PUBLIC SCHOOLS OF EDISON TOWNSHIP OFFICE OF CURRICULUM AND INSTRUCTION

Length of Course:	Term
Elective/Required:	Elective
Schools:	High Schools
Eligibility:	Grades 11, 12
Credit Value:	6 Credits
Date Approved:	September 24, 2018

TABLE OF CONTENTS

Statement of Purpose	3
Course Objectives	4
Timeline and Pacing Guide	6
Unit 1: Kinematics	7
Unit 2: Dynamics	12
Unit 3: Circular Motion	17
Unit 4: Gravitation	22
Unit 5: Momentum	30
Unit 6: Work and Energy	37
Unit 7: Electrostatics	49
Unit 8: Electric Circuits	56
Unit 9: Magnetism	61
Unit 10: Waves	67
Unit 11: Electromagnetic Radiation And Its Application In Technologies for Information Transfer	72

STATEMENT OF PURPOSE

The Physics 1-1 curriculum is a college preparatory, laboratory based, comprehensive survey of physics that meets local objectives and contributes to the accomplishment of the state and national standards. The program was chosen to complement the flow and sequence of scientific studies from Chemistry and is an elective course for Grade 12 All students will understand that physical science principles, including science. fundamental ideas about matter, energy, and motion, are powerful conceptual tools for making sense of phenomena in physical, living, and Earth systems science. An overarching goal for learning in physics is to help students see that there are mechanisms of cause and effect in all systems and processes that can be understood through a common set of physical quantities and principles. A lab-based/inquiry physics course is structured so that students actively engage in scientific and engineering practices and experiences provided for students should engage them with fundamental questions about the world and with how scientists have investigated and found answers to those questions. Students should have the opportunity to carry out scientific investigations and engineering design projects related to the disciplinary core ideas in physics. Students will use scientific inquiry to understand science concepts and develop explanations of natural phenomena. The purpose of learning physics is both the understanding of basic concepts and the application of problem solving skills developed during that process.

The curriculum guide was revised/updated by:

Robin Connell (EHS) Kruti Singh (EHS)

Coordinated by:

Laurie Maier - Supervisor of Science, Edison and JP Stevens High Schools

COURSE OBJECTIVES

By the end of the Physics 1-1 course, students will be able to:

Motion and Stability: Forces and Interactions

- (NJSLS/HS-PS2-1) Analyze data to support the claim that Newton's second law
 of motion describes the mathematical relationship among the net force on a
 macroscopic object, its mass, and its acceleration.
- (NJSLS/HS-PS2-2) Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
- (NJSLS/HS-PS2-3) Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
- **(NJSLS/HS-PS2-4)** Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
- (NJSLS/HS-PS2-5) Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

Energy

- (NJSLS/HS-PS3-1) Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
- (NJSLS/HS-PS3-2) Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).
- (NJSLS/HS-PS3-3) Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
- (NJSLS/HS-PS3-5) Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Waves And Their Applications In Technologies For Information Transfer

 (NJSLS/HS-PS4-1) Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

- (NJSLS/HS-PS4-3) Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.
- (NJSLS/HS-PS4-4) Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

Engineering Design

• (NJSLS/HS-ETS1-2) Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Earth's Place In The Universe

• (NJSLS/HS-ESS1-4) Use mathematical or computational representations to predict the motion of orbiting objects in the solar system

TIMELINE AND PACING GUIDE

Marking Period 1:

Kinematics Dynamics Quarterly Exam 1

Marking Period 2:

Circular Motion Gravitation Momentum Quarterly Exam 2

Marking Period 3:

Work and Energy Electrostatics Electric Circuits (DC only) Quarterly Exam 3

Marking Period 4:

Magnetism Waves Electromagnetic Radiation And Its Application in Technologies for Information Transfer Quarterly Exam 4

Unit 1: Kinematics

Essential Questions:

How do we define motion? How do we describe and predict the motion of objects? How do we describe objects in free fall?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and quizzes Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1), (HS-PS2-2), (HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Student Learning Objectives: (SLO)			Instruction	al Actions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.B: Types of Interactions Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. (HS-PS2- 4),(HS-PS2-5)	Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5) Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1) Using Mathematics and	Patterns Empirical evidence is needed to identify patterns. (HE-ESS1-5) Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth) vs. exponential growth). (HS-ESS1-4) Cause and Effect Systems can be designed to cause a desired effect (HS-PS2-3) Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales. (HS-	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Scientific method of problem solving Laws and theories Defining motion (i.e. reference frame activity) Vectors Constant speed and constant velocity (i.e. Scientific Argumentation: Toy Car Lab) Multiple representations of motion (i.e. dot diagrams, mathematical models, data tables, graphical) Constant acceleration Free fall (i.e. reaction time activity, Design a Testing Experiment: Free Fall)	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam

 mathematical representations	Multiple representations	
of phenomena to describe	problem solving (i.e. dot	
explanations. (HS-PS2-	diagram, video analysis, data	
2),(HS-PS2-4)	table, graphical and	
	mathematical	
Constructing Explanations	representations) and ranking	
and Designing Solutions	tasks	
Apply scientific ideas to solve		
a design problem, taking into	Discovery Education	
account possible	<u> Techbook: Physics</u>	
unanticipated effects. (HS-	Unit: Motion	
PS2-3)	 Using Vectors and 	
	Scalars to Describe	
Obtaining, Evaluating, and	Motion	
Communicating Information	 Understanding and 	
Communicate scientific and	Describing Motion	
technical information (e.g.		
about the process of		
development and the design		
and performance of a		
proposed process or system)		
in multiple formats (including		
orally, graphically, textually,		
and mathematically). (HS-		
PS2-6)		
Science Models, Laws,		
Mechanisms, and Theories		
Explain Natural Phenomena		
Theories and laws provide		
explanations in science. (HS-		
PS2- 1),(HS-PS2-4)		
Laws are statements or		
descriptions of the		
relationships among		
observable phenomena. (HS-		
PS2-1),(HS-PS2-4)		

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	
	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (http://www.physicsclassroom.com/)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 2: Dynamics

Essential Questions:

How can we change the motion of an object? How do we describe and predict changes in the motion of an object?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.]

[Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and guizzes

Laboratory activities and reports

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2- 4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason CRP8. Utilize critical thinking to make sense of problems and persevere in solving them CRP11. Use technology to enhance productivity.

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Student Learning Objectives: (SLO)			Instructional Ac	tions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.A: Forces and Motion	Planning and Carrying Out	Patterns	Use appropriate online and textbook	Formative
Newton's second law accurately	Investigations	Different patterns may be	resources for presentation,	Assessments:
predicts changes in the motion of	Plan and conduct an	observed at each of the	demonstration, classroom and	Exit tickets
macroscopic objects. (HS-PS2-	investigation individually and	scales at which a system is	laboratory activities and formative	Laboratory activities
1)	collaboratively to produce	studied and can provide	assessments for:	Classwork
,	data to serve as the basis for	evidence for causality in	Drawing force diagrams	Homework
PS2.B: Types of Interactions	evidence, and in the design:	explanations of		
Forces at a distance are	decide on types, how much,	phenomena. (HS-PS2-4)	Determining net force	Summative
explained by fields (gravitational,	and accuracy of data needed	· · · · · · · · · · · · · · · · · · ·	Ū.	Assessments:
electric, and magnetic)	to produce reliable	Cause and Effect	Newton's 1st Law of Motion	Tests
permeating space that can	measurements and consider	Empirical evidence is		Quizzes
transfer energy through space.	limitations on the precision of	required to differentiate	Newton's 2nd Law of Motion	Laboratory reports
(HS-PS2- 4),(HS-PS2-5)	the data (e.g., number of	between cause and	(Mathematical: $a = F_{NET}/m$ and	Project
	trials, cost, risk, time), and	correlation and make	graphical analysis)	Quarterly exam
	refine the design accordingly.	claims about specific		,
	(HS-PS2-5)	causes and effects. (HS-	Naming common forces:	
	· · · · · · · · · · · · · · · · · · ·	PS2- 1),(HS-PS2-5)	gravitational force/weight, normal	
	Analyzing and Interpreting		force, tension force, drag force,	
	Data	Systems can be designed	spring force	
	Analyze data using tools,	to cause a desired effect.		
	technologies, and/or models	(HS-PS2-3)	Friction force (i.e. Determining	
	(e.g., computational,		Coefficient of Friction Lab)	
	mathematical) in order to	Systems and System		
	make valid and reliable	Models	Newton's 3rd Law of Motion (i.e.	
	scientific claims or determine	When investigating or	spring scale tug-of-war)	
	an optimal design solution.	describing a system, the		
	(HS-PS2-1)	boundaries and initial	Forces at an angle	
		conditions of the system	-	
		need to be defined. (HS-	Multiple representations problem	
		PS2-2)	solving (i.e. dot diagram, force	
	Using Mathematics and		diagram, video analysis, data table,	
	Computational Thinking	Systems and System	graphical and mathematical	
	Use mathematical	Models	representations) and ranking tasks	

	1		1
representations of	Models (e.g., physical,		
phenomena to describe	mathematical, computer	Observable features of the student	
explanations. (HS-PS2-	models) can be used to	performance by the end of this unit:	
2),(HS-PS2-4)	simulate systems and	<u>Organizing Data</u>	
	interactions— including	Students organize data that	
Constructing Explanations	energy, matter, and	represent the net force on a	
and Designing Solutions	information flows— within	macroscopic object, its mass (which	
Apply scientific ideas to solve	and between systems at	is held constant), and its	
a design problem, taking into	different scales. (HS-	acceleration (e.g., via tables, graphs,	
account possible	ETS1-4)	charts, vector drawings).	
unanticipated effects. (HS-			
PS2-3)		Identifying Relationships	
		Students use tools, technologies,	
Obtaining, Evaluating, and		and/or models to analyze the data	
Communicating Information		and identify relationships within the	
Communicate scientific and		datasets, including:	
technical information (e.g.		 A more massive object 	
about the process of		experiencing the same net	
development and the design		force as a less massive	
and performance of a		object has a smaller	
proposed process or system)		acceleration and a larger	
in multiple formats (including		net force on a given object	
orally graphically textually		produces a correspondingly	
and mathematically) (HS-		larger acceleration: and	
PS2-6)		 The result of gravitation is a 	
1 02 0)		constant acceleration on	
Science Models I aws		macroscopic objects as	
Mechanisms and Theories		evidenced by the fact that	
Evolain Natural Dhonomona		the ratio of net force to mass	
Theories and laws provide	¹	remains constant	
		Interpreting Data	
roz- 1),(no-roz-4)		Studente une the analyzed date as	
		Sudents use the analyzed data as	
Laws are statements or		evidence to describe that the	
aescriptions of the		relationship between the observed	
relationships among		quantities is accurately modeled	
observable phenomena. (HS-		across the range of data by the	
PS2-1),(HS-PS2-4)		rormula a = ⊢net/m (e.g., double	
		force yields double acceleration,	
		etc.).	

	Students use the data as empirical evidence to distinguish between causal and correlational relationships linking force, mass, and acceleration.
	Students express the relationship a = Fnet/m in terms of causality, namely that a net force on an object causes the object to accelerate.
	Discovery Education Techbook: <u>Physics</u> Unit: Motion • Newton's 1st Law of Motion
	 Newton's 2nd Law of Motion Newton's 3rd Law of Motion Applying Newton's Laws of Motion Free Body Diagrams Unit: Forces
	Fundamental Forces

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	
	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 3: Circular Motion

Essential Questions:

What causes an object to move in uniform circular motion? Why doesn't Earth "fall into" the Sun?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and quizzes

Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Student Learning Objectives: (SLO)			Instructior	nal Actions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.A: Forces and Motion Newton's second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2- 1) PS2.B: Types of Interactions Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. (HS-PS2- 4),(HS-PS2-5)	Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5) Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1) Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe	Patterns Empirical evidence is needed to identify patterns. (HE-ESS1-5) Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS- PS2- 1),(HS-PS2-5)	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Drawing force diagrams Drawing acceleration and velocity vectors for object moving in circular motion Kinematics and dynamics of circular motion (i.e. PAER videos, Circular Motion Lab, Flying Pigs Lab) Multiple representations problem solving (i.e. dot diagram, force diagram, video analysis, data table, graphical and mathematical representations) and ranking tasks <u>Discovery Education Techbook: Physics</u> Unit: Forces • Centripetal force and circular motion	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam

explanations. (HS-PS2- 2),(HS-PS2-4)		
Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS- PS2-3)		
Obtaining, Evaluating, and Communicating Information Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS- PS2-6)		
Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Theories and laws provide explanations in science. (HS- PS2- 1),(HS-PS2-4)		
Laws are statements or descriptions of the relationships among observable phenomena. (HS- PS2-1),(HS-PS2-4)		

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	Madificationa will be made to
Discourse Education Techhoole, Dhunian	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP manuales for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 4: Gravitation

Essential Questions:

How do we describe the motion of planets around the Sun? Why doesn't Earth "fall into" the Sun? What is a" field force"? What is "weightlessness"?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-ESS1-4: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

[Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.]

[Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler's Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

NJSLS/HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation to describe and predict the gravitational forces between objects.

[Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of gravitational fields.] [Assessment Boundary: Assessment is limited to systems with two objects.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam

Tests and quizzes

Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4) HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.4 Rearrange formulas to highlight a guantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1) Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-ESS1-4: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

NJSLS/HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation to describe and predict the gravitational force between objects.

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
 PS2.B: Types of Interactions Newton's law of universal gravitation provides the mathematical model to describe and predict the effects of gravitational force between distant objects. (HS-PS2-4) Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. (HS-PS2- 4),(HS-PS2-5) PS3.C: Relationship Between Energy and Forces When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5) 	Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1) Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations. (HS-PS2- 2),(HS-PS2-4) Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS- PS2-3) Obtaining, Evaluating, and Communicating Information Communicate scientific and	Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS2-4) Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS- PS2- 1),(HS-PS2-5) Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. (HS- PS2-2)	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Kepler's Laws Newton's Law of Universal Gravitation (i.e. Phet Gravity Force Lab, Gravity and Orbits) Orbits of planets and satellites: determining speed of a satellite orbiting Earth; determining period of a satellite orbiting Earth Acceleration due to gravity and "weightlessness" Gravitational Field (g) Inertial mass vs. gravitational mass Multiple representations problem solving (i.e. dot diagram, force diagram, video analysis, data table,	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam

abou	It the process of	representations) and ranking	
deve	elopment and the design	tasks	
and	performance of a		
prop	osed process or system)	Observable features of the	
in m	ultiple formats (including	student performance by the	
orall	v. graphically, textually.	end of this unit:	
and	mathematically). (HS-	Representation	
PS2-	-6)	 Students identify and 	
	-,	describe the following	
Scie	nce Models, Laws,	relevant components	
Mec	hanisms, and Theories	in the given	
Expl	ain Natural Phenomena	mathematical or	
Theo	pries and laws provide	computational	
expl	anations in science (HS-	representations of	
PS2	- 1) (HS-PS2-4)	orbital motion: the	
. 02	1),(110 1 02 1)	trajectories of orbiting	
law	s are statements or	bodies including	
desc	criptions of the	planets moons or	
relat	ionships among	human-made	
obse	ervable phenomena (HS-	spacecraft: each of	
PS2	-1) (HS-PS2-4)	which depicts a	
1 02	1),(110 1 02 4)	revolving body's	
		eccentricity = f/d	
		where f is the	
		distance between foci	
		of an ellipse, and d is	
		the ellipse's major	
		avis length (Kenler's	
		first law of planetary	
		motion)	
		 Students clearly 	
		 Students clearly define the system of 	
		the interacting objects	
		thet is mathematically	
		roproconted	
		light the given	
		Osifig the given mothomatical	
		raprocentations	
		representations,	
		students identify and	
		describe the	

gravitational attraction
between two objects
as the product of their
masses divided by
the separation
distance squared (Fg
$= G m_1 m_2 / d_2$)
Mathematical modeling
Students use the
given mathematical or
computational
representations of
orbital motion to
depict that the square
of a revolving body's
period of revolution is
proportional to the
cube of its distance to
a gravitational center
$(T 2 \propto R 3)$ where T
is the orbital period
and R is the
semimaior axis of the
orbit — Kepler's third
law of planetary
motion
Students correctly
use the given
mathematical
formulas to predict
the gravitational force
between objects
Analysis
Students use the
given mathematical or
computational
representation of
Kenler's second law
of planetary motion
(an orbiting body
(an orbiting body

sweeps out equal
areas in equal time)
to predict the
relationship between
the distance between
an orbiting body and
its star, and the
object's orbital
velocity (i.e., that the
closer an orbiting
body is to a star, the
larger its orbital
velocity will be).
Students use the
given mathematical or
computational
representation of
Kenler's third law of
plenetery metion (T.2)
pianetal y motion (1 2)
a K 3, where T is the
orbital period and R is
the serie that are dist
the orbit) to predict
now either the orbital
distance or orbital
period changes given
a change in the other
variable.
Students use
Newton's law of
gravitation plus his
third law of motion to
predict how the
acceleration of a
planet towards the
sun varies with its
distance from the
sun, and to argue
qualitatively about

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (http://www.physicsclassroom.com/)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 5: Momentum

Essential Questions:

How do we quantify motion? How do airbags help save lives? How can we predict the final momenta of objects in a system after a collision?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

[Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.]

NJSLS/HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.

[Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.]

[Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam

Tests and quizzes

Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4) HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.4 Rearrange formulas to highlight a guantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1) Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

NJSLS/HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	
	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (http://www.physicsclassroom.com/)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Student Learning Objectives: (SLO)			Instructional Actions	
			Activities/Strategies	
Disciplinary Core	Science and	Crosscutting		Assessment
Ideas	Engineering	Concepts	Technology Implementation/	Check Points
	Practices	-	Interdisciplinary	
			Connections	
PS2.A: Forces and Motion	Planning and Carrying	Cause and Effect	Use appropriate online and	Formative Assessments:
Momentum is defined for a	Out Investigations	Empirical evidence is	textbook resources for	Exit tickets
particular frame of	Plan and conduct an	required to differentiate	presentation, demonstration,	Laboratory activities
reference; it is the mass	investigation individually	between cause and	classroom and laboratory activities	Classwork
times the velocity of the	and collaboratively to	correlation and make	and formative assessments for:	Homework
object. (HS-PS2-2)	produce data to serve as	claims about specific	Momentum	
	the basis for evidence, and	causes and effects. (HS-		Summative Assessments:
If a system interacts with	in the design: decide on	PS2- 1),(HS-PS2-5)	Impulse	Tests
objects outside itself, the	types, how much, and			Quizzes
total momentum of the	accuracy of data needed to	Systems can be designed	Impulse-momentum theorem (i.e.	Laboratory reports
system can change;	produce reliable	to cause a desired effect.	Lab: Egg Drop)	Project
nowever, any such change	measurements and consider	(HS-PS2-3)	Opensor is a standard and the standard standard is a	Quarterly exam
Is balanced by changes in	limitations on the precision	Sustama and Sustam	Conservation of momentum (i.e.	
ine momentum of objects	of the data (e.g., humber of	Systems and System	Lab. Conservation of Momentum)	
	tillais, cost, lisk, tille), and	When investigating or	Observable features of the student	
F32-2),(H3-F32-3)	accordingly (HS-PS2-5)	describing a system the	performance by the end of this unit:	
ETS1 A: Defining and		boundaries and initial	Representation	
Delimiting Engineering	Analyzing and Interpreting	conditions of the system	Students clearly define the system	
Problems	Data	need to be defined (HS-	of the two interacting objects that is	
Criteria and constraints also	Analyze data using tools.	PS2-2)	represented mathematically.	
include satisfying any	technologies, and/or models		including boundaries and initial	
requirements set by society,	(e.g., computational,		conditions.	
such as taking issues of risk	mathematical) in order to			
mitigation into account, and	make valid and reliable		Students identify and describe the	
they should be quantified to	scientific claims or		momentum of each object in the	
the extent possible and	determine an optimal design		system as the product of its mass	
stated in such a way that	solution. (HS-PS2-1)		and its velocity, p = mv (p and v are	
one can tell if a given design			restricted to one-dimensional	
meets them. (secondary to	Using Mathematics and		vectors), using the mathematical	
HS-PS2-3)	Computational Thinking		representations.	

	Use mathematical		
ETS1.C: Optimizing the	representations of	Students identify the claim	
Design Solution	phenomena to describe	indicating that the total momentum	
Criteria may need to be	explanations. (HS-PS2-	of a system of two interacting	
broken down into simpler	2).(HS-PS2-4)	objects is constant if there is no net	
ones that can be	Constructing	force on the system.	
approached systematically.	Explanations and		
and decisions about the	Designing Solutions Apply	Mathematical modeling	
priority of certain criteria	scientific ideas to solve a	Students use the mathematical	
over others (trade-offs) may	design problem, taking into	representations to model and	
be needed. (secondary to	account possible	describe the physical interaction of	
HS-PS2-3)	unanticipated effects. (HS-	the two objects in terms of the	
,	PS2-3)	change in the momentum of each	
	,	object as a result of the interaction.	
	Obtaining, Evaluating, and		
	Communicating	Students use the mathematical	
	Information	representations to model and	
	Communicate scientific and	describe the total momentum of the	
	technical information (e.g.	system by calculating the vector	
	about the process of	sum of momenta of the two objects	
	development and the design	in the system.	
	and performance of a		
	proposed process or	<u>Analysis</u>	
	system) in multiple formats	Students use the analysis of the	
	(including orally, graphically,	motion of the objects before the	
	textually, and	interaction to identify a system with	
	mathematically). (HS-PS2-	essentially no net force on it.	
	6)		
		Based on the analysis of the total	
		momentum of the system, students	
		support the claim that the	
		momentum of the system is the	
		same before and after the	
		interaction between the objects in	
		the system, so that momentum of	
		the system is constant.	
		Students identify that the analysis	
		of the momentum of each object in	
		the system indicates that any	

		change in momentum of one object	
		is holonood by a shanne in the	
		is balanced by a change in the	
		momentum of the other object, so	
		that the total management up is	
		that the total momentum is	
		constant.	
		Usina scientific knowledge to	
		accordent the design colution	
		generate the design solution	
		Students design a device that	
		minimizes the force on a	
		minimizes the force on a	
		macroscopic object during a	
		colligion. In the design students	
		comsion. In the design, students:	
		 Incorporate the concept 	
		that for a given change in	
		that for a given challye in	
		momentum, force in the	
		direction of the change in	
		momentum is decreased by	
		increasing the time interval	
		$af the collision (\Gamma \Lambda t - m \Lambda u)$	
		of the collision ($F\Delta t = m\Delta v$);	
		and	
		 Evaluation make use of the 	
		 Explicitly make use of the 	
		principle above so that the	
		dovico has the desired	
		device has the desired	
		effect of reducing the net	
		force applied to the object	
		by extending the time the	
		force is applied to the	
		abiant during the collisier	
		object during the collision.	
		In the design plan, students	
		describe the scientific rationals for	
		their choice of materials and for the	
		structure of the device	
		Describing criteria and constraints	
		including quantification when	
		including quantilication when	
		appropriate	
		Students describe and quantify	
		Students describe and quality	
		(when appropriate) the criteria and	
		constraints along with the tradeoffs	
 		implicit in these design solutions.	

	Examples of constraints to be	
	considered are cost mass the	
	maximum force applied to the	
	maximum force applied to the	
	object and	
	object, and	
Unit 6: Work and Energy

Essential Questions:

How can we change the energy of a system? How can we analyze motion in terms of energy? Why is the first hill of a roller coaster always the tallest? Why haven't humans created a perpetual motion machine?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

NJSLS/HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).

[Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

NJSLS/HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

[Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.]

[Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam

Tests and quizzes Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason CRP8. Utilize critical thinking to make sense of problems and persevere in solving them CRP11. Use technology to enhance productivity.

NJSLS/HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

NJSLS/HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).

NJSLS/HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

Student Learning			Instruction	al Actions
Objectives: (SLO)		1		
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS3.A: Definitions of Energy	Planning and Carrying Out	Systems and System	Use appropriate online and	Formative Assessments:
Energy is a quantitative property	Investigations	Models	textbook resources for	Exit tickets
of a system that depends on the	Plan and conduct an	Models can be used to	presentation, demonstration,	Laboratory activities
motion and interactions of matter	investigation individually and	predict the behavior of a	classroom and laboratory	Classwork
and radiation within that system.	collaboratively to produce	system, but these	activities and formative	Homework
That there is a single quantity	data to serve as the basis for	predictions have limited	assessments for:	
called energy is due to the fact	evidence, and in the design:	precision and reliability due	Work	Summative Assessments:
that a system's total energy is	decide on types, how much,	to the assumptions and		Tests
conserved, even as, within the	and accuracy of data needed	approximations inherent in	Energy, Mechanical Energy	Quizzes
system, energy is continually	to produce reliable	models. (HSPS3-1)	(Kinetic Energy and	Laboratory reports
transferred from one object to	measurements and consider		Gravitational Potential	Project
another and between its various	limitations on the precision of	Energy and Matter	Energy), Thermal Energy	Quarterly exam
possible forms. (HSPS3-1),(HS-	the data (e.g., number of	Changes of energy and		
PS3-2)	trials, cost, risk, time), and	matter in a system can be	Power	
	refine the design accordingly.	described in terms of		
At the macroscopic scale, energy	(HS-PS2-5)	energy and matter flows	Conservation of Mechanical	
manifests itself in multiple ways,		into, out of, and within that	Energy (Student-designed	
such as in motion, sound, light,	Developing and Using	system. (HSPS3-3)	experiment)	
and thermal energy. (HSPS3-2)	Models			
(HS-PS3-3)	Develop and use a model	Energy cannot be created	Observable features of the	
<u>-</u> , , , , , , , , , , , , , , , , , , ,	based on evidence to illustrate	or destroyed—only moves	student performance by the	
These relationships are better	the relationships between	between one place and	end of this unit:	
understood at the microscopic	systems or between	another place, between	Representation	
scale, at which all of the different	components of a system. (HS-	objects and/or fields, or	Students identify and describe	
manifestations of energy can be	PS3-2),(HSPS3-5)	between systems. (HS-	the components to be	
modeled as a combination of		PS3-2)	computationally modeled,	
energy associated with the				
motion of particles and energy	Using Wathematics and		I he boundaries of the	
associated with the configuration		Connections to	system and that the	
(relative position of the particles).	Create a computational model	Engineering,	reterence level for	
In some cases the relative	or simulation of a	rechnology, and	potential energy = 0	
position energy can be thought	pnenomenon, designed	Applications of Science	(the potential energy	

of as stored in fields (which	device, process, or system.	Influence of Science,	of the initial or final	
mediate interactions between	(HS-PS3-1)	Engineering, and	state does not have	
particles). This last concept		Technology on Society	to be zero);	
includes radiation, a	Constructing Explanations	and the Natural World	 The initial energies of 	
phenomenon in which energy	and Designing Solutions	Modern civilization	the system's	
stored in fields moves across	Design, evaluate, and/or	depends on major	components (e.g.,	
space. (HS-PS3-2)	refine a solution to a complex	technological systems.	energy in fields,	
	real-world problem, based on	Engineers continuously	thermal energy,	
PS3.B: Conservation of	scientific knowledge, student-	modify these technological	kinetic energy, energy	
Energy and Energy Transfer	generated sources of	systems by applying	stored in springs —	
Conservation of energy means	evidence, prioritized criteria,	scientific knowledge and	all expressed as a	
that the total change of energy in	and tradeoff considerations.	engineering design	total amount of Joules	
any system is always equal to	(HSPS3-3)	practices to increase	in each component),	
the total energy transferred into		benefits while decreasing	including a	
or out of the system. (HS-PS3-1)	Obtaining, Evaluating, and	costs and risks. (HS-PS3-	quantification in an	
	Communicating Information	3)	algebraic description	
Energy cannot be created or	Communicate scientific and		to calculate the total	
destroyed, but it can be	technical information (e.g.	Connections to Nature of	initial energy of the	
transported from one place to	about the process of	Science Scientific	system;	
another and transferred between	development and the design	Knowledge Assumes an	 The energy flows in 	
systems. (HS-PS3-1),(HS-PS3-	and performance of a	Order and Consistency	or out of the system,	
4)	proposed process or system)	in Natural Systems	including a	
	in multiple formats (including	Science assumes the	quantification in an	
Mathematical expressions, which	orally, graphically, textually,	universe is a vast single	algebraic description	
quantify how the stored energy ir	and mathematically). (HS-	system in which basic laws	with flow into the	
a system depends on its	PS2-6)	are consistent. (HSPS3-1)	system defined as	
configuration (e.g. relative			positive; and	
positions of charged particles,			 The final energies of 	
compression of a spring) and			the system	
how kinetic energy depends on			components,	
mass and speed, allow the			including a	
concept of conservation of			quantification in an	
energy to be used to predict and			algebraic description	
describe system behavior. (HS-			to calculate the total	
PS3-1)			final energy of the	
			system	
The availability of energy limits				
what can occur in any system.			Computational Modeling	
(HS-PS3-1)			Students use the algebraic	
			descriptions of the initial and	

PS3.D: Energy in Chemical Processes Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS- PS3-3),(HS-PS3-4)		final energy state of the system, along with the energy flows to create a computational model (e.g., simple computer program, spreadsheet, simulation software package application) that is based on the principle of the conservation of energy.	
ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)		Students use the computational model to calculate changes in the energy of one component of the system when changes in the energy of the other components and the energy flows are known. <u>Analysis</u> Students use the computational model to predict the maximum possible change in the energy of one component of the system for a given set of energy flows. Students identify and describe the limitations of the computational model, based on the assumptions that were made in creating the algebraic descriptions of energy changes and flows in the system. <u>Components of the model</u> Students develop models in	

describe the relevant
components including:
All the components of
• All the components of
surroundings, as well
as energy nows
between the system
and the surroundings;
Clearly depicting both
a macroscopic and a
molecular/atomic-
level representation
of the system; and
Depicting the forms in
which energy is
manifested at two
different scales:
 Macroscopic.
such as
motion
sound light
thermal
energy
potential
epergy or
energy of
fielde: and
Melecular/oto
mild, such as
energy) of
particles
(e.g., nuclei
and
electrons),
the relative
positions of
particles in
fields

(potential	
energy), and	
operavin	l l
energy in	l l
fields.	
Relationships	
Studente describe the	
Students describe the	
relationships between	
components in their models,	
including	
Changes in the	
relative position of	
objects in	
gravitational fields	
can affect the operation	
of the fields	
 Thermal energy 	
includes both the	
kinetic and potential	
Kinetic and potential	
energy of particle	
vibrations in solids or	
molecules and the	
kinetic energy of	
freely moving	
neely moving	
particles (e.g., inert	
gas atoms,	
molecules) in liquids	
and googe	
anu yases.	
 The total energy of 	
the system and	
surroundings is	
conserved at a	
macroscopic and	
molecular/atomic	
level	
Chemical energy can	
be considered in	
be considered in	
terms of systems of	
nuclei and electrons	

		-
	in electrostatic fields	
	(bonds)	
	• As one form of	
	energy increases,	
	others must decrease	
	by the same amount	
	as energy is	
	transferred among	
	and between objects	
	and fields	
	Connections	
	Officients	
	Students use their models to	
	show that in closed systems	
	the energy is conserved on	
	both the macroscopic and	
	molecular/atomic scales so	
	that as one form of energy	
	changes the total system	
	onariges, the total system	
	energy remains constant, as	
	evidenced by the other forms	
	of energy changing by the	
	same amount or changes only	
	by the amount of energy that	
	is transferred into or out of the	
	svstem.	
	- ,	
	Students use their models to	
	illustrate that aparall at the	
	macroscopic scale can be	
	accounted for as a	
	combination of energy	
	associated with the motions of	
	particles/objects and energy	
	associated with the relative	
	positions of particles/objects	
	on both the macroscopic and	
	microscopic scales.	

	,
Using scientific knowledge to	
generate the design solution	
Students design a device that	
converts one form of energy	
into another form of energy	
into another form of energy.	
Students develop a plan for	
the device in which they:	
Identify what scientific	
principles provide the	
basis for the energy	
conversion design:	
 Identify the forms of 	
energy that will be	
converted from one	
form to enother in the	
designed system;	
Identify losses of	
energy by the design	
system to the	
surrounding	
environment;	
Describe the scientific	
rationale for choices	
of materials and	
structure of the	
atudant generated	
evidence initianced	
the design; and	
Describe that this	
device is an example	
of how the application	
of scientific	
knowledge and	
engineering design	
can increase benefits	
for modern civilization	
while decreasing	
costs and risk	
00515 driu 115K.	

	Describing criteria and	
	constraints, including	
	quantification when	
	<u>appropriate</u>	
	Students describe and	
	quantify (when appropriate)	
	prioritized criteria and	
	constraints for the design of	
	the device, along with the	
	tradeoffs implicit in these	
	design solutions. Examples of	
	constraints to be considered	
	are cost and efficiency of	
	enerav conversion.	
	Evaluating potential solutions	
	Students build and test the	
	device according to the plan.	
	5 1	
	Students systematically and	
	quantitatively evaluate the	
	performance of the device	
	against the criteria and	
	constraints.	
	Refining and/or optimizing the	
	design solution	
	Students use the results of	
	the tests to improve the	
	device performance by	
	increasing the efficiency of	
	energy conversion, keeping in	
	mind the criteria and	
	constraints, and noting any	
	modifications in tradeoffs.	
	Diagona Education	
	Discovery Education	
	I ECNDOOK: Physics	

Physics	1-1
---------	-----

•	Work and Power
Unit: 0 Energy •	Conservation of y and Momentum Types of Energy Conservation of Energy Work, Power, and Impulse

Resources: Essential Materials, Supplementary Materials, Links to	Instructional Adjustments:
Best Practices	
	Modifications will be made to accommodate IEP
Discovery Education Techbook: Physics	mandates for classified students
Physics Principles and Problems Glencoe	
Phet online simulations	
(https://phet.colorado.edu/en/simulations/category/physics)	
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 7: Electrostatics

Essential Questions:

What is the fundamental force responsible for most everyday interactions? What are the parallels between gravitational force and electrostatic force? How does one charged particle "know" to attract/repel another?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the electrostatic forces between objects.

[Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of electric fields.]

[Assessment Boundary: Assessment is limited to systems with two objects.]

NJSLS/HS-PS3-5. Develop and use a model of two objects interacting through electric fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

[Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.]

[Assessment Boundary: Assessment is limited to systems containing two objects.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and quizzes Laboratory activities and reports

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4) HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.4 Rearrange formulas to highlight a guantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1) Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the electrostatic forces between objects.

NJSLS/HS-PS3-5. Develop and use a model of two objects interacting through electric fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Student Learning Objectives: (SLO)			Instruction	nal Actions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS1.A: Structure and Properties of Matter	Analyzing and Interpreting Data	Patterns	Use appropriate online and textbook resources for	Formative Assessments: Exit tickets
The structure and interactions of	Analyze data using tools,	Different patterns may be	presentation, demonstration,	Laboratory activities
matter at the bulk scale are	technologies, and/or models	observed at each of the	classroom and laboratory	Classwork
determined by electrical forces	(e.g., computational,	scales at which a system is	activities and formative	Homework
within and between atoms.	mathematical) in order to	studied and can provide	assessments for:	
(secondary to HS-PS2-6)	make valid and reliable	evidence for causality in	Structure of matter	Summative Assessments:
	scientific claims or determine	nhenomena (HS-PS2-4)	(conductors, insulators)	Tests
PS2.B: Types of Interactions	an optimal design solution.			Quizzes
Coulomb's law provides the	(HS-PS2-1)	Cause and Effect	Electric charge	Laboratory reports
mathematical model to describe		Empirical evidence is		Project
and predict the effects of	Using Mathematics and	required to differentiate	Methods of charging	Quarterly exam
electrostatic force between	Computational Thinking	between cause and		
distant objects. (HS-PS2-4)	Use mathematical	correlation and make	Coulomb's Law	
	representations of	claims about specific		
Forces at a distance are	phenomena to describe	causes and effects. (HS-	Electric field	
explained by fields (gravitational,	explanations. (HS-PS2-	PS2- 1),(HS-PS2-5)		
electric, and magnetic)	2),(HS-PS2-4)		Electric potential, electric	
permeating space that can	Connections to Noture of	Energy and Matter	potential difference	
	Connections to Nature of	Energy cannot be created		
(HS-PS2-4),(HS-PS2-5)	Science Science Models,	or destroyed—only moves	Electric potential energy	
Attraction and repulsion between	Laws, Mechanishis, and Theories Explain Natural	between one place and	Capacitor (definition stores	
electric charges at the atomic	Phenomena	another place, between	energy)	
scale explain the structure	Theories and laws provide	objects and/or fields, or		
properties and transformations	explanations in science (HS-	between systems. (HS-	Observable features of the	
of matter, as well as the contact	PS2- 1).(HS-PS2-4)	PS3-2)	student performance by the	
forces between material objects.			end of this unit:	
(HS-PS2-6).(secondary to HS-	Laws are statements or		Representation	
PS1-1),(secondarv to HS-PS1-3)	descriptions of the		Students clearly define the	
··· · · · · · · · · · · · · · · · · ·	relationships among		system of the interacting	
PS3.A: Definitions of Energy	observable phenomena. (HS-			

"Electrical energy" may mean DS2-1) (HS-DS2-1)	objects that is mathematically
energy stored in a battery or	represented
energy transmitted by electric	
currents (secondary to HS-PS2- Developing and Using	I Ising the given mathematical
5) Models	representations students
Develop and use a model	identify and describe the
PS3.C: Relationship Between based on evidence to illustrate	electrostatic force between
Energy and Forces the relationships between	two objects as the product of
When two objects interacting systems or between	their individual charges
through a field change relative components of a system. (HS-	divided by the separation
position, the energy stored in the PS3-2).(HSPS3-5)	distance squared (Fe = k q1q2
field is changed. (HS-PS3-5)	/d ₂)
PS3.B: Conservation of	Mathematical modeling
Energy and Energy Transfer	Students correctly use the
Mathematical expressions, which	given mathematical formulas
quantify how the stored energy	to predict the electrostatic
in a system depends on its	force between charged
configuration (e.g. relative	objects.
positions of charged particles,	
compression of a spring) and	Analysis
now kinetic energy depends on	Based on the given
mass and speed, allow the	mathematical models,
concept of conservation of	students describe that the
energy to be used to predict and	ratio between electric force
	between objects with a given
PS3-1)	charge is a pattern that is
PS2 C: Palationship Batwoon	independent of distance.
Forces	Students describe that the
When two objects interacting	mathematical representation
through a field change relative	of the electric field (Ee – k
position, the energy stored in the	a_1a_2/d_2) predicts both
field is changed (HS-PS3-5)	attraction and repulsion
	because electric charge can
	be either positive or negative.
	Students use the given
	formulas for the force as
	evidence to describe that the

change in the energy of
objects interacting through
electric force depends on the
distance between the objects.
Components of the model
Students develop a model in
which they identify and
describe the relevant
components to illustrate the
forces and changes in energy
involved when two objects
interact, including:
The two objects in the
system, including
their initial positions
and velocities (limited
to one dimension)
The nature of the
• The fature of the
interaction (electric of
magnetic) between
the two objects.
The relative
magnitude and the
direction of the net
force on each of the
objects.
Representation of a
field as a quantity that
has a magnitude and
direction at all points
in choce and which
contains energy.
Relationships
In the model, students
describe the relationships
between components,
including the change in the
eneray of the objects, given

the initial and final positions
and velocities of the objects.
Connections
Students use the model to
determine whether the energy
atomation the field increased
stored in the field filed sed,
decreased, or remained the
same when the objects
interacted.
Students use the model to
support the claim that the
change in the energy stored
in the field (which is
gualitatively determined to be
either nositive negative or
zaro) is consistent with the
change in anorgy of the
objects.
Using the model, students
describe the cause and effect
relationships on a qualitative
level between forces
produced by electric or
magnetic fields and the
change of energy of the
objects in the system.
Discoverv Education
Techbook: Physics
Linit: Forces
Electric Forces
Lipit: Electromagnetism
Utilit. Electronidynetisin
Electric and Magnetic
Fields

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (http://www.physicsclassroom.com/)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 8: DC Circuits

Essential Questions:

How can we use electrical energy? How is electric potential energy distributed throughout a circuit?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and quizzes Laboratory activities and reports

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

Student Learning Objectives: (SLO)			Instruction	al Actions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HSPS3-1),(HS- PS3-2) At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HSPS3-2) (HS-PS3-3)	Using Mathematics and Computational Thinking Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-PS3-1) Obtaining, Evaluating, and Communicating Information Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS- PS2-6)	Systems and System Models Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HSPS3-1)	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Electric current Electric power Resistance Ohm's Law Circuit diagrams Energy transfer in electric circuits Paying for energy	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam
These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative	Connections to Nature of Science Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena Theories and laws provide explanations in science. (HS- PS2- 1),(HS-PS2-4)		Electrical safety devices (i.e. fuse, circuit breaker, ground fault interrupter) Circuit tools (i.e. ammeter, voltmeter) Simple circuits: series circuits, parallel circuits	

position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2)	Laws are statements or descriptions of the relationships among observable phenomena. (HS- PS2-1),(HS-PS2-4)	<u>Discovery Education</u> <u>Techbook: Physics</u> Unit: Electromagnetism Electric Circuits Conductors and Insulators	
PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1)			
Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1),(HS-PS3- 4)			
Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS- PS3-1)			
The availability of energy limits what can occur in any system. (HS-PS3-1)			

PS3.C: Relationship Between Energy and Forces		
When two objects interacting		
through a field change relative		
position, the energy stored in the		
field is changed. (HS-PS3-5)		

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	
	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (<u>https://sites.google.com/site/twuphysicslessons/</u>)	

Unit 9: Magnetism

Essential Questions:

What is the relationship between electricity and magnetism?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

[Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.]

NJSLS/HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

[Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.]

[Assessment Boundary: Assessment is limited to systems containing two objects.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and guizzes

Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2- 4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason CRP8. Utilize critical thinking to make sense of problems and persevere in solving them CRP11. Use technology to enhance productivity.

NJSLS/HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

NJSLS/HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Student Learning Objectives: (SLO)			Instruction	al Actions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
 PS2.B: Types of Interactions Forces at a distance are explained by fields (gravitational electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS- PS2-4),(HS-PS2-5) PS3.C: Relationship Between Energy and Forces When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5) 	Planning and Carrying Out Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5) Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1) Using Mathematics and Computational Thinking Use mathematical	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS- PS2- 1),(HS-PS2-5)	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Magnetism Magnetic field Magnetic force on moving charged particle Magnetic force on current- carrying wire Electric current from changing magnetic field <i>Observable features of the</i> <i>student performance by the</i> <i>end of this unit:</i> Identifying the phenomenon to be investigated Students describe the phenomenon under investigation, which includes the following idea: that an electric current produces a magnetic field and that a changing magnetic field	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam

phenomena to describe		
explanations. (HS-PS2-	Identifying the evidence to	
2),(HS-PS2-4)	answer this question	
	Students develop an	
Obtaining, Evaluating, and	investigation plan and	
Communicating Information	describe the data that will be	
Communicate scientific and	collected and the evidence to	
technical information (e.g.	be derived from the data	
about the process of	about 1) an observable effect	
development and the design	of a magnetic field that is	
and performance of a	uniquely related to the	
proposed process or system)	presence of an electric	
in multiple formats (including	current in the circuit and 2)	
orally graphically textually	an electric current in the	
and mathematically) (HS-	circuit that is uniquely related	
PS2-6)	to the presence of a changing	
	magnetic field near the circuit	
Developing and Using	Students describe why these	
Models	effects seen must be causal	
Develop and use a model	and not correlational citing	
based on evidence to illustrate	specific cause-offect	
the relationships between	relationshins	
cyctome or botwoon	relationships.	
systems of a system (US	Planning for the investigation	
	In the investigation plan	
F 33-2),(H3F 33-3)	atudanta induda:	
	Students include.	
	 The use of an electric 	
	now, a source of	
	electrical energy that	
	can be placed in the	
	circuit, the shape and	
	orientation of the	
	wire, and the types	
	and positions of	
	detectors;	
	 A means to indicate 	
	or measure when	
	electric current is	

	 flowing through the circuit; A means to indicate or measure the presence of a local magnetic field near the circuit; and A design of a system to change the magnetic field in a nearby circuit and a means to indicate or measure when the magnetic field is changing. 	
	In the plan, students state whether the investigation will be conducted individually or collaboratively. <u>Collecting the data</u> Students measure and record electric currents and magnetic fields.	
	 Students evaluate their Students evaluate their investigation, including an evaluation of: The accuracy and precision of the data collected, as well as limitations of the investigation; and The ability of the data to provide the evidence required. 	

If necessary, students refine
the investigation plan to
produce more accurate,
precise, and useful data such
that the measurements or
indicators of the presence of
an electric current in the
circuit and a magnetic field
near the circuit can provide
the required evidence.
Discovery Education
Techbook: Physics
Unit: Electromagnetism
Electric and Magnetic
Fields
 Electricity and
Magnetism

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	
	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	

Unit 10: Waves

Essential Questions:

What are defining properties of a wave?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

[Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the earth.]

[Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam

Tests and quizzes Laboratory activities and reports

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2- 4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS4.A: Wave Properties The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS- PS4-1) Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)	Using Mathematics and Computational Thinking Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1) Obtaining, Evaluating, and Communicating Information Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS- PS2-6)	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS- PS4-1)	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Wave properties (waves can reflect, refract, disperse, diffract, interfere and follow Principle of Superposition) Waves are described by the wave equation ($v = f\lambda$) Observable features of the student performance by the end of this unit: Representation Students identify and describe the relevant components in the mathematical representations: • Mathematical values for frequency, wavelength, and speed of waves traveling in various specified media; and • The relationships between frequency, wavelength, and speed of waves	Formative Assessments Exit tickets Laboratory activities Classwork Homework Summative Assessments Tests Quizzes Laboratory reports Project Quarterly exam

traveling in various
specified media.
Mathematical modeling
Students show that the
broduct of the frequency and
the wavelength of a particular
type of wave in a given
medium is constant, and
identify this relationship as the
wave speed according to the
mathematical relationship $v =$
$f\lambda$.
Students use the data to
show that the wave speed for
a particular type of wave
changes as the medium
through which the wave
travels changes.
Students predict the relative
change in the wavelength of a
wave when it moves from one
medium to another (thus
different wave speeds using
the mathematical relationship
$u = f\lambda$). Students express the
$r_{\rm rolative change in terms of$
leidive change in terms of
cause (different media) and
effect (different wavelengths
but same frequency).
Analysis
Using the mathematical
relationship $v = f\lambda$, students
assess claims about any of
the three quantities when the
other two quantities are
but same frequency). Analysis Using the mathematical relationship $v = f\lambda$, students assess claims about any of

Physics 1-1	
-------------	--

known for waves travelling in various specified media.
Students use the mathematical relationships to distinguish between cause and correlation with respect to the supported claims.
<u>Discovery Education</u> <u>Techbook: Physics</u> Unit: Waves • Wave Characterisitcs

Resources: Essential Materials, Supplementary Materials, Links to Best	Instructional Adjustments:
Practices	
	Modifications will be made to
Discovery Education Techbook: Physics	accommodate IEP mandates for
Physics Principles and Problems Glencoe	classified students
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (<u>https://sites.google.com/site/twuphysicslessons/</u>)	

Unit 11: Applications of Electromagnetic Radiation

Essential Questions:

What is electromagnetic radiation? What evidence exists that supports photon model of electromagnetic radiation? What are applications of electromagnetic radiation?

NGSS Performance Expectations: (Students who demonstrate understanding can:)

NJSLS/HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. [Clarification Statement: Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect.]

[Assessment Boundary: Assessment does not include using quantum theory.]

NJSLS/HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

[Clarification Statement: Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.] [Assessment Boundary: Assessment is limited to qualitative descriptions.]

Unit Assessment: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and quizzes Laboratory activities and reports

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1) RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)
Physics 1-1

Mathematics MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4) HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.4 Rearrange formulas to highlight a guantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1) Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

CRP4. Communicate clearly and effectively and with reason

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them

CRP11. Use technology to enhance productivity.

NJSLS/HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. NJSLS/HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

Student Learning Objectives: (SLO)			Instruction	al Actions
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS4.B: Electromagnetic RadiationE RadiationElectromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)Photoelectric materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)	Engaging in Argument from Evidence Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)	Cause and Effect Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS4-4)	Use appropriate online and textbook resources for presentation, demonstration, classroom and laboratory activities and formative assessments for: Wave model of light Photon model of light Photoelectric effect Effects of electromagnetic radiation on matter Observable features of the student performance by the end of this unit: Identifying the given explanation and associated claims, evidence, and reasoning Students identify the given explanation that is to be supported by the claims, evidence, and reasoning to be evaluated, and that includes the following idea: Electromagnetic radiation can be described either by a wave model or a particle model, and for some situations one	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam

Physics 1-1

PS4.C: Information		model is more useful than the	
Technologies and		other.	
Instrumentation			
Multiple technologies based on		Students identify the given	
the understanding of waves and		claims to be evaluated.	
their interactions with matter are			
part of everyday experiences in		Students identify the given	
the modern world (e.g., medical		evidence to be evaluated,	
imaging, communications,		including the following	
scanners) and in scientific		phenomena:	
research. They are essential		Interference behavior	
tools for producing, transmitting,		by electromagnetic	
and capturing signals and for		radiation; and	
storing and interpreting the		 The photoelectric 	
information contained in them.		effect.	
(HS-PS4-5)			
		Students identify the given	
		reasoning to be evaluated.	
		Evaluating given evidence	
		and reasoning	
		Students evaluate the given	
		evidence for interference	
		behavior of electromagnetic	
		radiation to determine how it	
		supports the argument that	
		electromagnetic radiation can	
		be described by a wave	
		model.	
		Students evaluate the	
		nhonomonon of the	
		phonomenon of the	
		determine how it supports the	
		aroument that	
		electromagnetic radiation can	
		be described by a particle	
		model.	

Students evaluate the given
claims and reasoning for
modeling electromagnetic
radiation as both a wave and
particle considering the
transfer of operand
information within and
between systems, and why
for some aspects the wave
model is more useful and for
other aspects the particle
model is more useful to
describe the transfer of
epergy and information
shory and momaton
Obtaining information
Students abtein at loss two
Students obtain at least two
claims proposed in published
material (using at least two
sources per claim) regarding
the effect of electromagnetic
radiation that is absorbed by
matter. One of these claims
deals with the effect of
electromagnetic radiation on
living tissue
Evaluating information
Studening information
Students use reasoning about
the data presented, including
the energies of the photons
involved (i.e., relative
wavelengths) and the
probability of ionization, to
analyze the validity and
reliability of each claim.
Students determine the
validity and reliability of the
cources of the claims

	Students describe the cause and effect reasoning in each claim, including the extrapolations to larger scales from cause and effect relationships of mechanisms at small scales (e.g., extrapolating from the effect of a particular wavelength of radiation on a single cell to
	the effect of that wavelength on the entire organism).

Resources: Essential Materials, Supplementary Materials, Links to	Instructional Adjustments:
Best Practices	
	Modifications will be made to accommodate IEP
Discovery Education Techbook: Physics	mandates for classified students
Physics Principles and Problems Glencoe	
Phet online simulations	
(https://phet.colorado.edu/en/simulations/category/physics)	
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	