1	
Phenanthrene	ND		ug/kg	110		1	
Dibenzo(a,h)anthracene	ND		ug/kg	110		1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1	
Pyrene	ND		ug/kg	110		1	
2-Methylnaphthalene	ND		ug/kg	220		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	96		30-130
2-Fluorobiphenyl	71		30-130
4-Terphenyl-d14	63		30-130

L2243810

Lab Number:

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8270D Analytical Date: 08/26/22 22:14

Analyst: CMM

Extraction Method: EPA 3546
Extraction Date: 08/25/22 23:35

arameter	Result	Qualifier	Units	R	L	MDL	
T RCP Semivolatile Organic	s - Westborough	Lab for sar	nple(s):	01-05	Batch:	WG1679889-1	
Acenaphthene	ND		ug/kg	13	30		
Fluoranthene	ND		ug/kg	9	8		
Naphthalene	ND		ug/kg	16	30		
Benzo(a)anthracene	ND		ug/kg	9	8		
Benzo(a)pyrene	ND		ug/kg	13	30		
Benzo(b)fluoranthene	ND		ug/kg	9	8		
Benzo(k)fluoranthene	ND		ug/kg	9	8		
Chrysene	ND		ug/kg	9	8		
Acenaphthylene	ND		ug/kg	13	30		
Anthracene	ND		ug/kg	9	8		
Benzo(ghi)perylene	ND		ug/kg	13	30		
Fluorene	ND		ug/kg	16	60		
Phenanthrene	ND		ug/kg	9	8		
Dibenzo(a,h)anthracene	ND		ug/kg	9	8		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	13	30		
Pyrene	ND		ug/kg	9	8		
2-Methylnaphthalene	ND		ug/kg	20	00		

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	92	30-130			
2-Fluorobiphenyl	72	30-130			
4-Terphenyl-d14	70	30-130			

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

nrameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
ΓRCP Semivolatile Organics - Westborough	h Lab Associat	ed sample(s):	01-05 Batch:	WG1679889-2 WG1679889-	-3		
Acenaphthene	74		68	40-140	8	30	
Fluoranthene	74		68	40-140	8	30	
Naphthalene	76		69	40-140	10	30	
Benzo(a)anthracene	74		66	40-140	11	30	
Benzo(a)pyrene	79		74	40-140	7	30	
Benzo(b)fluoranthene	82		76	40-140	8	30	
Benzo(k)fluoranthene	75		70	40-140	7	30	
Chrysene	72		69	40-140	4	30	
Acenaphthylene	79		72	40-140	9	30	
Anthracene	78		71	40-140	9	30	
Benzo(ghi)perylene	79		72	40-140	9	30	
Fluorene	75		69	40-140	8	30	
Phenanthrene	75		68	40-140	10	30	
Dibenzo(a,h)anthracene	78		70	40-140	11	30	
Indeno(1,2,3-cd)pyrene	85		78	40-140	9	30	
Pyrene	75		69	40-140	8	30	
2-Methylnaphthalene	76		69	40-140	10	30	

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2243810

Project Number: Not Specified

Report Date:

09/07/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

CT RCP Semivolatile Organics - Westborough Lab Associated sample(s): 01-05 Batch: WG1679889-2 WG1679889-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	107	97	30-130
2-Fluorobiphenyl	80	73	30-130
4-Terphenyl-d14	78	72	30-130

PETROLEUM HYDROCARBONS

Lab Number: **Project Name:** CENTRAL MIDDLE SCHOOL L2243810

Project Number: Report Date: Not Specified 09/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/12/22 08:30 L2243810-01

Date Received: 08/13/22 Client ID: TP-SL1 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 08/24/22 23:53

Analyst: BAD 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westboroug	gh Lab						
Gasoline Range Organics	ND		ug/kg	2900		1	
Surrogate			% Recovery	Qualifier	Accep Crit	otance teria	
1,1,1-Trifluorotoluene			99		70)-130	
4-Bromofluorobenzene			87		70)-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

PLE RESULTS

 Lab ID:
 L2243810-01
 Date Collected:
 08/12/22 08:30

 Client ID:
 TP-SL1
 Date Received:
 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015D(M) Extraction Date: 08/26/22 00:00
Analytical Date: 08/26/22 21:40

Analyst: JB Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborough Lab)					
DRO (C10-C28)	ND		ug/kg	36000		1
Surrogate			% Recovery	Qualifier		eptance criteria
o-Terphenyl			76			40-140

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2243810

Project Number: Report Date: Not Specified 09/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/12/22 10:30 L2243810-02

Date Received: 08/13/22 Client ID: TP-SL2 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 08/25/22 00:23

Analyst: BAD 95% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Gasoline Range Organics - Westborough	Lab					
Gasoline Range Organics	ND		ug/kg	3200		1
Surrogate			% Recovery	Qualifier		ptance teria
1,1,1-Trifluorotoluene			100		7	0-130
4-Bromofluorobenzene			88		7	0-130

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

PLE RESULTS

 Lab ID:
 L2243810-02
 Date Collected:
 08/12/22 10:30

 Client ID:
 TP-SL2
 Date Received:
 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015D(M) Extraction Date: 08/26/22 00:00
Analytical Date: 08/26/22 22:49

Analyst: JB Percent Solids: 95%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Diesel Range Organics - Westbor	ough Lab						
DRO (C10-C28)	ND		ug/kg	35000		1	
Surrogate			% Recovery	Qualifier		eptance riteria	
o-Terphenyl			67			40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method:

Analytical Method: 1,8015D(M) Analytical Date: 08/25/22 00:54

Analyst: BAD Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westh	orough Lab						
Gasoline Range Organics	ND		ug/kg	3400		1	
Surrogate			% Recovery	Qualifier		ptance iteria	
1,1,1-Trifluorotoluene			99		7	70-130	
4-Bromofluorobenzene			86		7	7 0-130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2243810

Report Date: **Project Number:** Not Specified 09/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/12/22 12:30 L2243810-03

Date Received: Client ID: TP-SL3 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 08/26/22 00:00 Analytical Method: 1,8015D(M) Analytical Date: 08/26/22 23:24

Analyst: JB 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westbor	ough Lab					
DRO (C10-C28)	ND		ug/kg	37000		1
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			54			40-140

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-04 Date Collected: 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method:

Analytical Method: 1,8015D(M)
Analytical Date: 08/25/22 01:24

Analyst: BAD Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Gasoline Range Organics - Westborough Lab						
Gasoline Range Organics	ND		ug/kg	3200		1
Surrogate			% Recovery	Qualifier		otance teria
1,1,1-Trifluorotoluene			99		70	0-130
4-Bromofluorobenzene			89		70)-130

Lab Number: **Project Name:** CENTRAL MIDDLE SCHOOL L2243810

Report Date: **Project Number:** Not Specified 09/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/12/22 14:30 L2243810-04

Date Received: Client ID: TP-SL4 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 08/26/22 00:00 Analytical Method: 1,8015D(M) Analytical Date: 08/26/22 23:59

Analyst: JB 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborough La	ab					
DRO (C10-C28)	ND		ug/kg	36000		1
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			61			40-140

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2243810

Project Number: Report Date: Not Specified 09/07/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/12/22 16:30 L2243810-05

Date Received: 08/13/22 Client ID: TP-SL5 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 08/25/22 01:55

Analyst: BAD 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westh	orough Lab						
Gasoline Range Organics	ND		ug/kg	2300		1	
Surrogate			% Recovery	Qualifier		ptance iteria	
1,1,1-Trifluorotoluene			100		7	70-130	
4-Bromofluorobenzene			89		-	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05 Date Collected: 08/12/22 16:30

Client ID: TP-SL5 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015D(M) Extraction Date: 08/26/22 00:00
Analytical Date: 08/26/22 23:24

Analyst: JB Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborou	ıgh Lab					
DRO (C10-C28)	ND		ug/kg	36000		1
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			60			40-140

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D(M) Analytical Date: 08/24/22 20:17

Analyst: BAD

Parameter	Result Q	ualifier Units	RL	MDL	
Gasoline Range Organics - Westbo	orough Lab for s	ample(s): 01-04	Batch:	WG1679588-10	
Gasoline Range Organics	ND	ug/kg	2500		

		Acceptance	
Surrogate	%Recovery Qualifie	er Criteria	
1,1,1-Trifluorotoluene	100	70-130	
4-Bromofluorobenzene	82	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D(M) Analytical Date: 08/24/22 20:17

Analyst: BAD

Parameter	Result	Qualifier	Units	RL	MDL	
Gasoline Range Organics - Westbo	rough Lab f	or sample(s): 05	Batch: WG16	79592-4	
Gasoline Range Organics	ND		ug/kg	2500		

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
			_	
1,1,1-Trifluorotoluene	100	70-130		
4-Bromofluorobenzene	82	70-130		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8015D(M) Extraction Method: EPA 3546
Analytical Date: 08/26/22 21:05 Extraction Date: 08/26/22 00:00

Analyst: JB

ParameterResultQualifierUnitsRLMDLDiesel Range Organics - Westborough Lab for sample(s):01-05Batch:WG1679890-1DRO (C10-C28)NDug/kg32000--

Surrogate %Recovery Qualifier Criteria

o-Terphenyl 61 40-140

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2243810

Project Number: Not Specified Report Date:

09/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	RP Qual Lim	
Gasoline Range Organics - Westborough La	b Associated sam	nple(s):	01-04 Batch:	WG1679588-8	WG1679588-9			
Gasoline Range Organics	81		89		80-120	9	20)

Surrogate	LCS	LCSD	Acceptance
	%Recovery Q	ual %Recovery	Qual Criteria
1,1,1-Trifluorotoluene	100	100	70-130
4-Bromofluorobenzene	82	84	70-130

Project Name: CENTRAL MIDDLE SCHOOL

TRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2243810

Report Date:

09/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Gasoline Range Organics - Westborough Lat	Associated sar	mple(s): 05	Batch: WG167	9592-2 V	VG1679592-3			
Gasoline Range Organics	81		89		80-120	9		20

Surrogate	LCS	LCSD	Acceptance
	%Recovery Q	ual %Recovery	Qual Criteria
1,1,1-Trifluorotoluene	100	100	70-130
4-Bromofluorobenzene	82	84	70-130

CENTRAL MIDDLE SCHOOL

Lab Number:

L2243810

Project Number:

Project Name:

Report Date:

09/07/22

Not Specified

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Diesel Range Organics - Westborough Lab	Associated sampl	e(s): 01-05	Batch: WG16	79890-2					
DRO (C10-C28)	93		-		60-140	-			

Surrogate	LCS %Recovery Qua	LCSD al %Recovery	eptance riteria	
o-Terphenyl	64		 10-140	

Matrix Spike Analysis Batch Quality Control

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2243810

Report Date:

09/07/22

	Native	MS	MS	MS		MSD	MSD		Recovery	y		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
Gasoline Range Organics -	Westborough Lab	Associat	ed sample(s):	05 QC Batch	ı ID: WG1	679592-6	QC Sample:	L22438	310-05 C	Client ID:	TP-SL5	
Gasoline Range Organics	ND	18700	16000	86		-	-		80-120	-		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,1,1-Trifluorotoluene	92		70-130
4-Bromofluorobenzene	80		70-130

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L2243810

Report Date:

Acceptance

09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

RPD Parameter Native Sample Duplicate Sample Units **RPD** Qual Limits Gasoline Range Organics - Westborough Lab Associated sample(s): 05 QC Batch ID: WG1679592-5 QC Sample: L2243810-05 Client ID: TP-SL5 Gasoline Range Organics ND ND NC 20 ug/kg

Surrogate		%Recovery Qua	lifier %Recovery Qual	ifier Criteria	
1,1,1-Trifluorotoluene		100	101	70-130	
4-Bromofluorobenzene		89	90	70-130	
Diesel Range Organics - Westborough Lal	Associated sample(s): 01-05	QC Batch ID: WG16	679890-3 QC Sample:	L2243810-01 Client ID: TP-SL1	
DRO (C10-C28)	ND	ND	ug/kg	NC 20	

			Acceptance
Surrogate	%Recovery Qualifie	r %Recovery Qualifier	Criteria
o-Terphenyl	76	63	40-140

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-01 Date Collected: 08/12/22 08:30

Client ID: TP-SL1 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 08/24/22 17:20

Analyst: BAD Percent Solids: 90%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	6.38		1
C9-C12 Aliphatics	ND		mg/kg	6.38		1
C9-C10 Aromatics	ND		mg/kg	6.38		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	6.38		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	6.38		1
Benzene	ND		mg/kg	0.128		1
Toluene	ND		mg/kg	0.128		1
Ethylbenzene	ND		mg/kg	0.128		1
p/m-Xylene	ND		mg/kg	0.128		1
o-Xylene	ND		mg/kg	0.128		1
Methyl tert butyl ether	ND		mg/kg	0.064		1
Naphthalene	ND		mg/kg	0.255		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	118		70-130	
2,5-Dibromotoluene-FID	137	Q	70-130	

08/26/22

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-01 Date Collected: 08/12/22 08:30

Client ID: TP-SL1 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

 Analytical Method:
 135,EPH-19-2.1
 Extraction Date:
 08/25/22 09:59

 Analytical Date:
 08/29/22 14:14
 Cleanup Method1:
 EPH-19-2.1

Analyst: AL Cleanup Date1: Percent Solids: 90%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		mg/kg	7.13		1
C19-C36 Aliphatics	ND		mg/kg	7.13		1
C11-C22 Aromatics	ND		mg/kg	7.13		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.13		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	72		40-140	
o-Terphenyl	87		40-140	
2-Fluorobiphenyl	109		40-140	
2-Bromonaphthalene	109		40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-02 Date Collected: 08/12/22 10:30

Client ID: TP-SL2 Date Received: 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 08/24/22 17:51

Analyst: BAD Percent Solids: 95%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	6.62		1
C9-C12 Aliphatics	ND		mg/kg	6.62		1
C9-C10 Aromatics	ND		mg/kg	6.62		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	6.62		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	6.62		1
Benzene	ND		mg/kg	0.132		1
Toluene	ND		mg/kg	0.132		1
Ethylbenzene	ND		mg/kg	0.132		1
p/m-Xylene	ND		mg/kg	0.132		1
o-Xylene	ND		mg/kg	0.132		1
Methyl tert butyl ether	ND		mg/kg	0.066		1
Naphthalene	ND		mg/kg	0.265		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	113		70-130	
2,5-Dibromotoluene-FID	130		70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-02 Date Collected: 08/12/22 10:30

Client ID: TP-SL2 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

 Analytical Method:
 135,EPH-19-2.1
 Extraction Date:
 08/25/22 09:59

 Analytical Date:
 08/26/22 10:07
 Cleanup Method1:
 EPH-19-2.1

Analyst: JB Cleanup Date1: 08/26/22 Percent Solids: 95%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		mg/kg	6.74		1
C19-C36 Aliphatics	ND		mg/kg	6.74		1
C11-C22 Aromatics	ND		mg/kg	6.74		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.74		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	72		40-140	
o-Terphenyl	71		40-140	
2-Fluorobiphenyl	85		40-140	
2-Bromonaphthalene	84		40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 08/24/22 18:21

Analyst: BAD Percent Solids: 89%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	7.48		1
C9-C12 Aliphatics	ND		mg/kg	7.48		1
C9-C10 Aromatics	ND		mg/kg	7.48		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	7.48		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	7.48		1
Benzene	ND		mg/kg	0.150		1
Toluene	ND		mg/kg	0.150		1
Ethylbenzene	ND		mg/kg	0.150		1
p/m-Xylene	ND		mg/kg	0.150		1
o-Xylene	ND		mg/kg	0.150		1
Methyl tert butyl ether	ND		mg/kg	0.075		1
Naphthalene	ND		mg/kg	0.299		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	114		70-130	
2,5-Dibromotoluene-FID	131	Q	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

 Analytical Method:
 135,EPH-19-2.1
 Extraction Date:
 08/25/22 09:59

 Analytical Date:
 08/26/22 08:51
 Cleanup Method1:
 EPH-19-2.1

Analyst: JB Cleanup Date1: 08/26/22
Percent Solids: 89%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ıb				
C9-C18 Aliphatics	ND		mg/kg	7.17		1
C19-C36 Aliphatics	ND		mg/kg	7.17		1
C11-C22 Aromatics	10.3		mg/kg	7.17		1
C11-C22 Aromatics, Adjusted	10.3		mg/kg	7.17		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	65		40-140	
o-Terphenyl	67		40-140	
2-Fluorobiphenyl	83		40-140	
2-Bromonaphthalene	81		40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-04 Date Collected: 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 08/24/22 18:51

Analyst: BAD Percent Solids: 89%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:SatisfactorySample Temperature upon receipt:Received on IceWere samples received in methanol?Covering the SoilMethanol ratio:1:1 +/- 25%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	7.07		1
C9-C12 Aliphatics	ND		mg/kg	7.07		1
C9-C10 Aromatics	ND		mg/kg	7.07		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	7.07		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	7.07		1
Benzene	ND		mg/kg	0.141		1
Toluene	ND		mg/kg	0.141		1
Ethylbenzene	ND		mg/kg	0.141		1
p/m-Xylene	ND		mg/kg	0.141		1
o-Xylene	ND		mg/kg	0.141		1
Methyl tert butyl ether	ND		mg/kg	0.071		1
Naphthalene	ND		mg/kg	0.283		1

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	119		70-130		
2,5-Dibromotoluene-FID	137	Q	70-130		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-04 Date Collected: 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

,

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

 Analytical Method:
 135,EPH-19-2.1
 Extraction Date:
 08/25/22 09:59

 Analytical Date:
 08/26/22 09:16
 Cleanup Method1:
 EPH-19-2.1

Analyst: JB Cleanup Date1: 08/26/22
Percent Solids: 89%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		mg/kg	7.45		1
C19-C36 Aliphatics	ND		mg/kg	7.45		1
C11-C22 Aromatics	ND		mg/kg	7.45		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.45		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	65		40-140	
o-Terphenyl	63		40-140	
2-Fluorobiphenyl	84		40-140	
2-Bromonaphthalene	87		40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05 Date Collected: 08/12/22 16:30

Client ID: TP-SL5 Date Received: 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 08/24/22 19:22

Analyst: BAD Percent Solids: 90%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	5.23		1
C9-C12 Aliphatics	ND		mg/kg	5.23		1
C9-C10 Aromatics	ND		mg/kg	5.23		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5.23		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5.23		1
Benzene	ND		mg/kg	0.104		1
Toluene	ND		mg/kg	0.104		1
Ethylbenzene	ND		mg/kg	0.104		1
p/m-Xylene	ND		mg/kg	0.104		1
o-Xylene	ND		mg/kg	0.104		1
Methyl tert butyl ether	ND		mg/kg	0.052		1
Naphthalene	ND		mg/kg	0.209		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	116		70-130			
2,5-Dibromotoluene-FID	133	Q	70-130			

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05 Date Collected: 08/12/22 16:30

Client ID: TP-SL5 Date Received: 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 Extraction Date: 08/25/22 09:59
Analytical Date: 08/26/22 09:42 Cleanup Method1: EPH-19-2.1

Analyst: JB Cleanup Date1: 08/26/22
Percent Solids: 90%

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Quality Control Information

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		mg/kg	7.38		1				
C19-C36 Aliphatics	ND		mg/kg	7.38		1				
C11-C22 Aromatics	ND		mg/kg	7.38		1				
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.38		1				

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	67		40-140	
o-Terphenyl	66		40-140	
2-Fluorobiphenyl	81		40-140	
2-Bromonaphthalene	81		40-140	

L2243810

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 08/26/22 09:53

Analyst: SR

Extraction Method: EPA 3546
Extraction Date: 08/25/22 09:59
Cleanup Method: EPH-19-2.1
Cleanup Date: 08/26/22

Parameter	Result	Qualifier	Units	RL	MDL	_
Extractable Petroleum Hydrocarbons	s - Westbor	ough Lab	for sample(s):	01-05	Batch: WG1679595-1	
C9-C18 Aliphatics	ND		mg/kg	6.47		
C19-C36 Aliphatics	ND		mg/kg	6.47		
C11-C22 Aromatics	ND		mg/kg	6.47		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.47		

		Acceptance	
Surrogate	%Recovery Qualifie	r Criteria	
Chloro-Octadecane	59	40-140	
o-Terphenyl	65	40-140	
2-Fluorobiphenyl	74	40-140	
2-Bromonaphthalene	78	40-140	

L2243810

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 08/24/22 11:27

Analyst: BAD

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons	- Westborough	n Lab for	sample(s):	01-05	Batch:	WG1679604-4
C5-C8 Aliphatics	ND		mg/kg	5.00		
C9-C12 Aliphatics	ND		mg/kg	5.00		
C9-C10 Aromatics	ND		mg/kg	5.00		
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5.00		
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5.00		
Benzene	ND		mg/kg	0.100		
Toluene	ND		mg/kg	0.100		
Ethylbenzene	ND		mg/kg	0.100		
p/m-Xylene	ND		mg/kg	0.100		
o-Xylene	ND		mg/kg	0.100		
Methyl tert butyl ether	ND		mg/kg	0.050		
Naphthalene	ND		mg/kg	0.200		

		Acceptance			
Surrogate	%Recovery Qualifie	r Criteria			
2,5-Dibromotoluene-PID	106	70-130			
2,5-Dibromotoluene-FID	121	70-130			

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

Report Date: 09/07/22

Parameter	LCS %Recovery	LCS Qual %Reco		%Recove	•	RPD Limits
Extractable Petroleum Hydrocarbons - W	estborough Lab As	sociated sample(s): 01	-05 Batch:	WG1679595-2	WG1679595-3	
C9-C18 Aliphatics	48	43		40-140	11	25
C19-C36 Aliphatics	71	64		40-140	10	25
C11-C22 Aromatics	70	67		40-140	4	25
Naphthalene	61	58		40-140	5	25
2-Methylnaphthalene	63	60		40-140	5	25
Acenaphthylene	62	62		40-140	0	25
Acenaphthene	64	64		40-140	0	25
Fluorene	66	66		40-140	0	25
Phenanthrene	66	66		40-140	0	25
Anthracene	67	67		40-140	0	25
Fluoranthene	65	65		40-140	0	25
Pyrene	67	67		40-140	0	25
Benzo(a)anthracene	67	66		40-140	2	25
Chrysene	65	65		40-140	0	25
Benzo(b)fluoranthene	63	63		40-140	0	25
Benzo(k)fluoranthene	61	61		40-140	0	25
Benzo(a)pyrene	65	65		40-140	0	25
Indeno(1,2,3-cd)Pyrene	62	62		40-140	0	25
Dibenzo(a,h)anthracene	65	65		40-140	0	25
Benzo(ghi)perylene	58	58		40-140	0	25

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2243810

Project Number: Not Specified

Report Date:

09/07/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-05 Batch: WG1679595-2 WG1679595-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	58	56	40-140
o-Terphenyl	66	64	40-140
2-Fluorobiphenyl	77	74	40-140
2-Bromonaphthalene	80	77	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

Report Date: 09/07/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Westbord	ough Lab Assoc	iated sample(s)	: 01-05 Batcl	n: WG1679604-2 WG16796	04-3	
C5-C8 Aliphatics	108		109	70-130	1	25
C9-C12 Aliphatics	115		115	70-130	0	25
C9-C10 Aromatics	104		104	70-130	0	25
Benzene	104		104	70-130	0	25
Toluene	102		102	70-130	0	25
Ethylbenzene	105		104	70-130	1	25
p/m-Xylene	103		102	70-130	1	25
o-Xylene	100		99	70-130	1	25
Methyl tert butyl ether	98		96	70-130	3	25
Naphthalene	102		102	70-130	0	25
1,2,4-Trimethylbenzene	104		104	70-130	0	25
Pentane	98		98	70-130	0	25
2-Methylpentane	111		112	70-130	1	25
2,2,4-Trimethylpentane	112		113	70-130	1	25
n-Nonane	113		114	30-130	1	25
n-Decane	117		116	70-130	1	25
n-Butylcyclohexane	116		116	70-130	0	25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	108	106	70-130
2,5-Dibromotoluene-FID	122	121	70-130

METALS

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810Project Number:Not SpecifiedReport Date:09/07/22

SAMPLE RESULTS

Lab ID:L2243810-01Date Collected:08/12/22 08:30Client ID:TP-SL1Date Received:08/13/22Sample Location:GREENWICH, CTField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 90%

Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
OT DOD Takal Mak	-1- NA	C-1.11-1									
CT RCP Total Meta	ais - Mans	field Lab									
Antimony, Total	ND		mg/kg	2.12		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Arsenic, Total	3.51		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Barium, Total	90.3		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Beryllium, Total	0.632		mg/kg	0.212		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Cadmium, Total	ND		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Chromium, Total	17.8		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Copper, Total	5.47		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Lead, Total	6.40		mg/kg	2.12		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Nickel, Total	10.0		mg/kg	1.06		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Selenium, Total	ND		mg/kg	2.12		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Silver, Total	ND		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Thallium, Total	ND		mg/kg	2.12		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Vanadium, Total	24.8		mg/kg	0.425		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL
Zinc, Total	28.3		mg/kg	2.12		1	08/16/22 12:20	09/04/22 13:13	EPA 3050B	79,6010D	DL

Not Specified

Field Prep:

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810Project Number:Not SpecifiedReport Date:09/07/22

SAMPLE RESULTS

 Lab ID:
 L2243810-02
 Date Collected:
 08/12/22 10:30

 Client ID:
 TP-SL2
 Date Received:
 08/13/22

GREENWICH, CT

Sample Depth:

Sample Location:

Matrix: Soil
Percent Solids: 95%

Percent Solias:	95/6					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
CT RCP Total Meta	als - Mans	field Lab									
Antimony, Total	ND		mg/kg	2.05		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Arsenic, Total	0.800		mg/kg	0.411		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Barium, Total	76.0		mg/kg	0.411		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Beryllium, Total	0.295		mg/kg	0.205		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Cadmium, Total	ND		mg/kg	0.411		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Chromium, Total	13.0		mg/kg	0.411		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Copper, Total	10.3		mg/kg	0.411		1	08/16/22 12:20	09/04/22 13:19	EPA 3050B	79,6010D	DL
Lead, Total	3.04		mg/kg	2.05		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Nickel, Total	6.58		mg/kg	1.03		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Selenium, Total	ND		mg/kg	2.05		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Silver, Total	ND		mg/kg	0.411		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Thallium, Total	ND		mg/kg	2.05		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Vanadium, Total	12.5		mg/kg	0.411		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL
Zinc, Total	16.4		mg/kg	2.05		1	08/16/22 12:20	0 09/04/22 13:19	EPA 3050B	79,6010D	DL

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810Project Number:Not SpecifiedReport Date:09/07/22

SAMPLE RESULTS

 Lab ID:
 L2243810-03
 Date Collected:
 08/12/22 12:30

 Client ID:
 TP-SL3
 Date Received:
 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 89%

Percent Solids:	89%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
OT DOD Takal Mak	-1- NA	C-1.11-1									
CT RCP Total Meta	ais - Mans	field Lab									
Antimony, Total	ND		mg/kg	2.14		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Arsenic, Total	6.61		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Barium, Total	101		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Beryllium, Total	1.01		mg/kg	0.214		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Cadmium, Total	ND		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Chromium, Total	20.8		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Copper, Total	30.8		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Lead, Total	9.56		mg/kg	2.14		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Nickel, Total	11.2		mg/kg	1.07		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Selenium, Total	ND		mg/kg	2.14		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Silver, Total	ND		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Thallium, Total	ND		mg/kg	2.14		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Vanadium, Total	39.4		mg/kg	0.427		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL
Zinc, Total	34.2		mg/kg	2.14		1	08/16/22 12:20	09/04/22 13:23	EPA 3050B	79,6010D	DL

08/12/22 14:30

Date Collected:

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810 **Project Number: Report Date:** 09/07/22

Not Specified

SAMPLE RESULTS

Lab ID: L2243810-04 Client ID: TP-SL4

64.3

Date Received: 08/13/22 GREENWICH, CT Field Prep: Not Specified Sample Location:

Sample Depth:

Soil Matrix: 89% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total 2.98 mg/kg 2.11 1 08/16/22 12:20 09/04/22 13:43 EPA 3050B 79,6010D DL Arsenic, Total 5.12 0.422 1 08/16/22 12:20 09/04/22 13:43 EPA 3050B 79,6010D DL mg/kg 5 Barium, Total 332 mg/kg 2.11 08/16/22 12:20 09/07/22 10:47 EPA 3050B 79,6010D NΒ Beryllium, Total 1.20 mg/kg 0.211 1 08/16/22 12:20 09/04/22 13:43 EPA 3050B 79,6010D DL ND 0.422 1 08/16/22 12:20 09/04/22 13:43 EPA 3050B 79,6010D DL Cadmium, Total mg/kg 68.6 0.422 1 08/16/22 12:20 09/04/22 13:43 EPA 3050B 79,6010D DL Chromium, Total mg/kg --Copper, Total 27.1 mg/kg 2.11 5 08/16/22 12:20 09/07/22 10:47 EPA 3050B 79,6010D NΒ 1 79,6010D DL Lead, Total 7.49 08/16/22 12:20 09/04/22 13:43 EPA 3050B mg/kg 2.11 1 28.4 79,6010D DL Nickel, Total mg/kg 1.06 08/16/22 12:20 09/04/22 13:43 EPA 3050B 08/16/22 12:20 09/04/22 13:43 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.11 1 DL ND 79,6010D DL Silver, Total 0.422 --1 08/16/22 12:20 09/04/22 13:43 EPA 3050B mg/kg ND 1 79,6010D Thallium, Total mg/kg 2.11 --08/16/22 12:20 09/04/22 13:43 EPA 3050B DL 79,6010D Vanadium, Total 66.1 mg/kg 0.422 1 08/16/22 12:20 09/04/22 13:43 EPA 3050B DL

--

2.11

mg/kg

1

08/16/22 12:20 09/04/22 13:43 EPA 3050B

79,6010D

DL

Zinc, Total

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810Project Number:Not SpecifiedReport Date:09/07/22

SAMPLE RESULTS

 Lab ID:
 L2243810-05
 Date Collected:
 08/12/22 16:30

 Client ID:
 TP-SL5
 Date Received:
 08/13/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 90%

Percent Solids:	90%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
CT RCP Total Meta	ale Mane	fiold Lab									
CT NOT TOtal Wet	ais - iviai is	illeiu Lab									
Antimony, Total	ND		mg/kg	2.09		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Arsenic, Total	3.91		mg/kg	0.418		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Barium, Total	77.4		mg/kg	0.418		1	08/16/22 12:20	0 09/07/22 10:40	EPA 3050B	79,6010D	NB
Beryllium, Total	0.687		mg/kg	0.209		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Cadmium, Total	ND		mg/kg	0.418		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Chromium, Total	18.0		mg/kg	0.418		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Copper, Total	2.66		mg/kg	0.418		1	08/16/22 12:20	09/07/22 10:40	EPA 3050B	79,6010D	NB
Lead, Total	5.12		mg/kg	2.09		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Nickel, Total	9.03		mg/kg	1.04		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Selenium, Total	ND		mg/kg	2.09		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Silver, Total	ND		mg/kg	0.418		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Thallium, Total	ND		mg/kg	2.09		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Vanadium, Total	26.4		mg/kg	0.418		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL
Zinc, Total	26.3		mg/kg	2.09		1	08/16/22 12:20	0 09/04/22 13:48	EPA 3050B	79,6010D	DL

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
CT RCP Total Metals	- Mansfield Lab for sa	mple(s):	01-05	Batch:	WG1675470-	-1			
Antimony, Total	ND	mg/kg	2.00		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Arsenic, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Barium, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Beryllium, Total	ND	mg/kg	0.200		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Cadmium, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Chromium, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Copper, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Lead, Total	ND	mg/kg	2.00		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Nickel, Total	ND	mg/kg	1.00		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Selenium, Total	ND	mg/kg	2.00		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Silver, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Thallium, Total	ND	mg/kg	2.00		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Vanadium, Total	ND	mg/kg	0.400		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL
Zinc, Total	ND	mg/kg	2.00		1	08/16/22 12:20	09/04/22 12:42	79,6010D	DL

Prep Information

Digestion Method: EPA 3050B

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810

Report Date: 09/07/22

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
CT RCP Total Metals - Mansfield Lab Associate	ed sample(s): 01-0	5 Batch: WG1675470-2	SRM Lot Number: D113-540			
Antimony, Total	127	-	20-250	-		30
Arsenic, Total	99	-	70-130	-		30
Barium, Total	100	-	75-125	-		30
Beryllium, Total	94	-	75-125	-		30
Cadmium, Total	91	-	75-125	-		30
Chromium, Total	91	-	70-130	-		30
Copper, Total	100	-	75-125	-		30
Lead, Total	89	-	72-128	-		30
Nickel, Total	95	-	70-130	-		30
Selenium, Total	93	-	66-134	-		30
Silver, Total	91	-	70-131	-		30
Thallium, Total	92	-	70-130	-		30
Vanadium, Total	89	-	74-126	-		30
Zinc, Total	91	-	70-130	-		30

INORGANICS & MISCELLANEOUS

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2243810

Project Number: Not Specified **Report Date:**

09/07/22

SAMPLE RESULTS

Lab ID:

L2243810-01

Client ID:

TP-SL1

Sample Location: GREENWICH, CT

Date Collected: Date Received: 08/12/22 08:30

Field Prep:

08/13/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Coarse

120

Preliminary Burning Time (sec):

Date Analytical

Parameter	Result	Analyzed	Method	Analyst
Ignitability of Sol	ids - Westborough Lab			
Ignitability	NI	08/24/22 16:03	1,1030	MD

L2243810

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-02 Date Collected: 08/12/22 10:30

Client ID: TP-SL2 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Coarse
Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	s - Westborough Lab			
Ignitability	NI	08/24/22 16:03	1,1030	MD

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2243810

Project Number: Not Specified **Report Date:**

09/07/22

SAMPLE RESULTS

Lab ID:

L2243810-03

Client ID:

TP-SL3

Sample Location: GREENWICH, CT

Date Collected:

08/12/22 12:30

Date Received: Field Prep:

08/13/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Medium

120

Preliminary Burning Time (sec):

Date Analytical

Method **Parameter** Result **Analyzed Analyst** Ignitability of Solids - Westborough Lab Ignitability NI 08/24/22 16:03 1,1030 MD

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2243810

Project Number: Not Specified **Report Date:**

09/07/22

SAMPLE RESULTS

Lab ID:

L2243810-04

Client ID:

TP-SL4

Sample Location: GREENWICH, CT

Date Collected: Date Received: 08/12/22 14:30

Field Prep:

08/13/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Medium

120

Preliminary Burning Time (sec):

Date Analytical Method **Parameter** Result **Analyzed Analyst** Ignitability of Solids - Westborough Lab Ignitability NI 08/24/22 16:03 1,1030 MD

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2243810

Project Number:

Not Specified

Report Date:

09/07/22

SAMPLE RESULTS

Lab ID:

L2243810-05

Client ID:

TP-SL5

Sample Location: GREENWICH, CT

Date Collected:

08/12/22 16:30

Date Received: Field Prep:

08/13/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Medium

120

Preliminary Burning Time (sec):

Date Analytical

Method **Parameter** Result **Analyzed Analyst** Ignitability of Solids - Westborough Lab Ignitability NI 08/24/22 16:03 1,1030 MD

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-01 Date Collected: 08/12/22 08:30

Client ID: TP-SL1 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab								
Solids, Total	89.5	%	0.100	NA	1	-	08/15/22 19:37	121,2540G	MF
pH (H)	6.5	SU	-	NA	1	-	08/15/22 20:16	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 15:19	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 14:43	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-02 Date Collected: 08/12/22 10:30

Client ID: TP-SL2 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab								
Solids, Total	94.5	%	0.100	NA	1	-	08/15/22 19:37	121,2540G	MF
pH (H)	6.6	SU	-	NA	1	-	08/15/22 20:16	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 15:20	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 14:43	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-03 Date Collected: 08/12/22 12:30

Client ID: TP-SL3 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab								
Solids, Total	89.3	%	0.100	NA	1	-	08/15/22 19:37	121,2540G	MF
pH (H)	6.6	SU	-	NA	1	-	08/15/22 20:16	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 15:20	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 14:44	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Report Date: **Project Number:** 09/07/22 Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: L2243810-04 08/12/22 14:30

Client ID: TP-SL4 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	89.0	%	0.100	NA	1	-	08/15/22 19:37	121,2540G	MF
pH (H)	5.9	SU	-	NA	1	-	08/15/22 20:16	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 15:21	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 14:44	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

SAMPLE RESULTS

Lab ID: L2243810-05 Date Collected: 08/12/22 16:30

Client ID: TP-SL5 Date Received: 08/13/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	90.2	%	0.100	NA	1	-	08/15/22 19:37	121,2540G	MF
pH (H)	6.0	SU	-	NA	1	-	08/15/22 20:16	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 15:21	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 14:45	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2243810

Project Number: Not Specified Report Date: 09/07/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01-	-05 Ba	itch: Wo	G1675408-	1			
Sulfide, Reactive	ND	mg/kg	10		1	08/16/22 12:25	08/16/22 14:32	125,7.3	MJ
General Chemistry - V	Vestborough Lab for sam	ple(s): 01-	-05 Ba	itch: Wo	G1675651-	1			
Cvanide, Reactive	ND	ma/ka	10		1	08/16/22 12:25	08/16/22 15:07	125.7.3	MJ

Lab Control Sample Analysis Batch Quality Control

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2243810

Report Date:

09/07/22

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG1675408-2				
Sulfide, Reactive	106	-	60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG1675488-1				
рН	99	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-05	Batch: WG1675651-2				
Cyanide, Reactive	93	-	30-125	-		40

Lab Duplicate Analysis Batch Quality Control

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2243810

Report Date:

09/07/22

Parameter	Native Sam	ple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG1675408-3	QC Sample:	L2243810-05	Client ID:	TP-SL5
Sulfide, Reactive	ND		ND	mg/kg	NC		40
General Chemistry - Westborough Lab	Associated sample(s): 01-05	QC Batch ID:	WG1675651-3	QC Sample:	L2243810-05	Client ID:	TP-SL5
Cyanide, Reactive	ND		ND	mg/kg	NC		40

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2243810 **Report Date:** 09/07/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

NO

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2243810-01A	Vial MeOH preserved	Α	NA		22.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2243810-01B	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-01C	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-01D	Plastic 2oz unpreserved for TS	Α	NA		22.4	Υ	Absent		TS(7)
L2243810-01E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		22.4	Y	Absent		CT-V-6010T(180),CT-AG-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-CU-6010T(180),CT-SB-6010T(180),CT-NI-6010T(180),CT-PB-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-CD-6010T(180),CT-BE-6010T(180),CT-TL-6010T(180)
L2243810-01F	Glass 500ml/16oz unpreserved	Α	NA		22.4	Υ	Absent		IGNIT-1030(14),REACTS(14),CT- PAH(14),EPH-20(14),PH-9045(1),REACTCN(14)
L2243810-02A	Vial MeOH preserved	Α	NA		22.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2243810-02B	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-02C	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-02D	Plastic 2oz unpreserved for TS	Α	NA		22.4	Υ	Absent		TS(7)
L2243810-02E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		22.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-CU-6010T(180),CT-SB-6010T(180),CT-PB-6010T(180),CT-NI-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-CR-6010T(180),CT-CD-6010T(180),CT-CL-6010T(180),CT-CD-6010T(180),CT-TL-6010T(180),CT-BE-6010T(180)
L2243810-02F	Glass 500ml/16oz unpreserved	Α	NA		22.4	Υ	Absent		IGNIT-1030(14),REACTS(14),CT- PAH(14),EPH-20(14),PH-9045(1),REACTCN(14)
L2243810-03A	Vial MeOH preserved	Α	NA		22.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2243810-03B	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-03C	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)

Lab Number: L2243810

Report Date: 09/07/22

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2243810-03D	Plastic 2oz unpreserved for TS	Α	NA		22.4	Υ	Absent		TS(7)
L2243810-03E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		22.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-CU-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-NI-6010T(180),CT-PB-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180),CT-TL-6010T(180)
L2243810-03F	Glass 500ml/16oz unpreserved	Α	NA		22.4	Υ	Absent		REACTS(14),IGNIT-1030(14),CT- PAH(14),EPH-20(14),PH-9045(1),REACTCN(14)
L2243810-04A	Vial MeOH preserved	Α	NA		22.4	Υ	Absent		TPH-GRO(14), VPH-DELUX-18(28), CT-8260HLW(14)
L2243810-04B	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-04C	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-04D	Plastic 2oz unpreserved for TS	Α	NA		22.4	Υ	Absent		TS(7)
L2243810-04E	Metals Only-Glass 60mL/2oz unpreserved	А	NA		22.4	Υ	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-CU-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-NI-6010T(180),CT-PB-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180),CT-L-6010T(180)
L2243810-04F	Glass 500ml/16oz unpreserved	Α	NA		22.4	Υ	Absent		IGNIT-1030(14),REACTS(14),EPH-20(14),CT- PAH(14),PH-9045(1),REACTCN(14)
L2243810-05A	Vial MeOH preserved	Α	NA		22.4	Υ	Absent		TPH-GRO(14), VPH-DELUX-18(28), CT-8260HLW(14)
L2243810-05B	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-05C	Vial water preserved	Α	NA		22.4	Υ	Absent	13-AUG-22 16:10	CT-8260HLW(14)
L2243810-05D	Plastic 2oz unpreserved for TS	Α	NA		22.4	Υ	Absent		TS(7)
L2243810-05E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		22.4	Y	Absent		CT-V-6010T(180),CT-AG-6010T(180),CT-AS-6010T(180),CT-CU-6010T(180),CT-SE-6010T(180),CT-PB-6010T(180),CT-PB-6010T(180),CT-NI-6010T(180),CT-BA-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-TL-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180),CT-CD-6010T(180)
L2243810-05F	Glass 500ml/16oz unpreserved	Α	NA		22.4	Υ	Absent		REACTS(14),IGNIT-1030(14),CT- PAH(14),EPH-20(14),PH-9045(1),REACTCN(14)

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

SRM

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- 79 Connecticut DEP Quality Assurance and Quality Control Requirements for SW-846 Methods. CTDEP Reasonable Confidence Protocols (RCPs). Versions 2.0 and 3.0, July and December 2006.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.
- Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Page 103 of 103	or or norr		nd and	low			: 2	0	K	en	for	<i>√</i> //	L		Stist	72 1	520	the District Office of the last design of the		
	PROJECT or CT RCP?		PM/4	nquished By:	VEY	8-	ate/Tim	8	. ,	_	Receiv	ved By:			1	ate/Tir	ne	turnaround time clock wi start until any ambiguitie resolved. All samples	s are	
	25 1000				Preservative	+	•		•	4 1		ŷ i	1		7_	7	4	Please print clearly, legit and completely. Sample not be logged in and	ally as can	
PLEASE ANSWER	QUESTIONS ABOVE!				ontainer Type		-	+	4	9			2.	£.,				1		
				S		×	×	×	Ø	X	×	×								
			1	S		Ø	X	Ø	X	X	X	X	Ī	ī		ō	ō			
				S	1	X		X	X	X	X	X	H	H	H	片	H		\vdash	
	_		1	S	-					X	X		H	H	Η	片	H		-	
105	TP-SL5	8/12/22	1630	S	MH						X	X			금	님	님		-	
of	TP-SL4	8/12/22	1430	S	MH			X	M		M		무	님	片	님	片		-	
13	TP-SL3	8/12/22	1230	s	MH							X				무				
N	TP-SL2	8/12/22	1030	s	МН		\boxtimes	X	X	\boxtimes	\boxtimes	\boxtimes								
43810-01	TP-SL1	8/12/22	0830	S	MH	\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes						k -		
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	Time	Sample Matrix	Sampler's Initials	8260	EPH	Y.	TP	TPH	CT-1	H.						Sample Specific Comments		
Other Project Specific Requirements/Comme please send report to the following: hrameau@ataneconsulting.com psousa@ataneconsulting.com pmccarthy@ataneconsulting.com		ts/Detection Limits;			CT-PAH	ЕРН, СТ-РАН VPH	TPH-DRO	TPH-GRO	CT-15METALS (MINUS HG)	Ignitability, Reactivity						(Please specify balow)	Es			
	been Previously analyzed by Alpha	Due Date: 8/1		e: 12:00							SH	ivity						Preservation Lab to do	Ť	
Email: pmccarthy@	ataneconsulting.com										6							☐ Lab to do	8	
Fax:		Standard Standard	□ Ru	ish (ONLY IF PR	E-APPROVED,													☐ Done ☐ Not Needed	,	
Phone: (617)838-7	368	Turn-Aroun	d Time		1900													SAMPLE HANDLING Filtration	Å	
Charlestown, MA 0	2129	ALPHA Quote	#: 19562			ANALYSIS								DAMES OF LITTLE STATE	0					
Address: 56 Rolan	St.	Project Manag	er: Peter McC	Carthy		뭄			☐ No		-		Analytical Methods Required? P (Reasonable Confidence Protocols) Required?			
Client: ATANE Eng	ineers	Project #:				_				E CE							NFID	ENCE PROTOCO	LS	
Client Informati	on	Project Location	on: Greenwick	h, CT					_	2100	15.5.7	and the same		-	1000	9000	/A (1) (4)	out the second of the		
TEL: 508-898-9220	Mansfield, MA TEL: 508-822-9300 FAX: 508-822-3268	Project Name:	Central Midd	del School			gulato			ment	s/Rep	ort L	imits	Criteri	a		_			
A THE REAL PROPERTY.		l					ADEx				dd'i De	liverab	es		40.5 3	1,0200	-			
ALPHA	**	Project Info	rmation					norm	ation	⊠ E		verab	les		-	Client		PO#.		
	ALPHA			Report Information Data Deliverables						Park and	ALPHA Job #: L224(3810) Billing Information									

ANALYTICAL REPORT

Lab Number: L2246257

Client: ATANE Engineering PC

56 Roland Street, Suite 202

Boston, MA 02129

ATTN: Peter McCarthy Phone: (617) 778-7300

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified Report Date: 09/12/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257 **Report Date:** 09/12/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2246257-01	B-SL-01	SOIL	GREENWICH, CT	08/23/22 12:00	08/25/22
L2246257-02	B-SL-02	SOIL	GREENWICH, CT	08/23/22 15:30	08/25/22
L2246257-03	B-SL-03	SOIL	GREENWICH, CT	08/24/22 12:30	08/25/22
L2246257-04	B-SL-04	SOIL	GREENWICH, CT	08/25/22 08:45	08/25/22
L2246257-05	B-SL-05	SOIL	GREENWICH, CT	08/25/22 10:15	08/25/22
L2246257-06	B-SL-06	SOIL	GREENWICH, CT	08/25/22 11:45	08/25/22
L2246257-07	B-SL-07	SOIL	GREENWICH, CT	08/23/22 08:45	08/25/22

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

CT DEP Reasonable Confidence Protocols Laboratory Analysis QA/QC Certification Form

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed (including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents)?	YES
1a	Were the method specified preservation and holding time requirements met?	YES
1b	VPH & EPH Methods Only: Was the VPH or EPH Method conducted without significant modifications (see Section 11.3 of respective Methods)?	YES
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	YES
3	Were all samples received at an appropriate temperature (<6°C)?	YES
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	NO
5a	Were reporting limits specified or referenced on the chain-of-custody?	NO
5b	Were these reporting limits met?	N/A
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	NO
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	NO

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or question B is "No", the data package does not meet the requirements for "Reasonable Confidence".

L2246257

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/12/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Case Narrative (continued)

RCP Related Narratives

Report Submission

In reference to question 5a:

Reporting limits were not specified.

Volatile Organics

In reference to question 4:

L2246257-01 through -07: Initial Calibration Verification outside criteria: dichlorodifluoromethane (124%)

Semivolatile Organics

In reference to question 6:

At the client's request, all submitted samples were not analyzed for the full RCP list of constituents identified in the method specific analyte list presented in the RCP documents.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Wholl U. Univer Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 09/12/22

QC OUTLIER SUMMARY REPORT

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified

Report Date: 0

09/12/22

					Recovery/RP	D QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
Volatile Pet	troleum Hydrocarbons - Westboroug	ıh Lab						
VPH-18-2.1	B-SL-01	L2246257-01	2,5-Dibromotoluene-FID	Surrogate	132	70-130	-	potential high bias
VPH-18-2.1	B-SL-03	L2246257-03	2,5-Dibromotoluene-PID	Surrogate	138	70-130	-	potential high bias
VPH-18-2.1	B-SL-03	L2246257-03	2,5-Dibromotoluene-FID	Surrogate	147	70-130	-	potential high bias
VPH-18-2.1	B-SL-04	L2246257-04	2,5-Dibromotoluene-PID	Surrogate	140	70-130	-	potential high bias
VPH-18-2.1	B-SL-04	L2246257-04	2,5-Dibromotoluene-FID	Surrogate	149	70-130	-	potential high bias
VPH-18-2.1	B-SL-06	L2246257-06	2,5-Dibromotoluene-FID	Surrogate	134	70-130	-	potential high bias
i								

ORGANICS

VOLATILES

L2246257

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 09/12/22

Lab Number:

Lab ID: Date Collected: 08/23/22 12:00 L2246257-01

Client ID: Date Received: 08/25/22 B-SL-01 Field Prep: Sample Location: GREENWICH, CT Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 09/01/22 12:34

Analyst: JC 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
CT RCP Volatile Organics by EPA 5035 L	CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab									
Methylene chloride	ND		ug/kg	7.3		1				
1,1-Dichloroethane	ND		ug/kg	1.4		1				
Chloroform	ND		ug/kg	2.2		1				
Carbon tetrachloride	ND		ug/kg	1.4		1				
1,2-Dichloropropane	ND		ug/kg	1.4		1				
Dibromochloromethane	ND		ug/kg	1.4		1				
1,1,2-Trichloroethane	ND		ug/kg	1.4		1				
Tetrachloroethene	ND		ug/kg	0.73		1				
Chlorobenzene	ND		ug/kg	0.73		1				
Trichlorofluoromethane	ND		ug/kg	5.8		1				
1,2-Dichloroethane	ND		ug/kg	1.4		1				
1,1,1-Trichloroethane	ND		ug/kg	0.73		1				
Bromodichloromethane	ND		ug/kg	0.73		1				
trans-1,3-Dichloropropene	ND		ug/kg	1.4		1				
cis-1,3-Dichloropropene	ND		ug/kg	0.73		1				
1,3-Dichloropropene, Total	ND		ug/kg	0.73		1				
1,1-Dichloropropene	ND		ug/kg	0.73		1				
Bromoform	ND		ug/kg	5.8		1				
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.73		1				
Benzene	ND		ug/kg	0.73		1				
Toluene	ND		ug/kg	1.4		1				
Ethylbenzene	ND		ug/kg	1.4		1				
Chloromethane	ND		ug/kg	5.8		1				
Bromomethane	ND		ug/kg	2.9		1				
Vinyl chloride	ND		ug/kg	1.4		1				
Chloroethane	ND		ug/kg	2.9		1				
1,1-Dichloroethene	ND		ug/kg	1.4		1				
trans-1,2-Dichloroethene	ND		ug/kg	2.2		1				

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-01 Date Collected: 08/23/22 12:00

Client ID: B-SL-01 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

•

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EP	A 5035 Low - Westbord	ough Lab				
=						
Trichloroethene	ND		ug/kg	0.73		1
1,2-Dichlorobenzene	ND		ug/kg	2.9		1
1,3-Dichlorobenzene	ND		ug/kg	2.9		1
1,4-Dichlorobenzene	ND		ug/kg	2.9		1
Methyl tert butyl ether	ND		ug/kg	2.9		1
p/m-Xylene	ND		ug/kg	2.9		1
o-Xylene	ND		ug/kg	1.4		1
Xylenes, Total	ND		ug/kg	1.4		1
cis-1,2-Dichloroethene	ND		ug/kg	1.4		1
1,2-Dichloroethene, Total	ND		ug/kg	1.4		1
Dibromomethane	ND		ug/kg	2.9		1
1,2,3-Trichloropropane	ND		ug/kg	2.9		1
Styrene	ND		ug/kg	1.4		1
Dichlorodifluoromethane	ND		ug/kg	14		1
Acetone	ND		ug/kg	36		1
Carbon disulfide	ND		ug/kg	14		1
2-Butanone	ND		ug/kg	14		1
4-Methyl-2-pentanone	ND		ug/kg	14		1
2-Hexanone	ND		ug/kg	14		1
Acrylonitrile	ND		ug/kg	5.8		1
Tetrahydrofuran	ND		ug/kg	5.8		1
2,2-Dichloropropane	ND		ug/kg	2.9		1
1,2-Dibromoethane	ND		ug/kg	1.4		1
1,3-Dichloropropane	ND		ug/kg	2.9		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.73		1
Bromobenzene	ND		ug/kg	2.9		1
n-Butylbenzene	ND		ug/kg	1.4		1
sec-Butylbenzene	ND		ug/kg	1.4		1
tert-Butylbenzene	ND		ug/kg	2.9		1
o-Chlorotoluene	ND		ug/kg	2.9		1
p-Chlorotoluene	ND		ug/kg	2.9		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.4		1
Hexachlorobutadiene	ND		ug/kg	5.8		1
Isopropylbenzene	ND		ug/kg	1.4		1
p-Isopropyltoluene	ND		ug/kg	1.4		1
Naphthalene	ND		ug/kg	5.8		1
n-Propylbenzene	ND		ug/kg	1.4		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-01 Date Collected: 08/23/22 12:00

Client ID: B-SL-01 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 503	35 Low - Westbore	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	2.9		1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.9		1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.9		1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.9		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	7.3		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	5.8		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	96	70-130	

L2246257

09/12/22

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 08/23/22 15:30 L2246257-02

Client ID: B-SL-02

Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 09/01/22 13:01

Analyst: NLK 85% Percent Solids:

CT RCP Volatile Organics by EPA 5035 Low Methylene chloride	v - Westboro	ough Lab										
Methylene chloride	ND		CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab									
mount from the contract	ND		ug/kg	10		1						
1,1-Dichloroethane	ND		ug/kg	2.1		1						
Chloroform	ND		ug/kg	3.1		1						
Carbon tetrachloride	ND		ug/kg	2.1		1						
1,2-Dichloropropane	ND		ug/kg	2.1		1						
Dibromochloromethane	ND		ug/kg	2.1		1						
1,1,2-Trichloroethane	ND		ug/kg	2.1		1						
Tetrachloroethene	ND		ug/kg	1.0		1						
Chlorobenzene	ND		ug/kg	1.0		1						
Trichlorofluoromethane	ND		ug/kg	8.3		1						
1,2-Dichloroethane	ND		ug/kg	2.1		1						
1,1,1-Trichloroethane	ND		ug/kg	1.0		1						
Bromodichloromethane	ND		ug/kg	1.0		1						
trans-1,3-Dichloropropene	ND		ug/kg	2.1		1						
cis-1,3-Dichloropropene	ND		ug/kg	1.0		1						
1,3-Dichloropropene, Total	ND		ug/kg	1.0		1						
1,1-Dichloropropene	ND		ug/kg	1.0		1						
Bromoform	ND		ug/kg	8.3		1						
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0		1						
Benzene	ND		ug/kg	1.0		1						
Toluene	ND		ug/kg	2.1		1						
Ethylbenzene	ND		ug/kg	2.1		1						
Chloromethane	ND		ug/kg	8.3		1						
Bromomethane	ND		ug/kg	4.2		1						
Vinyl chloride	ND		ug/kg	2.1		1						
Chloroethane	ND		ug/kg	4.2		1						
1,1-Dichloroethene	ND		ug/kg	2.1		1						
trans-1,2-Dichloroethene	ND		ug/kg	3.1		1						

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-02 Date Collected: 08/23/22 15:30

Client ID: B-SL-02 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab									
Trichloroethene	ND		ug/kg	1.0		1			
1,2-Dichlorobenzene	ND		ug/kg	4.2		1			
1,3-Dichlorobenzene	ND		ug/kg	4.2		1			
1,4-Dichlorobenzene	ND		ug/kg	4.2		1			
Methyl tert butyl ether	ND		ug/kg	4.2		1			
p/m-Xylene	ND		ug/kg	4.2		1			
o-Xylene	ND		ug/kg	2.1		1			
Xylenes, Total	ND		ug/kg	2.1		1			
cis-1,2-Dichloroethene	ND		ug/kg	2.1		1			
1,2-Dichloroethene, Total	ND		ug/kg	2.1		1			
Dibromomethane	ND		ug/kg	4.2		1			
1,2,3-Trichloropropane	ND		ug/kg	4.2		1			
Styrene	ND		ug/kg	2.1		1			
Dichlorodifluoromethane	ND		ug/kg	21		1			
Acetone	ND		ug/kg	52		1			
Carbon disulfide	ND		ug/kg	21		1			
2-Butanone	ND		ug/kg	21		1			
4-Methyl-2-pentanone	ND		ug/kg	21		1			
2-Hexanone	ND		ug/kg	21		1			
Acrylonitrile	ND		ug/kg	8.3		1			
Tetrahydrofuran	ND		ug/kg	8.3		1			
2,2-Dichloropropane	ND		ug/kg	4.2		1			
1,2-Dibromoethane	ND		ug/kg	2.1		1			
1,3-Dichloropropane	ND		ug/kg	4.2		1			
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0		1			
Bromobenzene	ND		ug/kg	4.2		1			
n-Butylbenzene	ND		ug/kg	2.1		1			
sec-Butylbenzene	ND		ug/kg	2.1		1			
tert-Butylbenzene	ND		ug/kg	4.2		1			
o-Chlorotoluene	ND		ug/kg	4.2		1			
p-Chlorotoluene	ND		ug/kg	4.2		1			
1,2-Dibromo-3-chloropropane	ND		ug/kg	6.2		1			
Hexachlorobutadiene	ND		ug/kg	8.3		1			
Isopropylbenzene	ND		ug/kg	2.1		1			
p-Isopropyltoluene	ND		ug/kg	2.1		1			
Naphthalene	ND		ug/kg	8.3		1			
n-Propylbenzene	ND		ug/kg	2.1		1			
			- 0						

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-02 Date Collected: 08/23/22 15:30

Client ID: B-SL-02 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 503	5 Low - Westbore	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	4.2		1	
1,2,4-Trichlorobenzene	ND		ug/kg	4.2		1	
1,3,5-Trimethylbenzene	ND		ug/kg	4.2		1	
1,2,4-Trimethylbenzene	ND		ug/kg	4.2		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	10		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	8.3		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	96	70-130	

L2246257

09/12/22

Project Name: CENTRAL MIDDLE SCHOOL

L2246257-03

GREENWICH, CT

B-SL-03

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/24/22 12:30

Lab Number:

Report Date:

Date Received: 08/25/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 09/01/22 13:27

Analyst: NLK 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 Lc	w - Westbore	ough Lab				
Methylene chloride	ND		ug/kg	13		1
1,1-Dichloroethane	ND		ug/kg	2.7		1
Chloroform	ND		ug/kg	4.0		1
Carbon tetrachloride	ND		ug/kg	2.7		1
1,2-Dichloropropane	ND		ug/kg	2.7		1
Dibromochloromethane	ND		ug/kg	2.7		1
1,1,2-Trichloroethane	ND		ug/kg	2.7		1
Tetrachloroethene	ND		ug/kg	1.3		1
Chlorobenzene	ND		ug/kg	1.3		1
Trichlorofluoromethane	ND		ug/kg	11		1
1,2-Dichloroethane	ND		ug/kg	2.7		1
1,1,1-Trichloroethane	ND		ug/kg	1.3		1
Bromodichloromethane	ND		ug/kg	1.3		1
trans-1,3-Dichloropropene	ND		ug/kg	2.7		1
cis-1,3-Dichloropropene	ND		ug/kg	1.3		1
1,3-Dichloropropene, Total	ND		ug/kg	1.3		1
1,1-Dichloropropene	ND		ug/kg	1.3		1
Bromoform	ND		ug/kg	11		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.3		1
Benzene	ND		ug/kg	1.3		1
Toluene	ND		ug/kg	2.7		1
Ethylbenzene	ND		ug/kg	2.7		1
Chloromethane	ND		ug/kg	11		1
Bromomethane	ND		ug/kg	5.4		1
Vinyl chloride	ND		ug/kg	2.7		1
Chloroethane	ND		ug/kg	5.4		1
1,1-Dichloroethene	ND		ug/kg	2.7		1
trans-1,2-Dichloroethene	ND		ug/kg	4.0		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: 08/24/22 12:30

Client ID: B-SL-03 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab									
Trichloroethene	ND		ug/kg	1.3		1			
1,2-Dichlorobenzene	ND		ug/kg	5.4		1			
1,3-Dichlorobenzene	ND		ug/kg	5.4		1			
1,4-Dichlorobenzene	ND		ug/kg	5.4		1			
Methyl tert butyl ether	ND		ug/kg	5.4		1			
p/m-Xylene	ND		ug/kg	5.4		1			
o-Xylene	ND		ug/kg	2.7		1			
Xylenes, Total	ND		ug/kg	2.7		1			
cis-1,2-Dichloroethene	ND		ug/kg	2.7		1			
1,2-Dichloroethene, Total	ND		ug/kg	2.7		1			
Dibromomethane	ND		ug/kg	5.4		1			
1,2,3-Trichloropropane	ND		ug/kg	5.4		1			
Styrene	ND		ug/kg	2.7		1			
Dichlorodifluoromethane	ND		ug/kg	27		1			
Acetone	ND		ug/kg	67		1			
Carbon disulfide	ND		ug/kg	27		1			
2-Butanone	ND		ug/kg	27		1			
4-Methyl-2-pentanone	ND		ug/kg	27		1			
2-Hexanone	ND		ug/kg	27		1			
Acrylonitrile	ND		ug/kg	11		1			
Tetrahydrofuran	ND		ug/kg	11		1			
2,2-Dichloropropane	ND		ug/kg	5.4		1			
1,2-Dibromoethane	ND		ug/kg	2.7		1			
1,3-Dichloropropane	ND		ug/kg	5.4		1			
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.3		1			
Bromobenzene	ND		ug/kg	5.4		1			
n-Butylbenzene	ND		ug/kg	2.7		1			
sec-Butylbenzene	ND		ug/kg	2.7		1			
tert-Butylbenzene	ND		ug/kg	5.4		1			
o-Chlorotoluene	ND		ug/kg	5.4		1			
p-Chlorotoluene	ND		ug/kg	5.4		1			
1,2-Dibromo-3-chloropropane	ND		ug/kg	8.1		1			
Hexachlorobutadiene	ND		ug/kg	11		1			
Isopropylbenzene	ND		ug/kg	2.7		1			
p-Isopropyltoluene	ND		ug/kg	2.7		1			
Naphthalene	ND		ug/kg	11		1			
n-Propylbenzene	ND		ug/kg	2.7		1			

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: 08/24/22 12:30

Client ID: B-SL-03 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 503	5 Low - Westbore	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	5.4		1	
1,2,4-Trichlorobenzene	ND		ug/kg	5.4		1	
1,3,5-Trimethylbenzene	ND		ug/kg	5.4		1	
1,2,4-Trimethylbenzene	ND		ug/kg	5.4		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	13		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	11		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	98	70-130	

Project Name: CENTRAL MIDDLE SCHOOL

GREENWICH, CT

Lab Number:

L2246257

Project Number:

Not Specified

Report Date:

09/12/22

SAMPLE RESULTS

Date Collected:

08/25/22 08:45

Client ID:

L2246257-04

Date Received:

08/25/22

Sample Location:

Lab ID:

B-SL-04

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Analytical Method:

79,8260C

Analytical Date:

09/01/22 13:53

Analyst:

NLK

Percent Solids:

94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab								
Methylene chloride	ND		ug/kg	12		1		
1,1-Dichloroethane	ND		ug/kg	2.4		1		
Chloroform	ND		ug/kg	3.6		1		
Carbon tetrachloride	ND		ug/kg	2.4		1		
1,2-Dichloropropane	ND		ug/kg	2.4		1		
Dibromochloromethane	ND		ug/kg	2.4		1		
1,1,2-Trichloroethane	ND		ug/kg	2.4		1		
Tetrachloroethene	ND		ug/kg	1.2		1		
Chlorobenzene	ND		ug/kg	1.2		1		
Trichlorofluoromethane	ND		ug/kg	9.7		1		
1,2-Dichloroethane	ND		ug/kg	2.4		1		
1,1,1-Trichloroethane	ND		ug/kg	1.2		1		
Bromodichloromethane	ND		ug/kg	1.2		1		
trans-1,3-Dichloropropene	ND		ug/kg	2.4		1		
cis-1,3-Dichloropropene	ND		ug/kg	1.2		1		
1,3-Dichloropropene, Total	ND		ug/kg	1.2		1		
1,1-Dichloropropene	ND		ug/kg	1.2		1		
Bromoform	ND		ug/kg	9.7		1		
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2		1		
Benzene	ND		ug/kg	1.2		1		
Toluene	ND		ug/kg	2.4		1		
Ethylbenzene	ND		ug/kg	2.4		1		
Chloromethane	ND		ug/kg	9.7		1		
Bromomethane	ND		ug/kg	4.8		1		
Vinyl chloride	ND		ug/kg	2.4		1		
Chloroethane	ND		ug/kg	4.8		1		
1,1-Dichloroethene	ND		ug/kg	2.4		1		
trans-1,2-Dichloroethene	ND		ug/kg	3.6		1		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-04 Date Collected: 08/25/22 08:45

Client ID: B-SL-04 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab							
Triphloroothono	ND			1.2		1	
Trichloroethene			ug/kg			1	
1,2-Dichlorobenzene	ND ND		ug/kg	4.8		1	
1,3-Dichlorobenzene			ug/kg	4.8		1	
1,4-Dichlorobenzene	ND		ug/kg	4.8		1	
Methyl tert butyl ether	ND		ug/kg	4.8		1	
p/m-Xylene	ND		ug/kg	4.8			
o-Xylene	ND		ug/kg	2.4		1	
Xylenes, Total	ND		ug/kg	2.4		1	
cis-1,2-Dichloroethene	ND		ug/kg	2.4		1	
1,2-Dichloroethene, Total	ND		ug/kg	2.4		1	
Dibromomethane	ND		ug/kg	4.8		1	
1,2,3-Trichloropropane	ND		ug/kg	4.8		1	
Styrene	ND		ug/kg	2.4		1	
Dichlorodifluoromethane	ND		ug/kg	24		1	
Acetone	ND		ug/kg	61		1	
Carbon disulfide	ND		ug/kg	24		1	
2-Butanone	ND		ug/kg	24		1	
4-Methyl-2-pentanone	ND		ug/kg	24		1	
2-Hexanone	ND		ug/kg	24		1	
Acrylonitrile	ND		ug/kg	9.7		1	
Tetrahydrofuran	ND		ug/kg	9.7		1	
2,2-Dichloropropane	ND		ug/kg	4.8		1	
1,2-Dibromoethane	ND		ug/kg	2.4		1	
1,3-Dichloropropane	ND		ug/kg	4.8		1	
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.2		1	
Bromobenzene	ND		ug/kg	4.8		1	
n-Butylbenzene	ND		ug/kg	2.4		1	
sec-Butylbenzene	ND		ug/kg	2.4		1	
tert-Butylbenzene	ND		ug/kg	4.8		1	
o-Chlorotoluene	ND		ug/kg	4.8		1	
p-Chlorotoluene	ND		ug/kg	4.8		1	
1,2-Dibromo-3-chloropropane	ND		ug/kg	7.3		1	
Hexachlorobutadiene	ND		ug/kg	9.7		1	
Isopropylbenzene	ND		ug/kg	2.4		1	
p-Isopropyltoluene	ND		ug/kg	2.4		1	
Naphthalene	ND		ug/kg	9.7		1	
n-Propylbenzene	ND		ug/kg	2.4		1	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-04 Date Collected: 08/25/22 08:45

Client ID: B-SL-04 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	35 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	4.8		1	
1,2,4-Trichlorobenzene	ND		ug/kg	4.8		1	
1,3,5-Trimethylbenzene	ND		ug/kg	4.8		1	
1,2,4-Trimethylbenzene	ND		ug/kg	4.8		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	12		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	9.7		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	99	70-130	

L2246257

09/12/22

Project Name: CENTRAL MIDDLE SCHOOL

L2246257-05

GREENWICH, CT

B-SL-05

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/25/22 10:15

Lab Number:

Report Date:

Date Received: 08/25/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 09/01/22 14:20

Analyst: NLK 96% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 I	_ow - Westbore	ough Lab				
Methylene chloride	ND		ug/kg	6.2		1
1,1-Dichloroethane	ND		ug/kg	1.2		1
Chloroform	ND		ug/kg	1.8		1
Carbon tetrachloride	ND		ug/kg	1.2		1
1,2-Dichloropropane	ND		ug/kg	1.2		1
Dibromochloromethane	ND		ug/kg	1.2		1
1,1,2-Trichloroethane	ND		ug/kg	1.2		1
Tetrachloroethene	ND		ug/kg	0.62		1
Chlorobenzene	ND		ug/kg	0.62		1
Trichlorofluoromethane	ND		ug/kg	5.0		1
1,2-Dichloroethane	ND		ug/kg	1.2		1
1,1,1-Trichloroethane	ND		ug/kg	0.62		1
Bromodichloromethane	ND		ug/kg	0.62		1
trans-1,3-Dichloropropene	ND		ug/kg	1.2		1
cis-1,3-Dichloropropene	ND		ug/kg	0.62		1
1,3-Dichloropropene, Total	ND		ug/kg	0.62		1
1,1-Dichloropropene	ND		ug/kg	0.62		1
Bromoform	ND		ug/kg	5.0		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62		1
Benzene	ND		ug/kg	0.62		1
Toluene	ND		ug/kg	1.2		1
Ethylbenzene	ND		ug/kg	1.2		1
Chloromethane	ND		ug/kg	5.0		1
Bromomethane	ND		ug/kg	2.5		1
Vinyl chloride	ND		ug/kg	1.2		1
Chloroethane	ND		ug/kg	2.5		1
1,1-Dichloroethene	ND		ug/kg	1.2		1
trans-1,2-Dichloroethene	ND		ug/kg	1.8		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-05 Date Collected: 08/25/22 10:15

Client ID: B-SL-05 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab								
Trichloroethene	ND		ug/kg	0.62		1		
1,2-Dichlorobenzene	ND		ug/kg	2.5		1		
1,3-Dichlorobenzene	ND		ug/kg	2.5		1		
1,4-Dichlorobenzene	ND		ug/kg	2.5		1		
Methyl tert butyl ether	ND		ug/kg	2.5		1		
p/m-Xylene	ND		ug/kg	2.5		1		
o-Xylene	ND		ug/kg	1.2		1		
Xylenes, Total	ND		ug/kg	1.2		1		
cis-1,2-Dichloroethene	ND		ug/kg	1.2		1		
1,2-Dichloroethene, Total	ND		ug/kg	1.2		1		
Dibromomethane	ND		ug/kg	2.5		1		
1,2,3-Trichloropropane	ND		ug/kg	2.5		1		
Styrene	ND		ug/kg	1.2		1		
Dichlorodifluoromethane	ND		ug/kg	12		1		
Acetone	ND		ug/kg	31		1		
Carbon disulfide	ND		ug/kg	12		1		
2-Butanone	ND		ug/kg	12		1		
4-Methyl-2-pentanone	ND		ug/kg	12		1		
2-Hexanone	ND		ug/kg	12		1		
Acrylonitrile	ND		ug/kg	5.0		1		
Tetrahydrofuran	ND		ug/kg	5.0		1		
2,2-Dichloropropane	ND		ug/kg	2.5		1		
1,2-Dibromoethane	ND		ug/kg	1.2		1		
1,3-Dichloropropane	ND		ug/kg	2.5		1		
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.62		1		
Bromobenzene	ND		ug/kg	2.5		1		
n-Butylbenzene	ND		ug/kg	1.2		1		
sec-Butylbenzene	ND		ug/kg	1.2		1		
tert-Butylbenzene	ND		ug/kg	2.5		1		
o-Chlorotoluene	ND		ug/kg	2.5		1		
p-Chlorotoluene	ND		ug/kg	2.5		1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7		1		
Hexachlorobutadiene	ND		ug/kg	5.0		1		
Isopropylbenzene	ND		ug/kg	1.2		1		
p-Isopropyltoluene	ND		ug/kg	1.2		1		
Naphthalene	ND		ug/kg	5.0		1		
n-Propylbenzene	ND		ug/kg	1.2		1		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

L2246257-05

Date Collected: 08/25/22 10:15

Client ID: B-SL-05 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	035 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	2.5		1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.5		1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.5		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.2		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	98	70-130	

L2246257

09/12/22

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

L2246257-06

GREENWICH, CT

B-SL-06

SAMPLE RESULTS

Date Collected: 08/25/22 11:45

Date Received: 08/25/22

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 09/01/22 14:46

Analyst: **KJD** 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 Lo	w - Westbore	ough Lab				
Methylene chloride	ND		ug/kg	4.0		1
1,1-Dichloroethane	ND		ug/kg	0.80		1
Chloroform	ND		ug/kg	1.2		1
Carbon tetrachloride	ND		ug/kg	0.80		1
1,2-Dichloropropane	ND		ug/kg	0.80		1
Dibromochloromethane	ND		ug/kg	0.80		1
1,1,2-Trichloroethane	ND		ug/kg	0.80		1
Tetrachloroethene	ND		ug/kg	0.40		1
Chlorobenzene	ND		ug/kg	0.40		1
Trichlorofluoromethane	ND		ug/kg	3.2		1
1,2-Dichloroethane	ND		ug/kg	0.80		1
1,1,1-Trichloroethane	ND		ug/kg	0.40		1
Bromodichloromethane	ND		ug/kg	0.40		1
trans-1,3-Dichloropropene	ND		ug/kg	0.80		1
cis-1,3-Dichloropropene	ND		ug/kg	0.40		1
1,3-Dichloropropene, Total	ND		ug/kg	0.40		1
1,1-Dichloropropene	ND		ug/kg	0.40		1
Bromoform	ND		ug/kg	3.2		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.40		1
Benzene	ND		ug/kg	0.40		1
Toluene	ND		ug/kg	0.80		1
Ethylbenzene	ND		ug/kg	0.80		1
Chloromethane	ND		ug/kg	3.2		1
Bromomethane	ND		ug/kg	1.6		1
Vinyl chloride	ND		ug/kg	0.80		1
Chloroethane	ND		ug/kg	1.6		1
1,1-Dichloroethene	ND		ug/kg	0.80		1
trans-1,2-Dichloroethene	ND		ug/kg	1.2		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06 Date Collected: 08/25/22 11:45

Client ID: B-SL-06 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP Volatile Organics by EPA 5035 Lo	w - Westbor	ough Lab				
Trichloroethene	ND		ug/kg	0.40		1
1,2-Dichlorobenzene	ND		ug/kg	1.6		1
1,3-Dichlorobenzene	ND		ug/kg	1.6		1
	ND		ug/kg	1.6		1
1,4-Dichlorobenzene			ug/kg			
Methyl tert butyl ether	ND		ug/kg	1.6		1
p/m-Xylene	ND		ug/kg	1.6		1
o-Xylene	ND		ug/kg	0.80		1
Xylenes, Total	ND		ug/kg	0.80		1
cis-1,2-Dichloroethene	ND		ug/kg	0.80		1
1,2-Dichloroethene, Total	ND		ug/kg	0.80		1
Dibromomethane	ND		ug/kg	1.6		1
1,2,3-Trichloropropane	ND		ug/kg	1.6		1
Styrene	ND		ug/kg	0.80		1
Dichlorodifluoromethane	ND		ug/kg	8.0		1
Acetone	ND		ug/kg	20		1
Carbon disulfide	ND		ug/kg	8.0		1
2-Butanone	ND		ug/kg	8.0		1
4-Methyl-2-pentanone	ND		ug/kg	8.0		1
2-Hexanone	ND		ug/kg	8.0		1
Acrylonitrile	ND		ug/kg	3.2		1
Tetrahydrofuran	ND		ug/kg	3.2		1
2,2-Dichloropropane	ND		ug/kg	1.6		1
1,2-Dibromoethane	ND		ug/kg	0.80		1
1,3-Dichloropropane	ND		ug/kg	1.6		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.40		1
Bromobenzene	ND		ug/kg	1.6		1
n-Butylbenzene	ND		ug/kg	0.80		1
sec-Butylbenzene	ND		ug/kg	0.80		1
tert-Butylbenzene	ND		ug/kg	1.6		1
o-Chlorotoluene	ND		ug/kg	1.6		1
p-Chlorotoluene	ND		ug/kg	1.6		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.4		1
Hexachlorobutadiene	ND		ug/kg	3.2		1
Isopropylbenzene	ND		ug/kg	0.80		1
p-Isopropyltoluene	ND		ug/kg	0.80		1
Naphthalene	ND		ug/kg	3.2		1
n-Propylbenzene	ND		ug/kg	0.80		1
(A)			~9′′′9			·

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06 Date Collected: 08/25/22 11:45

Client ID: B-SL-06 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	35 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	1.6		1	
1,2,4-Trichlorobenzene	ND		ug/kg	1.6		1	
1,3,5-Trimethylbenzene	ND		ug/kg	1.6		1	
1,2,4-Trimethylbenzene	ND		ug/kg	1.6		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.0		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	3.2		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	101	70-130	

L2246257

09/12/22

Project Name: CENTRAL MIDDLE SCHOOL

L2246257-07

GREENWICH, CT

B-SL-07

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/23/22 08:45

D + 0 || + 1 | 00/00/00 00 AF

Lab Number:

Report Date:

Date Received: 08/25/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil

Analytical Method: 79,8260C Analytical Date: 09/01/22 15:13

Analyst: KJD Percent Solids: 85%

CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab Magking a 4.9 "." 1 Methylene chloride ND ug/kg 0.98 "." 1 1,1-Dichloroethane ND ug/kg 0.98 "." 1 Chloroform ND ug/kg 0.98 "." 1 Carbon tetrachloride ND ug/kg 0.98 "." 1 L2-Dichloropopane ND ug/kg 0.98 "." 1 Dibromochloromethane ND ug/kg 0.98 "." 1 1,1,2-Trichloroethane ND ug/kg 0.98 "." 1 1,1,2-Trichloroethane ND ug/kg 0.98 "." 1 1,1-Trichloroethane ND ug/kg 0.49 "." 1 1,1-Trichloroethane ND ug/kg 0.49 "." 1 1,1-Trichloroethane ND ug/kg 0.49 "." 1 1,1-Trichloroethane ND ug/kg 0.49 "." 1 1,1-Trichloroethane ND ug/kg 0.49 "." 1 1,1-S-Dic	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/kg 0.98 1 Chloroform ND ug/kg 1.5 1 Carbon eterachloride ND ug/kg 0.98 1 1,2-Dichloropropane ND ug/kg 0.98 1 Dibromochloromethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 Tetrachloroethene ND ug/kg 0.49 1 Chlorobenzene ND ug/kg 0.49 1 Trichlorofluoromethane ND ug/kg 0.98 1 1,1-1-Trichloroethane ND ug/kg 0.98 1 1,2-Dichloroethane ND ug/kg 0.98 1 1,1-1-Trichloroethane ND ug/kg 0.98 1 Bromodichloromethane ND ug/kg 0.98	CT RCP Volatile Organics by EPA 503	5 Low - Westbord	ough Lab				
1,1-Dichloroethane ND ug/kg 0.98 1 Chloroform ND ug/kg 1.5 1 Carbon tetrachloride ND ug/kg 0.98 1 1,2-Dichloropropane ND ug/kg 0.98 1 Dibromochloromethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.49 1 Chlorobenzene ND ug/kg 0.49 1 Trichlorofubroromethane ND ug/kg 0.98 1 1,1-1-Trichloroethane ND ug/kg 0.98 1 Bromodichloromethane ND ug/kg 0.98 1 trans-1,3-Dichloropropene ND ug/kg 0.49 1 trans-1,3-Dichloropropene ND ug/kg 0.49	Methylene chloride	ND		ug/kg	4.9		1
Chloroform ND ug/kg 1.5 1 Carbon tetrachloride ND ug/kg 0.98 1 1,2-Dichloropropane ND ug/kg 0.98 1 Dibromochloromethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 Chlorobenzene ND ug/kg 0.49 1 Trichloroffluoromethane ND ug/kg 3.9 1 1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 Intense 1,3-Dichloropropene ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 1,1-Dichloropropene, Total ND ug/kg 0.49	1,1-Dichloroethane	ND			0.98		1
Carbon tetrachloride ND ug/kg 0.98 1 1,2-Dichloropropane ND ug/kg 0.98 1 Dibromochloromethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 Chlorobenzene ND ug/kg 0.49 1 Trichlorofluoromethane ND ug/kg 3.9 1 1,1-Trichloroethane ND ug/kg 0.98 1 1,1-Trichloroethane ND ug/kg 0.99 1 Bromodichloromethane ND ug/kg 0.99 1 Itaris-1,3-Dichloropropene ND ug/kg 0.99 1 Itaris-1,3-Dichloropropene ND ug/kg 0.49 1 In-Juli-Dichloropropene ND ug/kg 0.	Chloroform	ND		ug/kg	1.5		1
Dibromochloromethane ND ug/kg 0.98 1 1,1,2-Trichloroethane ND ug/kg 0.98 1 Tetrachloroethane ND ug/kg 0.49 1 Chlorobenzene ND ug/kg 0.49 1 Trichlorofluoromethane ND ug/kg 3.9 1 1,2-Dichloropethane ND ug/kg 0.98 1 1,1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.98 1 1,1-1,3-Dichloropropene ND ug/kg 0.99 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.98	Carbon tetrachloride	ND			0.98		1
1,1,2-Trichloroethane ND ug/kg 0.98 1 Tetrachloroethene ND ug/kg 0.49 1 Chlorobenzene ND ug/kg 0.49 1 Trichlorofluoromethane ND ug/kg 3.9 1 1,2-Dichloroethane ND ug/kg 0.98 1 1,1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 Bromodorm ND ug/kg 0.49 1 1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 1,1-1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.98	1,2-Dichloropropane	ND		ug/kg	0.98		1
Tetrachloroethene ND ug/kg 0.49 1 Chlorobenzene ND ug/kg 0.49 1 Trichlorofluoromethane ND ug/kg 3.9 1 1,2-Dichloroethane ND ug/kg 0.98 1 1,1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 Bromodichloropropene ND ug/kg 0.49 1 trans-1,3-Dichloropropene ND ug/kg 0.49 1 cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 Bromoform ND ug/kg 0.49 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.98 <	Dibromochloromethane	ND		ug/kg	0.98		1
Chlorobenzene ND ug/kg 0.49 1 Trichlorofluoromethane ND ug/kg 3.9 1 1,2-Dichloroethane ND ug/kg 0.98 1 1,1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 trans-1,3-Dichloropropene ND ug/kg 0.98 1 cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 0.49 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98	1,1,2-Trichloroethane	ND		ug/kg	0.98		1
Trichlorofluoromethane ND ug/kg 3.9 - 1 1,2-Dichloroethane ND ug/kg 0.98 - 1 1,1,1-Trichloroethane ND ug/kg 0.49 - 1 Bromodichloromethane ND ug/kg 0.49 - 1 Bromodichloropropene ND ug/kg 0.98 - 1 trans-1,3-Dichloropropene ND ug/kg 0.49 - 1 sis-1,3-Dichloropropene ND ug/kg 0.49 - 1 1,3-Dichloropropene ND ug/kg 0.49 - 1 1,1-Dichloropropene ND ug/kg 0.49 - 1 1,1-Dichloropropene ND ug/kg 0.49 - 1 Bromoform ND ug/kg 0.49 - 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.98 - 1 Ethylbenzene ND ug/kg 0.98 -	Tetrachloroethene	ND		ug/kg	0.49		1
1,2-Dichloroethane ND ug/kg 0.98 1 1,1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 trans-1,3-Dichloropropene ND ug/kg 0.49 1 cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 8 promoform ND ug/kg 0.49 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 8 promoform ND ug/kg 0.49 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 8 promoform ND ug/kg 0.98 1 1 cluene ND ug/kg 0.98 1 2 chylocheme ND ug/kg 3.9	Chlorobenzene	ND		ug/kg	0.49		1
1,1,1-Trichloroethane ND ug/kg 0.49 1 Bromodichloromethane ND ug/kg 0.49 1 trans-1,3-Dichloropropene ND ug/kg 0.98 1 cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 0.49 1 Bromoform ND ug/kg 0.49 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.98 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 0.98 1 <	Trichlorofluoromethane	ND		ug/kg	3.9		1
Bromodichloromethane ND ug/kg 0.49 1 trans-1,3-Dichloropropene ND ug/kg 0.98 1 cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 0.49 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Chloroethane ND ug/kg 0.98 1 Chloroethane ND ug/kg 0.98 1	1,2-Dichloroethane	ND		ug/kg	0.98		1
trans-1,3-Dichloropropene ND ug/kg 0.98 1 cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 3.9 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Eenzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.49 1 Ethylbenzene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 2.0 1 Chloroethane ND ug/kg 0.98 1 In-I-Dichloroethene ND ug/kg 0.98 1	1,1,1-Trichloroethane	ND		ug/kg	0.49		1
cis-1,3-Dichloropropene ND ug/kg 0.49 1 1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 3.9 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 Chloroethene ND ug/kg 0.98 1	Bromodichloromethane	ND		ug/kg	0.49		1
1,3-Dichloropropene, Total ND ug/kg 0.49 1 1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 3.9 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	trans-1,3-Dichloropropene	ND		ug/kg	0.98		1
1,1-Dichloropropene ND ug/kg 0.49 1 Bromoform ND ug/kg 3.9 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Sromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	cis-1,3-Dichloropropene	ND		ug/kg	0.49		1
Bromoform ND ug/kg 3.9 1 1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	1,3-Dichloropropene, Total	ND		ug/kg	0.49		1
1,1,2,2-Tetrachloroethane ND ug/kg 0.49 1 Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	1,1-Dichloropropene	ND		ug/kg	0.49		1
Benzene ND ug/kg 0.49 1 Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	Bromoform	ND		ug/kg	3.9		1
Toluene ND ug/kg 0.98 1 Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49		1
Ethylbenzene ND ug/kg 0.98 1 Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	Benzene	ND		ug/kg	0.49		1
Chloromethane ND ug/kg 3.9 1 Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	Toluene	ND		ug/kg	0.98		1
Bromomethane ND ug/kg 2.0 1 Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	Ethylbenzene	ND		ug/kg	0.98		1
Vinyl chloride ND ug/kg 0.98 1 Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	Chloromethane	ND		ug/kg	3.9		1
Chloroethane ND ug/kg 2.0 1 1,1-Dichloroethene ND ug/kg 0.98 1	Bromomethane	ND		ug/kg	2.0		1
1,1-Dichloroethene ND ug/kg 0.98 1	Vinyl chloride	ND		ug/kg	0.98		1
	Chloroethane	ND		ug/kg	2.0		1
trans-1,2-Dichloroethene ND ug/kg 1.5 1	1,1-Dichloroethene	ND		ug/kg	0.98		1
	trans-1,2-Dichloroethene	ND		ug/kg	1.5		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-07 Date Collected: 08/23/22 08:45

Client ID: B-SL-07 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab Trichloroetheren ND ug/kg 0.49 - 1 1,2-Dichlorobenzene ND ug/kg 2.0 - 1 1,3-Dichlorobenzene ND ug/kg 2.0 - 1 1,4-Dichlorobenzene ND ug/kg 2.0 - 1 Methyl tert butyl ether ND ug/kg 2.0 - 1 Methyl tert butyl ether ND ug/kg 2.0 - 1 C-Xylene ND ug/kg 2.0 - 1 C-Xylene ND ug/kg 2.0 - 1 C-Xylene ND ug/kg 0.98 - 1 C-Xylene ND ug/kg 0.98 - 1 Ug/kg 0.98 - 1 1 1,2-Dichloroethene, Total ND ug/kg 0.98 - 1 1,2-Dichloroethene, Total ND ug/kg 0.98	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2-Dichlorobenzane ND	CT RCP Volatile Organics by EPA 503	5 Low - Westbord	ough Lab				
1,2-Dichlorobenzene ND ug/kg 2.0 - 1 1,3-Dichlorobenzene ND ug/kg 2.0 - 1 1,4-Dichlorobenzene ND ug/kg 0.98 - 1 1,2-Dichlorobene ND ug/kg 0.98 - 1 1,2-Dichloropene ND ug/kg 0.98 -							
1,3-Dichlorobenzene ND ugkg 2.0 - 1 1,4-Dichlorobenzene ND ugkg 2.0 - 1 Methyl sert bukyl ether ND ugkg 2.0 - 1 prim Xylene ND ugkg 2.0 - 1 prim Xylene ND ugkg 0.98 - 1 xylenes, Total ND ugkg 0.98 - 1 Lis-1,2-Dichlorobethene, Total ND ugkg 0.98 - 1 Dibromomethane ND ugkg 0.98 - 1 L,2-3-trichloropropane ND ugkg 2.0 - 1 Styrene ND ugkg 9.8 - 1 Dichorodifluoromethane ND ugkg 9.8 - 1 Actona ND ugkg 9.8 - 1 Carbon disulfide ND ugkg 9.8 - 1 2-Butanone<							
1.4-Dichlorobenzene							
Methyl tent butyl ether ND ug/kg 2.0 - 1 p/m-Xylene ND ug/kg 2.0 - 1 o-Xylene ND ug/kg 0.98 - 1 Xylenes, Total ND ug/kg 0.98 - 1 1.2-Dichloroethene ND ug/kg 0.98 - 1 1.2-Dichloroethene, Total ND ug/kg 0.98 - 1 1.2-Dichloroethene, Total ND ug/kg 2.0 - 1 1.2-S-Trichloropropane ND ug/kg 2.0 - 1 1.2-S-Trichloropropane ND ug/kg 2.0 - 1 Styrene ND ug/kg 9.8 - 1 Actonidiluoromethane ND ug/kg 9.8 - 1 Actonidiluoromethane ND ug/kg 9.8 - 1 Actonidiluoromethane ND ug/kg 9.8 - 1							
p/m-Xylene ND ug/kg 2.0 1 c-Xylene ND ug/kg 0.98 1 Xylenes, Total ND ug/kg 0.98 1 cis-1,2-Dichloroethene ND ug/kg 0.98 1 L2-Dichloroethene, Total ND ug/kg 0.98 1 Dibromomethane ND ug/kg 2.0 1 1,2,3-Trichloropropane ND ug/kg 2.0 1 Syrene ND ug/kg 0.98 1 Syrene ND ug/kg 0.98 1 Acetone ND ug/kg 0.98 1 Carbon disulfide ND ug/kg 9.8 1 Carbon disulfide ND ug/kg 9.8 1 Carbon disulfide ND ug/kg 9.8 1 Carbon disulfid							
o-Xylene ND ug/kg 0.98 1 Xylenes, Total ND ug/kg 0.98 1 cis-1,2-Dichloroethene ND ug/kg 0.98 1 1,2-Dichloroethene, Total ND ug/kg 0.98 1 1,2-Dichloroethene, Total ND ug/kg 0.98 1 1,2-Dichloroethene ND ug/kg 2.0 1 1,2-S-Trichloropropane ND ug/kg 2.0 1 Styrene ND ug/kg 9.8 1 Acetone ND ug/kg 9.8 1 Acetone ND ug/kg 9.8 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 <	•						
Xylenes, Total ND ug/kg 0.98 1 cis-1,2-Dichloroethene ND ug/kg 0.98 1 1,2-Dichloroethene, Total ND ug/kg 0.98 1 Dibromoethane ND ug/kg 2.0 1 1,2-3-Trichloropropane ND ug/kg 2.0 1 Styrene ND ug/kg 2.0 1 Dichlorodifluoromethane ND ug/kg 9.8 1 Actione ND ug/kg 9.8 1 Actione ND ug/kg 9.8 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentane ND ug/kg 9.8 1 4-Hexanone ND ug/kg 3.9 1 4-Hexa	<u> </u>						
cis-1,2-Dichloroethene ND ug/kg 0.98 1 1,2-Dichloroethene, Total ND ug/kg 0.98 1 Dibromoethane ND ug/kg 2.0 1 1,2,3-Trichloropropane ND ug/kg 2.0 1 Styrene ND ug/kg 0.98 1 Dichlorodffloromethane ND ug/kg 9.8 1 Acetone ND ug/kg 9.8 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 3.9 1 2-Hexanone ND ug/kg 3.9 1 4-Eybi	<u> </u>						
1,2-Dichloroethene, Total ND ug/kg 0.98 1 Dibromomethane ND ug/kg 2.0 1 1,2,3-Trichloropropane ND ug/kg 2.0 1 Styrene ND ug/kg 9.8 1 Dichlorodifluoromethane ND ug/kg 9.8 1 Acetone ND ug/kg 9.8 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 3.9 1 4-Eyanone ND ug/kg 3.9 1 4-Eyanone	·						
Dibromomethane ND ug/kg 2.0 1 1,2,3-Trichloropropane ND ug/kg 2.0 1 Styrene ND ug/kg 0.98 1 Dichlorodifluoromethane ND ug/kg 9.8 1 Acetone ND ug/kg 2.4 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 9.8 1 4-Hexanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 4-Expandence ND ug/kg 9.8 1 1-Expandence N							
1,2,3-Trichloropropane ND ug/kg 2.0 1 Styrene ND ug/kg 0.98 1 Dichlorodiffluoromethane ND ug/kg 9.8 1 Acetone ND ug/kg 24 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 3.9 1 2-Hexanone ND ug/kg 3.9 1 <							
Styrene ND ug/kg 0.98 1 Dichlorodiffluoromethane ND ug/kg 9.8 1 Acetone ND ug/kg 24 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 3.9 1 2-Hexanone ND ug/kg 3.9 1 1-2-Dibformorbane ND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Dichlorodifluoromethane ND ug/kg 9.8 1 Acetone ND ug/kg 24 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 4-Elexanone ND ug/kg 3.9 1 1-Eletratoricitie ND ug/kg 2.0 1 1,2-Dibromoehtane ND ug/kg 2.0 1				ug/kg			
Acetore ND ug/kg 24 1 Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 Acrylonitrile ND ug/kg 3.9 1 Acrylonitrile ND ug/kg 3.9 1 1-crantification ND ug/kg 2.0 1 2-2-Dichloropropane ND ug/kg 0.98 1 1,1-1,2-Tetrachloropethane ND ug/kg 0.49 1 1,1-1,2-Tetrachloropethane ND ug/kg 0.98 1 Bromobenzene ND ug/kg 0.98 1							
Carbon disulfide ND ug/kg 9.8 1 2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 Acrylonitrile ND ug/kg 3.9 1 Tetrahydrofuran ND ug/kg 3.9 1 1,2-Dibloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 0.98 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.98 1 n-Butylbenzene ND ug/kg 0.98 1 n-Butylbenzene ND ug/kg 0.98 1	Dichlorodifluoromethane	ND		ug/kg	9.8		1
2-Butanone ND ug/kg 9.8 1 4-Methyl-2-pentanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 Acrylonitrile ND ug/kg 3.9 1 Tetrahydrofuran ND ug/kg 3.9 1 1,2-Dibloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 0.98 1 1,3-Dichloropropane ND ug/kg 0.49 1 1,1-1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 0.98 1 n-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 <t< td=""><td>Acetone</td><td>ND</td><td></td><td>ug/kg</td><td>24</td><td></td><td>1</td></t<>	Acetone	ND		ug/kg	24		1
4-Methyl-2-pentanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 9.8 1 2-Hexanone ND ug/kg 3.9 1 Acrylonitrile ND ug/kg 3.9 1 Tetrahydrofuran ND ug/kg 2.0 1 2,2-Dichloropropane ND ug/kg 0.98 1 1,2-Dibromoethane ND ug/kg 0.98 1 1,3-Dichloropropane ND ug/kg 0.49 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.98 1 Bromobenzene ND ug/kg 0.98 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1	Carbon disulfide	ND		ug/kg	9.8		1
2-Hexanone ND	2-Butanone	ND		ug/kg			1
Acrylonitrile ND ug/kg 3.9 1 Tetrahydrofuran ND ug/kg 3.9 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 0.98 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.9 1	4-Methyl-2-pentanone	ND		ug/kg	9.8		1
Tetrahydrofuran ND ug/kg 3.9 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 0.98 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 ec-Butylbenzene ND ug/kg 2.0 1 <t< td=""><td>2-Hexanone</td><td>ND</td><td></td><td>ug/kg</td><td>9.8</td><td></td><td>1</td></t<>	2-Hexanone	ND		ug/kg	9.8		1
2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 0.98 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 0.98 1 Isopropylbenzene ND ug/kg 0.98 1 <td>Acrylonitrile</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>3.9</td> <td></td> <td>1</td>	Acrylonitrile	ND		ug/kg	3.9		1
1,2-Dibromoethane ND ug/kg 0.98 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	Tetrahydrofuran	ND		ug/kg	3.9		1
1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 2.0 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	2,2-Dichloropropane	ND		ug/kg	2.0		1
1,1,1,2-Tetrachloroethane ND ug/kg 0.49 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	1,2-Dibromoethane	ND		ug/kg	0.98		1
Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	1,3-Dichloropropane	ND		ug/kg	2.0		1
n-Butylbenzene ND ug/kg 0.98 1 sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.9 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	1,1,1,2-Tetrachloroethane	ND		ug/kg	0.49		1
sec-Butylbenzene ND ug/kg 0.98 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	Bromobenzene	ND		ug/kg	2.0		1
tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	n-Butylbenzene	ND		ug/kg	0.98		1
o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	sec-Butylbenzene	ND		ug/kg	0.98		1
p-Chlorotoluene ND ug/kg 2.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	tert-Butylbenzene	ND		ug/kg	2.0		1
1,2-Dibromo-3-chloropropane ND ug/kg 2.9 1 Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	o-Chlorotoluene	ND		ug/kg	2.0		1
Hexachlorobutadiene ND ug/kg 3.9 1 Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	p-Chlorotoluene	ND		ug/kg	2.0		1
Isopropylbenzene ND ug/kg 0.98 1 p-Isopropyltoluene ND ug/kg 0.98 1	1,2-Dibromo-3-chloropropane	ND		ug/kg	2.9		1
p-Isopropyltoluene ND ug/kg 0.98 1	Hexachlorobutadiene	ND		ug/kg	3.9		1
	Isopropylbenzene	ND		ug/kg	0.98		1
Naphthalene ND ug/kg 3.9 1	p-Isopropyltoluene	ND		ug/kg	0.98		1
ugring 0.0	Naphthalene	ND		ug/kg	3.9		1
n-Propylbenzene ND ug/kg 0.98 1	n-Propylbenzene	ND		ug/kg	0.98		1

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

L2246257-07

Date Collected: 08/23/22 08:45

Client ID: B-SL-07 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP Volatile Organics by EPA 50	035 Low - Westbor	ough Lab					
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.9		1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	3.9		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	101	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8260C Analytical Date: 09/01/22 09:02

Analyst: JC

Parameter	Result	Qualifier Units	RL	MDL	
CT RCP Volatile Organics by EPA WG1682649-5	A 5035 Low -	Westborough Lab	for sample(s):	01-07 Batch:	
Methylene chloride	ND	ug/kg	5.0		
1,1-Dichloroethane	ND	ug/kg	1.0		
Chloroform	ND	ug/kg	1.5		
Carbon tetrachloride	ND	ug/kg	1.0		
1,2-Dichloropropane	ND	ug/kg	1.0		
Dibromochloromethane	ND	ug/kg	1.0		
1,1,2-Trichloroethane	ND	ug/kg	1.0		
Tetrachloroethene	ND	ug/kg	0.50		
Chlorobenzene	ND	ug/kg	0.50		
Trichlorofluoromethane	ND	ug/kg	4.0		
1,2-Dichloroethane	ND	ug/kg	1.0		
1,1,1-Trichloroethane	ND	ug/kg	0.50		
Bromodichloromethane	ND	ug/kg	0.50		
trans-1,3-Dichloropropene	ND	ug/kg	1.0		
cis-1,3-Dichloropropene	ND	ug/kg	0.50		
1,3-Dichloropropene, Total	ND	ug/kg	0.50		
1,1-Dichloropropene	ND	ug/kg	0.50		
Bromoform	ND	ug/kg	4.0		
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50		
Benzene	ND	ug/kg	0.50		
Toluene	ND	ug/kg	1.0		
Ethylbenzene	ND	ug/kg	1.0		
Chloromethane	ND	ug/kg	4.0		
Bromomethane	ND	ug/kg	2.0		
Vinyl chloride	ND	ug/kg	1.0		
Chloroethane	ND	ug/kg	2.0		
1,1-Dichloroethene	ND	ug/kg	1.0		
trans-1,2-Dichloroethene	ND	ug/kg	1.5		
Trichloroethene	ND	ug/kg	0.50		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8260C Analytical Date: 09/01/22 09:02

Analyst: JC

Parameter	Result	Qualifier Units	RL	MDL	
CT RCP Volatile Organics by EPA 5 NG1682649-5	5035 Low - \	Vestborough Lab for	sample(s):	01-07 Batch:	
1,2-Dichlorobenzene	ND	ug/kg	2.0		
1,3-Dichlorobenzene	ND	ug/kg	2.0		
1,4-Dichlorobenzene	ND	ug/kg	2.0		
Methyl tert butyl ether	ND	ug/kg	2.0		
p/m-Xylene	ND	ug/kg	2.0		
o-Xylene	ND	ug/kg	1.0		
Xylenes, Total	ND	ug/kg	1.0		
cis-1,2-Dichloroethene	ND	ug/kg	1.0		
1,2-Dichloroethene, Total	ND	ug/kg	1.0		
Dibromomethane	ND	ug/kg	2.0		
1,2,3-Trichloropropane	ND	ug/kg	2.0		
Styrene	ND	ug/kg	1.0		
Dichlorodifluoromethane	ND	ug/kg	10		
Acetone	ND	ug/kg	25		
Carbon disulfide	ND	ug/kg	10		
2-Butanone	ND	ug/kg	10		
4-Methyl-2-pentanone	ND	ug/kg	10		
2-Hexanone	ND	ug/kg	10		
Acrylonitrile	ND	ug/kg	4.0		
Tetrahydrofuran	ND	ug/kg	4.0		
2,2-Dichloropropane	ND	ug/kg	2.0		
1,2-Dibromoethane	ND	ug/kg	1.0		
1,3-Dichloropropane	ND	ug/kg	2.0		
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50		
Bromobenzene	ND	ug/kg	2.0		
n-Butylbenzene	ND	ug/kg	1.0		
sec-Butylbenzene	ND	ug/kg	1.0		
tert-Butylbenzene	ND	ug/kg	2.0		
o-Chlorotoluene	ND	ug/kg	2.0		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8260C Analytical Date: 09/01/22 09:02

Analyst: JC

Parameter	Result	Qualifier Units	RL	MDL	
CT RCP Volatile Organics by EP WG1682649-5	A 5035 Low - V	Vestborough Lab	for sample(s):	01-07 Batch:	
p-Chlorotoluene	ND	ug/kg	2.0		
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0		
Hexachlorobutadiene	ND	ug/kg	4.0		
Isopropylbenzene	ND	ug/kg	1.0		
p-Isopropyltoluene	ND	ug/kg	1.0		
Naphthalene	ND	ug/kg	4.0		
n-Propylbenzene	ND	ug/kg	1.0		
1,2,3-Trichlorobenzene	ND	ug/kg	2.0		
1,2,4-Trichlorobenzene	ND	ug/kg	2.0		
1,3,5-Trimethylbenzene	ND	ug/kg	2.0		
1,2,4-Trimethylbenzene	ND	ug/kg	2.0		
trans-1,4-Dichloro-2-butene	ND	ug/kg	5.0		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/kg	4.0		

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	80	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	89	70-130

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
CT RCP Volatile Organics by EPA 5035 Low	- Westborough	Lab Associat	ed sample(s): 01	-07 Batch:	WG1682649-3	WG1682649	9-4
Methylene chloride	94		96		70-130	2	30
1,1-Dichloroethane	90		90		70-130	0	30
Chloroform	85		86		70-130	1	30
Carbon tetrachloride	74		75		70-130	1	30
1,2-Dichloropropane	95		98		70-130	3	30
Dibromochloromethane	89		92		70-130	3	30
1,1,2-Trichloroethane	100		104		70-130	4	30
Tetrachloroethene	96		95		70-130	1	30
Chlorobenzene	94		94		70-130	0	30
Trichlorofluoromethane	70		70		70-130	0	30
1,2-Dichloroethane	72		75		70-130	4	30
1,1,1-Trichloroethane	79		80		70-130	1	30
Bromodichloromethane	83		85		70-130	2	30
trans-1,3-Dichloropropene	96		99		70-130	3	30
cis-1,3-Dichloropropene	86		87		70-130	1	30
1,1-Dichloropropene	97		97		70-130	0	30
Bromoform	94		99		70-130	5	30
1,1,2,2-Tetrachloroethane	104		108		70-130	4	30
Benzene	99		100		70-130	1	30
Toluene	98		98		70-130	0	30
Ethylbenzene	95		95		70-130	0	30
Chloromethane	76		76		52-130	0	30
Bromomethane	86		84		57-147	2	30

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
TRCP Volatile Organics by EPA 5035 Low	- Westborough I	Lab Associate	ed sample(s):	01-07 Batch	: WG1682649-3	WG1682649	-4
Vinyl chloride	94		94		70-130	0	30
Chloroethane	97		97		70-130	0	30
1,1-Dichloroethene	103		102		70-130	1	30
trans-1,2-Dichloroethene	97		97		70-130	0	30
Trichloroethene	94		97		70-130	3	30
1,2-Dichlorobenzene	92		93		70-130	1	30
1,3-Dichlorobenzene	93		93		70-130	0	30
1,4-Dichlorobenzene	92		92		70-130	0	30
Methyl tert butyl ether	93		98		70-130	5	30
p/m-Xylene	98		98		70-130	0	30
o-Xylene	99		99		70-130	0	30
cis-1,2-Dichloroethene	95		96		70-130	1	30
Dibromomethane	86		90		70-130	5	30
1,2,3-Trichloropropane	96		101		70-130	5	30
Styrene	90		91		70-130	1	30
Dichlorodifluoromethane	67		66		30-146	2	30
Acetone	85		93		54-140	9	30
Carbon disulfide	93		93		59-130	0	30
2-Butanone	88		98		70-130	11	30
4-Methyl-2-pentanone	93		99		70-130	6	30
2-Hexanone	83		89		70-130	7	30
Acrylonitrile	90		97		70-130	7	30
Tetrahydrofuran	88		98		70-130	11	30

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
CT RCP Volatile Organics by EPA 5035 Low	- Westborough	Lab Associat	ed sample(s): 0	1-07 Batch:	: WG1682649-3	WG1682649	- 4
2,2-Dichloropropane	84		84		70-130	0	30
1,2-Dibromoethane	91		95		70-130	4	30
1,3-Dichloropropane	99		102		70-130	3	30
1,1,1,2-Tetrachloroethane	88		90		70-130	2	30
Bromobenzene	95		96		70-130	1	30
n-Butylbenzene	96		95		70-130	1	30
sec-Butylbenzene	97		96		70-130	1	30
tert-Butylbenzene	95		94		70-130	1	30
o-Chlorotoluene	96		95		70-130	1	30
p-Chlorotoluene	97		97		70-130	0	30
1,2-Dibromo-3-chloropropane	92		100		68-130	8	30
Hexachlorobutadiene	86		85		70-130	1	30
Isopropylbenzene	102		101		70-130	1	30
p-Isopropyltoluene	97		97		70-130	0	30
Naphthalene	100		103		70-130	3	30
n-Propylbenzene	100		99		70-130	1	30
1,2,3-Trichlorobenzene	93		94		70-130	1	30
1,2,4-Trichlorobenzene	96		96		70-130	0	30
1,3,5-Trimethylbenzene	96		96		70-130	0	30
1,2,4-Trimethylbenzene	96		97		70-130	1	30
trans-1,4-Dichloro-2-butene	89		94		70-130	5	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	95		94		70-130	1	30

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified

Report Date:

09/12/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

CT RCP Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 01-07 Batch: WG1682649-3 WG1682649-4

Surrogate	LCS %Recovery Qual	LCSD MRecovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	76	78	70-130
Toluene-d8	104	102	70-130
4-Bromofluorobenzene	107	105	70-130
Dibromofluoromethane	89	89	70-130

SEMIVOLATILES

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-01 Date Collected: 08/23/22 12:00

Client ID: B-SL-01 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 09/05/22 02:14
Analytical Date: 09/07/22 18:22

Analyst: SLR Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	150		1
Fluoranthene	ND		ug/kg	110		1
Naphthalene	ND		ug/kg	190		1
Benzo(a)anthracene	ND		ug/kg	110		1
Benzo(a)pyrene	ND		ug/kg	150		1
Benzo(b)fluoranthene	ND		ug/kg	110		1
Benzo(k)fluoranthene	ND		ug/kg	110		1
Chrysene	ND		ug/kg	110		1
Acenaphthylene	ND		ug/kg	150		1
Anthracene	ND		ug/kg	110		1
Benzo(ghi)perylene	ND		ug/kg	150		1
Fluorene	ND		ug/kg	190		1
Phenanthrene	ND		ug/kg	110		1
Dibenzo(a,h)anthracene	ND		ug/kg	110		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150		1
Pyrene	ND		ug/kg	110		1
2-Methylnaphthalene	ND		ug/kg	230		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	67		30-130	
2-Fluorobiphenyl	61		30-130	
4-Terphenyl-d14	65		30-130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Report Date: **Project Number:** Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/22 15:30 L2246257-02

Date Received: Client ID: 08/25/22 B-SL-02 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/05/22 02:14 Analytical Method: 79,8270D Analytical Date:

Analyst: SLR 85% Percent Solids:

09/07/22 18:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	150		1
Fluoranthene	ND		ug/kg	110		1
Naphthalene	ND		ug/kg	190		1
Benzo(a)anthracene	ND		ug/kg	110		1
Benzo(a)pyrene	ND		ug/kg	150		1
Benzo(b)fluoranthene	ND		ug/kg	110		1
Benzo(k)fluoranthene	ND		ug/kg	110		1
Chrysene	ND		ug/kg	110		1
Acenaphthylene	ND		ug/kg	150		1
Anthracene	ND		ug/kg	110		1
Benzo(ghi)perylene	ND		ug/kg	150		1
Fluorene	ND		ug/kg	190		1
Phenanthrene	ND		ug/kg	110		1
Dibenzo(a,h)anthracene	ND		ug/kg	110		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150		1
Pyrene	ND		ug/kg	110		1
2-Methylnaphthalene	ND		ug/kg	230		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	81		30-130
2-Fluorobiphenyl	74		30-130
4-Terphenyl-d14	74		30-130

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: 08/24/22 12:30

Client ID: B-SL-03 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 09/07/22 18:07
Analytical Date: 09/08/22 17:19

Analyst: JG Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	140		1	
Fluoranthene	ND		ug/kg	110		1	
Naphthalene	ND		ug/kg	180		1	
Benzo(a)anthracene	ND		ug/kg	110		1	
Benzo(a)pyrene	ND		ug/kg	140		1	
Benzo(b)fluoranthene	ND		ug/kg	110		1	
Benzo(k)fluoranthene	ND		ug/kg	110		1	
Chrysene	ND		ug/kg	110		1	
Acenaphthylene	ND		ug/kg	140		1	
Anthracene	ND		ug/kg	110		1	
Benzo(ghi)perylene	ND		ug/kg	140		1	
Fluorene	ND		ug/kg	180		1	
Phenanthrene	ND		ug/kg	110		1	
Dibenzo(a,h)anthracene	ND		ug/kg	110		1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1	
Pyrene	ND		ug/kg	110		1	
2-Methylnaphthalene	ND		ug/kg	220		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	89	30-130	
2-Fluorobiphenyl	88	30-130	
4-Terphenyl-d14	88	30-130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/25/22 08:45 L2246257-04

Date Received: Client ID: 08/25/22 B-SL-04 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/07/22 18:07 Analytical Method: 79,8270D Analytical Date: 09/08/22 17:43

Analyst: JG 94% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	140		1
Fluoranthene	110		ug/kg	100		1
Naphthalene	ND		ug/kg	170		1
Benzo(a)anthracene	ND		ug/kg	100		1
Benzo(a)pyrene	ND		ug/kg	140		1
Benzo(b)fluoranthene	ND		ug/kg	100		1
Benzo(k)fluoranthene	ND		ug/kg	100		1
Chrysene	ND		ug/kg	100		1
Acenaphthylene	ND		ug/kg	140		1
Anthracene	ND		ug/kg	100		1
Benzo(ghi)perylene	ND		ug/kg	140		1
Fluorene	ND		ug/kg	170		1
Phenanthrene	ND		ug/kg	100		1
Dibenzo(a,h)anthracene	ND		ug/kg	100		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1
Pyrene	ND		ug/kg	100		1
2-Methylnaphthalene	ND		ug/kg	210		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	76		30-130
2-Fluorobiphenyl	74		30-130
4-Terphenyl-d14	73		30-130

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-05 Date Collected: 08/25/22 10:15

Client ID: B-SL-05 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 09/07/22 18:07
Analytical Date: 09/08/22 18:06

Analyst: JG Percent Solids: 96%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	140		1
Fluoranthene	ND		ug/kg	100		1
Naphthalene	ND		ug/kg	170		1
Benzo(a)anthracene	ND		ug/kg	100		1
Benzo(a)pyrene	ND		ug/kg	140		1
Benzo(b)fluoranthene	ND		ug/kg	100		1
Benzo(k)fluoranthene	ND		ug/kg	100		1
Chrysene	ND		ug/kg	100		1
Acenaphthylene	ND		ug/kg	140		1
Anthracene	ND		ug/kg	100		1
Benzo(ghi)perylene	ND		ug/kg	140		1
Fluorene	ND		ug/kg	170		1
Phenanthrene	ND		ug/kg	100		1
Dibenzo(a,h)anthracene	ND		ug/kg	100		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1
Pyrene	ND		ug/kg	100		1
2-Methylnaphthalene	ND		ug/kg	210		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	93		30-130
2-Fluorobiphenyl	92		30-130
4-Terphenyl-d14	90		30-130

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06 Date Collected: 08/25/22 11:45

Client ID: B-SL-06 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 09/07/22 18:07
Analytical Date: 09/08/22 18:30

Analyst: JG Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
CT RCP PAHs - Westborough Lab							
Acenaphthene	ND		ug/kg	140		1	
Fluoranthene	140		ug/kg	110		1	
Naphthalene	ND		ug/kg	180		1	
Benzo(a)anthracene	ND		ug/kg	110		1	
Benzo(a)pyrene	ND		ug/kg	140		1	
Benzo(b)fluoranthene	ND		ug/kg	110		1	
Benzo(k)fluoranthene	ND		ug/kg	110		1	
Chrysene	ND		ug/kg	110		1	
Acenaphthylene	ND		ug/kg	140		1	
Anthracene	ND		ug/kg	110		1	
Benzo(ghi)perylene	ND		ug/kg	140		1	
Fluorene	ND		ug/kg	180		1	
Phenanthrene	110		ug/kg	110		1	
Dibenzo(a,h)anthracene	ND		ug/kg	110		1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140		1	
Pyrene	110		ug/kg	110		1	
2-Methylnaphthalene	ND		ug/kg	220		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	80		30-130	
2-Fluorobiphenyl	75		30-130	
4-Terphenyl-d14	66		30-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-07 Date Collected: 08/23/22 08:45

Client ID: B-SL-07 Date Received: 08/25/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 79,8270D Extraction Date: 09/05/22 02:14
Analytical Date: 09/07/22 19:09

Analyst: SLR Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
CT RCP PAHs - Westborough Lab						
Acenaphthene	ND		ug/kg	150		1
Fluoranthene	ND		ug/kg	110		1
Naphthalene	ND		ug/kg	190		1
Benzo(a)anthracene	ND		ug/kg	110		1
Benzo(a)pyrene	ND		ug/kg	150		1
Benzo(b)fluoranthene	ND		ug/kg	110		1
Benzo(k)fluoranthene	ND		ug/kg	110		1
Chrysene	ND		ug/kg	110		1
Acenaphthylene	ND		ug/kg	150		1
Anthracene	ND		ug/kg	110		1
Benzo(ghi)perylene	ND		ug/kg	150		1
Fluorene	ND		ug/kg	190		1
Phenanthrene	ND		ug/kg	110		1
Dibenzo(a,h)anthracene	ND		ug/kg	110		1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150		1
Pyrene	ND		ug/kg	110		1
2-Methylnaphthalene	ND		ug/kg	230		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	88		30-130
2-Fluorobiphenyl	82		30-130
4-Terphenyl-d14	84		30-130

L2246257

Lab Number:

Project Name: CENTRAL MIDDLE SCHOOL

79,8270D

09/06/22 12:04

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analyst: IM

Analytical Method:

Analytical Date:

Extraction Method: EPA 3546
Extraction Date: 09/04/22 19:30

Parameter	Result	Qualifier	Units	RL	I	MDL
CT RCP Semivolatile Organics - We	estborough l	Lab for sam	ple(s):	01-02,07	Batch:	WG1683541-1
Acenaphthene	ND		ug/kg	130		
Fluoranthene	ND		ug/kg	100		
Naphthalene	ND		ug/kg	170		
Benzo(a)anthracene	ND		ug/kg	100		
Benzo(a)pyrene	ND		ug/kg	130		
Benzo(b)fluoranthene	ND		ug/kg	100		
Benzo(k)fluoranthene	ND		ug/kg	100		
Chrysene	ND		ug/kg	100		
Acenaphthylene	ND		ug/kg	130		
Anthracene	ND		ug/kg	100		
Benzo(ghi)perylene	ND		ug/kg	130		
Fluorene	ND		ug/kg	170		
Phenanthrene	ND		ug/kg	100		
Dibenzo(a,h)anthracene	ND		ug/kg	100		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		
Pyrene	ND		ug/kg	100		
2-Methylnaphthalene	ND		ug/kg	200		

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	92	30-130			
2-Fluorobiphenyl	86	30-130			
4-Terphenyl-d14	101	30-130			

L2246257

09/07/22 18:07

Lab Number:

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Report Date: Not Specified 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 79,8270D Extraction Method: EPA 3546 Analytical Date: 09/08/22 09:55 **Extraction Date:**

Analyst: JG

arameter	Result	Qualifier	Units	R	L	MDL
T RCP Semivolatile Organics	- Westborough	Lab for san	nple(s):	03-06	Batch:	WG1684604-1
Acenaphthene	ND		ug/kg	13	30	
Fluoranthene	ND		ug/kg	9	8	
Naphthalene	ND		ug/kg	16	60	
Benzo(a)anthracene	ND		ug/kg	9	8	
Benzo(a)pyrene	ND		ug/kg	13	30	
Benzo(b)fluoranthene	ND		ug/kg	9	8	
Benzo(k)fluoranthene	ND		ug/kg	9	8	
Chrysene	ND		ug/kg	9	8	
Acenaphthylene	ND		ug/kg	13	30	
Anthracene	ND		ug/kg	9	8	
Benzo(ghi)perylene	ND		ug/kg	10	30	
Fluorene	ND		ug/kg	16	60	
Phenanthrene	ND		ug/kg	9	8	
Dibenzo(a,h)anthracene	ND		ug/kg	9	8	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	13	30	
Pyrene	ND		ug/kg	9	8	
2-Methylnaphthalene	ND		ug/kg	20	00	

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	93	30-130			
2-Fluorobiphenyl	89	30-130			
4-Terphenyl-d14	104	30-130			

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CT RCP Semivolatile Organics - Westborougl	n Lab Associat	ed sample(s):	01-02,07 Bato	h: WG1683541-2 WG168	3541-3	
Acenaphthene	84		82	40-140	2	30
Fluoranthene	87		85	40-140	2	30
Naphthalene	80		79	40-140	1	30
Benzo(a)anthracene	82		82	40-140	0	30
Benzo(a)pyrene	88		90	40-140	2	30
Benzo(b)fluoranthene	87		87	40-140	0	30
Benzo(k)fluoranthene	87		89	40-140	2	30
Chrysene	84		84	40-140	0	30
Acenaphthylene	81		78	40-140	4	30
Anthracene	88		86	40-140	2	30
Benzo(ghi)perylene	87		86	40-140	1	30
Fluorene	84		82	40-140	2	30
Phenanthrene	85		84	40-140	1	30
Dibenzo(a,h)anthracene	86		85	40-140	1	30
Indeno(1,2,3-cd)pyrene	95		93	40-140	2	30
Pyrene	86		86	40-140	0	30
2-Methylnaphthalene	81		78	40-140	4	30

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified

Report Date:

09/12/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

CT RCP Semivolatile Organics - Westborough Lab Associated sample(s): 01-02,07 Batch: WG1683541-2 WG1683541-3

Surrogate	LCS %Recovery Qua	LCSD Il %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	80	81	30-130
2-Fluorobiphenyl	78	77	30-130
4-Terphenyl-d14	85	85	30-130

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

arameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
T RCP Semivolatile Organics - Westborougl	h Lab Associat	ted sample(s):	03-06 Batch:	WG1684604-2	WG1684604-3			
Acenaphthene	76		68		40-140	11		30
Fluoranthene	78		70		40-140	11		30
Naphthalene	75		66		40-140	13		30
Benzo(a)anthracene	74		68		40-140	8		30
Benzo(a)pyrene	80		70		40-140	13		30
Benzo(b)fluoranthene	82		70		40-140	16		30
Benzo(k)fluoranthene	75		70		40-140	7		30
Chrysene	75		68		40-140	10		30
Acenaphthylene	76		68		40-140	11		30
Anthracene	79		71		40-140	11		30
Benzo(ghi)perylene	71		68		40-140	4		30
Fluorene	77		68		40-140	12		30
Phenanthrene	75		68		40-140	10		30
Dibenzo(a,h)anthracene	71		67		40-140	6		30
Indeno(1,2,3-cd)pyrene	77		74		40-140	4		30
Pyrene	78		71		40-140	9		30
2-Methylnaphthalene	76		66		40-140	14		30

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number: Not Specified

Report Date:

09/12/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

CT RCP Semivolatile Organics - Westborough Lab Associated sample(s): 03-06 Batch: WG1684604-2 WG1684604-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	79	71	30-130
2-Fluorobiphenyl	78	68	30-130
4-Terphenyl-d14	84	73	30-130

PETROLEUM HYDROCARBONS

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/22 12:00 L2246257-01

Date Received: 08/25/22 Client ID: B-SL-01 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 09/01/22 14:06

Analyst: BAD 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westbo	rough Lab						
Gasoline Range Organics	ND		ug/kg	2700		1	
Surrogate			% Recovery	Qualifier	Accept Crite		
1,1,1-Trifluorotoluene			104		70-	130	
4-Bromofluorobenzene			94		70-	130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/22 12:00 L2246257-01

Date Received: Client ID: 08/25/22 B-SL-01 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/05/22 03:17 Analytical Method: 1,8015D(M) Analytical Date: 09/05/22 10:39

Analyst: MC 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westbor	ough Lab					
DRO (C10-C28)	ND		ug/kg	36000		1
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			75			40-140

Lab Number: **Project Name:** CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/22 15:30 L2246257-02

Date Received: 08/25/22 Client ID: B-SL-02 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 09/01/22 15:38

Analyst: BAD 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Gasoline Range Organics - Westborough	Lab					
Gasoline Range Organics	ND		ug/kg	3000		1
Surrogate			% Recovery	Qualifier		ptance teria
1,1,1-Trifluorotoluene			106		7	0-130
4-Bromofluorobenzene			97		7	0-130

08/23/22 15:30

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-02 Date Collected:

Client ID: B-SL-02 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8015D(M) Extraction Date: 09/05/22 03:17
Analytical Date: 09/05/22 11:04

Analyst: MC Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborough L	_ab					
DRO (C10-C28)	ND		ug/kg	37000		1
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			66			40-140

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

WIF LL IXLOULTS

 Lab ID:
 L2246257-03
 Date Collected:
 08/24/22 12:30

 Client ID:
 B-SL-03
 Date Received:
 08/25/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method:

Analytical Method: 1,8015D(M)
Analytical Date: 09/01/22 16:09

Analyst: BAD Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westb	orough Lab						
Gasoline Range Organics	ND		ug/kg	2500		1	
Surrogate			% Recovery	Qualifier	Accep Crit	otance eria	
1,1,1-Trifluorotoluene			102		70)-130	
4-Bromofluorobenzene			93		70)-130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/24/22 12:30 L2246257-03

Date Received: Client ID: 08/25/22 B-SL-03 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/07/22 13:47 Analytical Method: 1,8015D(M) Analytical Date: 09/08/22 10:13

Analyst: JB 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westbor	ough Lab					
DRO (C10-C28)	ND		ug/kg	36000		1
Surrogate			% Recovery	Qualifier		eptance riteria
o-Terphenyl			66			40-140

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/25/22 08:45 L2246257-04

Date Received: 08/25/22 Client ID: B-SL-04 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 09/01/22 16:40

Analyst: BAD 94% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westbo	rough Lab						
Gasoline Range Organics	ND		ug/kg	1900		1	
Surrogate			% Recovery	Qualifier	Accep Crite		
1,1,1-Trifluorotoluene			103		70	-130	
4-Bromofluorobenzene			93		70	-130	

08/25/22 08:45

Date Collected:

Lab Number: **Project Name:** CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

L2246257-04

Lab ID:

Date Received: Client ID: B-SL-04 08/25/22

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/07/22 13:47 Analytical Method: 1,8015D(M) Analytical Date: 09/08/22 11:23

Analyst: JB 94% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborough I	_ab					
DRO (C10-C28)	ND		ug/kg	35000		1
Surrogate			% Recovery	Qualifier		eptance criteria
o-Terphenyl			86			40-140

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/25/22 10:15 L2246257-05

Date Received: 08/25/22 Client ID: B-SL-05 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 09/01/22 17:11

Analyst: BAD 96% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westbo	rough Lab						
Gasoline Range Organics	ND		ug/kg	2600		1	
Surrogate			% Recovery	Qualifier	Accep Crit		
1,1,1-Trifluorotoluene			103		70	-130	
4-Bromofluorobenzene			94		70	-130	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/25/22 10:15 L2246257-05

Date Received: 08/25/22 Client ID: B-SL-05 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/07/22 13:47 Analytical Method: 1,8015D(M) Analytical Date: 09/08/22 10:48

Analyst: JB 96% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Diesel Range Organics - Westbor	ough Lab						
DRO (C10-C28)	ND		ug/kg	33000		1	
Surrogate			% Recovery	Qualifier		eptance riteria	
o-Terphenyl			72			40-140	

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/25/22 11:45 L2246257-06

Date Received: 08/25/22 Client ID: B-SL-06 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 09/01/22 17:42

Analyst: BAD 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westb	orough Lab						
Gasoline Range Organics	ND		ug/kg	2600		1	
Surrogate			% Recovery	Qualifier		otance teria	
1,1,1-Trifluorotoluene			101		7	0-130	
4-Bromofluorobenzene			90		7	0-130	

08/25/22 11:45

Date Collected:

Lab Number: **Project Name:** CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06

Date Received: 08/25/22 Client ID: B-SL-06

Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/07/22 13:47 Analytical Method: 1,8015D(M) Analytical Date: 09/08/22 11:58

Analyst: JB 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborough Lab						
DRO (C10-C28)	ND		ug/kg	36000		1
Surrogate			% Recovery	Qualifier		eptance criteria
o-Terphenyl			61			40-140

70-130

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Report Date: **Project Number:** Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/22 08:45 L2246257-07

Date Received: Client ID: 08/25/22 B-SL-07 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: Matrix: Soil

Analytical Method: 1,8015D(M) Analytical Date: 09/01/22 18:12

Analyst: BAD 85% Percent Solids:

4-Bromofluorobenzene

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Gasoline Range Organics - Westb	orough Lab						
Gasoline Range Organics	ND		ug/kg	5100		1	
Surrogate			% Recovery	Qualifier		eptance riteria	
1,1,1-Trifluorotoluene			101			70-130	

90

Lab Number: **Project Name:** CENTRAL MIDDLE SCHOOL L2246257

Project Number: Report Date: Not Specified 09/12/22

SAMPLE RESULTS

Lab ID: Date Collected: 08/23/22 08:45 L2246257-07

Date Received: Client ID: 08/25/22 B-SL-07 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil

Extraction Date: 09/05/22 03:17 Analytical Method: 1,8015D(M) Analytical Date: 09/07/22 19:16

Analyst: JB 85% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Diesel Range Organics - Westborough Lab)					
DRO (C10-C28)	ND		ug/kg	38000		1
Surrogate			% Recovery	Qualifier		eptance criteria
o-Terphenyl			65			40-140

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D(M)
Analytical Date: 09/01/22 13:02

Analyst: BAD

Parameter	Result	Qualifier	Units	RL	MDL	
Gasoline Range Organics - Westbo	rough Lab f	or sample(s): 01-07	Batch:	WG1682950-4	
Gasoline Range Organics	ND		ug/kg	2500		

		Acceptance		
Surrogate	%Recovery	Qualifier Criteria		
1,1,1-Trifluorotoluene	104	70-130		
4-Bromofluorobenzene	89	70-130		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8015D(M) Extraction Method: EPA 3546

Analytical Date: 09/05/22 09:24 Extraction Date: 09/05/22 03:17

Analyst: MC

Parameter	Result	Qualifier	Units	RL	MDL	
Diesel Range Organics - Westborou	igh Lab fo	r sample(s):	01-02,07	Batch:	WG1683577-1	
DRO (C10-C28)	ND		ug/kg	32000		

Surrogate	%Recovery Qual	Acceptance ifier Criteria
o-Terphenyl	75	40-140

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8015D(M) Extraction Method: EPA 3546

Analytical Date: 09/08/22 08:28 Extraction Date: 09/07/22 13:47

Analyst: JB

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Diesel Range Organics - Westborough Lab for sample(s):
 03-06
 Batch:
 WG1684496-1

 DRO (C10-C28)
 ND
 ug/kg
 32000
 -

Surrogate %Recovery Qualifier Criteria

o-Terphenyl 74 40-140

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified Report Date:

09/12/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RP Qual Lim	
Gasoline Range Organics - Westborough Lab	Associated sam	ple(s): 01-07	Batch: WG	G1682950-2	WG1682950-3			
Gasoline Range Organics	88		93		80-120	6	20	,

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qı	ual %Recovery Q	ual Criteria
1,1,1-Trifluorotoluene	106	105	70-130
4-Bromofluorobenzene	102	92	70-130

CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified

Project Name:

Report Date:

09/12/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Diesel Range Organics - Westborough Lab	Associated samp	le(s): 01-02	2,07 Batch: WG1	683577-2					
DRO (C10-C28)	70		-		60-140	-			

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	al %Recovery Qua	Criteria
o-Terphenyl	60		40-140

CENTRAL MIDDLE SCHOOL

Batch Quality Cont

86

Lab Number:

L2246257 09/12/22

Project Number: Not Specified

Project Name:

DRO (C10-C28)

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Diesel Range Organics - Westborough Lab	Associated samp	e(s): 03-06	Batch: WG168	34496-2					

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery	Qual Criteria
o-Terphenyl	70		40-140

60-140

Matrix Spike Analysis Batch Quality Control

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2246257

Report Date:

09/12/22

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample A	Added	Found	%Recovery	Qual	Found	%Recovery	Qual Limits	RPD	Qual Limits
Gasoline Range Organics -	Westborough Lab	Associat	ed sample(s):	01-07 QC Ba	atch ID: V	VG1682950	0-6 QC Sam	ple: L2246257-01	Client II	D: B-SL-01
Gasoline Range Organics	ND	21600	19000	88		-	-	80-120	-	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,1,1-Trifluorotoluene	93		70-130
4-Bromofluorobenzene	84		70-130

Lab Duplicate Analysis
Batch Quality Control

CENTRAL MIDDLE SCHOOL

Not Specified

Project Name:

Project Number:

Lab Number:

63

Report Date:

L2246257

40-140

09/12/22

arameter	Native Sample	Duplicate Sam	ple Units	RPD	RPD Qual Limit	s
Sasoline Range Organics - Westborough Lal	b Associated sample(s): 01-07	QC Batch ID: W	VG1682950-5 QC	Sample: L2	2246257-01 Client ID): B-SL-01
Gasoline Range Organics	ND	ND	ug/kg	NC	20	
Surrogate		%Recovery Qu	alifier %Recovery	Qualifier	Acceptance Criteria	
1,1,1-Trifluorotoluene		104	104		70-130	
4-Bromofluorobenzene		94	95		70-130	
iesel Range Organics - Westborough Lab	Associated sample(s): 01-02,07	QC Batch ID: V	VG1683577-3 QC	Sample: L2	2246257-07 Client II	D: B-SL-07
DRO (C10-C28)	ND	ND	ug/kg	NC	20	
Surrogate		%Recovery Qu	alifier %Recovery	Qualifier	Acceptance Criteria	
o-Terphenyl		65	79		40-140	
esel Range Organics - Westborough Lab	Associated sample(s): 03-06 C	QC Batch ID: WG	1684496-3 QC Sa	mple: L224	6257-03 Client ID:	B-SL-03
DRO (C10-C28)	ND	ND	ug/kg	NC	20	
Surrogate		%Recovery Qu	alifier %Recovery	Qualifier	Acceptance Criteria	

66

o-Terphenyl

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-01 Date Collected: 08/23/22 12:00

Client ID: B-SL-01 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 20:59

Analyst: KJD Percent Solids: 88%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

1:1 +/- 25%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	6.10		1
C9-C12 Aliphatics	ND		mg/kg	6.10		1
C9-C10 Aromatics	ND		mg/kg	6.10		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	6.10		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	6.10		1
Benzene	ND		mg/kg	0.122		1
Toluene	ND		mg/kg	0.122		1
Ethylbenzene	ND		mg/kg	0.122		1
p/m-Xylene	ND		mg/kg	0.122		1
o-Xylene	ND		mg/kg	0.122		1
Methyl tert butyl ether	ND		mg/kg	0.061		1
Naphthalene	ND		mg/kg	0.244		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	124		70-130	
2,5-Dibromotoluene-FID	132	Q	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-01 Date Collected: 08/23/22 12:00

Client ID: B-SL-01 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 Extraction Date: 09/05/22 04:27
Analytical Date: 09/06/22 10:26 Cleanup Method1: EPH-19-2.1

Analyst: AL Cleanup Date1: 09/05/22
Percent Solids: 88%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough L	ab				
C9-C18 Aliphatics	ND		mg/kg	7.34		1
C19-C36 Aliphatics	ND		mg/kg	7.34		1
C11-C22 Aromatics	ND		mg/kg	7.34		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.34		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	52		40-140	
o-Terphenyl	54		40-140	
2-Fluorobiphenyl	62		40-140	
2-Bromonaphthalene	63		40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-02 Date Collected: 08/23/22 15:30

Client ID: B-SL-02 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 21:28

Analyst: KJD Percent Solids: 85%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	6.79		1
C9-C12 Aliphatics	ND		mg/kg	6.79		1
C9-C10 Aromatics	ND		mg/kg	6.79		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	6.79		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	6.79		1
Benzene	ND		mg/kg	0.136		1
Toluene	ND		mg/kg	0.136		1
Ethylbenzene	ND		mg/kg	0.136		1
p/m-Xylene	ND		mg/kg	0.136		1
o-Xylene	ND		mg/kg	0.136		1
Methyl tert butyl ether	ND		mg/kg	0.068		1
Naphthalene	ND		mg/kg	0.272		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	120		70-130			
2,5-Dibromotoluene-FID	128		70-130			

09/05/22

Cleanup Date1:

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-02 Date Collected: 08/23/22 15:30

Client ID: B-SL-02 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix:SoilExtraction Method:EPA 3546Analytical Method:135,EPH-19-2.1Extraction Date:09/05/22 04:27Analytical Date:09/06/22 11:01Cleanup Method1:EPH-19-2.1

Analyst: AL
Percent Solids: 85%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		mg/kg	7.54		1			
C19-C36 Aliphatics	ND		mg/kg	7.54		1			
C11-C22 Aromatics	ND		mg/kg	7.54		1			
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.54		1			

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
Chloro-Octadecane	54		40-140		
o-Terphenyl	52		40-140		
2-Fluorobiphenyl	60		40-140		
2-Bromonaphthalene	61		40-140		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: 08/24/22 12:30

Client ID: B-SL-03 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 21:58

Analyst: KJD Percent Solids: 90%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	5.54		1
C9-C12 Aliphatics	ND		mg/kg	5.54		1
C9-C10 Aromatics	ND		mg/kg	5.54		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5.54		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5.54		1
Benzene	ND		mg/kg	0.111		1
Toluene	ND		mg/kg	0.111		1
Ethylbenzene	ND		mg/kg	0.111		1
p/m-Xylene	ND		mg/kg	0.111		1
o-Xylene	ND		mg/kg	0.111		1
Methyl tert butyl ether	ND		mg/kg	0.055		1
Naphthalene	ND		mg/kg	0.221		1

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	138	Q	70-130		
2,5-Dibromotoluene-FID	147	Q	70-130		

09/10/22

Cleanup Date1:

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: 08/24/22 12:30

Client ID: B-SL-03 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 Extraction Date: 09/06/22 15:07
Analytical Date: 09/11/22 19:19 Cleanup Method1: EPH-19-2.1

Analyst: JB
Percent Solids: 90%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		mg/kg	7.29		1			
C19-C36 Aliphatics	ND		mg/kg	7.29		1			
C11-C22 Aromatics	ND		mg/kg	7.29		1			
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.29		1			

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
Chloro-Octadecane	67		40-140		
o-Terphenyl	67		40-140		
2-Fluorobiphenyl	80		40-140		
2-Bromonaphthalene	79		40-140		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-04 Date Collected: 08/25/22 08:45

Client ID: B-SL-04 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 22:28

Analyst: KJD Percent Solids: 94%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter MDL Result Qualifier Units RL **Dilution Factor** Volatile Petroleum Hydrocarbons - Westborough Lab C5-C8 Aliphatics ND mg/kg 4.14 1 4.14 C9-C12 Aliphatics ND mg/kg 1 C9-C10 Aromatics ND mg/kg 4.14 1 --ND 1 C5-C8 Aliphatics, Adjusted 4.14 mg/kg --C9-C12 Aliphatics, Adjusted ND 4.14 1 mg/kg --Benzene ND mg/kg 0.083 1 Toluene ND 1 mg/kg 0.083 ND 1 Ethylbenzene mg/kg 0.083 -p/m-Xylene ND 0.083 1 mg/kg ND o-Xylene mg/kg 0.083 1 ND Methyl tert butyl ether 0.041 1 mg/kg --Naphthalene ND mg/kg 0.166 1

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	140	Q	70-130		
2,5-Dibromotoluene-FID	149	Q	70-130		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-04 Date Collected: 08/25/22 08:45

Client ID: B-SL-04 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 Extraction Date: 09/07/22 09:15
Analytical Date: 09/08/22 09:11 Cleanup Method1: EPH-19-2.1

Analyst: SR Cleanup Date1: 09/08/22
Percent Solids: 94%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		mg/kg	7.06		1			
C19-C36 Aliphatics	15.6		mg/kg	7.06		1			
C11-C22 Aromatics	10.1		mg/kg	7.06		1			
C11-C22 Aromatics, Adjusted	10.1		mg/kg	7.06		1			

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
Chloro-Octadecane	61		40-140		
o-Terphenyl	65		40-140		
2-Fluorobiphenyl	83		40-140		
2-Bromonaphthalene	85		40-140		

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-05 Date Collected: 08/25/22 10:15

Client ID: B-SL-05 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 22:58

Analyst: KJD Percent Solids: 96%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	5.39		1
C9-C12 Aliphatics	ND		mg/kg	5.39		1
C9-C10 Aromatics	ND		mg/kg	5.39		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5.39		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5.39		1
Benzene	ND		mg/kg	0.108		1
Toluene	ND		mg/kg	0.108		1
Ethylbenzene	ND		mg/kg	0.108		1
p/m-Xylene	ND		mg/kg	0.108		1
o-Xylene	ND		mg/kg	0.108		1
Methyl tert butyl ether	ND		mg/kg	0.054		1
Naphthalene	ND		mg/kg	0.216		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	107		70-130	
2,5-Dibromotoluene-FID	115		70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-05 Date Collected: 08/25/22 10:15

Client ID: B-SL-05 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 Extraction Date: 09/07/22 09:15
Analytical Date: 09/08/22 08:46 Cleanup Method1: EPH-19-2.1

Analyst: SR Cleanup Date1: 09/08/22
Percent Solids: 96%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		mg/kg	6.81		1				
C19-C36 Aliphatics	ND		mg/kg	6.81		1				
C11-C22 Aromatics	ND		mg/kg	6.81		1				
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.81		1				

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	63		40-140			
o-Terphenyl	71		40-140			
2-Fluorobiphenyl	84		40-140			
2-Bromonaphthalene	89		40-140			

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06 Date Collected: 08/25/22 11:45

Client ID: B-SL-06 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 23:27

Analyst: KJD Percent Solids: 89%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:

Satisfactory

Sample Temperature upon receipt:

Were samples received in methanol?

Methanol ratio:

Satisfactory

Received on Ice

Covering the Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons -	Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	5.89		1
C9-C12 Aliphatics	ND		mg/kg	5.89		1
C9-C10 Aromatics	ND		mg/kg	5.89		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5.89		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5.89		1
Benzene	ND		mg/kg	0.118		1
Toluene	ND		mg/kg	0.118		1
Ethylbenzene	ND		mg/kg	0.118		1
p/m-Xylene	ND		mg/kg	0.118		1
o-Xylene	ND		mg/kg	0.118		1
Methyl tert butyl ether	ND		mg/kg	0.059		1
Naphthalene	ND		mg/kg	0.235		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	125		70-130	
2,5-Dibromotoluene-FID	134	Q	70-130	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06 Date Collected: 08/25/22 11:45

Client ID: B-SL-06 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 Extraction Date: 09/07/22 09:15
Analytical Date: 09/08/22 08:21 Cleanup Method1: EPH-19-2.1

Analyst: SR Cleanup Date1: 09/08/22 Percent Solids: 89%

Quality Control Information

Condition of sample received:

Sample Temperature upon receipt:

Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		mg/kg	7.36		1				
C19-C36 Aliphatics	ND		mg/kg	7.36		1				
C11-C22 Aromatics	10.2		mg/kg	7.36		1				
C11-C22 Aromatics, Adjusted	10.2		mg/kg	7.36		1				

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	70		40-140	
o-Terphenyl	73		40-140	
2-Fluorobiphenyl	84		40-140	
2-Bromonaphthalene	86		40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-07 Date Collected: 08/23/22 08:45

Client ID: B-SL-07 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 23:57

Analyst: KJD Percent Solids: 85%

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received:SatisfactorySample Temperature upon receipt:Received on IceWere samples received in methanol?Covering the Soil

Methanol ratio: 1.7:1

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		mg/kg	11.1		1
C9-C12 Aliphatics	ND		mg/kg	11.1		1
C9-C10 Aromatics	ND		mg/kg	11.1		1
C5-C8 Aliphatics, Adjusted	ND		mg/kg	11.1		1
C9-C12 Aliphatics, Adjusted	ND		mg/kg	11.1		1
Benzene	ND		mg/kg	0.221		1
Toluene	ND		mg/kg	0.221		1
Ethylbenzene	ND		mg/kg	0.221		1
p/m-Xylene	ND		mg/kg	0.221		1
o-Xylene	ND		mg/kg	0.221		1
Methyl tert butyl ether	ND		mg/kg	0.111		1
Naphthalene	ND		mg/kg	0.443		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	101		70-130			
2,5-Dibromotoluene-FID	108		70-130			

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257

Project Number: Not Specified **Report Date:** 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-07 Date Collected: 08/23/22 08:45

Client ID: B-SL-07 Date Received: 08/25/22 Field Prep: Not Specified

GREENWICH, CT Sample Location:

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 135,EPH-19-2.1 **Extraction Date:** 09/05/22 04:27 Analytical Date: 09/06/22 11:35 Cleanup Method1: EPH-19-2.1

Analyst: ΑL Cleanup Date1: 09/05/22 Percent Solids: 85%

Quality Control Information

Condition of sample received: Satisfactory Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		mg/kg	7.54		1				
C19-C36 Aliphatics	ND		mg/kg	7.54		1				
C11-C22 Aromatics	ND		mg/kg	7.54		1				
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.54		1				

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	52		40-140			
o-Terphenyl	59		40-140			
2-Fluorobiphenyl	71		40-140			
2-Bromonaphthalene	72		40-140			

L2246257

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 09/06/22 09:51

Analyst: AL

Extraction Method: EPA 3546
Extraction Date: 09/05/22 04:27
Cleanup Method: EPH-19-2.1
Cleanup Date: 09/05/22

Parameter	Result	Qualifier	Units	RL	MDL	
Extractable Petroleum Hydrocarbon	s - Westbord	ough Lab f	or sample(s):	01-02,07	Batch:	WG1683581-1
C9-C18 Aliphatics	ND		mg/kg	6.32		
C19-C36 Aliphatics	ND		mg/kg	6.32		
C11-C22 Aromatics	ND		mg/kg	6.32		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.32		

		Acceptance	
Surrogate	%Recovery Qualifi	-	
Chloro-Octadecane	58	40-140	
o-Terphenyl	55	40-140	
2-Fluorobiphenyl	59	40-140	
2-Bromonaphthalene	60	40-140	

L2246257

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 09/11/22 17:13

Analyst: JB

Extraction Method: EPA 3546
Extraction Date: 09/06/22 15:07
Cleanup Method: EPH-19-2.1
Cleanup Date: 09/10/22

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbon	s - Westbo	ough Lab	for sample(s):	03	Batch: WG1684032-1
C9-C18 Aliphatics	ND		mg/kg	6.37	
C19-C36 Aliphatics	ND		mg/kg	6.37	
C11-C22 Aromatics	ND		mg/kg	6.37	
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.37	

		Acceptance	
Surrogate	%Recovery Qualifie	r Criteria	
		40.440	
Chloro-Octadecane	71	40-140	
o-Terphenyl	75	40-140	
2-Fluorobiphenyl	89	40-140	
2-Bromonaphthalene	89	40-140	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 135,EPH-19-2.1 Analytical Date: 09/08/22 08:35

Analyst: SR

Extraction Method: EPA 3546
Extraction Date: 09/07/22 09:15
Cleanup Method: EPH-19-2.1
Cleanup Date: 09/08/22

Parameter	Result	Qualifier	Units	RL	MDL	
Extractable Petroleum Hydrocarbons	s - Westbore	ough Lab	for sample(s):	04-06	Batch: WG1684337-1	
C9-C18 Aliphatics	ND		mg/kg	6.34		
C19-C36 Aliphatics	ND		mg/kg	6.34		
C11-C22 Aromatics	ND		mg/kg	6.34		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.34		-

		Acceptance	
Surrogate	%Recovery Qualifie	er Criteria	
Chloro-Octadecane	53	40-140	
o-Terphenyl	58	40-140	
2-Fluorobiphenyl	69	40-140	
2-Bromonaphthalene	71	40-140	

L2246257

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 09/03/22 14:28

Analyst: BAD

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons	- Westborough	Lab for	sample(s):	01-07	Batch:	WG1684904-4
C5-C8 Aliphatics	ND		mg/kg	5.00		
C9-C12 Aliphatics	ND		mg/kg	5.00		
C9-C10 Aromatics	ND		mg/kg	5.00		
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5.00		
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5.00		
Benzene	ND		mg/kg	0.100		
Toluene	ND		mg/kg	0.100		
Ethylbenzene	ND		mg/kg	0.100		
p/m-Xylene	ND		mg/kg	0.100		
o-Xylene	ND		mg/kg	0.100		
Methyl tert butyl ether	ND		mg/kg	0.050		
Naphthalene	ND		mg/kg	0.200		

		Acceptance
Surrogate	%Recovery Qualifie	r Criteria
2,5-Dibromotoluene-PID	103	70-130
2,5-Dibromotoluene-FID	108	70-130

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Report Date: 09/12/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated samp	le(s): 01-02,07	Batch:	WG1683581-2	WG1683581-3		
C9-C18 Aliphatics	50		48		40-140	4		25
C19-C36 Aliphatics	69		73		40-140	6		25
C11-C22 Aromatics	65		74		40-140	13		25
Naphthalene	57		62		40-140	8		25
2-Methylnaphthalene	59		65		40-140	10		25
Acenaphthylene	60		65		40-140	8		25
Acenaphthene	61		68		40-140	11		25
Fluorene	63		70		40-140	11		25
Phenanthrene	64		72		40-140	12		25
Anthracene	64		74		40-140	14		25
Fluoranthene	63		72		40-140	13		25
Pyrene	65		75		40-140	14		25
Benzo(a)anthracene	64		75		40-140	16		25
Chrysene	63		74		40-140	16		25
Benzo(b)fluoranthene	61		71		40-140	15		25
Benzo(k)fluoranthene	59		69		40-140	16		25
Benzo(a)pyrene	62		73		40-140	16		25
Indeno(1,2,3-cd)Pyrene	59		70		40-140	17		25
Dibenzo(a,h)anthracene	60		70		40-140	15		25
Benzo(ghi)perylene	56		66		40-140	16		25

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified

Report Date:

09/12/22

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01-02,07 Batch: WG1683581-2 WG1683581-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	58	62	40-140
o-Terphenyl	60	67	40-140
2-Fluorobiphenyl	61	68	40-140
2-Bromonaphthalene	60	68	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Report Date: 09/12/22

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Wes	tborough Lab As	ssociated sample(s): 03 Ba	tch: WG1684	4032-2 WG1684	032-3		
C9-C18 Aliphatics	59		58		40-140	2		25
C19-C36 Aliphatics	82		81		40-140	1		25
C11-C22 Aromatics	73		76		40-140	4		25
Naphthalene	63		67		40-140	6		25
2-Methylnaphthalene	64		68		40-140	6		25
Acenaphthylene	64		67		40-140	5		25
Acenaphthene	66		69		40-140	4		25
Fluorene	68		71		40-140	4		25
Phenanthrene	70		73		40-140	4		25
Anthracene	71		74		40-140	4		25
Fluoranthene	74		75		40-140	1		25
Pyrene	73		75		40-140	3		25
Benzo(a)anthracene	73		75		40-140	3		25
Chrysene	72		74		40-140	3		25
Benzo(b)fluoranthene	70		71		40-140	1		25
Benzo(k)fluoranthene	67		69		40-140	3		25
Benzo(a)pyrene	71		72		40-140	1		25
Indeno(1,2,3-cd)Pyrene	64		65		40-140	2		25
Dibenzo(a,h)anthracene	66		67		40-140	2		25
Benzo(ghi)perylene	61		61		40-140	0		25

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: No

Not Specified

Report Date:

09/12/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 03 Batch: WG1684032-2 WG1684032-3

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	69	67	40-140
o-Terphenyl	67	69	40-140
2-Fluorobiphenyl	79	81	40-140
2-Bromonaphthalene	80	82	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Report Date: 09/12/22

Parameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qu	%Recoveral Limits	•	Qual	RPD Limits	
Extractable Petroleum Hydrocarbons - Wes	stborough Lab As	ssociated sample(s	s): 04-06	Batch:	WG1684337-2	WG1684337-3			
C9-C18 Aliphatics	44		44		40-140	0		25	
C19-C36 Aliphatics	66		63		40-140	5		25	
C11-C22 Aromatics	68		59		40-140	14		25	
Naphthalene	61		54		40-140	12		25	
2-Methylnaphthalene	63		55		40-140	14		25	
Acenaphthylene	63		55		40-140	14		25	
Acenaphthene	65		56		40-140	15		25	
Fluorene	67		58		40-140	14		25	
Phenanthrene	67		58		40-140	14		25	
Anthracene	68		59		40-140	14		25	
Fluoranthene	67		57		40-140	16		25	
Pyrene	68		59		40-140	14		25	
Benzo(a)anthracene	68		59		40-140	14		25	
Chrysene	67		58		40-140	14		25	
Benzo(b)fluoranthene	64		56		40-140	13		25	
Benzo(k)fluoranthene	62		54		40-140	14		25	
Benzo(a)pyrene	66		57		40-140	15		25	
Indeno(1,2,3-cd)Pyrene	62		55		40-140	12		25	
Dibenzo(a,h)anthracene	64		56		40-140	13		25	
Benzo(ghi)perylene	58		53		40-140	9		25	

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number:

Not Specified

Report Date:

09/12/22

LCS **LCSD** %Recovery RPD %Recovery %Recovery **Parameter** Qual Qual Limits RPD Qual Limits

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 04-06 Batch: WG1684337-2 WG1684337-3

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery	Qual	Acceptance Criteria
Chloro-Octadecane	59	55		40-140
o-Terphenyl	65	55		40-140
2-Fluorobiphenyl	75	65		40-140
2-Bromonaphthalene	77	67		40-140
% Naphthalene Breakthrough	0	0		
% 2-Methylnaphthalene Breakthrough	0	0		

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Report Date: 09/12/22

arameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Petroleum Hydrocarbons - '	Westborough Lab Associated	sample(s): 01-07 Batc	h: WG1684904-2 WG16849	04-3	
C5-C8 Aliphatics	96	98	70-130	2	25
C9-C12 Aliphatics	110	111	70-130	1	25
C9-C10 Aromatics	100	100	70-130	0	25
Benzene	100	101	70-130	1	25
Toluene	101	102	70-130	1	25
Ethylbenzene	102	103	70-130	1	25
p/m-Xylene	102	102	70-130	0	25
o-Xylene	99	99	70-130	0	25
Methyl tert butyl ether	90	90	70-130	1	25
Naphthalene	94	95	70-130	1	25
1,2,4-Trimethylbenzene	100	100	70-130	0	25
Pentane	82	85	70-130	4	25
2-Methylpentane	96	98	70-130	2	25
2,2,4-Trimethylpentane	105	107	70-130	2	25
n-Nonane	110	112	30-130	2	25
n-Decane	108	110	70-130	2	25
n-Butylcyclohexane	110	112	70-130	2	25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qua	Acceptance al Criteria
2,5-Dibromotoluene-PID	99	97	70-130
2,5-Dibromotoluene-FID	103	102	70-130

L2246257

Lab Number:

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified Report Date: 09/12/22

Fractionation Check Standard Quality Control

Fractionation check standard for 070219

arameter	% Recovery	QC Criteria
C9-C18 Aliphatics	92	40-140
C19-C36 Aliphatics	89	40-140
C11-C22 Aromatics	75	40-140
Naphthalene	59	40-140
2-Methylnaphthalene	60	40-140
Acenaphthylene	59	40-140
Acenaphthene	61	40-140
Fluorene	63	40-140
Phenanthrene	63	40-140
Anthracene	67	40-140
Fluoranthene	65	40-140
Pyrene	64	40-140
Benzo(a)anthracene	63	40-140
Chrysene	66	40-140
Benzo(b)fluoranthene	62	40-140
Benzo(k)fluoranthene	70	40-140
Benzo(a)pyrene	58	40-140
Indeno(1,2,3-cd)Pyrene	63	40-140
Dibenzo(a,h)anthracene	64	40-140
Benzo(g,h,i)perylene	64	40-140
Nonane	73	30-140
Decane	75	40-140
Dodecane	80	40-140
Tetradecane	84	40-140
Hexadecane	90	40-140
Octadecane	88	40-140
Nonadecane	83	40-140
Eicosane	86	40-140
Docosane	83	40-140
Tetracosane	82	40-140
Hexacosane	82	40-140
Octacosane	82	40-140
Triacontane	81	40-140
Hexatriacontane	80	40-140
% Naphthalene Breakthrough	0	0-5
% 2-Methylnaphthalene Breakthrough	0	0-5

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

Fractionation Check Standard Quality Control

Fractionation check standard for 070219

Surrogate	% Recovery	QC Criteria	
Chloro-Octadecane	58	40-140	
o-Terphenyl	69	40-140	
2-Fluorobiphenyl	59	40-140	
2-Bromonaphthalene	61	40-140	

METALS

08/23/22 12:00

Not Specified

08/25/22

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-01 Client ID: B-SL-01

GREENWICH, CT Sample Location:

Sample Depth:

Matrix: Soil

88% Percent Solids: Dilution **Analytical** Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
CT RCP Total Met	tals - Mans	field Lab									
Antimony, Total	ND		mg/kg	2.18		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Arsenic, Total	1.59		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Barium, Total	55.9		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Beryllium, Total	0.279		mg/kg	0.218		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Cadmium, Total	ND		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Chromium, Total	12.7		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Copper, Total	7.59		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	МС
Lead, Total	4.87		mg/kg	2.18		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Nickel, Total	7.53		mg/kg	1.09		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	МС
Selenium, Total	ND		mg/kg	2.18		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	МС
Silver, Total	ND		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	MC
Thallium, Total	ND		mg/kg	2.18		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	МС
Vanadium, Total	13.9		mg/kg	0.436		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	МС
Zinc, Total	20.0		mg/kg	2.18		1	08/26/22 23:30	0 09/01/22 16:54	EPA 3050B	79,6010D	МС

08/23/22 15:30

Date Collected:

08/26/22 23:30 09/01/22 16:57 EPA 3050B

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-02

18.7

Client ID: B-SL-02 Date Received: 08/25/22 GREENWICH, CT Field Prep: Not Specified Sample Location:

Sample Depth:

Soil Matrix: 85% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.30 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D MC Arsenic, Total 2.17 1 79,6010D MC mg/kg 0.461 08/26/22 23:30 09/01/22 16:57 EPA 3050B 1 Barium, Total 71.0 mg/kg 0.461 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D MC Beryllium, Total 0.328 mg/kg 0.230 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D MC ND 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D MC Cadmium, Total mg/kg 0.461 16.7 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D MC Chromium, Total mg/kg 0.461 --Copper, Total 12.4 mg/kg 0.461 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D MC 1 79,6010D MC Lead, Total 3.90 2.30 08/26/22 23:30 09/01/22 16:57 EPA 3050B mg/kg 1 8.64 79,6010D MC Nickel, Total mg/kg 1.15 08/26/22 23:30 09/01/22 16:57 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.30 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B MC ND 79,6010D MC Silver, Total 0.461 --1 08/26/22 23:30 09/01/22 16:57 EPA 3050B mg/kg ND 1 79,6010D Thallium, Total mg/kg 2.30 --08/26/22 23:30 09/01/22 16:57 EPA 3050B MC 79,6010D Vanadium, Total 15.4 0.461 1 08/26/22 23:30 09/01/22 16:57 EPA 3050B MC mg/kg 1 79,6010D MC

2.30

mg/kg

Zinc, Total

08/24/22 12:30

08/25/22

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: Client ID: B-SL-03 Date Received:

GREENWICH, CT Field Prep: Not Specified Sample Location:

Sample Depth:

Soil Matrix: 90% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.10 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC Arsenic, Total 1.00 1 79,6010D MC mg/kg 0.419 08/26/22 23:30 09/01/22 17:01 EPA 3050B 1 Barium, Total 94.3 mg/kg 0.419 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC Beryllium, Total 0.538 mg/kg 0.210 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC ND 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC Cadmium, Total mg/kg 0.419 18.2 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC Chromium, Total mg/kg 0.419 --Copper, Total 8.58 mg/kg 0.419 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC 1 79,6010D MC Lead, Total 4.32 2.10 08/26/22 23:30 09/01/22 17:01 EPA 3050B mg/kg 1 7.41 79,6010D MC Nickel, Total mg/kg 1.05 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.10 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B MC ND 79,6010D MC Silver, Total 0.419 --1 08/26/22 23:30 09/01/22 17:01 EPA 3050B mg/kg ND 1 79,6010D Thallium, Total mg/kg 2.10 --08/26/22 23:30 09/01/22 17:01 EPA 3050B MC 79,6010D Vanadium, Total 16.4 0.419 1 08/26/22 23:30 09/01/22 17:01 EPA 3050B MC mg/kg 26.1 --1 08/26/22 23:30 09/01/22 17:01 EPA 3050B 79,6010D MC Zinc, Total mg/kg 2.10

08/25/22 08:45

Date Collected:

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-04 Client ID: B-SL-04

Date Received: 08/25/22 GREENWICH, CT Field Prep: Not Specified Sample Location:

Sample Depth:

Soil Matrix: 94% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.06 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC Arsenic, Total 2.22 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC mg/kg 0.412 1 Barium, Total 220 mg/kg 0.412 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC Beryllium, Total 0.412 mg/kg 0.206 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC ND 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC Cadmium, Total mg/kg 0.412 41.3 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC Chromium, Total mg/kg 0.412 --Copper, Total 28.7 mg/kg 0.412 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC 8.04 1 79,6010D MC Lead, Total 2.06 08/26/22 23:30 09/01/22 17:04 EPA 3050B mg/kg 1 18.2 79,6010D MC Nickel, Total mg/kg 1.03 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.06 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B MC ND 79,6010D MC Silver, Total 0.412 --1 08/26/22 23:30 09/01/22 17:04 EPA 3050B mg/kg ND 1 79,6010D Thallium, Total mg/kg 2.06 --08/26/22 23:30 09/01/22 17:04 EPA 3050B MC 79,6010D Vanadium, Total 36.6 0.412 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B MC mg/kg 32.7 2.06 1 08/26/22 23:30 09/01/22 17:04 EPA 3050B 79,6010D MC Zinc, Total mg/kg

08/25/22 10:15

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-05 Client ID: B-SL-05

GREENWICH, CT Sample Location:

Date Received: 08/25/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Soil Matrix: 96% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.00 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC Arsenic, Total 0.821 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC mg/kg 0.401 1 Barium, Total 575 mg/kg 0.401 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC Beryllium, Total 0.444 mg/kg 0.200 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC ND 0.401 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC Cadmium, Total mg/kg 79.2 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC Chromium, Total mg/kg 0.401 --Copper, Total 27.9 mg/kg 0.401 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC 5.86 1 79,6010D MC Lead, Total 2.00 08/26/22 23:30 09/01/22 21:20 EPA 3050B mg/kg 1 27.9 79,6010D MC Nickel, Total mg/kg 1.00 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.00 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B MC ND 79,6010D MC Silver, Total 0.401 --1 08/26/22 23:30 09/01/22 21:20 EPA 3050B mg/kg ND 1 79,6010D Thallium, Total mg/kg 2.00 --08/26/22 23:30 09/01/22 21:20 EPA 3050B MC 79,6010D Vanadium, Total 66.1 0.401 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B MC mg/kg 46.3 2.00 1 08/26/22 23:30 09/01/22 21:20 EPA 3050B 79,6010D MC Zinc, Total mg/kg

08/25/22 11:45

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-06 Client ID: B-SL-06

GREENWICH, CT Sample Location:

Date Received: 08/25/22 Field Prep: Not Specified

Date Collected:

Sample Depth:

Soil Matrix: 89% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.17 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC Arsenic, Total 3.38 0.435 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC mg/kg 1 Barium, Total 176 mg/kg 0.435 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC Beryllium, Total 0.500 mg/kg 0.217 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC ND 0.435 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC Cadmium, Total mg/kg 32.0 0.435 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC Chromium, Total mg/kg --Copper, Total 16.6 mg/kg 0.435 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC 26.5 1 79,6010D MC Lead, Total 2.17 08/26/22 23:30 09/01/22 21:24 EPA 3050B mg/kg 1 14.3 79,6010D MC Nickel, Total mg/kg 1.09 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.17 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B MC ND 79,6010D MC Silver, Total 0.435 --1 08/26/22 23:30 09/01/22 21:24 EPA 3050B mg/kg ND 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D Thallium, Total mg/kg 2.17 --MC 79,6010D Vanadium, Total 32.2 mg/kg 0.435 1 08/26/22 23:30 09/01/22 21:24 EPA 3050B MC 41.4 2.17 --1 08/26/22 23:30 09/01/22 21:24 EPA 3050B 79,6010D MC Zinc, Total mg/kg

08/23/22 08:45

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257 **Report Date:** 09/12/22

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L2246257-07 Client ID: B-SL-07

GREENWICH, CT Sample Location:

37.9

Date Received: 08/25/22 Field Prep: Not Specified

08/26/22 23:30 09/01/22 21:27 EPA 3050B

Date Collected:

Sample Depth:

Soil Matrix: 85% Percent Solids:

Prep Dilution Date Date Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst CT RCP Total Metals - Mansfield Lab Antimony, Total ND mg/kg 2.30 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D MC Arsenic, Total 3.08 1 79,6010D MC mg/kg 0.460 08/26/22 23:30 09/01/22 21:27 EPA 3050B 1 Barium, Total 156 mg/kg 0.460 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D MC Beryllium, Total 0.991 mg/kg 0.230 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D MC ND 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D MC Cadmium, Total mg/kg 0.460 56.0 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D MC Chromium, Total mg/kg 0.460 --Copper, Total 20.7 mg/kg 0.460 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D MC 1 79,6010D MC Lead, Total 6.94 2.30 08/26/22 23:30 09/01/22 21:27 EPA 3050B mg/kg 1 20.0 79,6010D MC Nickel, Total mg/kg 1.15 08/26/22 23:30 09/01/22 21:27 EPA 3050B 79,6010D Selenium, Total ND mg/kg 2.30 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B MC ND 79,6010D MC Silver, Total 0.460 --1 08/26/22 23:30 09/01/22 21:27 EPA 3050B mg/kg ND 1 79,6010D Thallium, Total mg/kg 2.30 --08/26/22 23:30 09/01/22 21:27 EPA 3050B MC 79,6010D Vanadium, Total 46.4 0.460 1 08/26/22 23:30 09/01/22 21:27 EPA 3050B MC mg/kg 1 79,6010D MC

2.30

mg/kg

Zinc, Total

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2246257

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
CT RCP Total Metals	- Mansfield Lab for sa	mple(s):	01-07	Batch:	WG1680151-	·1			
Antimony, Total	ND	mg/kg	2.00		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Arsenic, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Barium, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Beryllium, Total	ND	mg/kg	0.200		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Cadmium, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Chromium, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Copper, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Lead, Total	ND	mg/kg	2.00		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Nickel, Total	ND	mg/kg	1.00		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Selenium, Total	ND	mg/kg	2.00		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Silver, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Thallium, Total	ND	mg/kg	2.00		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Vanadium, Total	ND	mg/kg	0.400		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC
Zinc, Total	ND	mg/kg	2.00		1	08/26/22 23:30	09/01/22 16:42	79,6010D	MC

Prep Information

Digestion Method: EPA 3050B

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257

Report Date: 09/12/22

Parameter	LCS %Recovery C	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
CT RCP Total Metals - Mansfield Lab Associate	ed sample(s): 01-07	Batch: WG1680151-2	SRM Lot Number: D113-540			
Antimony, Total	122	-	20-250	-		30
Arsenic, Total	88	-	70-130	-		30
Barium, Total	95	-	75-125	-		30
Beryllium, Total	116	-	75-125	-		30
Cadmium, Total	93	-	75-125	-		30
Chromium, Total	93	-	70-130	-		30
Copper, Total	86	-	75-125	-		30
Lead, Total	82	-	72-128	-		30
Nickel, Total	88	-	70-130	-		30
Selenium, Total	90	-	66-134	-		30
Silver, Total	88	-	70-131	-		30
Thallium, Total	95	-	70-130	-		30
Vanadium, Total	86	-	74-126	-		30
Zinc, Total	81	-	70-130	-		30

INORGANICS & MISCELLANEOUS

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number:

Not Specified

Report Date:

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-01

Client ID:

B-SL-01

Sample Location: GREENWICH, CT

Date Collected:

08/23/22 12:00

Not Specified

Date Received: Field Prep:

08/25/22

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Coarse

120

Preliminary Burning Time (sec):

Date Analytical

Parameter	Result	Analyze	ed Method	Analyst
Ignitability of Soli	ds - Westborough Lab			
Ignitability	NI	09/06/22 0	09:14 1,1030	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number: Not Specified **Report Date:**

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-02

B-SL-02

Client ID: Sample Location: GREENWICH, CT

Date Collected:

08/23/22 15:30

Date Received: Field Prep:

08/25/22 Not Specified

Sample Depth:

Matrix:

Parameter

Ignitability

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Result

NI

Ignitability of Solids - Westborough Lab

Coarse

120

Preliminary Burning Time (sec):

Date Analytical Method **Analyzed Analyst** 09/06/22 09:14 1,1030 MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number: Not Specified **Report Date:**

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-03

Client ID:

B-SL-03

Sample Location: GREENWICH, CT

Date Collected:

08/24/22 12:30

Date Received: Field Prep:

08/25/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Medium

120

Preliminary Burning Time (sec):

Date Analytical Method **Parameter** Result **Analyzed Analyst** Ignitability of Solids - Westborough Lab Ignitability NI 09/06/22 11:13 1,1030 MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number:

Not Specified

Report Date:

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-04

Client ID:

B-SL-04

Sample Location: GREENWICH, CT

Date Collected: Date Received: 08/25/22 08:45

Field Prep:

08/25/22 Not Specified

Sample Depth:

Matrix:

Parameter

Ignitability

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Result

NI

Ignitability of Solids - Westborough Lab

Medium

120

Preliminary Burning Time (sec):

Date Analytical Method **Analyzed Analyst** 09/07/22 14:52 1,1030 MJ

Project Name: CENTRAL MIDDLE SCHOOL

Lab Number:

L2246257

Project Number: Not Specified

Report Date:

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-05

Client ID:

B-SL-05

Sample Location: GREENWICH, CT

Date Collected:

08/25/22 10:15

Date Received: Field Prep:

08/25/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Medium

120

Preliminary Burning Time (sec):

Parameter Result Date Analytical Method Analyst

Ignitability of Solids - Westborough Lab

Ignitability NI 09/07/22 14:52 1,1030 MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number: Not Specified **Report Date:**

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-06

Client ID: B-SL-06 Date Collected:

08/25/22 11:45

Sample Location: GREENWICH, CT

Date Received: Field Prep:

08/25/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material: Unknown

Description of Material: Non-Metallic - Damp Soil

Particle Size: Medium Preliminary Burning Time (sec): 120

Parameter	Result	Date Analyzed	Analytical Method	Analyst
Ignitability of Solid	ls - Westborough Lab			
Ignitability	NI	09/07/22 14:52	1,1030	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number:

L2246257

Project Number: Not Specified **Report Date:**

09/12/22

SAMPLE RESULTS

Lab ID:

L2246257-07

Client ID:

B-SL-07

Sample Location: GREENWICH, CT

Date Collected:

08/23/22 08:45

Date Received: Field Prep:

08/25/22 Not Specified

Sample Depth:

Matrix:

Soil

Test Material Information

Source of Material:

Unknown

Description of Material:

Non-Metallic - Damp Soil

Particle Size:

Coarse

120

Preliminary Burning Time (sec):

Date Analytical Method **Parameter** Result **Analyzed Analyst** Ignitability of Solids - Westborough Lab Ignitability NI 09/06/22 09:14 1,1030 MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-01 Date Collected: 08/23/22 12:00

Client ID: B-SL-01 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)							
Solids, Total	87.7	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	6.0	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/29/22 10:55	08/29/22 12:44	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/29/22 10:55	08/29/22 12:12	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-02 Date Collected: 08/23/22 15:30

Client ID: B-SL-02 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	85.4	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	6.3	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	09/02/22 13:10	09/02/22 15:32	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	09/02/22 13:10	09/02/22 14:59	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-03 Date Collected: 08/24/22 12:30

Client ID: B-SL-03 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	89.6	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	6.7	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	09/02/22 17:50	09/02/22 19:55	125,7.3	TL
Sulfide, Reactive	ND	mg/kg	10		1	09/02/22 17:50	09/02/22 20:05	125,7.3	TL

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-04 Date Collected: 08/25/22 08:45

Client ID: B-SL-04 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	93.7	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	8.4	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/30/22 10:10	08/30/22 12:48	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/30/22 10:10	08/30/22 12:18	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-05 Date Collected: 08/25/22 10:15

Client ID: B-SL-05 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab								
Solids, Total	95.6	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	8.0	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kç	1 0		1	08/30/22 10:10	08/30/22 12:48	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/30/22 10:10	08/30/22 12:19	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-06 Date Collected: 08/25/22 11:45

Client ID: B-SL-06 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	88.8	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	7.9	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/30/22 10:10	08/30/22 12:49	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/30/22 10:10	08/30/22 12:20	125,7.3	MJ

Project Name: CENTRAL MIDDLE SCHOOL Lab Number: L2246257

Project Number: Not Specified Report Date: 09/12/22

SAMPLE RESULTS

Lab ID: L2246257-07 Date Collected: 08/23/22 08:45

Client ID: B-SL-07 Date Received: 08/25/22 Sample Location: GREENWICH, CT Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab								
Solids, Total	85.3	%	0.100	NA	1	-	08/26/22 17:27	121,2540G	TR
pH (H)	7.4	SU	-	NA	1	-	08/29/22 18:36	1,9045D	AS
Cyanide, Reactive	ND	mg/kg	10		1	08/29/22 10:55	08/29/22 12:45	125,7.3	MJ
Sulfide, Reactive	ND	mg/kg	10		1	08/29/22 10:55	08/29/22 12:13	125,7.3	MJ

L2246257

Lab Number:

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified Report Date: 09/12/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for samp	ole(s): 01	,07 Bat	ch: WG	31680859-1				
Sulfide, Reactive	ND		mg/kg	10		1	08/29/22 10:55	08/29/22 12:09	125,7.3	MJ
General Chemistry -	Westborough Lab	for samp	ole(s): 01	,07 Bat	ch: WG	G1680861-1				
Cyanide, Reactive	ND		mg/kg	10		1	08/29/22 10:55	08/29/22 12:42	125,7.3	MJ
General Chemistry -	Westborough Lab	for samp	ole(s): 04	-06 Bat	ch: WC	S1680963-1				
Sulfide, Reactive	ND		mg/kg	10		1	08/30/22 10:10	08/30/22 12:14	125,7.3	MJ
General Chemistry - '	Westborough Lab	for samp	ole(s): 04	-06 Bat	ch: WC	91681314-1				
Cyanide, Reactive	ND		mg/kg	10		1	08/30/22 10:10	08/30/22 12:44	125,7.3	MJ
General Chemistry -	Westborough Lab	for samp	ole(s): 02	Batch:	WG16	82992-1				
Sulfide, Reactive	ND		mg/kg	10		1	09/02/22 13:10	09/02/22 14:58	125,7.3	MJ
General Chemistry -	Westborough Lab	for samp	ole(s): 02	Batch:	WG16	82996-1				
Cyanide, Reactive	ND		mg/kg	10		1	09/02/22 13:10	09/02/22 15:31	125,7.3	MJ
General Chemistry - '	Westborough Lab	for samp	ole(s): 03	Batch:	WG16	83095-1				
Sulfide, Reactive	ND		mg/kg	10		1	09/02/22 17:50	09/02/22 20:04	125,7.3	TL
General Chemistry - '	Westborough Lab	for samp	ole(s): 03	Batch:	WG16	83096-1				
Cyanide, Reactive	ND		mg/kg	10		1	09/02/22 17:50	09/02/22 19:54	125,7.3	TL

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2246257

Report Date:

09/12/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01,07	Batch: WG16808	359-2				
Sulfide, Reactive	110		-		60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s):	01,07	Batch: WG16808	361-2				
Cyanide, Reactive	89		-		30-125	-		40
General Chemistry - Westborough Lab	Associated sample(s):	04-06	Batch: WG16809	963-2				
Sulfide, Reactive	102		-		60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s):	01-07	Batch: WG16810	032-1				
рН	100		-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s):	04-06	Batch: WG16813	314-2				
Cyanide, Reactive	69		-		30-125	-		40
General Chemistry - Westborough Lab	Associated sample(s):	02 B	atch: WG1682992	-2				
Sulfide, Reactive	101		-		60-125	-		40
General Chemistry - Westborough Lab	Associated sample(s):	02 B	atch: WG1682996	-2				
Cyanide, Reactive	71		-		30-125	-		40

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number:

L2246257

Report Date:

09/12/22

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 03	Batch: WG1683095-2			
Sulfide, Reactive	115	-	60-125	-	40
General Chemistry - Westborough Lab	Associated sample(s): 03	Batch: WG1683096-2			
Cyanide, Reactive	70	-	30-125	-	40

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Lab Number: L2246257 **Report Date:** 09/12/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

NO

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2246257-01A	Vial MeOH preserved	Α	NA		2.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2246257-01B	Vial water preserved	Α	NA		2.4	Υ	Absent	23-AUG-22 15:35	CT-8260HLW(14)
L2246257-01C	Vial water preserved	Α	NA		2.4	Υ	Absent	23-AUG-22 15:35	CT-8260HLW(14)
L2246257-01D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-01E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-CU-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-PB-6010T(180),CT-PB-6010T(180),CT-NI-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-CR-6010T(180),CT-BE-6010T(180),CT-TL-6010T(180),CT-CD-6010T(180)
L2246257-01F	Glass 500ml/16oz unpreserved	Α	NA		2.4	Υ	Absent		IGNIT-1030(14),REACTS(14),CT- PAH(14),EPH-20(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)
L2246257-02A	Vial MeOH preserved	Α	NA		2.4	Υ	Absent		TPH-GRO(14), VPH-DELUX-18(28), CT-8260HLW(14)
L2246257-02B	Vial water preserved	Α	NA		2.4	Υ	Absent	23-AUG-22 15:35	CT-8260HLW(14)
L2246257-02C	Vial water preserved	Α	NA		2.4	Υ	Absent	23-AUG-22 15:35	CT-8260HLW(14)
L2246257-02D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-02E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-SB-6010T(180),CT-AS-6010T(180),CT-CU-6010T(180),CT-SE-6010T(180),CT-PB-6010T(180),CT-NI-6010T(180),CT-CR-6010T(180),CT-BA-6010T(180),CT-ZN-6010T(180),CT-TL-6010T(180),CT-TL-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180)
L2246257-02F	Glass 500ml/16oz unpreserved	Α	NA		2.4	Y	Absent		REACTS(14),IGNIT-1030(14),CT- PAH(14),EPH-20(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)
L2246257-03A	Vial MeOH preserved	Α	NA		2.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2246257-03B	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)

Lab Number: L2246257

Report Date: 09/12/22

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2246257-03C	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-03D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-03E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-SB-6010T(180),CT-CU-6010T(180),CT-PB-6010T(180),CT-NI-6010T(180),CT-CR-6010T(180),CT-BA-6010T(180),CT-ZN-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180),CT-TL-6010T(180)
L2246257-03F	Glass 500ml/16oz unpreserved	Α	NA		2.4	Y	Absent		IGNIT-1030(14),REACTS(14),EPH-20(14),CT- PAH(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)
L2246257-04A	Vial MeOH preserved	Α	NA		2.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2246257-04B	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-04C	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-04D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-04E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-SB-6010T(180),CT-CU-6010T(180),CT-SE-6010T(180),CT-AS-6010T(180),CT-PB-6010T(180),CT-NI-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-CD-6010T(180),CT-BE-6010T(180),CT-TL-6010T(180)
L2246257-04F	Glass 500ml/16oz unpreserved	Α	NA		2.4	Υ	Absent		IGNIT-1030(14),REACTS(14),EPH-20(14),CT- PAH(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)
L2246257-05A	Vial MeOH preserved	Α	NA		2.4	Υ	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2246257-05B	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-05C	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-05D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-05E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-CU-6010T(180),CT-AS-6010T(180),CT-SE-6010T(180),CT-SB-6010T(180),CT-NI-6010T(180),CT-PB-6010T(180),CT-BA-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-CD-6010T(180),CT-BE-6010T(180),CT-TL-6010T(180)
L2246257-05F	Glass 500ml/16oz unpreserved	Α	NA		2.4	Y	Absent		IGNIT-1030(14),REACTS(14),EPH-20(14),CT- PAH(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)

Lab Number: L2246257

Report Date: 09/12/22

Project Name: CENTRAL MIDDLE SCHOOL

Project Number: Not Specified

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2246257-06A	Vial MeOH preserved	Α	NA		2.4	Y	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT-8260HLW(14)
L2246257-06B	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-06C	Vial water preserved	Α	NA		2.4	Υ	Absent	26-AUG-22 06:39	CT-8260HLW(14)
L2246257-06D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-06E	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.4	Y	Absent		CT-AG-6010T(180),CT-V-6010T(180),CT-SB-6010T(180),CT-AS-6010T(180),CT-CU-6010T(180),CT-NI-6010T(180),CT-NI-6010T(180),CT-PB-6010T(180),CT-ZN-6010T(180),CT-BA-6010T(180),CT-CR-6010T(180),CT-TL-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180),CT-CD-6010T(180)
L2246257-06F	Glass 500ml/16oz unpreserved	Α	NA		2.4	Υ	Absent		REACTS(14),IGNIT-1030(14),EPH-20(14),CT- PAH(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)
L2246257-07A	Vial MeOH preserved	Α	NA		2.4	Y	Absent		TPH-GRO(14),VPH-DELUX-18(28),CT- 8260HLW(14)
L2246257-07B	Vial water preserved	Α	NA		2.4	Υ	Absent	23-AUG-22 15:35	CT-8260HLW(14)
L2246257-07C	Vial water preserved	Α	NA		2.4	Υ	Absent	23-AUG-22 15:35	CT-8260HLW(14)
L2246257-07D	Plastic 2oz unpreserved for TS	Α	NA		2.4	Υ	Absent		TS(7)
L2246257-07E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		2.4	Y	Absent		CT-V-6010T(180),CT-AG-6010T(180),CT-SB-6010T(180),CT-SE-6010T(180),CT-CU-6010T(180),CT-AS-6010T(180),CT-NI-6010T(180),CT-PB-6010T(180),CT-BA-6010T(180),CT-CR-6010T(180),CT-ZN-6010T(180),CT-BE-6010T(180),CT-CD-6010T(180),CT-TL-6010T(180)
L2246257-07F	Glass 500ml/16oz unpreserved	А	NA		2.4	Y	Absent		IGNIT-1030(14),REACTS(14),CT- PAH(14),EPH-20(14),TPH-DRO(14),PH- 9045(1),REACTCN(14)

Project Name: Lab Number: CENTRAL MIDDLE SCHOOL L2246257 **Report Date: Project Number:** Not Specified 09/12/22

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2246257Project Number:Not SpecifiedReport Date:09/12/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2246257Project Number:Not SpecifiedReport Date:09/12/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:CENTRAL MIDDLE SCHOOLLab Number:L2246257Project Number:Not SpecifiedReport Date:09/12/22

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I VI, 2018.
- 79 Connecticut DEP Quality Assurance and Quality Control Requirements for SW-846 Methods. CTDEP Reasonable Confidence Protocols (RCPs). Versions 2.0 and 3.0, July and December 2006.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates IIIA, April 1998.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.
- Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Διρι	CHAIN OF CUSTODY PAGEOF						Date Rec'd in Lab: 8/26/22							ALPHA Job #: L224625					
# Walkup Drive	320 Forbes Blvd 01581 Mansfeld, MA 02048	Project Informa				Rep	ort Infor	nation	- Data	Delive	erabl	es				orma			
Westboro, MA 7 Tel: 508-898-93	Project Name: Ce	oject Name: Cewhol Middle Sch				_ DADEX DEMAIL							☐ Same as Client Info PO #:						
Client Information	in .	Project Location:	oject Location: Greenwich, CT				Regulatory Requirements & Project Information Requirements												
Client: ATA	NE	Project #: -				☐ Yes	No Ma	A MCP A	Analytica ke Regu	al Meth	ods This	SDG	/ (Re	□ Y	es 🗆	No MCP	CT RCP Analytical Meth Inorganics)	ods	
Address: 56	Relal St.	Project Manager:	Pauls	sous	a	☐ Yes	□ No GV	W1 Stan	dards (I	nfo Re	quirec	for f	Metal	s & E	PHV	with Ta	argets)		
	herlstone Mt 0212	ALPHA Quote #:	_				□ No NF er State /F			X					Crite	ria_	270		
/	387668	Turn-Around Ti	me					/:	2 / 2	Z	<u>.</u> /	1	1	1	1	1	E.H.	1	
Additional Project Information:		Date Due:				ANALYSIS	D 524.2	OMCP 14 DRCP	TO RAIL DPP	ts C Ranges C		tingosprint	74H	//	//	1 / 1	SAMPLE INFO		
ALPHA Lab ID	y @ Stane consulting con y@ otane consulting Sample ID	J	ection	Sample	Sampler	Q 8260 P	METALS: DINGS	METALS, GRERAS, F.	VPH: O Ranges & Targets	TEM. DEST	Downt Only Dr.	PH CT	7	TH-DRD	TH- GRO	-ISMET	Filtration □ Field □ Lab to do Preservation □ Lab to do	8071	
(Lab Use Only)		Date	Time	Matrix	Initials	18/3	B #	# 1	5	4/7	1	43	1	1	1	A	Sample Comment	5 S	
46257-01	B-SL-01	923/22	1200	SOIL	PSM	X					K	×	X	K	X	X			
02	13-SL-02	8/23/01	1530	1	1	X					×	X	X	X	X	X			
03	B-81-03	8/24/22	1230			X					×	×	×	x	×	×			
04	13-SL-04	8/25/22	0845			4					X	×	x	x	×	k	11		
05	B-SL-05	3/25/22	1015			v					x	3.3	x	X	X	X		1	
06	B-SL-06	8/25/22	1145			X					X	X	X	X	k	×		\top	
70	B-SL-07	8/23/22	0845	1	V	×				†	X	1	×	×	k	x		+	
				-		Tal h					1	1	1	1	/	^		+	
							V											+	
										1								+	
Container Type P= Prastic A= Amber glass V= Vtal	Preservative A= None B= HCI			-	iner Type					T									
G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	Polinguished Du-	Relinquished By: Date/Time											-					
C= Cube O= Other E= Encore D= BOD Bottle Page 137 of 137	F= MeOH G= NaHSQs H = Na ₂ S ₂ Os I= Ascorbic Acid J = NH,CI K= Zn Acetate	Control Control				Received By:				4	Date/Time			All samples submitted are subject to Alpha's Terms and Conditions See reverse side.					