# AP Calculus BC Mathematics Curriculum Francis Howell School District

# Board Approved: June 2, 2011

#### Francis Howell School District Mission Statement

Francis Howell School District is a learning community where all students reach their full potential.

#### **Vision Statement**

Francis Howell School District is an educational leader that builds excellence through a collaborative culture that values students, parents, employees, and the community as partners in learning.

Values

Francis Howell School District is committed to:

- Providing a consistent and comprehensive education that fosters high levels of academic achievement for all
- Operating safe and well-maintained schools
- Promoting parent, community, student, and business involvement in support of the school district
- Ensuring fiscal responsibility

• Developing character and leadership

## Francis Howell School District Graduate Goals

Upon completion of their academic study in the Francis Howell School District, students will be able to:

- 1. Gather, analyze and apply information and ideas.
- 2. Communicate effectively within and beyond the classroom.
- 3. Recognize and solve problems.
- 4. Make decisions and act as responsible members of society.

# **Mathematics Graduate Goals**

Upon completion of their mathematics study in the Francis Howell School District, students will be able to:

- 1. Communicate mathematically
- 2. Reason mathematically
- 3. Make mathematical connections
- 4. Use mathematical representations to model and interpret practical situations

# Mathematics Rationale for AP Calculus BC

In today's technological society, production and consumption of information, goods, and services continues to increase, necessitating advanced mathematical literacy skills, particularly for those in careers related to science, technology, engineering, and math (STEM). This increasing emphasis on STEM fields requires students to understand the mathematics of change: rates, accumulation, removal, growth, and decline, approximations, representations. Many physical situations are modeled and analyzed utilizing calculus. Calculus is the basis for more advanced study of many STEM fields. AP Calculus BC provides students with the necessary skills and meaningful applications to analyze phenomena encountered in the modern sciences.

#### **Course Description for AP Calculus BC**

This course is a college level course having many applications in engineering and the sciences. Topics include limits, derivatives and integration of a wide variety of functions, and applications of differentiation and integration. This is an advanced placement course that prepares the student to take the Calculus AB exam. AP Calculus BC may be taken for college credit.

# **Curriculum Team** Lisa Jones FHHS Sharon Spoede FHC Steve Willott FHN

Secondary Content Leader Director of Student Learning Chief Academic Officer Superintendent Keiren Greenhouse Travis Bracht Mary Hendricks-Harris Dr. Pam Sloan

### **Semester One**

| Section | Student-Friendly Learning Targets                                                                                               | Activity/topic                   | pg. | Assignment                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|----------------------------------------------|
| 1.2     | I understand the limit process, can calculate<br>limits with algebra, and can estimate limits<br>from graphs or tables of data. | limits graphically & numerically | 54  | 3,5,9,13,15,17,19,21, 23, 33                 |
| 1.3     |                                                                                                                                 | limits analytically              | 67  | 9,11,17,21,29,31,33, 37,41,45,57,61,67,73,77 |

| 3.5 | I understand how to find limits at infinity<br>and can analyze dominance of functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | limits at infinity        | 205 | 1,3,5,21,27,55                                          |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|---------------------------------------------------------|
| 3.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dominance                 |     |                                                         |
| 1.4 | I understand the basic idea of continuity<br>(that function values can be made as close<br>as desired by taking sufficiently close<br>values of the domain), understand<br>continuity in terms of limits, and have a<br>geometric understanding of graphs of<br>continuous functions (IVT & EVT)                                                                                                                                                                                                                                                                                                                                             | continuity                | 78  | 1,5,7,9,11,15,19,25,27,31,35,41,43,55,57,61,67,69,73,79 |
| 1.5 | I understand asymptotes in terms of<br>graphical behavior, can describe asymptotic<br>behavior in terms of limits involving<br>infinity, and can compare relative<br>magnitudes of functions and their rates of<br>change.                                                                                                                                                                                                                                                                                                                                                                                                                   | infinite limits           | 88  | 1,3,5,7,9,19,25,29,31,35,43,47,49                       |
| 1.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | blueberry pancake recipe  |     |                                                         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | review                    |     |                                                         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | test                      |     |                                                         |
| 2.1 | I can explain and determine the derivative<br>graphically, numerically, and analytically,<br>understand the interpretation of the<br>derivative as an instantaneous rate of<br>change, can calculate the derivative via a<br>limit of a difference quotient, and<br>understand the relationship between<br>differentiability and continuity. I can also<br>find the slope of a line at a point, can find<br>the slope of a tangent line to a curve at a<br>point, understand that the instantaneous<br>rate of change is the limit of the average<br>rate of change, and can approximate rate of<br>change from graphs and tables of values. | local linearity           | 103 | 5,9,13,19,27,29,31,45,51,53,55,59,65,69,71, 81, 83, 95  |
| 2.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | limit defn. of derivative |     |                                                         |
| 2.1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | derivative & tangent line |     |                                                         |

| 2.1 & 2.2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | start diff. rules                               |     |                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----|-----------------------------------------------------------------|
| 2.2       | I can find the derivative of basic functions,<br>know the rules for derivatives of sums,<br>products, and quotients of functions, and<br>can use the chain rule and perform implicit<br>differentiation.                                                                                                                                                                                                                                                                             | diff.rules                                      | 115 | 1,3,7,11,15,17,19,23,29,31,35,43,47,53,65,67,69,71,75,81,<br>97 |
| 2.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | finish notes and work day                       |     |                                                                 |
| 2.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prod/quot rules                                 | 126 | 3,5,13,19,27,29,35,41,53,59,77,93,95,97                         |
| 2.4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chain rule                                      | 137 | 1,7,9,15,19,43,47,51,53,55,61,65,67,73,91,93                    |
| 2.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | implicit differentiation                        | 146 | 1,5,11,15,19,31,35,45                                           |
| 2.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | finish notes and hall walking for related rates |     |                                                                 |
| 2.6       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | related rates                                   | 154 | 1,5,11,13,25,31,33,41                                           |
| formative |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |     |                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | test                                            |     |                                                                 |
| 3.1       | I can analyze graphs including<br>characteristics of monotonicity and<br>concavity, can determine the absolute and<br>local extrema, can use implicit<br>differentiation to find the derivative of an<br>inverse function, understand that the<br>derivative is a rate of change that can be<br>applied to varied contexts including<br>velocity, speed, and acceleration, and<br>understand the geometric representation of<br>derivatives via slope fields and solution<br>curves. | extrema                                         | 169 | 1,3,5,7,11,13,15,23,25,29,31,33,35,37, 41, 55, 57               |

| 3.2        | I understand the corresponding<br>characteristics of f and f', understand the<br>relationship between increasing and<br>decreasing behavior of f and the sign of f',<br>can apply the MVT and understand its<br>geometric consequences, and can translate<br>between verbal descriptions and equations<br>involving derivatives. | rolle's and MVT     | 176 | 1,9,13,15,21,27,33,39,43,47,49       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|--------------------------------------|
| 3.3        |                                                                                                                                                                                                                                                                                                                                  | incr/decr functions | 186 | 5,9,15,27,31,37,39,45,55,57          |
| 3.3 cont'd |                                                                                                                                                                                                                                                                                                                                  |                     |     |                                      |
| 3.4        | I understand the corresponding<br>characteristics of f, f', and f", understand<br>the relationship between concavity of f and<br>the sign of f", and understand that POI are<br>places where concavity changes.                                                                                                                  | concavity           | 195 | 5,13,19,23,31,49                     |
| 3.6        |                                                                                                                                                                                                                                                                                                                                  | curve sketching     | 215 | 1,3,5,7,29,33,47,                    |
| 3.7        |                                                                                                                                                                                                                                                                                                                                  | optimization        | 223 | 3,7,9,11,15,17,19,27                 |
| 3.9        |                                                                                                                                                                                                                                                                                                                                  | differentials       | 240 | 1,5,9,13,21,27,43,49,51              |
| R          |                                                                                                                                                                                                                                                                                                                                  | review              |     |                                      |
| R          |                                                                                                                                                                                                                                                                                                                                  | review              |     |                                      |
|            |                                                                                                                                                                                                                                                                                                                                  | review              |     |                                      |
|            |                                                                                                                                                                                                                                                                                                                                  | test                |     |                                      |
| 4.2        | I can find the definite integral as a limit of<br>a sum, can interpret a definite integral of a<br>rate of change as the change of the quantity<br>over the interval, and know basic properties<br>of definite integrals such as additivity and<br>linearity.                                                                    | area                | 267 | 1,7,15,17,21,23,27,33,35,37,41,43,71 |
| 4.2        |                                                                                                                                                                                                                                                                                                                                  | area                |     |                                      |

| 4.3 | I can use sums (right, left, midpoint, and<br>trapezoidal) to approximate definite<br>integrals of functions represented<br>algebraically, graphically, and with tables<br>of data | riemann sums/def integ     | 278 | 1,5,9,11,13,15,17,19,21,27,43                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----------------------------------------------------------|
| 4.6 |                                                                                                                                                                                    | num'cal integ, simpson's   | 314 | 1,7,11,17,21,23                                           |
| 4.4 | I can use the FTC to evaluate definite<br>integrals and to represent a particular<br>antiderivative and analyze functions so<br>defined both analytically and graphically          | fund thm of calc.          | 291 | 5,7,11,13,19,25,27,33,37,41,43,47,67,69,71,73,75,79,81,87 |
| 4.1 |                                                                                                                                                                                    | antideriv. indef integ     | 255 | 1,5,11,15,23,31,35,43,45,47,49,51,55,57,63,65,67,69       |
| 4.5 | I can find antiderivatives following from<br>derivatives of basic functions and can use<br>substitution of variables.                                                              | integ by subst             | 304 | 1,7,11,15,21,31,39,47,49,55                               |
|     |                                                                                                                                                                                    | review                     |     |                                                           |
|     |                                                                                                                                                                                    | test                       |     |                                                           |
| 5.1 |                                                                                                                                                                                    | In and differentiation     | 329 | 7,9,11,17,19,21,29,33,41,47,57,71,81,83                   |
| 5.2 |                                                                                                                                                                                    | In and integration         | 338 | 1,5,11,19,21,27,29,31,33,43,51,61,63,67                   |
| 5.3 |                                                                                                                                                                                    | inverse functions          | 347 | 1,5,9,11,13,21,51,61,73,75                                |
| 5.4 |                                                                                                                                                                                    | exponential functions      | 356 | 1,3,5,7,9,27,33,37,45,49,51,55,59,85,87,93,97,99,101      |
| 5.5 |                                                                                                                                                                                    | bases other than e         | 366 | 1,3,5,7,9,31,37,45,57,63,69,73,79                         |
| 5.6 |                                                                                                                                                                                    | inv. trig func. difftion   | 377 | 5,7,9,11,13,15,19,21,23,25,41,43,45,51,59                 |
| 5.7 |                                                                                                                                                                                    | inv. trig func. int'ration | 385 | 1,3,7,11,15,21,23,33,35,39,41,55                          |
|     |                                                                                                                                                                                    | review                     |     |                                                           |
|     |                                                                                                                                                                                    | test                       |     |                                                           |

| 6.1 | I can find the numerical solution of<br>differential equations using Euler's method                                                                                                                                                                                                                              | slope fields and Euler's Method                       | 409 | 1, 3,19,23,25,27,31,37,39,43,49,53,57,69,71,75,79 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|---------------------------------------------------|
| 6.2 |                                                                                                                                                                                                                                                                                                                  | growth and decay                                      | 418 | 1,5,7,11,13,15,17,21,25,33,41,43,57,67            |
| 6.3 | I can find specific antiderivatives using<br>initial conditions, including motion along a<br>line, and can solve separable differential<br>equations and using them in modeling,<br>particularly y '=ky and exponential growth.<br>Also, I can solve logistic differential<br>equations and use them in modeling | separation of variables and<br>logistic growth models | 429 | 1,3,13,17,21,27,31,35,45,49,55, 67,69,73,75,79    |
|     |                                                                                                                                                                                                                                                                                                                  | review                                                |     |                                                   |
|     |                                                                                                                                                                                                                                                                                                                  | test                                                  |     |                                                   |
| ER  |                                                                                                                                                                                                                                                                                                                  | exam review                                           |     |                                                   |
| Е   |                                                                                                                                                                                                                                                                                                                  | exam                                                  |     |                                                   |

# Semester Two

| Section | Student-Friendly Learning Targets                                                                                                                                                                                                                                                                                                                                | Activity/topic               | pg. | Assignment                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----|--------------------------------------|
| 7.1     | I can use appropriate integrals in a variety<br>of applications and can adapt my<br>knowledge and techniques to solve novel<br>application problems, especially those<br>involving accumulated change, area,<br>volume of a solid with known cross<br>sections, average value of a function,<br>volume of revolution, and the distance<br>traveled along a line. | area b/w 2 curves            | 452 | 1,3,5,13,17,19,27,37,57,59,73        |
| 7.2     | I can find the volume of solids by slicing.                                                                                                                                                                                                                                                                                                                      | volume: discs                | 463 | 1,3,5,7,9,11,15,19,25,31,53,55,61,63 |
| 7.2     |                                                                                                                                                                                                                                                                                                                                                                  | volume: washers              |     |                                      |
| 7.2     |                                                                                                                                                                                                                                                                                                                                                                  | volume: known cross-sections |     |                                      |

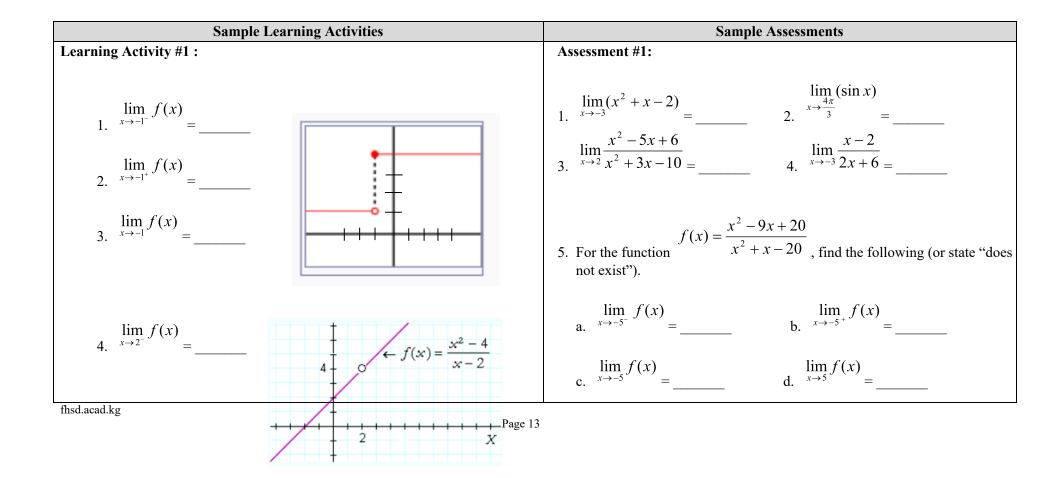
| APFRQ   | AP Free Response Question                                                                                                                                                                                                                                                                                                                                                                                | AP Free Response Question |     |                                |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|--------------------------------|
| 7.3     | I can find the volume of solids by using cylindrical shells.                                                                                                                                                                                                                                                                                                                                             | volume: shells            | 472 | 3,5,9,13,17,21,45              |
| 7.4     | I can find arc length and surface area.                                                                                                                                                                                                                                                                                                                                                                  | arc length, surf. area    | 483 | 1,3,5,7,9,11,13,39,43          |
| APFRQ   | AP Free Response Question                                                                                                                                                                                                                                                                                                                                                                                | AP Free Response Question |     |                                |
| 8.2     | I can perform integration by parts.                                                                                                                                                                                                                                                                                                                                                                      | integration by parts      | 531 | 3,5,13,25,29,37,39,43,47,63,73 |
| 8.2-8.3 | I can find antiverivatives involving combinations of trig functions.                                                                                                                                                                                                                                                                                                                                     | trig integrals            | 540 | 3,7,9,11,15,21,25,37,47,53,55  |
| 8.3-8.4 | I can find antiderivatives by using trigonometric substitution.                                                                                                                                                                                                                                                                                                                                          | trig sublstitution        | 549 | 5,7,9,13,15,23,29,39,45        |
| 8.4-8.5 | I can use the method of simple partial fractions                                                                                                                                                                                                                                                                                                                                                         | partial fractions         | 559 | 1,5,7,13,15,21,31              |
| 8.5     |                                                                                                                                                                                                                                                                                                                                                                                                          |                           |     |                                |
| 8.7     | I can use L'Hopital's Rule, including its use<br>in determining limits and convergence of<br>improper integrals and series                                                                                                                                                                                                                                                                               | indeterminate forms       | 574 | 5,7,9,15,19,29,33,37,41,43,63  |
| 8.8     | I can evaluate an improper integral as a limit of a definite integral                                                                                                                                                                                                                                                                                                                                    | improper integrals        | 585 | 1,3,5,7,9,15,17                |
| 9.1     | I can work with sequences.                                                                                                                                                                                                                                                                                                                                                                               | sequences                 | 602 | 7,15,29,31,33,37,47,51,53      |
| 9.2     | I can use the limit of a sequence of partial<br>sums to determine the convergence of a<br>series.                                                                                                                                                                                                                                                                                                        | series                    | 612 | 1,3,9,11,17,19,31,39,51,53     |
| 9.3     | I can find the sum of a series of constants,<br>including geometric series, the harmonic<br>series, p series, and alternating series, can<br>find an error bound on an alternating series,<br>can use the integral test, ratio test, and<br>comparison test to determine convergence,<br>and understand the relationship between<br>improper integrals and the series made up<br>of areas of rectangles. | integral test             | 620 | 1,7,11,15,19,21                |

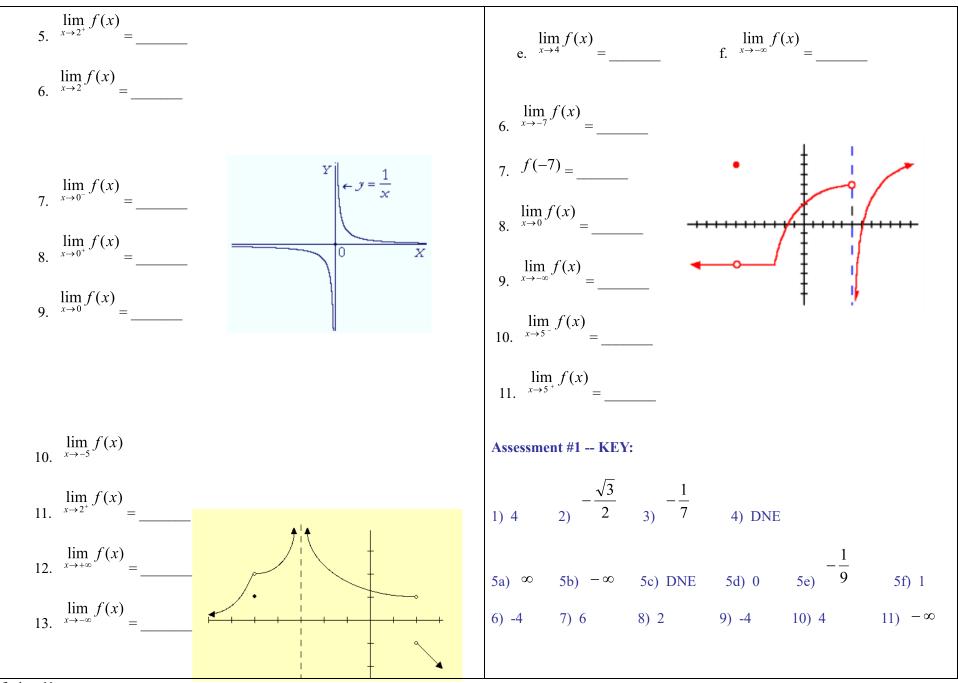
| 9.4   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comparing series                 | 628 | 3, 7, 15, 17, 19, 23, 55,57                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|---------------------------------------------------------------------|
| 9.5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alternating series               | 636 | 1, 5, 9, 17, 21, 25, 29, 33,37, 41, 49,53                           |
| 9.6   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ratio and root tests             | 645 | 11, 15, 19, 27, 31, 33, 35, 37,39,41                                |
| 9.7   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | taylor and maclaurin polynomials | 656 | 1, 5, 9, 13, 17, 21, 25, 29, 33, 37                                 |
| 9.8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | power series                     | 666 | 1, 3,5, 9, 13, 15,17, 21, 25, 29                                    |
| 9.8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | power series day 2               |     |                                                                     |
| 9.9   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | functions-power series           | 674 | 1, 5, 9, 13, 17, 21, 25, 35, 37, 39                                 |
| 9.10. | I understand the convergence of a taylor<br>polynomial as an approximation to another<br>function, can find taylor series, know the<br>Maclaurin series for the functions e^x, sinx,<br>cosx, and 1/(1-x), can manipulate taylor<br>series (including substitution,<br>differentiation, antidifferentiation, and<br>formation of new series from known ones),<br>can define functions by power series, can<br>determine the radius and interval of<br>convergence of power series, and can find<br>the Lagrange error bound for taylor<br>polynomials | taylor and maclaurin series      | 685 | 1, 5, 9, 11, 17, 21, 25, 49, 51, 53                                 |
| APFRQ | AP Free Response Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AP Free Response Question        |     |                                                                     |
| Т     | I have reviewed conic sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | conics and calculus              | 704 | examine problems so that you are again familiar with conic sections |
| 10.2  | I can analyze plane curves given in parametric, polar, and vector forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | parametrics in the plane         | 716 | 1, 5, 9, 13, 17, 21, 25, 29,33                                      |
| 10.3  | I can analyze plane curves given in<br>parametric, polar, and vector forms,<br>including velocity and acceleration. I<br>canalso find derivatives of parametric,<br>polar, and vector functions                                                                                                                                                                                                                                                                                                                                                       | parametrics and calculus         | 725 | 1, 5, 9, 13, 17, 21, 25, 33, 37,51, 61                              |

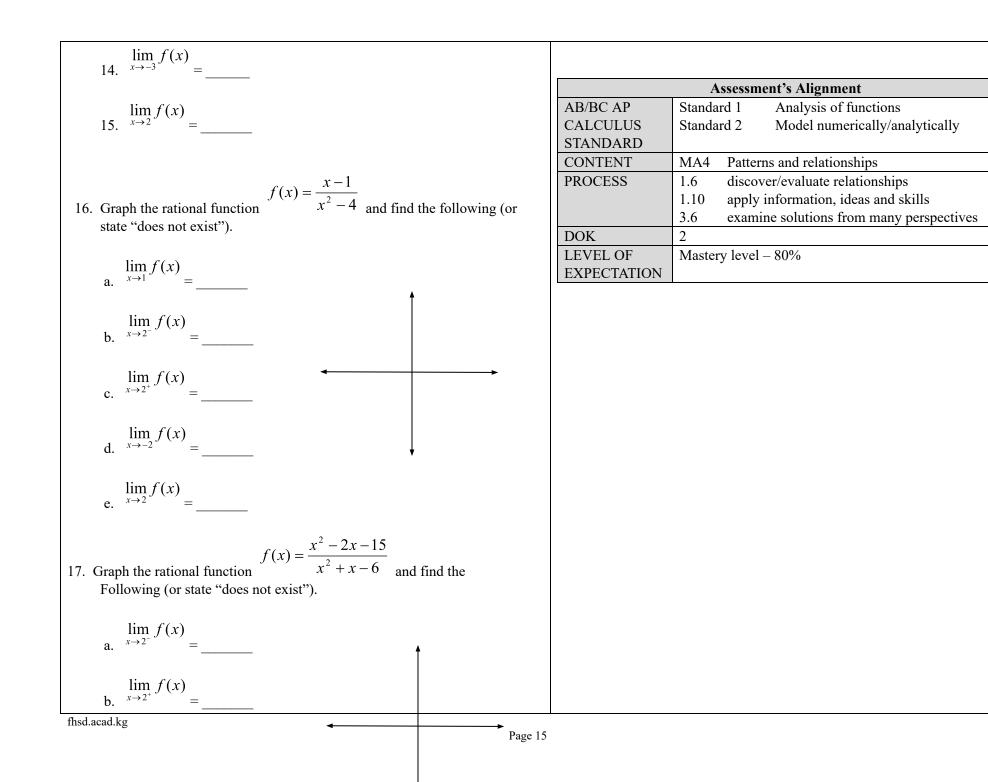
| 10.4    |                                                                                                                        | polar graphs            | 736 | 1, 3, 5, 11, 13, 21-35 odds, 39, 41, 43, 49, |
|---------|------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|----------------------------------------------|
| 10.5    | I can find the area of a region bounded by<br>polar curves and the length of a curve<br>(including in parametric form) | area&arc length, polar  | 745 | 3,7,9,13,23,27                               |
| VVF     | I can work with functions that have vectors as their range elements.                                                   | vector valued functions |     |                                              |
| AP Rev  |                                                                                                                        |                         |     |                                              |
| AP Exam |                                                                                                                        |                         |     |                                              |
| 5.8     | I can do derivatives and antiderivatives of hyperbolic functions.                                                      | hyperbolic functions    | 396 | 1,13,15,23,37,39,41,47,49,51,53,55,63        |
| 7.5     | I can use calculus to find work done.                                                                                  | work                    | 493 | 1,3,9,13,15,17,19,21,23,25                   |
| 7.6     | I can use calculus to find the center of gravity.                                                                      | center of gravity       | 504 | 1,3,7,9,13,15                                |
| 7.7     | I can use calculus to find force and pressure exerted by fluids.                                                       | force, fluid pressure   | 511 | 1,5,7,9,11,13,15,19                          |
| ER      |                                                                                                                        | exam review             |     |                                              |
| EXAM    |                                                                                                                        |                         |     |                                              |

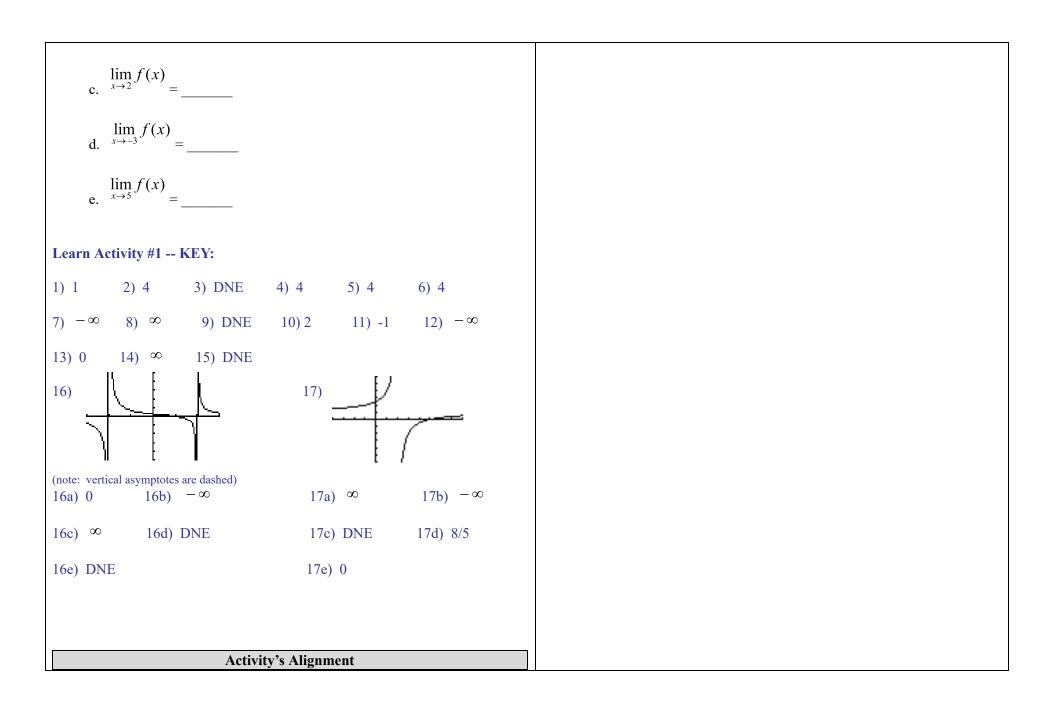
| Content Area: Mathematics                      | Course: AP Calculus BC  | Strand: 1 |
|------------------------------------------------|-------------------------|-----------|
| Learner Objectives: Student will analyze funct | ions, graphs and limits |           |

**Concepts**: A. Limits of functions (including one-sided limits)


| Students Should Know                                 | Students Should Be Able to                                                                                                                                          |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • An intuitive understanding of the limiting process | <ul> <li>Calculating limits using algebra</li> <li>Estimating limits from graphs or tables of data</li> <li>Apply L'Hopital's Rule in determining limits</li> </ul> |


# **Instructional Support**


|       |             | Student Essen   | tial Vocabulary            |  |
|-------|-------------|-----------------|----------------------------|--|
| Limit | Rationalize | One-Sided Limit | <b>Indeterminate Forms</b> |  |


| Readiness & Equity Section                                 |                                                     |  |
|------------------------------------------------------------|-----------------------------------------------------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |                                                     |  |
| 21 <sup>st</sup> Century Themes                            | Quantitative Literacy Non Fiction Reading & Writing |  |

| Learning & Innovation Skills            | Critical Thinking and | Enrichment Opportunity              |  |
|-----------------------------------------|-----------------------|-------------------------------------|--|
|                                         | Problem Solving       |                                     |  |
| Information, Media, & Technology Skills | ICT Literacy          | Intervention Opportunity            |  |
| Life & Career Skills                    | Initiative and Self   | Gender, Ethnic, & Disability Equity |  |
|                                         | Direction             |                                     |  |









| AB/BC AP<br>CALCULUS | Standard 1Analysis of functionsStandard 2Model numerically/analytically |
|----------------------|-------------------------------------------------------------------------|
| STANDARD             |                                                                         |
| CONTENT              | MA4 Patterns and relationships                                          |
| PROCESS              | 1.6 discover/evaluate relationships                                     |
|                      | 1.10 apply information, ideas and skills                                |
|                      | 3.6 examine solutions from many perspectives                            |
| Dett                 |                                                                         |
| DOK                  | 2                                                                       |
| INSTRUCTIONAL        | Non-Linguistic Representation                                           |
| STRATEGIES           |                                                                         |
|                      |                                                                         |
|                      |                                                                         |
|                      |                                                                         |
|                      |                                                                         |
|                      |                                                                         |

| Readiness & Equity Section                                 |                       |                                     |  |  |
|------------------------------------------------------------|-----------------------|-------------------------------------|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |                       |                                     |  |  |
| 21 <sup>st</sup> Century Themes                            | Quantitative Literacy | Non Fiction Reading & Writing       |  |  |
| Learning & Innovation Skills                               | Critical Thinking and | Enrichment Opportunity              |  |  |
|                                                            | Problem Solving       |                                     |  |  |
| Information, Media, & Technology Skills                    | ICT Literacy          | Intervention Opportunity            |  |  |
| Life & Career Skills                                       | Initiative and Self   | Gender, Ethnic, & Disability Equity |  |  |
|                                                            | Direction             |                                     |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|                            |                    |

#### Learning Activity #2 : Assessment #2: Use your graphing calculator to complete the table for each function, then approximate the limit. Evaluate each limit algebraically. $f(x) = \frac{x^2 - 5x + 6}{x^2 + 3x - 10}$ 1. $\lim_{x \to 4} \frac{x^2 - 2x - 8}{x - 4} =$ 2. $\lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 + 2x - 15} =$ 1. 2.2 1.80 1.90 1.99 2.00 2.01 2.1х f(x) $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 + 3x - 10} \approx$ 3. $\lim_{x \to -5} \frac{\sqrt{14 + x} - 3}{x + 5} = 4 \qquad \lim_{x \to 0} \frac{\frac{1}{8} + \frac{1}{x - 8}}{x} =$ $f(x) = \frac{\sqrt{14 + x} - 3}{2}$ x + 52. -5.2 -5.10 -5.01 -5.00 -4.99 -4.90 -4.80 x 0 f(x)Find each one-sided limit. $\lim_{x \to -5} \frac{\sqrt{14 + x} - 3}{x + 5} \approx$ $f(x) = \frac{\frac{1}{4} + \frac{1}{x - 4}}{\frac{1}{x - 4}}$ 3. $\lim_{x \to \frac{\pi}{3}^{+}} \cot(3x) = 8. \quad \lim_{x \to 0^{-}} \frac{\sin x}{2x} =$ -0.10 -0.20 0.20 -0.01 0.00 0.01 0.10 x f(x) $\frac{x-4}{\approx} \approx$ $\lim \frac{4}{3}$ $x \rightarrow 0$

fhsd.acad.kg

$$f(x) = \frac{1 - \cos x}{x}$$
4.  $x = 0.20 - 0.10 - 0.01 - 0.00 - 0.01 - 0.10 - 0.20$ 

$$f(x) = \frac{x}{x} \approx$$

$$f(x) = \frac{\sin x}{x} \approx$$

$$f(x) = \frac{\sin x}{x}$$

$$\frac{x - 0.20 - 0.10 - 0.01 - 0.00 - 0.01 - 0.10 - 0.20}{f(x)}$$

$$\lim_{x \to 0} \frac{\sin x}{x} \approx$$
Determine the exact value of each limit algebraically and compare it to your previous approximation.
$$\lim_{x \to -5} \frac{x^2 - 5x + 6}{x + 5} =$$

9. 
$$\lim_{x \to 0^{-}} \left(1 - \frac{1}{x^2}\right)_{=} = 10. \quad \lim_{x \to 1^{-}} \left(\frac{x+1}{x^2-1}\right)_{=} = 10.$$
Assessment #2 -- KEY:  
1) 
$$\lim_{x \to 4} (x+2) = 6$$
2) 
$$\lim_{x \to 3} \frac{x-4}{x+5} = -\frac{1}{8}$$
3) 
$$\lim_{x \to -5} \frac{\sqrt{14+x}-3}{x+5} = \lim_{x \to -5} \frac{1}{\sqrt{14+x}+3} = \frac{1}{6}$$
4) 
$$\lim_{x \to 0} \frac{\frac{1}{8} + \frac{1}{x-8}}{x} = \lim_{x \to 0} \frac{x-8+8}{8x(x-8)} = \lim_{x \to 0} \frac{1}{8(x-8)} = -\frac{1}{64}$$
5)  $-\infty = 6 -\infty = 7 + \infty$ 
8)  $\frac{1}{2} = 9 -\infty = 10$ 

| Assessment's Alignment |                                              |                                     |  |  |
|------------------------|----------------------------------------------|-------------------------------------|--|--|
| AB/BC AP               | Standa                                       | rd 1 Analysis of functions          |  |  |
| CALCULUS               | Standa                                       | rd 2 Model numerically/analytically |  |  |
| STANDARD               |                                              |                                     |  |  |
| CONTENT                | MA4                                          | Patterns and relationships          |  |  |
| PROCESS                | 1.6                                          | discover/evaluate relationships     |  |  |
|                        | 1.10                                         | apply information, ideas and skills |  |  |
|                        | 3.6 examine solutions from many perspectives |                                     |  |  |
| DOK                    | 2                                            |                                     |  |  |
| LEVEL OF               | Mastery level – 70%                          |                                     |  |  |
| EXPECTATION            |                                              |                                     |  |  |

=

$$\lim_{x \to 0} \frac{\frac{1}{4} + \frac{1}{x-4}}{x} =$$
Learn Activity #2 -- KEY:  
1) table values: -0.176, -0.159, -0.144, ---, -0.141, -0.127, -0.111  

$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 + 3x - 10} \approx _{-0.142}$$
2) table values: 0.1676, 0.1671, 0.1667, ---, 0.1666, 0.1662, 0.1657  

$$\lim_{x \to -5} \frac{\sqrt{14 + x} - 3}{x + 5} \approx _{0.1666}$$
3) table values: -0.060, -0.061, -0.062, ---, -0.063, -0.064, .-0.066  

$$\lim_{x \to 0} \frac{\frac{1}{4} + \frac{1}{x-4}}{x} \approx _{-0.0625}$$
4) table values: -0.099, -0.049, -0.005, ---, 0.0049, 0.049, 0.0997  

$$\lim_{x \to 0} \frac{1 - \cos x}{x} \approx _{0.000}$$
5) table values: 0.993, 0.998, 0.999, ---, 0.999, 0.998, 0.993  

$$\lim_{x \to 0} \frac{\sin x}{x} \approx _{1.000}$$
6) 
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 + 3x - 10} = \lim_{x \to 2} \frac{(x - 2)(x - 3)}{(x - 2)(x + 5)} = \frac{x - 3}{x + 5} = \frac{-1}{7} \approx -0.142857$$

$$\lim_{x \to -5} \frac{\sqrt{14 + x} - 3}{x + 5} = \lim_{x \to -5} \frac{1}{\sqrt{14 + x} + 3} = \frac{1}{6} \approx 0.166$$

$$\lim_{x \to 0} \frac{1}{4} + \frac{1}{x - 4} = \lim_{x \to 0} \frac{x - 4 + 4}{4x(x - 4)} = \lim_{x \to 0} \frac{1}{4(x - 4)} = \frac{-1}{16} = -0.0625$$
8)
$$\frac{Activity's Alignment}{AB/BC AP}$$
CALCULUS
Standard 1 Analysis of functions
CALCULUS
Standard 2 Model numerically/analytically
STANDARD
CONTENT MA4 patterns and relationships
PROCESS
1.6 discover/evaluate relationships
PROCESS
1.6 discover/evaluate relationships
I.10 apply information, ideas and skills
3.6 examine solutions from many perspectives
DOK 2
INSTRUCTIONAL
STRATEGIES

# Learning Activity #3

Theorem: L'Hôpital's Rule

Let f and g be functions that are differentiable on an open interval (a, b) containing c, except possibly at c itself. Assume that  $g'(x) \neq 0$  for all x in (a, b), except possibly at c itself. If the limit of f(x)/g(x) as x approaches c produces the indeterminate form 0/0, then

$$\lim_{x \to y} \frac{f(x)}{g(x)} = \lim_{x \to y} \frac{f'(x)}{g'(x)}$$
provided the limit on the right exists (or is infinite). This result also applies if the limit of  $f(x)g(x)$  as x approaches  $c$  produces any one of the indeterminate forms  $\infty/\infty$ ,  $(-\infty)/\infty$ ,  $\infty/(-\infty)$ ,  $or (-\infty)/(-\infty)$ .  
There are actually seven indeterminate forms. These are the limits that produce 0/0 and  $\infty/\infty$  as well as those that produce  $0 \cdot \infty$ ,  $\infty - \infty$ ,  $1^{\circ}$ ,  $0^{\circ}$  and  $\infty^{\circ/\infty}$  as well as those that produce  $0 \cdot \infty$ ,  $\infty - \infty$ ,  $1^{\circ}$ ,  $0^{\circ}$  and  $\infty^{\circ/\infty}$ , and only then can L'Hôpital's Rule be used.  
Evaluate each limit:  
a.  $\lim_{x \to 0^{\circ}} \frac{1 - \cos x}{x + x^2}$  b.  $\lim_{x \to \infty} \frac{e^{2x}}{1 + x^2}$   
c.  $\lim_{x \to 0^{\circ}} \frac{1 - \cos x}{x + x^2}$  b.  $\lim_{x \to \infty} \frac{e^{2x}}{1 + x^2}$   
a.  $\lim_{x \to 0^{\circ}} \frac{1 - \cos x}{x}$  d.  $\lim_{x \to \infty} x \ln(1 + \frac{1}{x})$   
c.  $\lim_{x \to 0^{\circ}} (1 - x)$ , f.  $\lim_{x \to 0^{\circ}} (\sin x)^{c}$   
a.  $\lim_{x \to 0^{\circ}} (1 - x)^{\infty x}$ , f.  $\lim_{x \to 0^{\circ}} (\sin x)^{c}$   
a.  $\lim_{x \to 0^{\circ}} (1 - x)^{\infty x}$ , f.  $\lim_{x \to 0^{\circ}} (\sin x)^{c}$   
a.  $\lim_{x \to 0^{\circ}} (1 - x)^{\infty x}$ , f.  $\lim_{x \to 0^{\circ}} (\sin x)^{c}$   
b.  $\lim_{x \to 0^{\circ}} (1 - \frac{1}{x})^{\infty}$ , f.  $\lim_{x \to 0^{\circ}} (\sin x)^{c}$   
a.  $\lim_{x \to 0^{\circ}} (1 - x)^{\infty x}$ , f.  $\lim_{x \to 0^{\circ}} (\sin x)^{c}$   
b.  $\lim_{x \to 0^{\circ}} (1 - \frac{1}{x})^{\infty}$ , f.  $\lim_{x \to 0^{\circ}} (1 -$ 

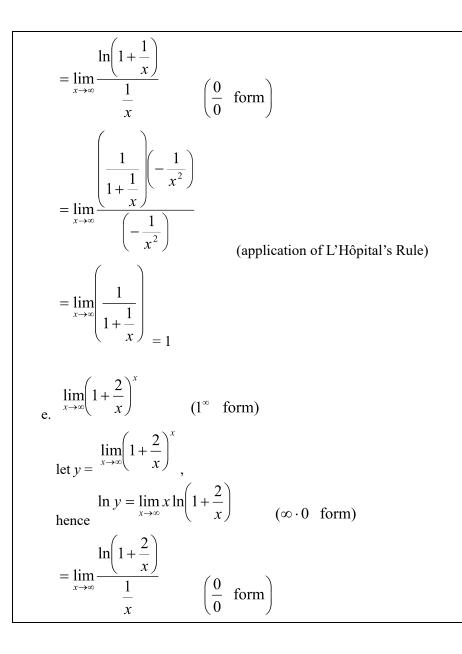
Learning Activity #3 – KEY  
a. 
$$\lim_{x\to 0^+} \frac{1-\cos x}{x+x^2} \qquad \left(\begin{array}{c} 0\\0 & \text{form} \end{array}\right)$$

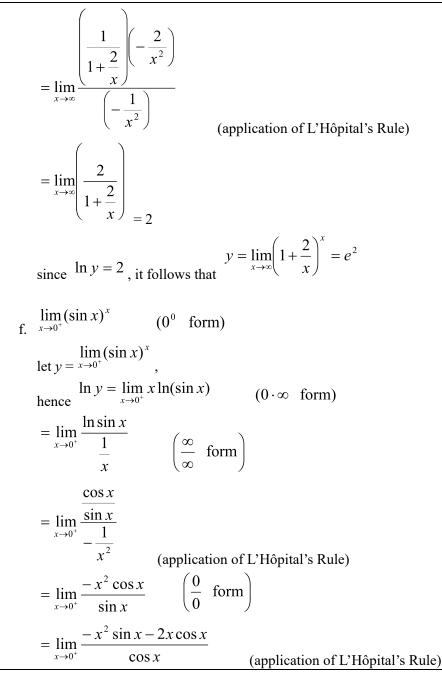
$$= \lim_{x\to 0^+} \frac{\sin x}{1+2x} \qquad \text{(application of L'Hôpital's Rule)}$$

$$= 0$$
b. 
$$\lim_{x\to\infty} \frac{e^{2x}}{1+x^2} \qquad \left(\begin{array}{c} \infty\\\infty\\\infty\\\end{array} & \text{form} \end{array}\right)$$

$$= \lim_{x\to\infty} \frac{2e^{2x}}{2x} \qquad \left(\begin{array}{c} \infty\\\infty\\\infty\\\end{array} & \text{form} \right)$$

$$= \lim_{x\to\infty} \frac{4e^{2x}}{2} \qquad \text{(application of L'Hôpital's Rule)}$$


$$= \infty$$
c. 
$$\lim_{x\to\frac{x^-}{2}} (\tan x - \sec x) \qquad (\infty - \infty \quad \text{form})$$


$$= \lim_{x\to\frac{x^-}{2}} \left(\begin{array}{c} \sin x - 1\\\cos x \end{array}\right) \qquad \left(\begin{array}{c} 0\\0 & \text{form} \end{array}\right)$$

$$= \lim_{x\to\frac{x^-}{2}} \left(\begin{array}{c} \cos x\\-\sin x \end{array}\right) \qquad \text{(application of L'Hôpital's Rule)}$$

$$= 0$$
d. 
$$\lim_{x\to\infty} x \ln\left(1 + \frac{1}{x}\right) \qquad (\infty \cdot 0 \quad \text{form})$$

| - |             |        |           |                                 |
|---|-------------|--------|-----------|---------------------------------|
|   | AB/BC AP    | Standa | rd 1      | Analysis of functions           |
|   | CALCULUS    | Standa | rd 2      | Model numerically/analytically  |
|   | STANDARD    | Standa | rd 3      | Differential calculus           |
|   | CONTENT     | MA 1   | number    | r sense                         |
|   |             | MA 4   | pattern   | s and relationships             |
|   | PROCESS     | 1.6    | discove   | er/evaluate relationships       |
|   |             | 1.10   | apply i   | nformation, ideas and skills    |
|   |             | 3.3    | apply c   | one's own strategies            |
|   |             | 3.4    | evaluat   | e problem-solving processes     |
|   |             | 3.5    | reason    | logically (inductive/deductive) |
|   | DOK         | 2      |           |                                 |
| ĺ | LEVEL OF    | Master | y level – | - 80%                           |
| ĺ | EXPECTATION |        |           |                                 |
| 1 |             |        |           |                                 |





fhsd.acad.kg

$$=0$$
since  $\ln y = 0$ , it follows that  $y = \lim_{x \to 0^{+}} (\sin x)^{x} = e^{0} = 1$ 

$$\lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x} \qquad (0^{0} \text{ form})$$

$$\lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x} \qquad (0^{0} \text{ form})$$

$$\lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x} \qquad (0 \cdot \infty \text{ form})$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\ln(\tan x)}{\sec x} \qquad (\frac{\infty}{\infty} \text{ form})$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\ln(\tan x)}{\sec x} \qquad (\frac{\infty}{\infty} \text{ form})$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{\sec^{2} x}{\tan^{2} x} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\sin^{2} x} = 0$$
since  $\ln y = 0$ , it follows that  $y = \lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x} = e^{0} = 1$ 
since  $\ln y = 0$ , it follows that  $y = \lim_{x \to \frac{\pi}{2}} (\tan x)^{\cos x} = e^{0} = 1$ 
Standard 1 Analysis of functions
CONTENT MA 1 number sense
MA 4 patterns and relationships
PROCESS 1.6 discover/evaluate relationships
Note that the sense of the problem-solving processes of the problem solve the problem-solving processes of the problem solve the problem-solving pr

DOK

3.5 2

|  | INSTRUCTIONAL<br>STRATEGIES | Guided Practice |  |
|--|-----------------------------|-----------------|--|
|--|-----------------------------|-----------------|--|

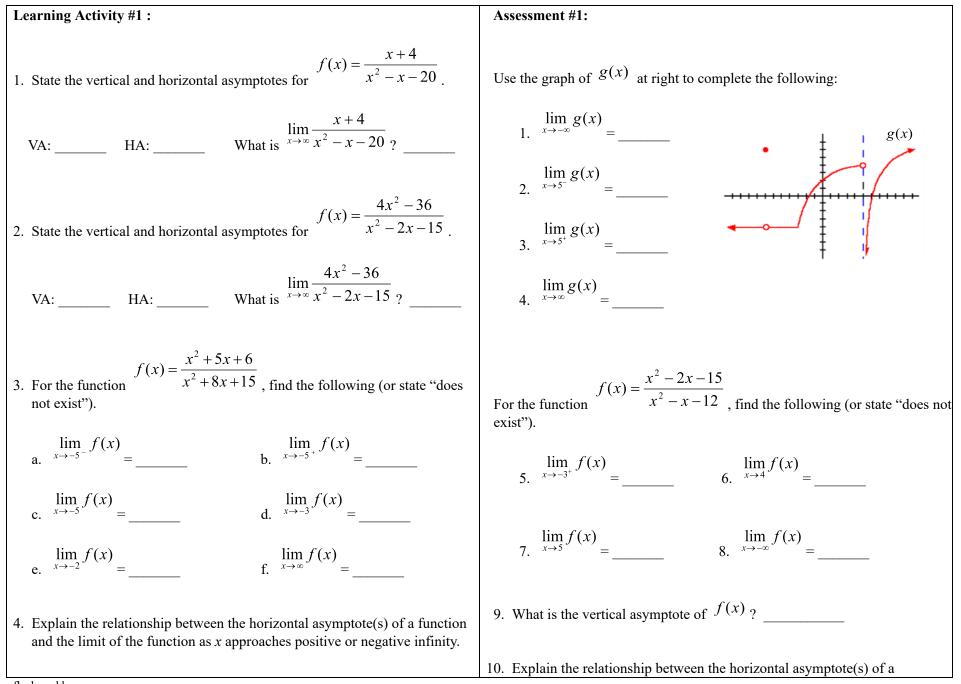
NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |
|                   |                   |
|                   |                   |

| Content Area: MathematicsCourse: AP Calculus BCStrand: 2              |  | Strand: 2 |
|-----------------------------------------------------------------------|--|-----------|
| Learner Objectives: Student will analyze functions, graphs and limits |  |           |

**Concepts**: B. Asymptotic and unbounded behavior

| Students Should Know | Students Should Be Able to |
|----------------------|----------------------------|
|----------------------|----------------------------|


| • | Understanding asymptotes in terms of graphical behavior | • Describing asymptotic behavior in terms of limits involving infinity   |
|---|---------------------------------------------------------|--------------------------------------------------------------------------|
|   |                                                         | • Comparing relative magnitudes of functions and their rates of change – |
|   |                                                         | exponential growth, polynomial growth and logarithmic growth             |
|   |                                                         | • Analyze planar curves including those given in parametric form,        |
|   |                                                         | polar form and vector form                                               |

# **Instructional Support**

| Student Essential Vocabulary         |                  |                    |                   |                    |              |  |  |
|--------------------------------------|------------------|--------------------|-------------------|--------------------|--------------|--|--|
| Asymptote                            | Bounded Function | Unbounded Function | Infinite Limits   | Limits at Infinity | End-Behavior |  |  |
| Exponential Growth Polynomial Growth |                  | Logarithmic Growth | <b>Polar form</b> | Parametric form    | Vector form  |  |  |
| Parameter Rectangular form           |                  |                    |                   |                    |              |  |  |

| Readiness & Equity Section                                    |                                                            |  |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| SLA =                                                         | SLA = Sample Learning Activities & SA = Sample Assessments |  |  |  |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                                                            |  |  |  |  |  |
| Learning & Innovation Skills Enrichment Opportunity           |                                                            |  |  |  |  |  |
| Information, Media, & Technology Skills                       | Intervention Opportunity                                   |  |  |  |  |  |
| Life & Career Skills                                          | Gender, Ethnic, & Disability Equity                        |  |  |  |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|



|                                    |                                                                                                                                                                 | function and the limit of the function as <i>x</i> approaches positive or negative infinity. |                                                                                                                                                   |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Learning Activity #1               | KEY                                                                                                                                                             | Assessment #1 ]                                                                              | KEY                                                                                                                                               |  |  |
| 1) VA: $x = 5$ , HA: $y =$         | $\lim_{x \to \infty} \frac{x+4}{x^2 - x - 20} = 0$                                                                                                              | 1) -4 2) 4<br>8) 0 9) $x = 4$                                                                | 3) $-\infty$ 4) $\infty$ 5) 8/7 6) DNE 7) 0                                                                                                       |  |  |
| 2) VA: $x = 5$ , HA: $y =$         | $=4, \lim_{x \to \infty} \frac{4x^2 - 36}{x^2 - 2x - 15} = 4$                                                                                                   |                                                                                              | e function as $x$ approaches positive and negative infinity is of the horizontal asymptote(s).                                                    |  |  |
| 4) The limit of the fund           | 3c) DNE 3d) $-1/2$ 3e) 0 3f) 1<br>ction as x approaches positive and negative infinity<br>f the horizontal asymptote(s).                                        |                                                                                              |                                                                                                                                                   |  |  |
| AB/BC AP                           | Activity's Alignment       Standard 1     Analysis of functions                                                                                                 |                                                                                              |                                                                                                                                                   |  |  |
| CALCULUS<br>STANDARD<br>CONTENT    | MA4 patterns and relationships                                                                                                                                  | AB/BC AP<br>CALCULUS<br>STANDARD                                                             | Assessment's Alignment           Standard 1         Analysis of functions                                                                         |  |  |
| PROCESS                            | <ol> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.6 examine solutions from many perspectives</li> </ol> | CONTENT<br>PROCESS                                                                           | MA4patterns and relationships1.6discover/evaluate relationships1.10apply information, ideas and skills3.6examine solutions from many perspectives |  |  |
| DOK<br>INSTRUCTIONAL<br>STRATEGIES | 2<br>Summarizing and Note taking                                                                                                                                | DOK<br>LEVEL OF<br>EXPECTATION                                                               | 2       Mastery level – 70%                                                                                                                       |  |  |

| T • • • • •                                                       | ample Learning Activities                                                                                                                                                                                        | Sample Assessments                                                                                                                                         |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Learning Activity #2 :                                            |                                                                                                                                                                                                                  | Assessment #2:                                                                                                                                             |  |  |  |
| <b>Relative Magnitudes and</b><br>Complete the table:             | es and Rates of Change<br>1) $\lim_{z \to \infty} \frac{\ln x^{100}}{0.01e^x} = 2) \lim_{z \to \infty} \frac{1000x^2 + 300x}{0.001e^x}$                                                                          |                                                                                                                                                            |  |  |  |
| x $\Delta x$ $Y_1 = e^x$ 124816Use the values in the table">".    | $\Delta Y_{1} \qquad \begin{array}{c c} Y_{2} = & \Delta Y_{2} & Y_{3} = & \Delta Y_{3} \\ \hline x^{2} + 3x + 4 & & \ln x \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$              | or 1) 0 2) 0 3) $\infty$ 4) $\infty$<br>$\lim_{z \to \infty} \frac{0.005 e^{x}}{\ln x} = 4 \lim_{z \to \infty} \frac{0.003 e^{x}}{100x^{3} + 10x^{2}} = 4$ |  |  |  |
|                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                            |  |  |  |
| value of each limit:<br>$ \lim_{z \to \infty} \frac{e^x}{\ln x} $ | where the following and make a conjecture about the<br>2. $\lim_{z \to \infty} \frac{\ln x}{e^x}$ 3. $\lim_{z \to \infty} \frac{\ln(x^{10})}{e^x}$<br>is about the relative rates of growth of $e^x$ and $\ln x$ |                                                                                                                                                            |  |  |  |

Use your calculator to graph the following and make a conjecture about the value of each limit:

6.

$$\lim_{z \to \infty} \frac{e^{x}}{x^{2} + 3x + 4} = 5. \quad \lim_{z \to \infty} \frac{x^{2} + 3x + 4}{e^{x}}$$
$$\lim_{z \to \infty} \frac{100(x^{2} + 3x + 4)}{e^{x}}$$

What can you hypothesize about the relative rates of growth of  $e^x$  and  $x^2 + 3x + 4$ ?

Learning Activity #2 -- KEY

| x  | $\Delta x$ | $Y_1 = e^x$ | $\Delta Y_1$ | $Y_2 = x^2 + 3x + 4$ | $\Delta Y_2$ | $Y_3 = \ln x$ | $\Delta Y_3$ |
|----|------------|-------------|--------------|----------------------|--------------|---------------|--------------|
| 1  |            | 2.7         |              | 8                    |              | 0             |              |
| 2  | 1          | 7.4         | 4.7          | 14                   | 6            | 0.69          | 0.69         |
| 4  | 2          | 54.6        | 47.2         | 32                   | 18           | 1.39          | 0.70         |
| 7  | 3          | 1096.6      | 1042.0       | 74                   | 42           | 1.95          | 0.56         |
| 13 | 6          | 442413.4    | 441316.8     | 212                  | 138          | 2.56          | 0.61         |

Note: for questions 1 - 3, the functions are not shown on the calculator image but larger values of *x* can be "traced" with appropriate window setting.

The exponential function grows much faster than the logarithmic function.

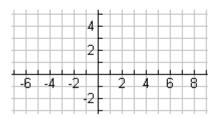
4) ∞ 5) 0 6) 0

The exponential function grows much faster than the polynomial.

AB/BC AP Standard 1 Analysis of functions CALCULUS STANDARD CONTENT MA4 patterns and relationships PROCESS 1.6 discover/evaluate relationships 1.10 apply information, ideas and skills 3.6 examine solutions from many perspectives DOK 2 LEVEL OF Mastery level - 70% EXPECTATION

| Activity's Alignment |                                              |  |
|----------------------|----------------------------------------------|--|
| AB/BC AP             | Standard 1 Analysis of functions             |  |
| CALCULUS             |                                              |  |
| STANDARD             |                                              |  |
| CONTENT              | MA4 patterns and relationships               |  |
| PROCESS              | 1.6 discover/evaluate relationships          |  |
|                      | 1.10 apply information, ideas and skills     |  |
|                      | 3.6 examine solutions from many perspectives |  |
| DOK                  | 3                                            |  |
| INSTRUCTIONAL        | Generating and Testing Hypotheses            |  |
| STRATEGIES           |                                              |  |
|                      |                                              |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|----------------------------|--------------------|


# Learning Activity #3:

#### **Parametric Equations**

Use the accompanying table of values to sketch the curve described by the parametric equations:

$$x(t) = t^{2} - 4$$
 and  $y(t) = \frac{t}{2}$ ,  $-2 \le t \le 3$ 

| t | -2 | -1 | 0 | 1 | 2 | 3 |
|---|----|----|---|---|---|---|
| x |    |    |   |   |   |   |
| t |    |    |   |   |   |   |

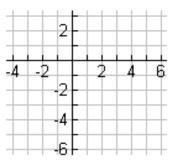


Use the accompanying table of values to sketch the curve described by the parametric equations:

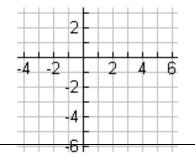
$$x(t) = 4t^{2} - 4 \text{ and } y(t) = t, \quad -1 \le t \le \frac{3}{2}$$

$$t \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3$$

$$x \quad -5 \quad -4 \quad -2 \quad -2 \quad 4 \quad 6 \quad 8$$


## Assessment #3:

Consider the parametric equations  $x = \sqrt{t}$  and y = 1 - t,


a. Complete the table.

| t | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| x |   |   |   |   |   |
| t |   |   |   |   |   |

b. Plot the points (x, y) generated in the table, and sketch a graph of the parametric equations. Indicate the orientation of the graph.



c. Find the rectangular equation by eliminating the parameter, and sketch its graph. Compare the graph in part "b" with the graph of the rectangular equation.



What do you notice about the graphs of the two sets of parametric equations shown above?

Now, eliminate the parameter in each pair of equations graphed ab

What do you notice about the resulting equations? Why does this

Activity's Alignment

Nonlinguistic Representation

Standard 1

MA1 MA4

1.6

1.10 3.6

2

| in each pair of equations graphed above.   |                        |                                              |
|--------------------------------------------|------------------------|----------------------------------------------|
|                                            | Assessment's Alignment |                                              |
| resulting equations? Why does this happen? | AB/BC AP               | Standard 1 Analysis of functions             |
|                                            | CALCULUS               |                                              |
|                                            | STANDARD               |                                              |
|                                            | CONTENT                | MA1 number sense                             |
|                                            |                        | MA4 patterns and relationships               |
|                                            | PROCESS                | 1.6 discover/evaluate relationships          |
|                                            |                        | 1.10 apply information, ideas and skills     |
|                                            |                        | 3.6 examine solutions from many perspectives |
| ctivity's Alignment                        | DOK                    | 2                                            |
| ard 1 Analysis of functions                | LEVEL OF               | Mastery level – 80%                          |
| and 1 Analysis of functions                | EXPECTATION            |                                              |
|                                            |                        |                                              |
| number sense                               |                        |                                              |
| patterns and relationships                 |                        |                                              |
| discover/evaluate relationships            |                        |                                              |
| apply information, ideas and skills        |                        |                                              |
| examine solutions from many perspectives   |                        |                                              |
|                                            |                        |                                              |
|                                            |                        |                                              |
| nguistic Representation                    |                        |                                              |
|                                            |                        |                                              |
|                                            | 1                      |                                              |

AB/BC AP

CALCULUS STANDARD

CONTENT

PROCESS

INSTRUCTIONAL **STRATEGIES** 

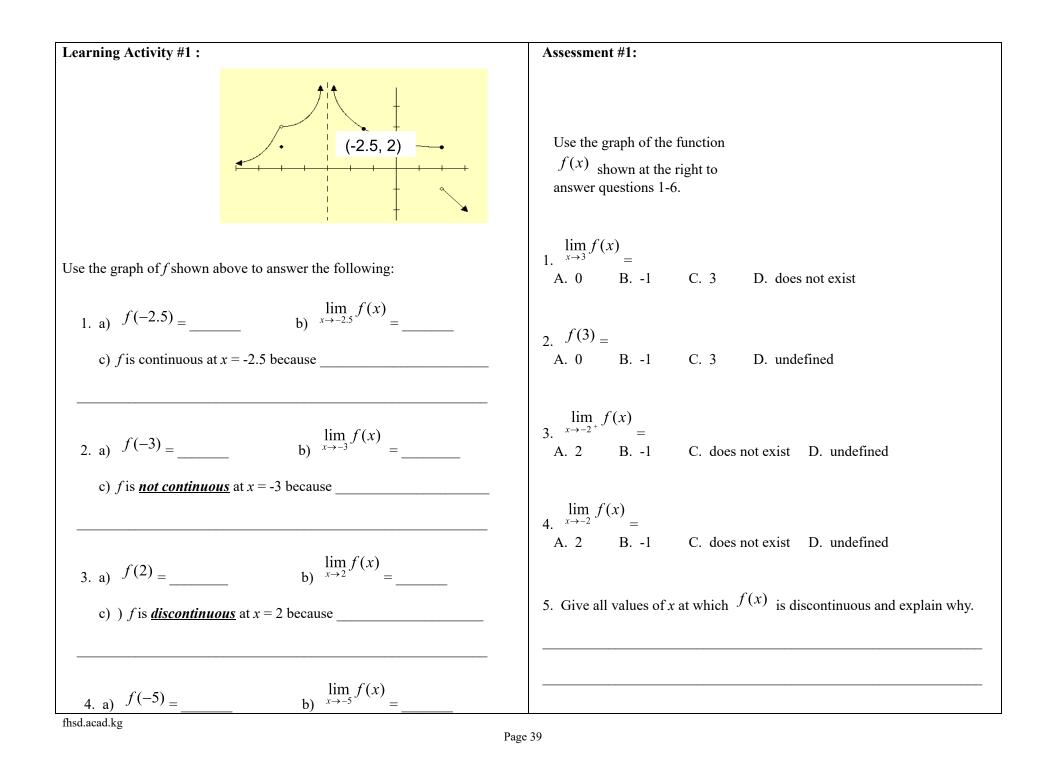
DOK

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |
|                   |                   |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Content Area: Mathematics                                             | Course: AP Calculus BC | Strand: 3 |  |  |  |  |
|-----------------------------------------------------------------------|------------------------|-----------|--|--|--|--|
| Learner Objectives: Student will analyze functions, graphs and limits |                        |           |  |  |  |  |

**Concepts**: C. Continuity as a property of functions


| Students Should Know            | v          | Students Should Be Able to                                                                                                                                                                 |
|---------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • An intuitive understanding of | continuity | <ul> <li>Understanding continuity in terms of limits</li> <li>Geometric understanding graphs of continuous functions – Intermediate<br/>Value Theorem and Extreme Value Theorem</li> </ul> |

# **Instructional Support**

| Student Essential Vocabulary |               |                         |                             |  |  |
|------------------------------|---------------|-------------------------|-----------------------------|--|--|
| Continuity                   | Discontinuity | Removable Discontinuity | Non-Removable Discontinuity |  |  |

| Readiness & Equity Section                                               |                                     |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------|--|--|--|--|
| <b>SLA</b> = Sample Learning Activities & <b>SA</b> = Sample Assessments |                                     |  |  |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing            |                                     |  |  |  |  |
| Learning & Innovation Skills                                             | Enrichment Opportunity              |  |  |  |  |
| Information, Media, & Technology Skills                                  | Intervention Opportunity            |  |  |  |  |
| Life & Career Skills                                                     | Gender, Ethnic, & Disability Equity |  |  |  |  |

| Sample Learning Activities | Sample Assessments |  |  |
|----------------------------|--------------------|--|--|
|                            |                    |  |  |
|                            |                    |  |  |
|                            |                    |  |  |
|                            |                    |  |  |
|                            |                    |  |  |
|                            |                    |  |  |



| c) <i>f</i> is <u>not conti</u> | <b>nuous</b> at $x = -5$ because                                                                                                   |                      |                |                                                                                                                                                                             |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #1            | KEY                                                                                                                                |                      |                |                                                                                                                                                                             |
|                                 |                                                                                                                                    | Assessment #         | #1 KE          | EY                                                                                                                                                                          |
| 1a) 2 b) 2                      | c) because $f(x) = f(-2.5)$                                                                                                        | 1A) 0                | B) -1          | C) 3 D) DNE                                                                                                                                                                 |
| 2a) undefined b)                | $\infty$ c) because $f(-3)$ is not defined                                                                                         | 2A) 0                | B) -1          | C) 3 D) DNE                                                                                                                                                                 |
| 3a) 1 b) DNE                    | c) because $\lim_{x \to 2} f(x)$ DNE                                                                                               | 3A) 2                | B) -1          | C) DNE D) undefined                                                                                                                                                         |
|                                 |                                                                                                                                    | 4A) 2                | B) -1          | C) DNE D) undefined                                                                                                                                                         |
| 4a) 1 b) 2                      | c) because $\lim_{x \to -5} f(x) \neq f(-5)$                                                                                       |                      |                | bus at $x = -2$ because $\lim_{x \to -2} f(x)$ does not exist,<br>bus at $x = 3$ because $\lim_{x \to 3} f(x) \neq f(3)$ .                                                  |
|                                 | Activity's Alignment                                                                                                               |                      |                |                                                                                                                                                                             |
| AB/BC AP                        | Standard 1 Analysis of functions                                                                                                   |                      |                | Assessment's Alignment                                                                                                                                                      |
| CALCULUS                        |                                                                                                                                    | AB/BC AP             |                | Standard 1 Analysis of functions                                                                                                                                            |
| STANDARD                        |                                                                                                                                    | CALCULUS<br>STANDARI |                |                                                                                                                                                                             |
| CONTENT                         | MA2 geometric and spatial<br>MA4 patterns and relationships                                                                        | CONTENT              |                | MA2 geometric and spatial                                                                                                                                                   |
| PROCESS                         | 1.6discover/evaluate relationships                                                                                                 | CONTENT              |                | MA4 patterns and relationships                                                                                                                                              |
| DOK                             | <ul> <li>apply information, ideas and skills</li> <li>examine solutions from many perspectives</li> <li>support details</li> </ul> | PROCESS              | 1.<br>1.<br>3. | <ul> <li>discover/evaluate relationships</li> <li>apply information, ideas and skills</li> <li>examine solutions from many perspectives</li> <li>support details</li> </ul> |
| INSTRUCTIONAL                   | Identifying Similarities and Differences                                                                                           | DOK                  | 2              | 11                                                                                                                                                                          |
| STRATEGIES                      | identifying Similarities and Differences                                                                                           | LEVEL OF             |                | Mastery level –75%                                                                                                                                                          |
| STRUEGES                        |                                                                                                                                    | EXPECTAT             |                |                                                                                                                                                                             |
|                                 |                                                                                                                                    |                      |                |                                                                                                                                                                             |

**Readiness & Equity Section** 

| SLA = Sample Learning Activities & SA = Sample Assessments |  |                                     |  |  |  |
|------------------------------------------------------------|--|-------------------------------------|--|--|--|
| 21 <sup>st</sup> Century Themes                            |  | Non Fiction Reading & Writing       |  |  |  |
| Learning & Innovation Skills                               |  | Enrichment Opportunity              |  |  |  |
| Information, Media, & Technology Skills                    |  | Intervention Opportunity            |  |  |  |
| Life & Career Skills                                       |  | Gender, Ethnic, & Disability Equity |  |  |  |

| Sample Learning Activities                                                                                                                                                                                                         |           |             |         |                  |                                                                          |           | Sample Assessments                                                                                                                                                                   |                                  |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---------|------------------|--------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------|
| Learning Activity #2 :                                                                                                                                                                                                             |           |             |         |                  |                                                                          |           | Assessment #2:                                                                                                                                                                       |                                  |                                                   |
| <b>Intermediate Value Theorem</b><br>If the function $f(x)$ is continuous on $[a, b]$ , and y is a number between $f(a)$ and $f(b)$ , then there exists at least one number c in the open interval $(a, b)$ such that $f(c) = y$ . |           |             |         |                  |                                                                          |           | Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of <i>c</i> guaranteed by the theorem.<br>$f(x) = x^2 - 6x + 8$ , [0, 3], $f(c) = 0$ |                                  |                                                   |
| Restate this theore                                                                                                                                                                                                                | em using  | g G '(t) i  | instead | of <i>f</i> (x). |                                                                          |           |                                                                                                                                                                                      | A second #2                      |                                                   |
|                                                                                                                                                                                                                                    |           | <u></u>     |         |                  |                                                                          |           |                                                                                                                                                                                      | Assessment #2                    | KE Y                                              |
|                                                                                                                                                                                                                                    |           |             |         |                  |                                                                          |           |                                                                                                                                                                                      | f(x) is continuous               | on $[0, 3]$ , and $f(3) \le f(c) \le f(0)$ .      |
|                                                                                                                                                                                                                                    |           |             |         |                  | $f(c) = c^2 - 6c + 8 = (c - 4)(c - 2) = 0$ when $c = 2$ or $c = 4$ . The |           |                                                                                                                                                                                      |                                  |                                                   |
| An example from                                                                                                                                                                                                                    | the 2008  | 8 AP Fr     | ee Resp | onse Qu          | estion 2                                                                 | (part c   | ):                                                                                                                                                                                   |                                  | c = 2 only since 4 is not in the interval (0, 3). |
| t (hours)                                                                                                                                                                                                                          | 0         | 1           | 3       | 4                | 7                                                                        | 8         | 9                                                                                                                                                                                    |                                  |                                                   |
| L(t) (people)                                                                                                                                                                                                                      | 120       | 156         | 176     | 126              | 150                                                                      | 80        | 0                                                                                                                                                                                    |                                  |                                                   |
| Concert tickets wer                                                                                                                                                                                                                | nt on sal | e at nooi   | t = 0   | and wer          | e sold ou                                                                | ıt within | 9 hours.                                                                                                                                                                             |                                  |                                                   |
| The number of peo                                                                                                                                                                                                                  |           |             | · · ·   |                  |                                                                          |           |                                                                                                                                                                                      |                                  | Assessment's Alignment                            |
| by a twice-different<br>various times <i>t</i> are                                                                                                                                                                                 |           |             |         |                  | Values of                                                                | of $L(t)$ | at                                                                                                                                                                                   | AB/BC AP<br>CALCULUS<br>STANDARD | Standard 1 Analysis of functions                  |
| Sketch a graph for                                                                                                                                                                                                                 | the       | Ť           |         |                  |                                                                          |           |                                                                                                                                                                                      | CONTENT                          | MA2 geometric and spatial                         |
| table of values abov                                                                                                                                                                                                               |           | ЕМ          |         |                  |                                                                          |           |                                                                                                                                                                                      |                                  | MA4 patterns and relationships                    |
| fhsd.acad.kg                                                                                                                                                                                                                       |           | BED         |         |                  |                                                                          |           |                                                                                                                                                                                      |                                  |                                                   |
| msu.avau.ng                                                                                                                                                                                                                        |           | Equ         |         |                  |                                                                          |           | Pa                                                                                                                                                                                   | ge 41                            |                                                   |
|                                                                                                                                                                                                                                    |           | atio<br>n.3 |         |                  |                                                                          |           |                                                                                                                                                                                      |                                  |                                                   |
|                                                                                                                                                                                                                                    | ſ         | 1.0         |         |                  |                                                                          |           |                                                                                                                                                                                      |                                  |                                                   |

-

| For $0 \le t \le 9$ , what is the fewest number of times at which $L'(t)$ must equal 0? Give a reason for your answer.                                                                                                                                                                                                                                     | PROCESS<br>DOK<br>LEVEL OF<br>EXPECTATION | 1.6discover/evaluate relationships1.10apply information, ideas and skills3.6examine solutions from many perspectives4.1support details2Mastery level -75% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #2 KEY<br>If the function $G'(t)$ is continuous on [a, b], and y is a number between<br>G'(a) and $G'(b)$ , then there exists at least one number c in the open<br>interval (a, b) such that $G'(c) = y$ .<br>EM<br>BED<br>Equ<br>atio<br>n.3                                                                                            |                                           |                                                                                                                                                           |
| <ul> <li>(c) L is differentiable on [0, 9] so the Mean Value Theorem implies L'(t) &gt; 0 for some t in (1, 3) and some t in (4, 7). Similarly, L'(t) &lt; 0 for some t in (3, 4) and some t in (7, 8). Then, since L' is continuous on [0, 9], the Intermediate Value Theorem implies that L'(t) = 0 for at least three values of t in [0, 9].</li> </ul> |                                           |                                                                                                                                                           |

The continuity of L on [1, 4] implies that L attains a maximum value Page 42 there. Since L(3) > L(1) and L(3) > L(4), this maximum occurs on (1, 4). Similarly, L attains a minimum on (3, 7) and a maximum on

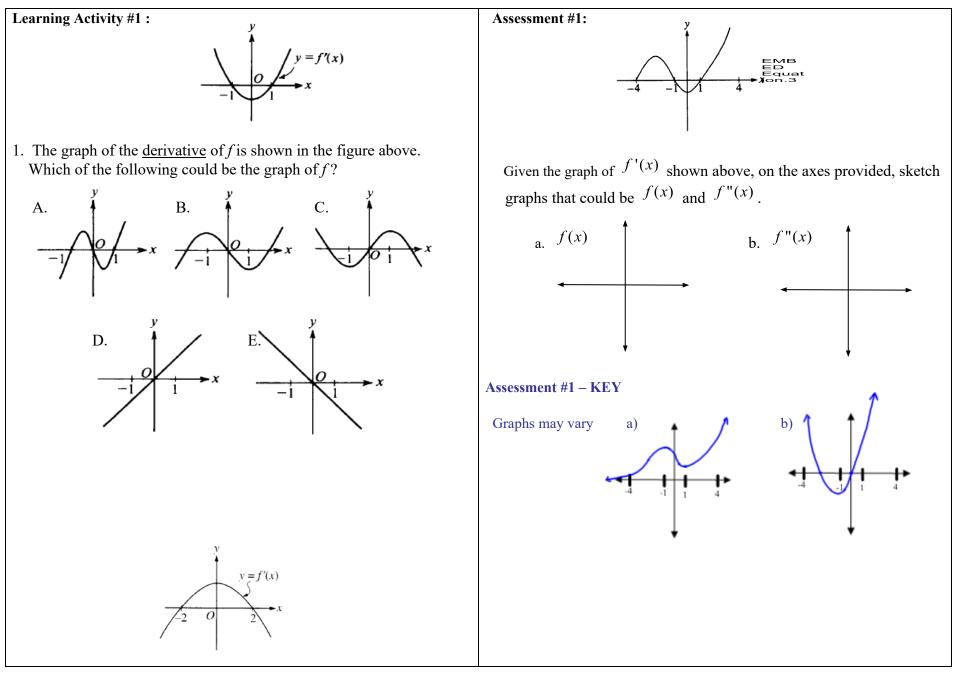
|               | Activity's Alignment                         |
|---------------|----------------------------------------------|
| AB/BC AP      | Standard 1 Analysis of functions             |
| CALCULUS      |                                              |
| STANDARD      |                                              |
|               | MA2 geometric and spatial                    |
|               | MA4 patterns and relationships               |
| CONTENT       |                                              |
| PROCESS       | 1.6 discover/evaluate relationships          |
|               | 1.10 apply information, ideas and skills     |
|               | 3.6 examine solutions from many perspectives |
|               | 4.1 support details                          |
| DOK           | 3                                            |
| INSTRUCTIONAL | Cues, Questions and Advanced Organizers      |
|               |                                              |
| STRATEGIES    |                                              |

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |

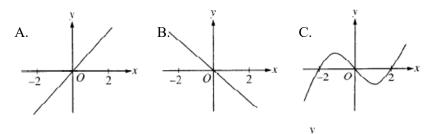
| Intervention: | Intervention: |
|---------------|---------------|
|               |               |

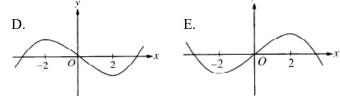
NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process

| Content Area: Mathematics                                                      | Course: AP Calculus BC | Strand: 4 |
|--------------------------------------------------------------------------------|------------------------|-----------|
| Learner Objectives: Students will calculate, interpret and analyze derivatives |                        |           |


# **Concepts**: A. Concept of the derivative

| Students Should Know                                    | Students Should Be Able to                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Relationship between differentiability and continuity | <ul> <li>Find a derivative presented graphically, numerically and analytically</li> <li>Find a derivative interpreted as an instantaneous rate of change</li> <li>Find a derivative defined as the limit of the difference quotient</li> <li>Find derivatives of parametric, polar and vector functions</li> </ul> |


| Student Essential Vocabulary |                        |                       |                     |                     |                          |
|------------------------------|------------------------|-----------------------|---------------------|---------------------|--------------------------|
| Differentiability            | Average Rate of Change | Instantaneous Rate of | Difference Quotient | Higher-Order        | Implicit Differentiation |
|                              |                        | Change                |                     | Derivative          |                          |
| <b>Parametric Form</b>       | Polar Form             | Vector Form           | Velocity Vector     | Acceleration Vector |                          |


| Readiness & Equity Section                                 |  |                                     |  |
|------------------------------------------------------------|--|-------------------------------------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |  |                                     |  |
| 21 <sup>st</sup> Century Themes                            |  | Non Fiction Reading & Writing       |  |
| Learning & Innovation Skills                               |  | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills                    |  | Intervention Opportunity            |  |
| Life & Career Skills                                       |  | Gender, Ethnic, & Disability Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|----------------------------|--------------------|



2. The graph of the derivative of f is shown in the figure above. Which of the following could be the graph of f?





Learning Activity #1 – KEY

| AB/BC AP      | Standard 1 Analysis of functions             |
|---------------|----------------------------------------------|
| CALCULUS      | Standard 3 Differential calculus             |
| STANDARD      |                                              |
| CONTENT       | MA1 number sense                             |
|               | MA2 geometric and spatial                    |
|               | MA4 patterns and relationships               |
| PROCESS       | 1.6 discover/evaluate relationships          |
|               | 1.10 apply information, ideas and skills     |
|               | 3.5 reason logically (inductive/deductive)   |
|               | 3.6 examine solutions from many perspectives |
|               | 4.1 support details                          |
| DOK           | 2                                            |
| INSTRUCTIONAL | Nonlinguistic Representation                 |
| STRATEGIES    |                                              |
| 1) B 2) E     |                                              |
|               |                                              |

|                                  | Assessment's Alignment                                                                                                                                                                                                                           |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AB/BC AP<br>CALCULUS<br>STANDARD | Standard 1Analysis of functionsStandard 3Differential calculus                                                                                                                                                                                   |
| CONTENT                          | <ul><li>MA1 number sense</li><li>MA2 geometric and spatial</li><li>MA4 patterns and relationships</li></ul>                                                                                                                                      |
| PROCESS                          | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support details</li> </ul> |
| DOK                              | 2                                                                                                                                                                                                                                                |
| LEVEL OF<br>EXPECTATION          | Mastery level – 85%                                                                                                                                                                                                                              |
|                                  |                                                                                                                                                                                                                                                  |

Sample Learning Activity #2 :Sample AssessmentsLearning Activity #2 :Assessment #2:The Definition of a Derivative can also be written like this
$$f'(x) = \lim_{x \to a} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 $f'(x) = \lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$  $f'(x) = \lim_{x \to a} \frac{f(x + \Delta x) - f(x)}{\Delta x}$  $f'(x) = \lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 1. If  $\lim_{x \to 0} \frac{f(x) = 7}{h}$ , which of the following must be true?0n the AP exam, you may need to recognize this alternate form of the  
derivative. Use the two forms to find the value of each:A. NoneB. II onlyC. III only1.  $\lim_{k \to 0} \frac{\cos(\frac{\pi}{2} + h) - \cos\frac{\pi}{2}}{h}$ 2.  $\lim_{k \to 0} \frac{5(x + h)^4 - 5x^4}{h}$ A. NoneB. II onlyC. III only3.  $\lim_{k \to 0} \frac{\cos(\frac{\pi}{2} + h) - \cos\frac{\pi}{2}}{h}$ 4.  $\lim_{k \to 0} \frac{f(2 + h) - f(2)}{h}$ A. undefined.B. continuous but not differentiable.5.  $\lim_{k \to 0} \frac{\sin(\pi + h) - \sin \pi}{h}$ 6.  $\lim_{k \to 0} \frac{f(2 + h) - f(2)}{h}$ B. continuous nor differentiable.6.  $\lim_{k \to 0} \frac{f(x) = 5(2x + 3)^2}{h}$ 3. If f is a differentiable function, then  $f'(a)$  is given by which of  
The following?1.  $\int is \frac{\sin(\pi + h) - \sin \pi}{h}$ 6.  $\lim_{k \to 0} \frac{\pi}{2} \int_{-1}^{-1}$ 3. If f is a differentiable function, then  $f'(a)$ 1.  $\int is \frac{\sin(\pi + h) - \sin \pi}{h}$ 6.  $\lim_{k \to 0} \frac{\pi}{2} \int_{-1}^{-1}$ 3.  $\lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 3.  $\lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 1.  $\lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 1.  $\lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 1.  $\int is e^{i}(\pi - h) - f(x)$ 3.  $\lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 1.  $\lim_{k \to 0} \frac{f(x + h) - f(x)}{h}$ 

| f'(2) = 140                                                                                                                                                                                                                                                 | A. I only B. II only C. I and II only<br>D. I and III only E. I, II, and III<br>$\lim_{h \to 0} \frac{\tan 3(x+h) - \tan 3x}{h} =$                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard 3 Differential calculus<br>MA1 number sense                                                                                                                                                                                                        | A. 0<br>D. $3\cot(3x)$ B. $3\sec^2(3x)$ C. $\sec^2(3x)$<br>E. nonexistent $8\left(\frac{1}{2}+h\right)^8 - 8\left(\frac{1}{2}\right)^8$                                                                                                                                                         |
| <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support details</li> <li>2</li> </ul> | 5. What is $\frac{\lim_{h \to 0} \frac{8\left(\frac{1}{2} + h\right)^8 - 8\left(\frac{1}{2}\right)^8}{h}}{2}$ ?<br>A. 0 B. $\frac{1}{2}$ C. 1 D. The limit does not exis<br>E. Cannot be determined from the information given.                                                                 |
|                                                                                                                                                                                                                                                             | Assessment #2 – KEY<br>1) A 2) E 3) E 4) B 5) B                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                             | Assessment's Alignment         AB/BC AP       Standard 1       Analysis of functions         CALCULUS       Standard 3       Differential calculus         STANDARD       Vertical calculus         CONTENT       MA1       number sense         MA2       geometric and spatial                |
|                                                                                                                                                                                                                                                             | Standard 1Analysis of functionsStandard 3Differential calculusMA1number senseMA2geometric and spatialMA4patterns and relationships1.6discover/evaluate relationships1.10apply information, ideas and skills3.5reason logically (inductive/deductive)3.6examine solutions from many perspectives |

| PROCESS     | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support details</li> </ul> |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOK         | 2                                                                                                                                                                                                                                                |
| LEVEL OF    | Mastery level – 75%                                                                                                                                                                                                                              |
| EXPECTATION |                                                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                                                  |

| Learning Activity #3:                                                                                                                                                                                                                                                                                                                                                     | Assessment #3:                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Differentiation and Parametric Form<br>Parametric Form of the Derivative –<br>If a smooth curve C is given by the equations $x = f(t)$ and $y = g(t)$ ,<br>then the slope of C at $(x, y)$ is<br>$\frac{dy}{dx} = \frac{dy/dt}{dx/dt},  \frac{dx}{dt} \neq 0$ .                                                                                                           | 1. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ , and find the slope and concavity (if possible) at the given point.<br>$x = t^2 + 3t + 2$ and $y = 2t$ at the point where $t = 0$ |
| Parametric Form of Higher-order Derivatives –<br>Furthermore,<br>$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[ \frac{dy}{dx} \right] = \frac{\frac{d}{dt} \left[ \frac{dy}{dx} \right]}{\frac{dx}{dt} - \frac{d^3 y}{dt^3}} = \frac{d}{dx} \left[ \frac{d^2 y}{dx^2} \right] = \frac{\frac{d}{dt} \left[ \frac{d^2 y}{dx^2} \right]}{\frac{dx}{dt} - \frac{d^3 y}{dt^3}}$ and | 2. Consider the parametric equations $x = 2\cot(t)$ and $y = 2\sin^2 t$ . Find<br>each of the following:<br>a. $\frac{dx}{dt} = $ b. $\frac{dy}{dt} =$                             |
| 1. Find $dy/dx$ for the curve given by $x = \sin t$ and $y = \cos t$ .                                                                                                                                                                                                                                                                                                    | c. $\frac{dy}{dx} =$<br>d. $\frac{d^2y}{dx^2} =$                                                                                                                                   |

| 2. For the curve given and concavity at the | h by $x = \sqrt{t}$ and $y = \frac{1}{4}(t^2 - 4)$ , $t \ge 0$ ; find the slope e point (2, 3).                                                                                                                | -                                 | ation of the line tangent to the graph of the parametric<br>each of the following points on the curve:                                                                                                                                           |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AB/BC AP<br>CALCULUS<br>STANDARD            | Activity's AlignmentStandard 1Analysis of functionsStandard 3Differential calculus                                                                                                                             | $t = \frac{2\pi}{3}$ (i) AB/BC AP | $t = \frac{\pi}{2} \qquad t = \frac{\pi}{4}$ Assessment's Alignment Standard 1 Analysis of functions                                                                                                                                             |
| PROCESS                                     | <ul> <li>MA1 number sense</li> <li>MA2 geometric and spatial</li> <li>MA4 patterns and relationships</li> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> </ul> | CALCULUS<br>STANDARD<br>CONTENT   | Standard 3Differential calculusMA1number senseMA2geometric and spatialMA4patterns and relationships                                                                                                                                              |
| DOK                                         | <ul> <li>appry information, ideas and skins</li> <li>reason logically (inductive/deductive)</li> <li>examine solutions from many perspectives</li> <li>support details</li> <li>Guided Practice</li> </ul>     | PROCESS                           | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support details</li> </ul> |
| INSTRUCTIONAL<br>STRATEGIES                 | Guided Practice                                                                                                                                                                                                | DOK<br>LEVEL OF<br>EXPECTATION    | 2<br>Mastery level -85%                                                                                                                                                                                                                          |

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |

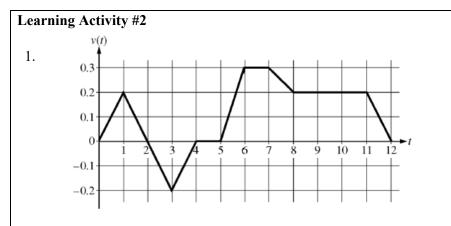
NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Content Area: Mathematics                        | Course: AP Calculus BC         | Strand: 5 |
|--------------------------------------------------|--------------------------------|-----------|
| Learner Objectives: Students will calculate, int | erpret and analyze derivatives |           |

**Concepts**: B. Derivative at a point

| Students Should Know                                                                                   | Students Should Be Able to                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Slope of a curve at a point – points that are vertical tangent, points at which there are no tangent | <ul> <li>Tangent line to a curve at a point</li> <li>Numerical solution of differential equations using Euler's method</li> <li>Instantaneous rate of change as the limit of average rate of change</li> <li>Approximate rate of change from graphs and tables of values</li> </ul> |

| Student Essential Vocabulary                                                                          |              |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|
| Tangent LineInstantaneous Rate ofSecant LineAverage Rate of ChangePoint-Slope Form of aEuler's Method |              |  |  |  |  |  |
| Change Linear Equation                                                                                |              |  |  |  |  |  |
| Numerical A                                                                                           | pproximation |  |  |  |  |  |


| Readiness & Equity Section                                    |                                     |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------|--|--|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |                                     |  |  |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                                     |  |  |  |  |
| Learning & Innovation Skills Enrichment Opportunity           |                                     |  |  |  |  |
| Information, Media, & Technology Skills                       | Intervention Opportunity            |  |  |  |  |
| Life & Career Skills                                          | Gender, Ethnic, & Disability Equity |  |  |  |  |

| Sample Learning Activities                                                                                                                                                         | Sample Assessments                                                                                                                                                                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Learning Activity #1 :                                                                                                                                                             | Assessment #1:                                                                                                                                                                                    |  |  |  |
| 1. If $f(x) = x^{\frac{3}{2}}$ , then $f'(4) =$                                                                                                                                    | 1. If $f(x) = -x^3 + x + \frac{1}{x}$ , then $f'(-1) =$                                                                                                                                           |  |  |  |
| A6 B3 C. 3 D. 6 E. 8                                                                                                                                                               | A. 3 B. 1 C1 D3 E5                                                                                                                                                                                |  |  |  |
| <ul> <li>2. An equation of the line tangent to the graph of y = x + cos x at the point (0, 1) is</li> <li>A. y = 2x + 1 B. y = x + 1 C. y = x<br/>D. y = x - 1 E. y = 0</li> </ul> | 2. An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1, 5) is<br>A. $13x - y = 8$ B. $13x + y = 18$ C. $x - 13y = 64$<br>D. $x + 13y = 66$ E. $-2x + 3y = 13$ |  |  |  |
| Learning Activity #1 – KEY                                                                                                                                                         |                                                                                                                                                                                                   |  |  |  |
| 1) C 2) B                                                                                                                                                                          | Assessment #1 – KEY                                                                                                                                                                               |  |  |  |

|               |                                              | 1) D 2) B   |                                              |
|---------------|----------------------------------------------|-------------|----------------------------------------------|
|               | Activity's Alignment                         |             |                                              |
| AB/BC AP      | Standard 1 Analysis of functions             |             |                                              |
| CALCULUS      | Standard 3 Differential calculus             |             | Assessment's Alignment                       |
| STANDARD      |                                              | AB/BC AP    | Standard 1 Analysis of functions             |
| CONTENT       | MA1 number sense                             | CALCULUS    | Standard 3 Differential calculus             |
|               | MA2 geometric and spatial                    | STANDARD    |                                              |
|               | MA4 patterns and relationships               | CONTENT     | MA1 number sense                             |
| PROCESS       | 1.6 discover/evaluate relationships          |             | MA2 geometric and spatial                    |
|               | 1.10 apply information, ideas and skills     |             | MA4 patterns and relationships               |
|               | 3.5 reason logically (inductive/deductive)   | PROCESS     | 1.6 discover/evaluate relationships          |
|               | 3.6 examine solutions from many perspectives |             | 1.10 apply information, ideas and skills     |
| DOK           | 2                                            |             | 3.5 reason logically (inductive/deductive)   |
| INSTRUCTIONAL | Homework and Practice                        |             | 3.6 examine solutions from many perspectives |
| STRATEGIES    |                                              | DOK         | 2                                            |
|               |                                              | LEVEL OF    | Mastery level – 80%                          |
|               |                                              | EXPECTATION |                                              |
|               |                                              |             |                                              |

| Readiness & Equity Section                                    |                                     |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------|--|--|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |                                     |  |  |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                                     |  |  |  |  |
| Learning & Innovation Skills Enrichment Opportunity           |                                     |  |  |  |  |
| Information, Media, & Technology Skills                       | Intervention Opportunity            |  |  |  |  |
| Life & Career Skills                                          | Gender, Ethnic, & Disability Equity |  |  |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|

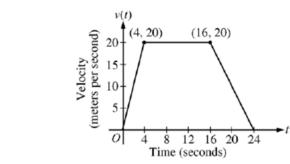


Caren rides her bicycle along a straight road from home to school, starting at home at time t = 0 minutes and arriving at school at time t = 12 minutes.

During the time interval  $0 \le t \le 12$  minutes, her velocity v(t), in miles per minute, is modeled by the piecewise-linear function whose graph is shown above.

- a. Find the acceleration of Caren's bicycle at time t = 7.5 minutes. Indicate units of measure.
- b. Shortly after leaving home, Caren realizes she left her calculus homework at home, and she returns to get it. At what time does she turn around to go back home? Give a reason for your answer.

| $\sim$ |   |
|--------|---|
|        |   |
| _      |   |
|        | 2 |


| t (hours)     | 0   | 1   | 3   | 4   | 7   | 8  | 9 |
|---------------|-----|-----|-----|-----|-----|----|---|
| L(t) (people) | 120 | 156 | 176 | 126 | 150 | 80 | 0 |

Concert tickets went on sale at noon (t = 0) and were sold out within 9 hours. The number of people waiting in line to purchase tickets at time *t* is modeled by the twice differentiable function *L* for  $0 \le t \le 9$ . Values of L(t) at various times *t* are shown in the table above.

#### Assessment #2:

1.

2.



For each of v'(4) and v'(20), find the value or explain why it does not exist. Indicate units of measure.

| Distance<br>x (cm)      | 0   | 1  | 5  | 6  | 8  |
|-------------------------|-----|----|----|----|----|
| Temperature $T(x)$ (°C) | 100 | 93 | 70 | 62 | 55 |

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius  ${}^{(\square C)}$ , of the wire *x* cm from the heated end. The function *T* is decreasing and twice differentiable.

Estimate T'(7). Show the work that leads to your answer. Indicate units of measure.

Assessment #2 – KEY

Use the data in the table to estimate the rate at which the number of people waiting in line was changing at 5:30 PM (t = 5.5). Show the computations that lead to your answer. Indicate units of measure.

Learning Activity #2 – KEY

 $a(7.5) = v'(7.5) = \frac{-.1}{1} = -0.1$ 1a) miles per minute 1b) since v(t) = 0 @ t = 2 and v(t) changes from positive to

negative,

Caren turns around at t = 2 minutes

2) 
$$L'(t) \approx \frac{L(7) - L(4)}{7 - 4} = \frac{150 - 126}{3} = 8$$
 people per hour

| Activity's Alignment |                                     |          |                                    |
|----------------------|-------------------------------------|----------|------------------------------------|
| AB/BC AP             | Standar                             | d 1      | Analysis of functions              |
| CALCULUS             | Standar                             | d 3      | Differential calculus              |
| STANDARD             |                                     |          |                                    |
| CONTENT              | MA1                                 | number   | sense                              |
|                      | MA2                                 | geomet   | ric and spatial                    |
|                      | MA4                                 | patterns | s and relationships                |
| PROCESS              | 1.6 discover/evaluate relationships |          |                                    |
|                      | 1.10                                | apply in | nformation, ideas and skills       |
|                      | 3.5                                 | reason   | logically (inductive/deductive)    |
|                      | 3.6                                 | examin   | e solutions from many perspectives |
| DOK                  | 2                                   |          |                                    |
| INSTRUCTIONAL        | Nonlinguistic Representation        |          |                                    |
| STRATEGIES           |                                     |          |                                    |
|                      |                                     |          |                                    |
|                      |                                     |          |                                    |
|                      |                                     |          |                                    |

1) 
$$v^{i}(4)$$
 does not exist since on  $(0, 4)$   $v^{i}(t) = 5$  and on  $(4, 16)$   $v^{i}(t) = 0$   
and  
 $5 \neq 0$ .  
 $v^{i}(20) = \frac{-20}{8} = -2.5$  meters per second per second  
 $T^{i}(7) \approx \frac{T(8) - T(6)}{8 - 6} = \frac{55 - 62}{2} = -3.5$   
2) degrees Celsius per centimeter  
  
AB/BC AP  
CALCULUS Standard 1 Analysis of functions  
CALCULUS Standard 3 Differential calculus  
STANDARD  
CONTENT MA1 number sense  
MA2 geometric and spatial  
MA4 patterns and relationships  
1.10 apply information, ideas and skills  
3.5 reason logically (inductive/deductive)  
3.6 examine solutions from many perspectives  
DOK 2  
LEVEL OF Mastery level – 70%

# Learning Activity #3:

### Euler's Method -

A numerical approach to approximating the particular solution  $(x_i, y_i)$  of the differential equation y' = F(x, y) that passes through the point  $(x_0, y_0)$ . From the given information, you know that the graph of the solution passes through the point  $(x_0, y_0)$ and has a slope of  $F(x_0, y_0)$  at this point. This gives you a "starting point" for approximating the solution.

From this point, you can proceed in the direction indicated by the slope. Using a step *h*, move along the tangent line until you arrive at the point  $(x_i, y_i)$ , using the fact that where  $x_n = x_{n-1} + h$ ,  $y_n = y_{n-1} + hF(x_{n-1}, y_{n-1})$ .

- 1. Use Euler's Method to approximate y(1) for the differential equation y' = x y passing through the point (0.5, 1). Use a step of h = 0.1.
- 2. Given  $y'=2x+\frac{y}{2}$ , find an approximation for y(2), given y(1) = 3. Use 5 iterations of Euler's Method with equal step sizes.

```
Learning Activity #3 – KEY
```

1. y' = x - y and y(0.5) = 1.

# Assessment #3:

1. AP Free Response 2005 – Q4c

Consider the differential equation 
$$\frac{dy}{dx} = 2x - y$$

Let y = f(x) be the particular solution to the given differential equation with the initial condition f(0) = 1. Use Euler's method, starting at x = 0with two steps of equal size, to approximate f(-0.4). Show the work that leads to your answer.

2. AP Free Response 2007B - Q5 c & d

Consider the differential equation  $\frac{dy}{dx} = 3x + 2y + 1$ 

c. Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = -2. Use Euler's method, starting at x = 0with a step size of  $\frac{1}{2}$ , to approximate f(1). Show the work that leads to your answer.

Let 
$$x_0 = 0.5$$
 and  $y_0 = 1$ , using  $h = 0.1$  we get  
 $x_1 = 0.6 \implies y_1 = 1 + 0.1[.5 - 1] = 0.95$   
 $\implies x_2 = 0.7 \implies y_2 = 0.95 + 0.1[0.6 - 0.95] = 0.915$   
 $\implies x_3 = 0.8 \implies y_3 = 0.915 + 0.1[0.7 - 0.915] = 0.8935$   
 $\implies x_4 = 0.9 \implies y_4 = 0.8935 + 0.1[0.8 - 0.8935] = 0.8842$   
 $\implies x_5 = 1.0 \implies y_5 = 0.8842 + 0.1[0.9 - 0.8842] = 0.88578$ 

Therefore 
$$y(1) \approx 0.886$$

2. 
$$y' = 2x + \frac{y}{2}$$
 and  $y(1) = 3$ .  
Let  $x_0 = 1$  and  $y_0 = 3$ , using  $h = \frac{2-1}{5} = 0.2$  we get  
 $x_1 = 1.2 \implies y_1 = 3 + 0.2[2(1) + 3/2] = 3.7$   
 $\implies x_2 = 1.4 \implies y_2 = 3.7 + 0.2[2(1.2) + 3.7/2] = 4.55$   
 $\implies x_3 = 1.6 \implies y_3 = 4.55 + 0.2[2(1.4) + 4.55/2] = 5.565$   
 $\implies x_4 = 1.8 \implies y_4 = 5.565 + 0.2[2(1.6) + 5.565/2] = 6.7615$   
 $\implies x_5 = 2.0 \implies y_5 = 6.7615 + 0.2[2(1.8) + 6.7615/2] = 8.15765$ 

Activity's Alignment

MA 5 mathematical systems

patterns and relationships

Analysis of functions

Model numerically/analytically

Differential equations/slope fields

# Therefore $y(2) \approx 8.158$

Standard 1

Standard 2

Standard 6

MA 4

MA 1 number sense

d. Let y = g(x) be another solution to the differential equation with the initial condition g(0) = k, where k is a constant. Euler's method, starting at x = 0 with a step size of 1, gives the approximation  $g(1) \approx 0$ . Find the value of k.

Assessment #3 – KEY  
1. 
$$f(-0.2) \approx f(0) + f'(0)(-0.2) = 1 + (-1)(-0.2) = 1.2$$
  
 $f(-0.4) \approx f(-0.2) + f'(-0.2)(-0.2) \approx 1.2 + (-1.6)(-0.2) = 1.52$   
2. c.  $f(\frac{1}{2}) \approx f(0) + f'(0) \cdot \frac{1}{2} = -2 + (-3) \cdot \frac{1}{2} = -\frac{7}{2}$   
 $f'(\frac{1}{2}) \approx 3(\frac{1}{2}) + 2(-\frac{7}{2}) + 1 = -\frac{9}{2}$   
 $f(1) \approx f(\frac{1}{2}) + f'(\frac{1}{2}) \cdot \frac{1}{2} = -\frac{7}{2} + (-\frac{9}{2}) \cdot (\frac{1}{2}) = -\frac{23}{4}$   
d.  $g'(0) \approx 3(0) + 2(k) + 1 = 2k + 1$   
 $g(1) \approx g(0) + g'(0) \cdot 1 = k + (2k + 1) = 3k + 1 = 0$   
 $k = -\frac{1}{3}$   
Assessment's Alignment  
AB/BC AP Standard 1 Analysis of functions

Model numerically/analytically

Differential equations/slope fields

fhsd.acad.kg

AB/BC AP

CALCULUS

STANDARD

CONTENT

CALCULUS

STANDARD

CONTENT

Standard 2

Standard 6

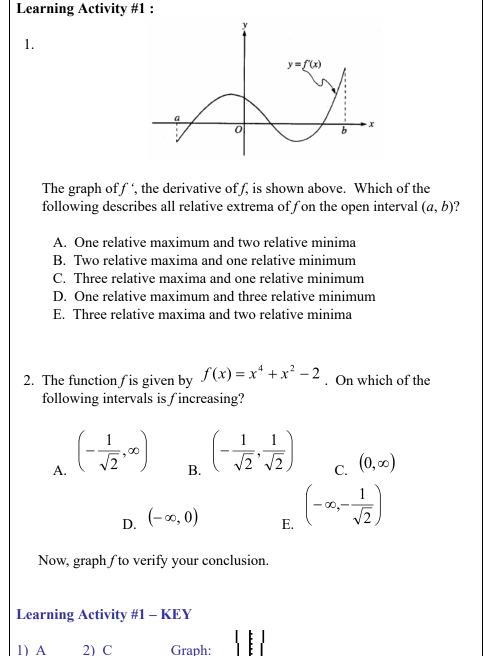
MA 1 number sense

| PROCESS       | 1.6discover/evaluate relationships1.8organize data and ideas                                      |             | MA 4patterns and relationshipsMA 5mathematical systems                                    |
|---------------|---------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|
|               | <ul><li>3.2 apply others' strategies</li><li>3.5 reason logically (inductive/deductive)</li></ul> | PROCESS     | <ul><li>1.6 discover/evaluate relationships</li><li>1.8 organize data and ideas</li></ul> |
| DOK           | 2                                                                                                 |             | 3.2 apply others' strategies                                                              |
| INSTRUCTIONAL | Nonlinguistic Representation                                                                      |             | 3.5 reason logically (inductive/deductive)                                                |
| STRATEGIES    |                                                                                                   | DOK         | 2                                                                                         |
|               |                                                                                                   | LEVEL OF    | Mastery level – 85%                                                                       |
|               |                                                                                                   | EXPECTATION |                                                                                           |
|               |                                                                                                   |             |                                                                                           |
|               |                                                                                                   |             |                                                                                           |

| General:      | General:      |
|---------------|---------------|
|               |               |
| Enrichment:   | Enrichment:   |
|               |               |
| Intervention: | Intervention: |
|               |               |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Content Area: Mathematics                       | Course: AP Calculus BC          | Strand: 6 |
|-------------------------------------------------|---------------------------------|-----------|
| Learner Objectives: Students will calculate, in | terpret and analyze derivatives |           |


# **Concepts**: C. Derivative as a function

| Students Should Know                                                                                                           | Students Should Be Able to                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Corresponding characteristics of graphs of <i>f</i> and <i>f</i>"</li> <li>Equations involving derivatives</li> </ul> | <ul> <li>Relationship between the increasing and decreasing behavior of <i>f</i> and the sign of <i>f</i>'</li> <li>The Mean Value Theorem and its geometric interpretation</li> <li>Utilize relationships between <i>f</i> and <i>f</i>' to determine relative extrema</li> </ul> |

| Student Essential Vocabulary |            |                  |                  |              |             |
|------------------------------|------------|------------------|------------------|--------------|-------------|
| Increasing                   | Decreasing | Absolute Extrema | Relative Extrema | Tangent Line | Secant Line |

| Readiness & Equity Section                                               |                                     |  |  |
|--------------------------------------------------------------------------|-------------------------------------|--|--|
| <b>SLA</b> = Sample Learning Activities & <b>SA</b> = Sample Assessments |                                     |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing            |                                     |  |  |
| Learning & Innovation Skills Enrichment Opportunity                      |                                     |  |  |
| Information, Media, & Technology Skills                                  | Intervention Opportunity            |  |  |
| Life & Career Skills                                                     | Gender, Ethnic, & Disability Equity |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|----------------------------|--------------------|



#### Assessment #1:

The function f given by 
$$f(x) = x^3 + 12x - 24$$
 is

- A. Increasing for x < -2, decreasing for -2 < x < 2, increasing for x > 2.
- B. Decreasing for x < 0, increasing for x > 0.
- C. Increasing for all *x*.
- D. Decreasing for all *x*.
- E. Decreasing for x < -2, increasing for -2 < x < 2, decreasing for x > 2.

#### Assessment #1 – KEY

Choice C

|             | Assessment's Alignment                       |
|-------------|----------------------------------------------|
| AB/BC AP    | Standard 1 Analysis of functions             |
| CALCULUS    | Standard 3 Differential calculus             |
| STANDARD    |                                              |
| CONTENT     | MA1 number sense                             |
|             | MA2 geometric and spatial                    |
|             | MA4 patterns and relationships               |
| PROCESS     | 1.6 discover/evaluate relationships          |
|             | 1.10 apply information, ideas and skills     |
|             | 3.5 reason logically (inductive/deductive)   |
|             | 3.6 examine solutions from many perspectives |
|             | 4.1 support decisions                        |
| DOK         | 2                                            |
| LEVEL OF    | Mastery level – 80%                          |
| EXPECTATION |                                              |
|             |                                              |
|             |                                              |
|             |                                              |
|             |                                              |
|             |                                              |

|               | Activity's Alignment                         |
|---------------|----------------------------------------------|
| AB/BC AP      | Standard 1 Analysis of functions             |
| CALCULUS      | Standard 3 Differential calculus             |
| STANDARD      |                                              |
| CONTENT       | MA1 number sense                             |
|               | MA2 geometric and spatial                    |
|               | MA4 patterns and relationships               |
| PROCESS       | 1.6 discover/evaluate relationships          |
|               | 1.10 apply information, ideas and skills     |
|               | 3.5 reason logically (inductive/deductive)   |
|               | 3.6 examine solutions from many perspectives |
| DOV           | 4.1 support decisions                        |
| DOK           | 2                                            |
| INSTRUCTIONAL | Nonlinguistic Representation                 |
| STRATEGIES    |                                              |
|               |                                              |

| Readiness & Equity Section                                    |                |                        |  |
|---------------------------------------------------------------|----------------|------------------------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |                |                        |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                |                        |  |
| Learning & Innovation Skills                                  | Enrichment Op  | pportunity             |  |
| Information, Media, & Technology Skills                       | Intervention O | pportunity             |  |
| Life & Career Skills                                          | Gender, Ethnic | c, & Disability Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|                            | •                  |

| Learning Activity #2 :                                                    |                                                                                                                                                                                                                                                    | Assessment #2:                                                                                                  |                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| See "Relating a Function and its Derivative" activity cards. Appendix : A |                                                                                                                                                                                                                                                    | The <u>derivative</u> of f is $x^4(x-2)(x+3)$ . At how many points will the graph of f have a relative maximum? |                                                                                                                                                                                                                     |  |
| Learning Activity #2                                                      | Learning Activity #2 – KEY                                                                                                                                                                                                                         |                                                                                                                 | B. One C. Two D. Three E. Four                                                                                                                                                                                      |  |
| See Appendix                                                              |                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                     |  |
|                                                                           |                                                                                                                                                                                                                                                    | Assessment #2 – k                                                                                               | XEY                                                                                                                                                                                                                 |  |
|                                                                           |                                                                                                                                                                                                                                                    | В                                                                                                               |                                                                                                                                                                                                                     |  |
|                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                     |  |
|                                                                           | Activity's Alignment                                                                                                                                                                                                                               |                                                                                                                 | A                                                                                                                                                                                                                   |  |
| AB/BC AP<br>CALCULUS<br>STANDARD                                          | Standard 1Analysis of functionsStandard 3Differential calculus                                                                                                                                                                                     | AB/BC AP<br>CALCULUS<br>STANDARD                                                                                | Assessment's Alignment           Standard 1         Analysis of functions           Standard 3         Differential calculus                                                                                        |  |
| CONTENT<br>PROCESS                                                        | MA2 geometric and spatial<br>MA4 patterns and relationships                                                                                                                                                                                        | CONTENT                                                                                                         | MA2 geometric and spatial<br>MA4 patterns and relationships                                                                                                                                                         |  |
|                                                                           | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support decisions</li> </ul> | PROCESS                                                                                                         | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> </ul> |  |
| DOK                                                                       | 2                                                                                                                                                                                                                                                  | DOK                                                                                                             | 4.1     support decisions       2                                                                                                                                                                                   |  |
| INSTRUCTIONALNonlinguistic representationSTRATEGIES                       |                                                                                                                                                                                                                                                    | LEVEL OF<br>EXPECTATION                                                                                         | Mastery level –75%                                                                                                                                                                                                  |  |
|                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                 |                                                                                                                                                                                                                     |  |

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |

| Intervention: | Intervention: |
|---------------|---------------|
|---------------|---------------|

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Content Area: Mathematics | Course: AP Calculus BC | Strand: 7 |
|---------------------------|------------------------|-----------|
|                           |                        |           |

# Learner Objectives: Students will calculate, interpret and analyze derivatives

Concepts: D. Second derivatives

| Students Should Know |                                                                                                                              | Students Should Be Able to                                                  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| •                    | Corresponding characteristics of the graphs of $f, f'$ , and $f''$<br>Points of inflection as places where concavity changes | • Relationship between the concavity of <i>f</i> and the sign of <i>f</i> " |  |

| Student Essential Vocabulary |                |                  |  |  |  |
|------------------------------|----------------|------------------|--|--|--|
| Point of Inflection          | Concave Upward | Concave Downward |  |  |  |

| Readiness & Equity Section                                    |  |                                     |  |  |
|---------------------------------------------------------------|--|-------------------------------------|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |  |                                     |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |  |                                     |  |  |
| Learning & Innovation Skills                                  |  | Enrichment Opportunity              |  |  |
| Information, Media, & Technology Skills                       |  | Intervention Opportunity            |  |  |
| Life & Career Skills Geno                                     |  | Gender, Ethnic, & Disability Equity |  |  |

| Sample Learning Activities                                                                                           | Sample Assessments                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #1 :                                                                                               | Assessment #1:                                                                                                                                                                                                                                                               |
| 1. What is the <i>x</i> -coordinate of the point of inflection on the graph of<br>$y = \frac{1}{3}x^3 + 5x^2 + 24$ ? | 1. Identify all intervals on which the graph of the function<br>$f(x) = \frac{4}{3}x^3 - x^2 - 3x$ is either concave up or concave down.                                                                                                                                     |
| A. 5 B. 0 C. $-\frac{10}{3}$ D5 -10                                                                                  | 2. Find all <u><i>points</i></u> of inflection for the graph of the function<br>$f(x) = \frac{1}{2}x^4 - 4x^3 + x - 1$ .                                                                                                                                                     |
| 2. If $f''(x) = x(x+1)(x-2)^2$ , then the graph of <i>f</i> has inflection points when $x =$                         | Assessment #1 – KEY $r = \frac{1}{2}$                                                                                                                                                                                                                                        |
| A1 onlyB. 2 onlyC1 and 0 onlyD1 and 2 onlyE1, 0 and 2 only                                                           | 1) $f'(x) = 4x^2 - 2x - 3 \Rightarrow f''(x) = 8x - 2 \Rightarrow f''(x) = 0$<br>(a) $x = \frac{1}{4}$<br>The graph of $f(x)$ is concave upward on $\left(\frac{1}{4}, \infty\right)$ since $f''(x) > 0$                                                                     |
| 3. The graph of the function $y = x^3 + 6x^2 + 7x - 2\cos x$ changes<br>concavity at $x =$                           | on the interval and the graph of $f(x)$ is concave downward on                                                                                                                                                                                                               |
| A1.58 B1.63 C1.67 D1.89 E2.33                                                                                        | $\left(-\infty,\frac{1}{4}\right)_{\text{since }} f''(x) < 0$ on the interval.                                                                                                                                                                                               |
| Learning Activity #1 – KEY                                                                                           | 2) $f'(x) = 2x^3 - 12x^2 + 1 \Rightarrow f''(x) = 6^2 x - 24x \Rightarrow f''(x) = 0$ (a) $x = 0$                                                                                                                                                                            |
| 1) D 2) C 3) D                                                                                                       | and $x = 4$ . Points of inflection exist at $(0, -1)$ and $(4, -125)$ since the concavity of the graph changes at that location. We know this since $f''(x) > 0$ on the intervals $(-\infty, -1)$ and $(0, 2)$ and $f''(x) < 0$ on the intervals $(-1, 0)$ and $(2, \infty)$ |
|                                                                                                                      |                                                                                                                                                                                                                                                                              |

|                                    | Activity's Alignment                                                                                              |                                |                                                                                                                                                                                                                                                    |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AB/BC AP<br>CALCULUS<br>STANDARD   | Standard 1Analysis of functionsStandard 3Differential calculus                                                    |                                |                                                                                                                                                                                                                                                    |
| CONTENT                            | MA2 geometric and spatial<br>MA4 patterns and relationships                                                       | AB/BC AP                       | Assessment's Alignment Standard 1 Analysis of functions                                                                                                                                                                                            |
| PROCESS                            | 1.6discover/evaluate relationships1.10apply information, ideas and skills                                         | CALCULUS<br>STANDARD           | Standard 3 Differential calculus                                                                                                                                                                                                                   |
|                                    | <ul><li>3.5 reason logically (inductive/deductive)</li><li>3.6 examine solutions from many perspectives</li></ul> | CONTENT                        | MA2geometric and spatialMA4patterns and relationships                                                                                                                                                                                              |
| DOK<br>INSTRUCTIONAL<br>STRATEGIES | 4.1     support decisions       2       Homework and Practice                                                     | PROCESS                        | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support decisions</li> </ul> |
|                                    |                                                                                                                   | DOK<br>LEVEL OF<br>EXPECTATION | 2<br>Mastery level – 70%                                                                                                                                                                                                                           |

| Readiness & Equity Section                                    |                                     |  |  |  |
|---------------------------------------------------------------|-------------------------------------|--|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |                                     |  |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                                     |  |  |  |
| Learning & Innovation Skills                                  | Enrichment Opportunity              |  |  |  |
| Information, Media, & Technology Skills                       | Intervention Opportunity            |  |  |  |
| Life & Career Skills                                          | Gender, Ethnic, & Disability Equity |  |  |  |

| Sample Learning Activities                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                               | Sample Assessments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Learning Activity #2 :                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                               | Assessment #2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| <ul> <li>1. See "It's a Match-up" activity cards. Appendix : B</li> <li>2. For the graph shown at the right, determine which graph represents f, f', and f".</li> <li>Learning Activity #2 - KEY</li> <li>1) See Appendix</li> <li>2) f is the red graph, f' is the blue graph and f" is the green graph</li> </ul> |                                                                                                                                                                                                                                                               | 1. The graph of a twice-<br>differentiable function <i>f</i> is<br>shown in the figure at the<br>right. Which of the<br>following is true?<br>A. $f(1) < f'(1) < f''(1)$<br>B. $f(1) < f''(1) < f''(1)$<br>C. $f'(1) < f(1) < f''(1)$<br>E. $f''(1) < f''(1)$<br>D. $f''(1) < f'(1)$<br>E. $f''(1) < f'(1) < f(1)$<br>2. The graph of $y = 3x^4 - 16x^3 + 24x^2 + 48$ is concave down for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                     | Activity's Alignment                                                                                                                                                                                                                                          | $r > -\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| AB/BC AP<br>CALCULUS<br>STANDARD<br>CONTENT                                                                                                                                                                                                                                                                         | Standard 1       Analysis of functions         Standard 3       Differential calculus         MA2       geometric and spatial         MA4       patterns and relationships                                                                                    | A. $x < 0$<br>B. $x > 0$<br>C. $x < -2$ or<br>C. $x$ |  |  |
| PROCESS<br>DOK                                                                                                                                                                                                                                                                                                      | <ul> <li>1.6 discover/evaluate relationships</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>4.1 support decisions</li> <li>3</li> </ul> | 1) D 2) D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

| INSTRUCTIONAL       Nonlinguistic Representation         STRATEGIES |             |                                              |
|---------------------------------------------------------------------|-------------|----------------------------------------------|
|                                                                     |             | Assessment's Alignment                       |
|                                                                     | AB/BC AP    | Standard 1 Analysis of functions             |
|                                                                     | CALCULUS    | Standard 3 Differential calculus             |
|                                                                     | STANDARD    |                                              |
|                                                                     | CONTENT     | MA2 geometric and spatial                    |
|                                                                     |             | MA4 patterns and relationships               |
|                                                                     | PROCESS     | 1.6 discover/evaluate relationships          |
|                                                                     |             | 1.10 apply information, ideas and skills     |
|                                                                     |             | 3.5 reason logically (inductive/deductive)   |
|                                                                     |             | 3.6 examine solutions from many perspectives |
|                                                                     |             | 4.1 support decisions                        |
|                                                                     | DOK         | 3                                            |
|                                                                     | LEVEL OF    | Mastery level – 75%                          |
|                                                                     | EXPECTATION |                                              |
|                                                                     |             |                                              |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |

| С                                                                              | ontent Area: Mathematics | Course: AP Calculus BC | Strand: 8 |
|--------------------------------------------------------------------------------|--------------------------|------------------------|-----------|
| Learner Objectives: Students will calculate, interpret and analyze derivatives |                          |                        |           |

#### **Concepts**: E. Applications of derivatives

| Students Should Know                                                                                                         | Students Should Be Able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| All theorems, properties and relationships needed to apply the concepts of functions and their first and second derivatives. | <ul> <li>Analysis of curves, including the notions of monotonicity and concavity</li> <li>Optimization, both absolute (global) and relative (local) extrema</li> <li>Modeling rates of change, including related rates problems</li> <li>Use of implicit differentiation to find the derivative of an inverse functions</li> <li>Interpretation of the derivative as a rate of change in varied applied contexts, including velocity, speed and acceleration</li> <li>Analysis of planar curves given in parametric form, polar form, and vector form, including velocity and acceleration</li> <li>Geometric interpretation of differential equations via slope fields and the relationship between slope fields and solution curves for differential equations</li> </ul> |  |  |

| Student Essential Vocabulary |                    |                       |                   |                     |                 |  |  |
|------------------------------|--------------------|-----------------------|-------------------|---------------------|-----------------|--|--|
| Position Function            | Velocity Function  | Acceleration Function | Relative Extrema  | Absolute Extrema    | Monotonic       |  |  |
| Optimize                     | Slope Field        | Differential Equation | General Solution  | Particular Solution | Related Rates   |  |  |
| Implicitly Defined           | Explicitly Defined | Parametric Form       | <b>Polar Form</b> | Vector Form         | Velocity Vector |  |  |
| Functions                    | Functions          |                       |                   |                     |                 |  |  |
| Acceleration Vector          |                    |                       |                   |                     |                 |  |  |

|                                         | Readiness & Equity Section                             |  |
|-----------------------------------------|--------------------------------------------------------|--|
| SLA                                     | = Sample Learning Activities & SA = Sample Assessments |  |
| 21 <sup>st</sup> Century Themes         | Non Fiction Reading & Writing                          |  |
| Learning & Innovation Skills            | Enrichment Opportunity                                 |  |
| Information, Media, & Technology Skills | Intervention Opportunity                               |  |
| Life & Career Skills                    | Gender, Ethnic, & Disability Equity                    |  |

| Sample Learning Activities                                                                                                                                                                                                                                                  | Sample Assessments                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #1 :                                                                                                                                                                                                                                                      | Assessment #1:                                                                                                                                                                                                                                                                                                               |
| 1. If $y = 2x - 8$ , what is the minimum value of the product <i>xy</i> ?                                                                                                                                                                                                   | 1. Find two rational numbers whose product is 192 and whose sum is a minimum.                                                                                                                                                                                                                                                |
| A16 B8 C4 D. 0 E. 2                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                              |
| 2. A farmer has 80 feet of fence and wants to make three identical pens. No fence will be needed on one side since the pens will attach to the barn as shown in the diagram. What dimensions (for the total enclosure) will make the area of the pens as large as possible? | 2. A family plans to fence in their backyard in order for their dog to be abl<br>to run free. They will attach the fence to the back of their house as show<br>in the diagram. They want the dog to have 800 square feet of area in<br>which to run. How much fence should they purchase in order to use the<br>least fence? |
| BARN                                                                                                                                                                                                                                                                        | house                                                                                                                                                                                                                                                                                                                        |
| 3. A manufacturer wants to design an open rectangular box with a volume of 256 square inches. What dimensions will produce a box that will require the least amount of material to produce it?                                                                              | 3. A manufacturer wants to design an open rectangular box having a squar<br>base and a surface area of 108 square inches. What dimensions will<br>produce a box of maximum volume?                                                                                                                                           |
| Learning Activity #1 – KEY                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |
| fhsd.acad.kg                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |

| by 10 feet (the 40 fe              | the total enclosure that has a maximum area are 40 feet<br>oot side runs parallel to the side of the barn).<br>the box of maximum volume is 8 inches by 8 inches by                                                                                                                                                |                                                        |                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                                                                                                                                                                                                                                                    |                                                        | Assessment's Alignment                                                                                                                                                                                                                                                                                                |
| AB/BC AP<br>CALCULUS<br>STANDARD   | Activity's AlignmentStandard 1Analysis of functionsStandard 2Model numerically/analyticallyStandard 3Differential calculusStandard 4Position, speed, accelerationStandard 5Related ratesStandard 6Differential equations/slope fieldsMA 1number senseMA 2geometric and spatial senseMA 4patterns and relationships | AB/BC AP<br>CALCULUS<br>STANDARD<br>CONTENT<br>PROCESS | Standard 1Analysis of functionsStandard 2Model numerically/analyticallyStandard 3Differential calculusStandard 4Position, speed, accelerationStandard 5Related ratesStandard 6Differential equations/slope fieldsMA 1number senseMA 2geometric and spatial senseMA 4patterns and relationships1.7evaluate information |
| PROCESS                            | <ul> <li>1.7 evaluate information</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>3.7 evaluate strategies</li> </ul>                                                                          | DOK                                                    | <ul> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>3.7 evaluate strategies</li> <li>2</li> </ul>                                                                                                    |
| DOK<br>INSTRUCTIONAL<br>STRATEGIES | 2<br>Nonlinguistic Representation                                                                                                                                                                                                                                                                                  | LEVEL OF<br>EXPECTATION                                | Mastery level – 75%                                                                                                                                                                                                                                                                                                   |

| Readiness & Equity Section                                 |
|------------------------------------------------------------|
| SLA = Sample Learning Activities & SA = Sample Assessments |

| 21 <sup>st</sup> Century Themes         | Non Fiction Reading & Writing       |  |
|-----------------------------------------|-------------------------------------|--|
| Learning & Innovation Skills            | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills | Intervention Opportunity            |  |
| Life & Career Skills                    | Gender, Ethnic, & Disability Equity |  |

| 1. The radius of a circle is decreasing at a constant rate of 0.1 centimeters                                                                                                                                                  | Sample Assessments<br>essment #2:                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. The radius of a circle is decreasing at a constant rate of 0.1 centimeters                                                                                                                                                  | sessment #2:                                                                                                                                                                                                                                              |
| •                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |
| to                                                                                                                                                                                                                             | The radius of a circle is increasing at a nonzero rate, and at a certain<br>instant, the rate of increase in the area of the circle is numerically equal<br>to the rate of increase in its circumference. At this instant, the radius of<br>the circle is |
| A. C. 200                                                                                                                                                                                                                      | 1 1 2                                                                                                                                                                                                                                                     |
| D. $(0.1)^2 C$ E. $(0.1)^2 \pi C$                                                                                                                                                                                              | A. $\frac{1}{\pi}$ B. $\frac{1}{2}$ C. $\frac{2}{\pi}$ D. 1 E. 2                                                                                                                                                                                          |
| the road 70 meters south of the crossing and watches an eastbound train<br>traveling at 60 meters per second. At how many meters per second is the<br>train maying away from the charge way when it is 100 meters per sect the | The top of a 25-foot ladder is sliding down a vertical wall at a constant rate of 3 feet per minute. When the top of the ladder is 7 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall?      |
| A. 49.15 B. 57.60 C. 57.88 D. 59.20 E. 67.40                                                                                                                                                                                   | A. $-\frac{7}{8}$ ft per min B. $-\frac{7}{24}$ ft per min C. $\frac{7}{24}$ ft per min                                                                                                                                                                   |
| earning Activity #2 – KEY                                                                                                                                                                                                      | D. $\frac{7}{8}$ ft per min E. $\frac{21}{25}$ ft per min                                                                                                                                                                                                 |
| ) B 2) A 3. P                                                                                                                                                                                                                  | Population grows according to the equation $\frac{dy}{dt} = ky$ , where k is a                                                                                                                                                                            |
| co                                                                                                                                                                                                                             | constant and $t$ is measured in years. If the population doubles every 10 years, then the value of $k$ is                                                                                                                                                 |
| Activity's Alignment                                                                                                                                                                                                           |                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                | A. 0.069 B. 0.200 C. 0.301 D. 3.322 E. 5.000                                                                                                                                                                                                              |

| AB/BC AP<br>CALCULUS<br>STANDARD   | Standard 1Analysis of functionsStandard 2Model numerically/analyticallyStandard 3Differential calculusStandard 4Position, speed, accelerationStandard 5Related ratesStandard 6Differential equations/slope fields | <b>Assessment #2 – K</b><br>1) D 2) D | <b>XEY</b><br>3) A                                                                                                                                                                                                                        |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTENT                            | <ul> <li>MA 1 number sense</li> <li>MA 2 geometric and spatial sense</li> <li>MA 4 patterns and relationships</li> <li>1.7 evaluate information</li> </ul>                                                        |                                       |                                                                                                                                                                                                                                           |
|                                    | 1.10 apply information, ideas and skills                                                                                                                                                                          |                                       | Assessment's Alignment                                                                                                                                                                                                                    |
| DOK<br>INSTRUCTIONAL<br>STRATEGIES | <ul> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>3.7 evaluate strategies</li> <li>3</li> <li>Homework and practice</li> </ul>                   | AB/BC AP<br>CALCULUS<br>STANDARD      | Standard 1Analysis of functionsStandard 2Model numerically/analyticallyStandard 3Differential calculusStandard 4Position, speed, accelerationStandard 5Related rates                                                                      |
|                                    | L                                                                                                                                                                                                                 | CONTENT                               | Standard 6Differential equations/slope fieldsMA 1number senseMA 2geometric and spatial senseMA 4patterns and relationships                                                                                                                |
|                                    |                                                                                                                                                                                                                   | PROCESS                               | <ul> <li>1.7 evaluate information</li> <li>1.10 apply information, ideas and skills</li> <li>3.5 reason logically (inductive/deductive)</li> <li>3.6 examine solutions from many perspectives</li> <li>3.7 evaluate strategies</li> </ul> |
|                                    |                                                                                                                                                                                                                   | DOK<br>LEVEL OF<br>EXPECTATION        | 2<br>Mastery level – 75%                                                                                                                                                                                                                  |

| Sample Learning Activities                                                                                                                                              | Sample Assessments                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #3                                                                                                                                                    | Assessment #3:                                                                                                                                                                                                      |
| The maximum acceleration on the interval $0 \le t \le 3$ by the particle<br>whose velocity is given by $v(t) = t^3 - 3t^2 + 12t + 4$ is<br>A. 9 B. 12 C. 14 D. 21 E. 40 | A particle moves along a line so that at time t, where $0 \le t \le \pi$ , its<br>$s(t) = -4\cos t - \frac{t^2}{2} + 10$ position is given by . What is the velocity of the particle when its acceleration is zero? |
| Now, graph the acceleration function and determine which characteristics of the graph support your answer.                                                              | A5.19 B. 0.74 C. 1.32 D. 2.55 E. 8.13                                                                                                                                                                               |
| Learning Activity #3 – KEY                                                                                                                                              | Note: Be sure to show equations for velocity and acceleration in the work you do.                                                                                                                                   |
| $a(t) = 3t^2 - 6t + 12$ critical number for $a(t)$ (when $a'(t) = 0$ ) is $t = 1$ .                                                                                     | Assessment #3 – KEY                                                                                                                                                                                                 |
| a(0) = 12, $a(1) = 9$ , $a(3) = 21$ so maximum acceleration on the interval [0, 3] is 21.                                                                               | D see justification below                                                                                                                                                                                           |
| Y1=3X^2-6X+12                                                                                                                                                           | $v(t) = s'(t) = 4\sin t - t$ $a(t) = v'(t) = s''(t) = 4\cos t - 4$                                                                                                                                                  |
|                                                                                                                                                                         | $a(t) = 0 \Rightarrow \cos t = 0.25 \Rightarrow t \approx 1.318$                                                                                                                                                    |
|                                                                                                                                                                         | $v(1.318) = 4\sin(1.318) - 1.318 \approx 2.55$                                                                                                                                                                      |
| X=3 ↓ · · · · Y=21 · · · ·                                                                                                                                              | Assessment's Alignment                                                                                                                                                                                              |

|               |                                                | AB/BC AP    | Standard 1 Analysis of functions               |
|---------------|------------------------------------------------|-------------|------------------------------------------------|
|               | Activity's Alignment                           | CALCULUS    | Standard 2 Model numerically/analytically      |
| AB/BC AP      | Standard 1 Analysis of functions               | STANDARD    | Standard 3 Differential calculus               |
| CALCULUS      | Standard 2 Model numerically/analytically      |             | Standard 4 Position, speed, acceleration       |
| STANDARD      | Standard 3 Differential calculus               |             | Standard 5 Related rates                       |
|               | Standard 4 Position, speed, acceleration       |             | Standard 6 Differential equations/slope fields |
|               | Standard 5 Related rates                       | CONTENT     | MA 1 number sense                              |
|               | Standard 6 Differential equations/slope fields |             | MA 2 geometric and spatial sense               |
| CONTENT       | MA 1 number sense                              |             | MA 4 patterns and relationships                |
|               | MA 2 geometric and spatial sense               | PROCESS     | 1.7 evaluate information                       |
|               | MA 4 patterns and relationships                |             | 1.10 apply information, ideas and skills       |
| PROCESS       | 1.7 evaluate information                       |             | 3.5 reason logically (inductive/deductive)     |
|               | 1.10 apply information, ideas and skills       |             | 3.6 examine solutions from many perspectives   |
|               | 3.5 reason logically (inductive/deductive)     |             | 3.7 evaluate strategies                        |
|               | 3.6 examine solutions from many perspectives   | DOK         | 2                                              |
|               | 3.7 evaluate strategies                        | LEVEL OF    | Mastery level –75%                             |
| DOK           | 3                                              | EXPECTATION |                                                |
| INSTRUCTIONAL | Homework and practice                          |             |                                                |
| STRATEGIES    |                                                |             |                                                |
|               |                                                |             |                                                |
|               |                                                |             |                                                |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|

### **Learning Activity #4 :**

Free Response Question 3 – 2010 Exam

A particle is moving along a curve so that its position at time *t* is (x(t), y(t)), where  $x(t) = t^2 - 4t + 8$  and y(t) is not explicitly given. Both *x* and *y* are measured in meters, and *t* is measured in seconds. It is known that  $\frac{dy}{dt} = te^{t-3} - 1$ 

- a. Find the speed of the particle at time t = 3 seconds.
- b. Find the total distance traveled by the particle for  $0 \le t \le 4$  seconds.
- c. Find the time t,  $0 \le t \le 4$ , when the line tangent to the path of the particle is horizontal. Is the direction of motion of the particle toward the left or toward the right at that time? Give a reason for your answer.
- d. There is a point with *x*-coordinate 5 through which the particle passes twice. Find each of the following.
  - (i) The two values of t when that occurs.
  - (ii) The slopes of the lines tangent to the particle's path at that point.
  - (iii) The *y*-coordinate of that point, given  $y(2) = 3 + \frac{1}{e}$ .

### Learning Activity #4 – KEY

a. speed = 
$$\sqrt{(x'(3))^2 + (y'(3)^2)} = 2.828$$
 meters per second  
b.  $x'(t) = 2t - 4$   
Distance =  $\int_0^4 \sqrt{(2t - 4)^2 + (te^{t - 3} - 1)^2} dt$  = 11.587 or 11.588 meters

### Assessment #4:

1. In the *xy*-plane, the graph of the parametric equations x = 5t + 2, and y = 3t, for  $-3 \le t \le 3$ , is a line segment with slope

A.  $\frac{3}{5}$  B.  $\frac{5}{3}$  C. 3 D. 5 E. 13

2. A particle moves on a plane curve so that at any time t > 0 its x-coordinate is  $t^3 - t$  and its y-coordinate is  $(2t-1)^3$ . The acceleration vector of the particle at t = 1 is

A. (0, 1) B. (2, 3) C. (2, 6) D. (6, 12) E. (6, 24)

3. The length of the path described by the parametric equations  $x = \frac{1}{3}t^3$  and  $y = \frac{1}{2}t^2$ , where  $0 \le t \le 1$ , is given by

A. 
$$\int_{0}^{1} \sqrt{t^{2} + 1} dt$$
B. 
$$\int_{0}^{1} \sqrt{t^{2} + t} dt$$
C. 
$$\int_{0}^{1} \sqrt{t^{4} + t^{2}} dt$$
D. 
$$\frac{1}{2} \int_{0}^{1} \sqrt{4 + t^{4}} dt$$
E. 
$$\frac{1}{6} \int_{0}^{1} t^{2} \sqrt{4t^{2} + 9} dt$$

Assessment #4 – KEY

- 1. A
- 2. E
- 3. C

c. 
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = 0$$
 when  $te^{t-3} - 1 = 0$  and  $2t - 4 \neq 0$ . This occurs at  $t = 2.20794$ .  
Since  $x'(2.20794) > 0$ , the particle is moving toward the right at time  $t = 2.207$  or 2.208.  
d.  $x(t) = 5$  at  $t = 1$  and  $t = 3$   
At time  $t = 1$ , the slope is  $\frac{dy}{dx}\Big|_{t=1} = \frac{dy/dt}{dx/dt}\Big|_{t=1} = 0.432$ .  
At time  $t = 3$ , the slope is  $\frac{dy}{dx}\Big|_{t=3} = \frac{dy/dt}{dx/dt}\Big|_{t=3} = 1$ .  
At time  $t = 3$ , the slope is  $\frac{dy}{dx}\Big|_{t=3} = \frac{dy/dt}{dx/dt}\Big|_{t=3} = 1$ .  
 $Y(1) = y(3) = \frac{3 + \frac{1}{e} + \int_{2}^{3} \frac{dy}{dt}}{dt} = 4$ .  
Model numerically/analytically  
Standard 3 Differential calculus  
Standard 4 Position, speed, acceleration  
Standard 9 Integral calculus  
CONTENT MA 1 number sense  
MA 5 mathematical systems

|             | Ass      | sessme  | ent's Alignment                |
|-------------|----------|---------|--------------------------------|
| AB/BC AP    | Standard | 1       | Analysis of functions          |
| CALCULUS    | Standard | 2       | Model numerically/analytically |
| STANDARD    | Standard | 13      | Differential calculus          |
|             | Standard | 4       | Position, speed, acceleration  |
|             | Standard | 9       | Integral calculus              |
| CONTENT     | MA1 n    | numbe   | er sense                       |
|             | MA 5 n   | mather  | matical systems                |
| PROCESS     | 1.6 d    | discov  | er/evaluate relationships      |
|             | 3.2 a    | apply o | other's strategies             |
|             | 3.4      | evalua  | ate problem-solving processes  |
| DOK         | 2        |         |                                |
| LEVEL OF    | Mastery  | level - | -80%                           |
| EXPECTATION | -        |         |                                |

| PROCESS       | <ol> <li>1.6 discover/evaluate relationships</li> <li>3.2 apply other's strategies</li> <li>3.4 evaluate problem-solving processes</li> </ol> |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| NOK           |                                                                                                                                               |
| DOK           | 2                                                                                                                                             |
| INSTRUCTIONAL | Nonlinguistic Representation                                                                                                                  |
| STRATEGIES    |                                                                                                                                               |
|               |                                                                                                                                               |

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
| Enrichment:       | Enrichment:       |
| Intervention:     | Intervention:     |

| Content Area: Mathematics                                                      | Course: AP Calculus BC | Strand: 9 |
|--------------------------------------------------------------------------------|------------------------|-----------|
| Learner Objectives: The student will calculate, interpret, and apply integrals |                        |           |

**Concepts**: A. Calculate definite integrals

| Students Should Know                                                                                                                                                                                                                                                                               | Students Should Be Able to                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| <ul> <li>Definite integral as limit of Riemann sums</li> <li>Definite integral of the rate of change of a quantity over an interval interpreted as the change of the quantity over the interval:</li> <li>∫<sub>a</sub><sup>b</sup> f' ∫<sub>a</sub><sup>b</sup> f' (x)dx = f(b) - f(a)</li> </ul> | <ul> <li>Basic properties of definite integrals – examples include additivity and<br/>linearity</li> </ul> |

### **Instructional Support**

| Student Essential Vocabulary |                |                |               |           |                   |
|------------------------------|----------------|----------------|---------------|-----------|-------------------|
| Definite Integral            | Riemann sum    | Antiderivative | Differentiate | Integrate | Limiting Behavior |
| Upper Limit of               | Lower Limit of |                |               |           |                   |
| Integration                  | Integration    |                |               |           |                   |

| Readiness & Equity Section                                    |                            |           |  |
|---------------------------------------------------------------|----------------------------|-----------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |                            |           |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                            |           |  |
| Learning & Innovation Skills                                  | Enrichment Opportunity     |           |  |
| Information, Media, & Technology Skills                       | Intervention Opportunity   |           |  |
| Life & Career Skills                                          | Gender, Ethnic, & Disabili | ty Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|

Learning Activity #1 :Assessment #1:If 
$$\int_0^3 f(x) dx = 3$$
, and  $\int_3^3 f(x) dx = 2$ , find the value ofactivity  $f(x) dx = 3$ , and  $\int_3^3 f(x) dx = 2$ , find the value of1.  $\int_0^3 f(x) dx$ 1.  $\int_0^3 f(x) dx$ 2.  $\int_0^3 f(x) dx$ Colspan="2">Assessment  $f(x) A a$ Assessment's AlignmentAssessment's Alignment

**Assessment's Alignment** 

Differential calculus

Integral calculus Area and volume

apply information, ideas and skills

evaluate problem-solving processes

geometric and spatial sense

patterns and relationships evaluate information

evaluate strategies

Differential equations/slope fields

| PROCESS       | 1.7 evaluate information                 |
|---------------|------------------------------------------|
|               | 1.10 apply information, ideas and skills |
|               | 3.4 evaluate problem-solving processes   |
|               | 3.7 evaluate strategies                  |
| DOK           | 2                                        |
| INSTRUCTIONAL | Nonlinguistic representation             |
| STRATEGIES    |                                          |
|               |                                          |

| Readiness & Equity Section                                    |  |                                     |  |
|---------------------------------------------------------------|--|-------------------------------------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |  |                                     |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |  |                                     |  |
| Learning & Innovation Skills                                  |  | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills                       |  | Intervention Opportunity            |  |
| Life & Career Skills                                          |  | Gender, Ethnic, & Disability Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|                            |                    |

| Learning Activity #2                          | 2:                                                                                                                                                                              | Assessment #2:                 |                                                                                                                                                                                 |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | ng by using geometric area formulas:<br>$\int_{0}^{1} 2x  dx \qquad \int_{0}^{1.5} 2x  dx \qquad \int_{0}^{t} 2x  dx$                                                           |                                | f(x)dx = 5, find each of the following values:                                                                                                                                  |
|                                               |                                                                                                                                                                                 |                                | B9 C5 D2 E. 3                                                                                                                                                                   |
| A(0.5) =                                      | A(1) = A(1.5) = A(t) =                                                                                                                                                          | 2. $\int_{-1}^{1} f(x+2)$      | dx =                                                                                                                                                                            |
|                                               |                                                                                                                                                                                 | A2                             | B. 1 C. 5 D. 7 E. 10                                                                                                                                                            |
| Learning Activity #2<br>A(0.5) = 0.25, A(1) = | $2 - \mathbf{KEY}$<br>1, $A(1.5) = 2.25, A(t) = x^2$                                                                                                                            | Assessment #2 – k<br>1) B 2) C | XEY                                                                                                                                                                             |
|                                               | Activity's Alignment                                                                                                                                                            |                                | Accessment's Alignment                                                                                                                                                          |
| AB/BC AP                                      | Standard 3 Differential calculus                                                                                                                                                | AB/BC AP                       | Assessment's Alignment Standard 3 Differential calculus                                                                                                                         |
| CALCULUS                                      | Standard 6     Differential equations/slope fields                                                                                                                              | CALCULUS                       | Standard 6 Differential equations/slope fields                                                                                                                                  |
| STANDARD                                      | Standard 9Integral calculusStandard 10Area and volume                                                                                                                           | STANDARD                       | Standard 9Integral calculusStandard 10Area and volume                                                                                                                           |
| CONTENT                                       | MA 2 geometric and spatial sense<br>MA 4 patterns and relationships                                                                                                             | CONTENT                        | MA 2 geometric and spatial sense<br>MA 4 patterns and relationships                                                                                                             |
| PROCESS                                       | <ul> <li>1.7 evaluate information</li> <li>1.10 apply information, ideas and skills</li> <li>3.4 evaluate problem-solving processes</li> <li>3.7 evaluate strategies</li> </ul> | PROCESS                        | <ul> <li>1.7 evaluate information</li> <li>1.10 apply information, ideas and skills</li> <li>3.4 evaluate problem-solving processes</li> <li>3.7 evaluate strategies</li> </ul> |
| DOK                                           | 2                                                                                                                                                                               | DOK                            | 3                                                                                                                                                                               |

| INSTRUCTIONAL<br>STRATEGIES | Nonlinguistic representation | LEVEL OF<br>EXPECTATION | Mastery level –75% |
|-----------------------------|------------------------------|-------------------------|--------------------|
|                             |                              |                         |                    |

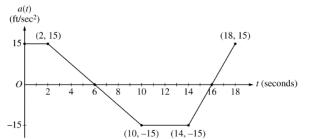
| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |
|                   |                   |

| Content Area: Mathematics                       | Course: AP Calculus BC           | Strand: 10 |
|-------------------------------------------------|----------------------------------|------------|
| Learner Objectives: The student will calculate, | , interpret, and apply integrals |            |

**Concepts**: B. Fundamental Theorem of Calculus

| Students Should Know                                                                                                                                          | Students Should Be Able to                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The relationship between a function and its antiderivative<br>$\int_{a}^{b} f(x)dx = F(b) - F(a)$ $\frac{d}{dx} \int_{a}^{f(x)} g(t)dt = g(f(x)) \cdot f'(x)$ | <ul> <li>Use the Fundamental Theorem of Calculus to evaluate definite integrals.</li> <li>Use the Fundamental Theorem of Calculus to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined.</li> </ul> |

### **Instructional Support**


|                |                              | Student Essen | tial Vocabulary              |                               |                               |
|----------------|------------------------------|---------------|------------------------------|-------------------------------|-------------------------------|
| Antiderivative | Definite Integral            | Chain Rule    | Particular<br>Antiderivative | Upper Limit of<br>Integration | Lower Limit of<br>Integration |
| Derivative     | e of a Function Defined by a | an Integral   |                              |                               |                               |

| Readiness & I               | Equity Section                       |                        |
|-----------------------------|--------------------------------------|------------------------|
| A = Sample Learning Activit | ies & <b>SA</b> = Sample Assessments |                        |
|                             | Non Fiction Reading & Writing        |                        |
|                             | Enrichment Opportunity               |                        |
|                             | Intervention Opportunity             |                        |
| _                           |                                      | Enrichment Opportunity |

| Life & Career Skills | Gender, Ethnic, & Disability Equity |  |
|----------------------|-------------------------------------|--|
|                      | 5 1 5                               |  |

| Sample Learning Activities                                                                                                        | Sample Assessments                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #1 :                                                                                                            | Assessment #1:                                                                                                                                                                   |
| Evaluate the following definite integrals by finding the antiderivative of the integrand.<br>$\int_{1}^{4} (3\sqrt{x} + x) dx$ 1. | 1. The graph of the function <i>f</i> , consisting of<br>three line segments is shown at the right.<br>Let $g(x) = \int_{1}^{x} f(t) dt$ a. Compute $g(4)$ and $g(-2)$ .         |
|                                                                                                                                   |                                                                                                                                                                                  |
| 2. $\int_{0}^{2}  2x - 1  dx$                                                                                                     | b. Find the instantaneous rate of change of $g$ , with respect to $x$ , at $x = 1$ .                                                                                             |
| 3. Find the area bounded by the function and the <i>x</i> -axis:                                                                  | <ul> <li>c. Find the absolute minimum value of g on the closed interval [-2, 4].<br/>Justify your answer.</li> </ul>                                                             |
| a. $f(x) = 4 - x^2$<br>b. $g(x) = \sin x$ on the interval $[0, 2\pi]$<br>Learning Activity #1 – KEY                               | d. The second derivative of g is not defined at $x = 1$ and $x = 2$ . How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer. |
|                                                                                                                                   |                                                                                                                                                                                  |
| 1) 21.5 2) 2.5 3a) $\frac{32}{3}$ b) 4                                                                                            |                                                                                                                                                                                  |

|               | Activity's Alignment                           |               |
|---------------|------------------------------------------------|---------------|
| AB/BC AP      | Standard 3 Differential calculus               |               |
| CALCULUS      | Standard 6 Differential equations/slope fields |               |
| STANDARD      | Standard 9 Integral calculus                   |               |
|               | Standard 10 Area and volume                    |               |
| CONTENT       | MA 2 geometric and spatial sense               |               |
|               | MA 4 patterns and relationships                |               |
| PROCESS       | 1.7 evaluate information                       |               |
|               | 1.10 apply information, ideas and skills       |               |
|               | 3.4 evaluate problem-solving processes         |               |
|               | 3.7 evaluate strategies                        |               |
| DOK           | 2                                              |               |
| INSTRUCTIONAL | Nonlinguistic representation                   | (f            |
| STRATEGIES    |                                                | 1             |
|               |                                                | 1             |
|               |                                                |               |
|               |                                                |               |
|               |                                                |               |
|               |                                                | -1            |
|               |                                                |               |
|               |                                                | 2. A car is   |
|               |                                                | For $0 \leq$  |
|               |                                                | piecewis      |
|               |                                                | piecewis      |
|               |                                                | a. Is the vel |
|               |                                                |               |
|               |                                                |               |
|               |                                                | b. At what    |
|               |                                                | of the ca     |
|               |                                                |               |
|               |                                                | c. On the ti  |
|               |                                                | velocity,     |
|               |                                                | d. At what    |



- 2. A car is traveling on a straight road with velocity 55 ft/sec at time t = 0. For  $0 \le t \le 18$  seconds, the car's acceleration a(t), in ft/sec<sup>2</sup>, is the piecewise linear function defined by the graph above.
- a. Is the velocity of the car increasing at t = 2 seconds? Why or why not?
- b. At what time in the interval  $0 \le t \le 18$ , other than t = 0, is the velocity of the car 55 ft/sec? Why?
- c. On the time interval  $0 \le t \le 18$ , what is the car's absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.
- d. At what time in the interval  $0 \le t \le 18$ , if any, is the car's velocity equal

to zero? Justify your answer. Assessment #1 – KEY 1a) g(4) = 2.5, g(-2) = -61b) g'(1) = f(1) = 41c) x = 3 is the only critical number, where g'(x) = f(x) = 0, so the only candidates for an absolute minimum are g(-2), g(3), and g(4). Because g(-2) = -6, g(3) = 3, and g(4) = 2.5, g(-2) = -6 is the absolute minimum on this interval. 1d) For a point of inflection, g''(x) = f'(x) much change sign, so the graph of g'(x) = f(x) must change from increasing to decreasing or from decreasing to increasing. This only occurs at x = 1, so only at x = 1 is there a point of inflection for g. 2a) Yes, because v'(t) = a(t) is positive at t = 2. 2b) At t = 12, because  $\int_{0}^{12} a(t) dt = 0$ . Thus, v(12) = v(0) + v(0) + v(0) = v(0) + v(0) + v(0) + v(0) = v(0) + v(0) $\int_0^{12} a(t) dt$ = 552c) The absolute maximum velocity on [0, 18] must occur at an endpoint or at a critical number. Only at the critical number t = 6does v'(t) = a(t) change from positive to negative, therefore this is the only critical number where there is a relative maximum. Then checking the values of v(0) = 55,  $v(6) = v(0) + \int_0^6 a(t) dt = 55 + 60$ = 115, and  $v(18) = v(0) + \int_0^{18} a(t) dt = 55 + 60 - 180 + 15 = -50$ , We see that v(6) is the absolute maximum velocity on [0, 18]

| does $v'(t) = a$        | ocal minimum occurs at $t = 16$ because only there<br>(t) change from negative to positive. Because<br>$\int_{0}^{16} a(t) dt = 10, v(t) \text{ is always positive on } [0, 18].$ |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Assessment's Alignment                                                                                                                                                            |
| AB/BC AP                | Standard 3 Differential calculus                                                                                                                                                  |
| CALCULUS                | Standard 6 Differential equations/slope fields                                                                                                                                    |
| STANDARD                | Standard 9 Integral calculus                                                                                                                                                      |
|                         | Standard 10 Area and volume                                                                                                                                                       |
| CONTENT                 | MA 2 geometric and spatial sense                                                                                                                                                  |
|                         | MA 4 patterns and relationships                                                                                                                                                   |
| PROCESS                 | 1.7 evaluate information                                                                                                                                                          |
|                         | 1.10 apply information, ideas and skills                                                                                                                                          |
|                         | 3.4 evaluate problem-solving processes                                                                                                                                            |
|                         | 3.7 evaluate strategies                                                                                                                                                           |
| DOK                     | 3                                                                                                                                                                                 |
| LEVEL OF<br>EXPECTATION | Mastery level –70%                                                                                                                                                                |
|                         |                                                                                                                                                                                   |

|                                         | Readiness & ]               | Equity Section                      |  |
|-----------------------------------------|-----------------------------|-------------------------------------|--|
| SLA                                     | A = Sample Learning Activit | ies & SA = Sample Assessments       |  |
| 21 <sup>st</sup> Century Themes         |                             | Non Fiction Reading & Writing       |  |
| Learning & Innovation Skills            |                             | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills |                             | Intervention Opportunity            |  |
| Life & Career Skills                    |                             | Gender, Ethnic, & Disability Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|

| Learning Activity #2                          | :                                                                                                                                                                                                                                                                                               | Assessment #2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| interval <i>I</i> containin<br>still applies) | Theorem of Calculus – If $f$ is continuous on an open<br>ag $x$ , then $\frac{d}{dx}\int_{a}^{x} f(t) dt = f(x)$ . (Note: the chain rule<br>tal Theorem to evaluate each of the following:<br>2. $\frac{d}{dx}\int_{3}^{x^{2}}\sqrt{t} dt$<br>4. $\frac{d}{dx}\int_{x^{3}}^{\cos x}\sqrt{t} dt$ | Find the derivation of the derivative of the de | ive of $\int_0^{x^{10}} \cos \sqrt{t}  dt$                                                                                                              |
| 1) $\sqrt{x}$                                 | $2)  \sqrt{x^2} \cdot 2x = 2x^2$                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                         |
|                                               | 4) $\sqrt{\cos x}(-\sin x) - \sqrt{x^3} \cdot 3x^2$                                                                                                                                                                                                                                             | AB/BC AP<br>CALCULUS<br>STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Assessment's AlignmentStandard 3Differential calculusStandard 6Differential equations/slope fieldsStandard 9Integral calculusStandard 10Area and volume |
|                                               | Activity's Alignment                                                                                                                                                                                                                                                                            | CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MA 2 geometric and spatial sense                                                                                                                        |
| AB/BC AP<br>CALCULUS<br>STANDARD              | Standard 3Differential calculusStandard 6Differential equations/slope fieldsStandard 9Integral calculusStandard 10Area and volumeMA 2geometric and spatial sense                                                                                                                                | PROCESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MA 4patterns and relationships1.7evaluate information1.10apply information, ideas and skills3.4evaluate problem-solving processes3.7evaluate strategies |
|                                               | MA 4 patterns and relationships                                                                                                                                                                                                                                                                 | DOK<br>LEVEL OF<br>EXPECTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>Mastery level -80%                                                                                                                                 |

| PROCESS       | 1.7 evaluate information                 |
|---------------|------------------------------------------|
|               | 1.10 apply information, ideas and skills |
|               | 3.4 evaluate problem-solving processes   |
|               | 3.7 evaluate strategies                  |
| DOK           | 3                                        |
| INSTRUCTIONAL | Nonlinguistic representation             |
| STRATEGIES    |                                          |
|               |                                          |

| Student Resources    | Teacher Resources    |
|----------------------|----------------------|
| General:             | General:             |
|                      |                      |
|                      |                      |
| Enrichment:          | Enrichment:          |
|                      |                      |
| In the second second | Ter A summer Allower |
| Intervention:        | Intervention:        |
|                      |                      |
|                      |                      |

| Content Area: Mathematics                                                      | Course: AP Calculus BC | Strand: 11 |  |
|--------------------------------------------------------------------------------|------------------------|------------|--|
| Learner Objectives: The student will calculate, interpret, and apply integrals |                        |            |  |

**Concepts**: C. Techniques of antidifferentiation

| Students Should Know | Students Should Be Able to |
|----------------------|----------------------------|
|----------------------|----------------------------|

| • Antiderivat | ives following directly from derivatives of basic | • | Evaluate antiderivatives by substitution of variables (including change |
|---------------|---------------------------------------------------|---|-------------------------------------------------------------------------|
| functions.    |                                                   |   | of limits for definite integrals).                                      |
|               |                                                   | • | Evaluate integrals using integration by parts and simple partial        |
|               |                                                   |   | fractions (non-repeating linear factors only)                           |
|               |                                                   | • | Evaluate improper integrals (as limits of definite integrals)           |

# **Instructional Support**

| Student Essential Vocabulary |                        |                   |                        |                             |                       |
|------------------------------|------------------------|-------------------|------------------------|-----------------------------|-----------------------|
| Anitderivative               | Substitution Technique | Upper Limit of    | Lower Limit of         | <b>Integration by Parts</b> | <b>Tabular Method</b> |
|                              |                        | Integration       | Integration            |                             |                       |
| Partial Fraction             | n Decomposition        | Improper Integral | Infinite Discontinuity |                             |                       |

| Readiness & Equity Section                                    |                                     |  |  |  |
|---------------------------------------------------------------|-------------------------------------|--|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments    |                                     |  |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing |                                     |  |  |  |
| Learning & Innovation Skills Enrichment Opportunity           |                                     |  |  |  |
| Information, Media, & Technology Skills                       | Intervention Opportunity            |  |  |  |
| Life & Career Skills                                          | Gender, Ethnic, & Disability Equity |  |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|

| Learning Activity #1                                         | :                                                                                  | Assessment #1:               |                                                                                          |
|--------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------|
| If the substitution $\int_{0}^{2} x^{3} \sqrt{4 - x^{2}} dx$ | $x = 2 \sin y$ is made, then how would                                             | Evaluate the inte            | egral: $\int \frac{e^{3x}}{1+e^{3x}} dx$                                                 |
| $\int_0^{X} \sqrt{4} = X  dX$                                |                                                                                    |                              |                                                                                          |
| be re-written?                                               |                                                                                    | Assessment #1 – K            | ΈY                                                                                       |
| Learning Activity #1                                         | – KEY                                                                              | $\frac{1}{3}\ln(1+e^{3x})+C$ |                                                                                          |
| $\int_0^{\frac{\pi}{2}} 32\sin^3 y \cos^2 y$                 | dy                                                                                 |                              |                                                                                          |
|                                                              |                                                                                    | AB/BC AP                     | Assessment's Alignment Standard 3 Differential calculus                                  |
|                                                              | Activity's Alignment Standard 3 Differential calculus                              | CALCULUS                     | Standard 3 Differential calculus<br>Standard 6 Differential equations/slope fields       |
| AB/BC AP<br>CALCULUS                                         | Standard 3 Differential calculus<br>Standard 6 Differential equations/slope fields | STANDARD                     | Standard 9 Integral calculus                                                             |
| STANDARD                                                     | Standard 6 Differential equations/stope fields<br>Standard 9 Integral calculus     |                              | Standard J Area and volume                                                               |
|                                                              | Standard 10 Area and volume                                                        | CONTENT                      | MA 2 geometric and spatial sense                                                         |
| CONTENT                                                      | MA 2 geometric and spatial sense                                                   |                              | MA 4 patterns and relationships                                                          |
|                                                              | MA 4 patterns and relationships                                                    | PROCESS                      | 1.7 evaluate information                                                                 |
| PROCESS                                                      | 1.7 evaluate information                                                           |                              | 1.10 apply information, ideas and skills                                                 |
|                                                              | 1.10 apply information, ideas and skills                                           |                              | <ul><li>3.4 evaluate problem-solving processes</li><li>3.7 evaluate strategies</li></ul> |
|                                                              | 3.4 evaluate problem-solving processes                                             | DOK                          | 3.7   evaluate strategies     2                                                          |
| DOK                                                          | <ul><li>3.7 evaluate strategies</li><li>2</li></ul>                                | LEVEL OF                     | Z<br>Mastery level – 85%                                                                 |
|                                                              |                                                                                    | EXPECTATION                  | $\frac{1}{10}$                                                                           |
| INSTRUCTIONAL                                                | Homework and practice                                                              | EAPECIATION                  |                                                                                          |
| STRATEGIES                                                   |                                                                                    |                              |                                                                                          |

| Readiness & Equity Section                                 |                               |  |  |  |
|------------------------------------------------------------|-------------------------------|--|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |                               |  |  |  |
| 21 <sup>st</sup> Century Themes                            | Non Fiction Reading & Writing |  |  |  |
| Learning & Innovation Skills                               | Enrichment Opportunity        |  |  |  |
| Information, Media, & Technology Skills                    | Intervention Opportunity      |  |  |  |
| fhsd.acad.kg                                               |                               |  |  |  |

| Life & Career Skills | Gender, Ethnic, & Disability Equity |  |
|----------------------|-------------------------------------|--|
|                      |                                     |  |

| Sample Learning Activities                                                                                      | Sample Assessments                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Activity #2 :                                                                                          | Assessment #2:                                                                                                                                |
| Use the substitution method to find the value of each integral.<br>1. $\int x \sqrt{x^2 + 1}  dx$               | If the substitution $u = 1 + \sqrt{x}$ is made, then $\int_0^1 \frac{\sqrt{x}}{1 + \sqrt{x}} dx$ is equivalent to which one of the following? |
| $2.  \int x \sqrt{x+2}  dx$                                                                                     | A. $2\int_{1}^{2} \frac{u-1}{u} du$ B. $2\int_{1}^{2} \frac{(u-1)^{2}}{u} du$ C. $2\int_{0}^{1} \left(1-\frac{1}{u}\right) du$                |
| 3. $\int \frac{-x}{(x^2 - 4)^3} dx$                                                                             | D. $\int_{1}^{2} \left( 2u - 4 + \frac{2}{u} \right) du$ E. $2 \int_{0}^{2} \frac{(u - 1)^{2}}{u} du$                                         |
|                                                                                                                 | Assessment #2 – KEY                                                                                                                           |
| Learning Activity #2 – KEY                                                                                      | В                                                                                                                                             |
| 1) $\frac{1}{3}(x^2+1)^{\frac{3}{2}}+C$<br>2) $\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C$ |                                                                                                                                               |
| 1) 5 2) 5 5                                                                                                     | Assessment's Alignment                                                                                                                        |
|                                                                                                                 | AB/BC AP Standard 1 Analysis of functions                                                                                                     |
| 1                                                                                                               | CALCULUSStandard 3Differential calculusSTANDARDStandard 6Differential equations/slope fields                                                  |
| 3) $\frac{1}{2(x^2-4)^2}+C$                                                                                     | STANDARDStandard 6Differential equations/slope fieldsStandard 9Integral calculus                                                              |
| 3) $2(x^2 - 4)$                                                                                                 | Standard 10 Area and volume                                                                                                                   |
|                                                                                                                 | CONTENT     MA 2     geometric and spatial sense                                                                                              |
|                                                                                                                 | MA 4 patterns and relationships                                                                                                               |
|                                                                                                                 | PROCESS 1.7 evaluate information                                                                                                              |
| Activity's Alignment                                                                                            | 1.10 apply information, ideas and skills                                                                                                      |
| Activity & Angninent                                                                                            | 3.4 evaluate problem-solving processes                                                                                                        |

| AB/BC AP                                              | Standard 1 Analysis of functions                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.7 evaluate strategies                                            |  |
|-------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| CALCULUS                                              | Standard 3 Differential calculus                 | DOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                  |  |
| STANDARD                                              | Standard 6 Differential equations/slope fields   | LEVEL OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mastery level –70%                                                 |  |
|                                                       | Standard 9 Integral calculus                     | EXPECTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                    |  |
|                                                       | Standard 10 Area and volume                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| CONTENT                                               | MA 2 geometric and spatial sense                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
|                                                       | MA 4 patterns and relationships                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| PROCESS                                               | 1.7 evaluate information                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
|                                                       | 1.10 apply information, ideas and skills         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
|                                                       | 3.4 evaluate problem-solving processes           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
|                                                       | 3.7 evaluate strategies                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| DOK                                                   | 2                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| NSTRUCTIONAL                                          | Homework and practice                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| STRATEGIES                                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| <b>Learning Activity #3</b><br>Use Integration by Par |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
| $\int x \cos x  dx$                                   | $2.  \int x \sec^2 x  dx$                        | Assessment #3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |  |
| Learning Activity #3                                  | – KEY                                            | Use Integration by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y Parts to evaluate $\int x^2 \sin x dx$                           |  |
| 1. $\int x \cos x dx$                                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |
|                                                       |                                                  | Assessment # 3 – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KEY                                                                |  |
| let $u = x$ and $dv$                                  | $=\cos x dx$ then $du = dx$ and $v = \sin x$     | Applying Integrations solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on by Parts twice (or using the tabular method) yields the         |  |
| Integration by P                                      | arts:                                            | 501411011.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |  |
| •                                                     | $\ln x - \int \sin x dx = x \sin x + \cos x + C$ | $\int x^2 \sin x dx = -x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\int 2x \cos x dx$                                                |  |
|                                                       |                                                  | $= -x^2 \cos x + 2x \sin x \sin x + 2x \sin x \sin x \sin x + 2x \sin x $ | $\sin x - \int 2\sin x dx = -x^2 \cos x + 2x \sin x + 2\cos x + C$ |  |

| С |
|---|
|   |

let u = x and  $dv = \sec^2 x dx$  then du = dx and  $v = \tan x$ 

## **Integration by Parts:**

 $\int x \sec^2 x dx = x \tan x - \int \tan x dx = x \tan x + \ln|\cos x| + C$ 

| Activity's Alignment |                                              |  |  |  |
|----------------------|----------------------------------------------|--|--|--|
| AB/BC AP             | Standard 11 Antidifferentiation by parts     |  |  |  |
| CALCULUS             |                                              |  |  |  |
| STANDARD             |                                              |  |  |  |
| CONTENT              | MA 4 patterns and relationships              |  |  |  |
| PROCESS              | 1.6 discover/evaluate relationships          |  |  |  |
|                      | 3.2 apply others' strategies                 |  |  |  |
|                      | 3.6 examine solutions from many perspectives |  |  |  |
|                      |                                              |  |  |  |
| DOK                  | 2                                            |  |  |  |
| NSTRUCTIONAL         | Guided practice                              |  |  |  |
| STRATEGIES           |                                              |  |  |  |

| Assessment's Alignment |                                              |  |  |  |
|------------------------|----------------------------------------------|--|--|--|
| AB/BC AP               | Standard 11 Antidifferentiation by parts     |  |  |  |
| CALCULUS               |                                              |  |  |  |
| STANDARD               |                                              |  |  |  |
| CONTENT                | MA 4 patterns and relationships              |  |  |  |
| PROCESS                | 1.6 discover/evaluate relationships          |  |  |  |
|                        | 3.2 apply others' strategies                 |  |  |  |
|                        | 3.6 examine solutions from many perspectives |  |  |  |
| DOK                    | 2                                            |  |  |  |
| LEVEL OF               | Mastery level – 80%                          |  |  |  |
| EXPECTATION            |                                              |  |  |  |

### Assessment #4:

Use Partial Fraction Decomposition to rewrite each integrand and evaluate each integral:

1. 
$$\int \frac{1}{x^2 + 2x - 3} dx$$
 2.  $\int \frac{1}{x^2 - 3x - 10} dx$ 

Use Partial Fractions to evaluate:  $\int \frac{1}{x^2 - 6x + 8} dx$ 

### Assessment #4 – KEY

| Learning Activity #4                                                      | – KEY                                                                                                                                                                           | $\int \frac{1}{x^2 - 6x + 8} dx = \int \frac{1}{(x - 4)(x - 2)} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1                                                                         | $= -\frac{1}{4} \int \frac{1}{x+3} dx + \frac{1}{4} \int \frac{1}{x-1} dx$ $-\frac{1}{4} \ln x+3  + \frac{1}{4} \ln x-1  + C = \frac{1}{4} \ln\left \frac{x-1}{x+3}\right  + C$ | Using partial fractions:<br>$\frac{1}{(x-4)(x-2)} = \frac{A}{x-4} + \frac{B}{x-2}, A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = -1/2, B = 1/2                                            |
|                                                                           | $= \frac{1}{7} \int \frac{1}{x-5} dx - \frac{1}{7} \int \frac{1}{x+2} dx$ $= \frac{1}{7} \ln x-5  - \frac{1}{7} \ln x+2  + C = \frac{1}{7} \ln\left \frac{x-5}{x+2}\right  + C$ | $-\frac{1}{2}\int \frac{1}{x-4}dx + \frac{1}{2}\int \frac{1}{x-2}dx = -\frac{1}{2}\ln x-4  + \frac{1}{2}\ln x-4$ | $ n x-2 +C = \frac{1}{2}\ln\left \frac{x-2}{x-4}\right +C$ |
| AB/BC AP<br>CALCULUS                                                      | Activity's Alignment         Standard 1       Analysis of functions         Standard 9       Integral calculus                                                                  | Assessment's Alignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |
| STANDARD<br>CONTENT                                                       | MA 4 patterns and relationships<br>MA 5 mathematical systems                                                                                                                    | AB/BC APStandard 1Analysis of furCALCULUSStandard 9Integral calculSTANDARDCONTENTMA 4patterns and relationsh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | us                                                         |
| PROCESS                                                                   | <ul> <li>1.6 discover/evaluate relationships</li> <li>3.2 apply others' strategies</li> <li>3.6 examine solutions from many perspectives</li> </ul>                             | MA 5mathematical systemsPROCESS1.6discover/evaluate relat3.2apply others' strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ionships<br>s                                              |
| DOK<br>NSTRUCTIONAL<br>STRATEGIES                                         | 2<br>Guided practice                                                                                                                                                            | 3.6examine solutions fromDOK2LEVEL OFMastery level – 80%EXPECTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n many perspectives                                        |
| Learning Activity #5<br>Determine whether the<br>integral if it converges | e improper integral diverges or converges. Evaluate the                                                                                                                         | Assessment #5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |

1. 
$$\int_{0}^{\infty} x^{2} e^{-x^{3}} dx$$
 2.  $\int_{3}^{4} \frac{1}{\sqrt{x-3}} dx$  3.  $\int_{3}^{4} \frac{1}{(x-3)^{3/2}} dx$ 

# Learning Activity #5 – KEY

1. converges to 1/3 2. converges to 2 3. diverges

|              | A      | ctivity' | s Alignment                    |
|--------------|--------|----------|--------------------------------|
| AB/BC AP     | Standa | rd 1     | Analysis of functions          |
| CALCULUS     | Standa | rd 2     | Model numerically/analytically |
| STANDARD     | Standa | ırd 9    | Integral calculus              |
| CONTENT      | MA 4   | patter   | ns and relationships           |
|              | MA 5   | mathe    | ematical systems               |
| PROCESS      | 1.6    | disco    | ver/evaluate relationships     |
|              | 1.8    | organ    | ize data and ideas             |
|              | 3.2    | apply    | others' strategies             |
|              | 3.7    | evalu    | ate strategies                 |
| DOK          | 3      |          |                                |
| NSTRUCTIONAL | Guideo | d practi | се                             |
| STRATEGIES   |        | _        |                                |
|              |        |          |                                |
|              |        |          |                                |
|              |        |          |                                |
|              |        |          |                                |

Determine whether the improper integral diverges or converges. Evaluate the integral if it converges.

$$\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} dx$$

# Assessment #5 – KEY

 $\int_{1}^{\infty} \frac{x}{\left(1+x^{2}\right)^{2}} dx$  converges to <sup>1</sup>/<sub>4</sub>

| B/BC AP     | Standard 1 Analysis of functions          |
|-------------|-------------------------------------------|
| CALCULUS    | Standard 2 Model numerically/analytically |
| STANDARD    | Standard 9 Integral calculus              |
| CONTENT     | MA 4 patterns and relationships           |
|             | MA 5 mathematical systems                 |
| PROCESS     | 1.6 discover/evaluate relationships       |
|             | 1.8 organize data and ideas               |
|             | 3.2 apply others' strategies              |
|             | 3.7 evaluate strategies                   |
| DOK         | 3                                         |
| LEVEL OF    | Mastery level – 80%                       |
| EXPECTATION |                                           |

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |
|                   |                   |

| Content Area: Mathematics                       | Course: AP Calculus BC           | Strand: 12 |
|-------------------------------------------------|----------------------------------|------------|
| Learner Objectives: The student will calculate, | , interpret, and apply integrals |            |

**Concepts**: D. Applications of Definite and Indefinite Integrals

| Students Should Know                                                        | Students Should Be Able to                                                                                                                                         |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • The relationship between a function and its antiderivative                | • Find specific antiderivatives using initial conditions, including                                                                                                |
| $\int_{a}^{b} f(x)dx = F(b) - F(a)$                                         | <ul><li>applications to motion along a line and total distance traveled.</li><li>Solve separable differential equations and use them to model (including</li></ul> |
| $\int_{a}^{b} f(x) dx$                                                      | exponential growth, i.e. $y' = ky$ ).<br>• Solve logistic differential equations and use them in modeling                                                          |
| • Average value of a function $f$ is $\frac{b-a}{b-a}$ (i.e. "integral over | • Calculate the area of a region.                                                                                                                                  |
| interval")                                                                  | • Calculate area of a region bounded by polar curves                                                                                                               |
| $\int_{a}^{b} y(t) dt$                                                      | Calculate the length of a curve given in parametric form                                                                                                           |
| • Total distance traveled: $D = \int_{a}^{b}  v(t)  dt$                     | <ul><li>Calculate the volume of a solid with known cross-sections.</li><li>Calculate the volume of a solid of revolution.</li></ul>                                |
|                                                                             | • Calculate accumulated change from a rate of change or average value of                                                                                           |
|                                                                             | a function (including applications of physical, biological and economic situations).                                                                               |

**Instructional Support** 

| Student Essential Vocabulary |                          |                       |                     |                     |                            |  |
|------------------------------|--------------------------|-----------------------|---------------------|---------------------|----------------------------|--|
| Integrals as Areas           | Distance vs.             | Position              | Velocity            | Acceleration        | Differential Equation      |  |
|                              | Displacement             |                       |                     |                     |                            |  |
| Initial Value Problem        | General Solution         | Particular Solution   | Known Cross-Section | Solid of Revolution | Logistic Differential      |  |
|                              |                          |                       |                     |                     | Equation                   |  |
| Logistic Growth              | <b>Carrying Capacity</b> | <b>Polar Equation</b> | Pole                | Parameter           | <b>Parametric Equation</b> |  |
|                              |                          |                       |                     |                     |                            |  |
| Eliminate th                 | e Parameter              | Plane Curve           |                     |                     |                            |  |

| Readiness & Equity Section                                 |  |                                     |  |  |
|------------------------------------------------------------|--|-------------------------------------|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |  |                                     |  |  |
| 21 <sup>st</sup> Century Themes                            |  | Non Fiction Reading & Writing       |  |  |
| Learning & Innovation Skills Enrichment Opportunity        |  |                                     |  |  |
| Information, Media, & Technology Skills                    |  | Intervention Opportunity            |  |  |
| Life & Career Skills                                       |  | Gender, Ethnic, & Disability Equity |  |  |

| <ol> <li>Find the average value of f(x) = 3x<sup>2</sup> - 2x on [1, 4]. Then find the value of x guaranteed by the Mean Value Theorem for Integrals.</li> <li>What is the average value of y = x<sup>2</sup> √x<sup>3</sup> + 1 on the interval [0, 2]?</li> </ol> | Find the particul<br>domain.              | ar solution of $\frac{dy}{dx} = \frac{x}{y}$ through (-2, -1) and identify the                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 2. What is the average value of $y = x^2 \sqrt{x^3 + 1}$ on the interval [0, 2]?                                                                                                                                                                                    |                                           |                                                                                                     |
|                                                                                                                                                                                                                                                                     | Assessment #1 – K<br>Particular solution: | <b>EY</b><br>$y = -\sqrt{x^2 - 3}$ ; domain: $(-\infty, -\sqrt{3})$                                 |
| Learning Activity #1 – KEY<br>1) average value: $16; x = \frac{2\frac{2}{3}}{3}$<br>2) A                                                                                                                                                                            |                                           |                                                                                                     |
| 1) average value: $16; x = 23$                                                                                                                                                                                                                                      |                                           | Assessment's Alignment                                                                              |
| 2) A                                                                                                                                                                                                                                                                | AB/BC AP                                  | Standard 2 Model numerically/analytically                                                           |
|                                                                                                                                                                                                                                                                     | CALCULUS                                  | Standard 3 Differential calculus                                                                    |
|                                                                                                                                                                                                                                                                     | STANDARD                                  | Standard 6 Differential equations/slope fields                                                      |
|                                                                                                                                                                                                                                                                     |                                           | Standard 9 Integral calculus                                                                        |
|                                                                                                                                                                                                                                                                     |                                           | Standard 10 Area and volume                                                                         |
|                                                                                                                                                                                                                                                                     | CONTENT                                   | MA 2 geometric and spatial sense                                                                    |
|                                                                                                                                                                                                                                                                     |                                           | MA 4 patterns and relationships                                                                     |
|                                                                                                                                                                                                                                                                     | PROCESS                                   | 1.6 discover/evaluate relationships                                                                 |
|                                                                                                                                                                                                                                                                     |                                           | <ul><li>1.10 apply information, ideas and skills</li><li>3.1 identify and define problems</li></ul> |
| Activity's Alignment                                                                                                                                                                                                                                                |                                           | <ul><li>3.1 identify and define problems</li><li>3.4 evaluate problem-solving processes</li></ul>   |
| AB/BC AP         Standard 2         Model numerically/analytically                                                                                                                                                                                                  |                                           | 3.5 reason logically (inductive/deductive)                                                          |
| CALCULUS Standard 3 Differential calculus                                                                                                                                                                                                                           |                                           | 3.7 evaluate strategies                                                                             |
| STANDARD Standard 6 Differential equations/slope fields                                                                                                                                                                                                             | DOK                                       | 2                                                                                                   |
| Standard 9 Integral calculus                                                                                                                                                                                                                                        | LEVEL OF                                  | Mastery level – 80%                                                                                 |
| Standard 10 Area and volume                                                                                                                                                                                                                                         | EXPECTATION                               | 1110501y 10001 0070                                                                                 |

| CONTENT       | MA 2 geometric and spatial sense           |
|---------------|--------------------------------------------|
|               | MA 4 patterns and relationships            |
| PROCESS       | 1.6 discover/evaluate relationships        |
|               | 1.10 apply information, ideas and skills   |
|               | 3.1 identify and define problems           |
|               | 3.4 evaluate problem-solving processes     |
|               | 3.5 reason logically (inductive/deductive) |
|               | 3.7 evaluate strategies                    |
| DOK           | 2                                          |
| INSTRUCTIONAL | Homework and practice                      |
| STRATEGIES    |                                            |
|               |                                            |

|                                         | Readiness & Eq               | quity Section                       |  |
|-----------------------------------------|------------------------------|-------------------------------------|--|
| SLA                                     | = Sample Learning Activities | s & $SA = Sample Assessments$       |  |
| 21 <sup>st</sup> Century Themes         | 1                            | Non Fiction Reading & Writing       |  |
| Learning & Innovation Skills            | H                            | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills | I                            | Intervention Opportunity            |  |
| Life & Career Skills                    | (                            | Gender, Ethnic, & Disability Equity |  |

### Learning Activity #2 :

By U.S. law, yogurt must contain 100 million bacteria per gram. At noon, Some sterilized milk is inoculated with a yogurt culture so that the milk is inoculated with a yogurt culture so that the milk contains 400 bacteria per gram. Suppose the bacteria growth rate is proportional to the number of bacteria present and that at 1 pm, there are 1600 bacteria per gram. At 7 pm, how many bacteria are there per gram? At what time does the culture legally become yogurt?

### Learning Activity #2 – KEY

At 7 pm there are 6,553,600 bacteria per gram. It is legally yogurt 8.9695 hours after noon.

|               | Activity's     | Alignment                           |
|---------------|----------------|-------------------------------------|
| AB/BC AP      | Standard 2     | Model numerically/analytically      |
| CALCULUS      | Standard 3     | Differential calculus               |
| STANDARD      | Standard 6     | Differential equations/slope fields |
|               | Standard 9     | Integral calculus                   |
|               | Standard 10    | Area and volume                     |
| CONTENT       | MA 2 geome     | etric and spatial sense             |
|               | MA 4 pattern   | ns and relationships                |
| PROCESS       | 1.6 discov     | ver/evaluate relationships          |
|               | 1.10 apply     | information, ideas and skills       |
|               | 3.1 identif    | fy and define problems              |
|               | 3.4 evalua     | te problem-solving processes        |
|               | 3.5 reason     | logically (inductive/deductive)     |
|               | 3.7 evalua     | te strategies                       |
| DOK           | 2              |                                     |
| INSTRUCTIONAL | Cues, question | s, and advanced organizers.         |
| STRATEGIES    |                |                                     |
|               |                |                                     |
|               |                |                                     |
|               |                |                                     |

### Assessment #2:

Solve the following analytically:

Suppose the population y of a hive of wasps is growing at a rate proportional to the population. On May 1, there were 10 wasps and on May 31, there were 50. If growth continues like this, how long after May 1 will the population reach 100 wasps?

#### Assessment #2 – KEY

### 42.92 days after May 1

|                | Assessment's Alignment                         |
|----------------|------------------------------------------------|
| AB/BC AP       | Standard 2 Model numerically/analytically      |
| CALCULUS       | Standard 3 Differential calculus               |
| STANDARD       | Standard 6 Differential equations/slope fields |
|                | Standard 9 Integral calculus                   |
|                | Standard 10 Area and volume                    |
| CONTENT        | MA 2 geometric and spatial sense               |
|                | MA 4 patterns and relationships                |
| PROCESS        | 1.6 discover/evaluate relationships            |
|                | 1.10 apply information, ideas and skills       |
|                | 3.1 identify and define problems               |
|                | 3.4 evaluate problem-solving processes         |
|                | 3.5 reason logically (inductive/deductive)     |
|                | 3.7 evaluate strategies                        |
| DOK            | 2                                              |
| LEVEL OF       | Mastery level – 80%                            |
| EXPECTATION    |                                                |
|                |                                                |
|                |                                                |
|                |                                                |
| Assessment #3: |                                                |

### Learning Activity #3:

A pond has a carrying capacity of 500 fish. Assume the population growth is proportional to the product of the number of fish in the pond and the number of fish the pond could still sustain. Assume there is a logistic growth constant k = 0.4 and that time is measured in months.

a. Find the fish population model P(t), if the initial population is 50 fish.

b. How long does it take for the fish population to reach 250? **Learning Activity #3 – KEY** 

a. A logistic differential equation  $\frac{dP}{dt} = kP\left(1 - \frac{P}{L}\right)$  leads to a solution

 $P(t0 = \frac{L}{1 + be^{-kt}}$  where the variables represent the following: L is the carrying capacity, P is the number in the population at time t and k is the

 $b = \frac{P(0) - L}{-P(0)} = \frac{L - P(0)}{P(0)}$ growth constant. Also, In this specific case, L = 500, k = 0.4, and P(0) = 50. This leads to  $b = \frac{50 - 500}{-50} = \frac{500 - 50}{50} = 9$ and the differential equation yields  $\frac{dP}{dt} = 0.4P\left(1 - \frac{P}{500}\right)$  which has the solution  $P(t) = \frac{500}{1 + 9e^{-0.4t}}$ b. Setting P(t) = 250 and solving for time t, we have:  $250 = \frac{500}{1 + 9e^{-0.4t}}$ which leads to  $t = \frac{\ln(\frac{1}{9})}{-0.4} \approx 5.493$ months. The growth rate of a population of wolves in a newly established preserve

is modeled by 
$$\frac{dP}{dt} = 0.08P(100 - P)$$

, where *t* is measured in years.

- a. What is the carrying capacity for the wolves in this preserve?
- b. What is the wolf population when the population is growing the fastest?
- c. What is the rate of change of the population when the population is growing the fastest?
- d. If P(0) = 3, what value does P approach as t grows infinitely large?

### Assessment #3 – KEY

- a. 100 wolves
- b. The wolf population is growing the fastest when population is half of carrying capacity therefore, 50 wolves.

$$\frac{dP}{dt} = 0.008(5)(100 - 50) = 20$$

c. When P = 50, dt wolves per year. So the growth rate is about 20 wolves that year (the derivative is an instantaneous growth rate).

d. 100, since that is the carrying capacity.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                                                    | Assessment's Alignment                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | AB/BC AP                                                                                           | Standard 1 Analysis of functions                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | CALCULUS                                                                                           | Standard 2 Model numerically/analytically                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Activity's Alignment                                                                                                                                       | STANDARD                                                                                           | Standard 3 Differential calculus                                                                                                                                          |
| AB/BC AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standard 1 Analysis of functions                                                                                                                           |                                                                                                    | Standard 6 Differential equations/slope fields                                                                                                                            |
| CALCULUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standard 2 Model numerically/analytically                                                                                                                  |                                                                                                    | Standard 8                                                                                                                                                                |
| STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Standard 3 Differential calculus                                                                                                                           | CONTENT                                                                                            | MA 2 geometric and spatial sense                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard 6 Differential equations/slope fields                                                                                                             |                                                                                                    | MA 4 patterns and relationships                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard 8                                                                                                                                                 | PROCESS                                                                                            | 3.2 apply others' strategies                                                                                                                                              |
| CONTENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MA 2 geometric and spatial sense                                                                                                                           |                                                                                                    | 3.5 reason logically (inductive/deductive)                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MA 4 patterns and relationships                                                                                                                            | DOK                                                                                                | 2                                                                                                                                                                         |
| PROCESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5 reason logically (inductive/deductive)                                                                                                                 | LEVEL OF                                                                                           | Mastery level – 80%                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | EXPECTATION                                                                                        |                                                                                                                                                                           |
| DOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                          |                                                                                                    |                                                                                                                                                                           |
| INSTRUCTIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Summarizing and Note Taking, Homework and                                                                                                                  |                                                                                                    |                                                                                                                                                                           |
| STRATEGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Practice, & Nonlinguistic Representation                                                                                                                   | Assessment #4:                                                                                     |                                                                                                                                                                           |
| Learning Activity #4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                            | Set up an integral f<br>and $y(t) = 2t^2$ for                                                      | for the arc length of the plane curve defined by $x(t) = t^3$<br>r t in [0, 1].                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            | Set up an integral f<br>and $y(t) = 2t^2$ for                                                      | for the arc length of the plane curve defined by $x(t) = t^3$<br>r t in [0, 1].                                                                                           |
| Graph the curve descri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for t in                                                                                                    | Set up an integral f<br>and $y(t) = 2t^2$ for                                                      | for the arc length of the plane curve defined by $x(t) = t^3$<br>r t in [0, 1].                                                                                           |
| <b>Learning Activity #4:</b><br>Graph the curve descri<br>[0, 6].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            | Set up an integral f<br>and $y(t) = 2t^2$ for<br>Assessment #4 – H                                 | r <i>t</i> in [0, 1].                                                                                                                                                     |
| Graph the curve descri<br>[0, 6].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for t in                                                                                                    | and $y(t) = 2t^2$ fo                                                                               | r <i>t</i> in [0, 1].                                                                                                                                                     |
| Graph the curve descri<br>[0, 6].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            | and $y(t) = 2t^2$ for<br>Assessment #4 – H                                                         | r <i>t</i> in [0, 1].                                                                                                                                                     |
| Graph the curve descri<br>[0, 6].<br>a. note the direction/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for t in                                                                                                    | and $y(t) = 2t^2$ fo                                                                               | r <i>t</i> in [0, 1].                                                                                                                                                     |
| Graph the curve descri<br>[0, 6].<br>a. note the direction/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for t in orientation of the graph,                                                                          | and $y(t) = 2t^2$ for<br>Assessment #4 – H                                                         | r <i>t</i> in [0, 1].                                                                                                                                                     |
| <ul><li>Graph the curve descri</li><li>[0, 6].</li><li>a. note the direction/</li><li>b. rewrite the equation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for t in orientation of the graph,                                                                          | and $y(t) = 2t^2$ for<br>Assessment #4 – H                                                         | r <i>t</i> in [0, 1].                                                                                                                                                     |
| <ul> <li>Graph the curve description [0, 6].</li> <li>a. note the direction/</li> <li>b. rewrite the equation</li> <li>c. find the length of t</li></ul> | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for <i>t</i> in<br>orientation of the graph,<br>ons in rectangular form, and<br>the curve on this interval. | and $y(t) = 2t^2$ for<br>Assessment #4 – H<br>$\int_0^1 \sqrt{(3t^2)^2} +$                         | r t in [0, 1].<br><b>(EY</b> )<br>$\overline{(4t)^2} dt$<br>Assessment's Alignment                                                                                        |
| <ul><li>Graph the curve descri</li><li>[0, 6].</li><li>a. note the direction/</li><li>b. rewrite the equation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for <i>t</i> in<br>orientation of the graph,<br>ons in rectangular form, and<br>the curve on this interval. | and $y(t) = 2t^2$ for<br>Assessment #4 – H<br>$\int_0^1 \sqrt{(3t^2)^2 + t^2}$ AB/BC AP            | r t in [0, 1].<br><b>(EY</b><br>$\overline{(4t)^2} dt$<br><b>Assessment's Alignment</b><br>Standard 1 Analysis of functions                                               |
| <ul> <li>Graph the curve description [0, 6].</li> <li>a. note the direction/</li> <li>b. rewrite the equation</li> <li>c. find the length of t</li></ul> | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for <i>t</i> in<br>orientation of the graph,<br>ons in rectangular form, and<br>the curve on this interval. | and $y(t) = 2t^2$ for<br>Assessment #4 – H<br>$\int_0^1 \sqrt{(3t^2)^2} +$<br>AB/BC AP<br>CALCULUS | r t in [0, 1].<br><b>(EY)</b><br>$\overline{(4t)^2} dt$<br><b>Assessment's Alignment</b><br>Standard 1 Analysis of functions<br>Standard 2 Model numerically/analytically |
| <ul> <li>Graph the curve description [0, 6].</li> <li>a. note the direction/</li> <li>b. rewrite the equation</li> <li>c. find the length of t</li></ul> | bed by $x(t) = t^2 - 5t$ and $y(t) = 2t - 1$ , for <i>t</i> in<br>orientation of the graph,<br>ons in rectangular form, and<br>the curve on this interval. | and $y(t) = 2t^2$ for<br>Assessment #4 – H<br>$\int_0^1 \sqrt{(3t^2)^2 + t^2}$ AB/BC AP            | r t in [0, 1].<br><b>(EY</b><br>$\overline{(4t)^2} dt$<br><b>Assessment's Alignment</b><br>Standard 1 Analysis of functions                                               |

| b. For simplicity, let<br>as x and y, respec                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $t = \frac{y+1}{y+1}$                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                          |
| we get $2$ .                                                                | Substituting th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | his for <i>t</i> in the equation for <i>x</i> , we have                                                                                                                                                  |
| $x = \left(\frac{y+1}{2}\right)^2 - 5$                                      | $\left(\frac{y+1}{2}\right)$ which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | can be simplified to                                                                                                                                                                                     |
| $x = \frac{1}{4} (y^2 - 8y - 9)$                                            | 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                          |
| c. The length of a pa<br>$\int_{a}^{b} \sqrt{(x'(t))^{2} + (y')^{2}}$       | $\overline{(t)}^2 dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | efined curve is generally given as                                                                                                                                                                       |
| $J_a$ ver (b) ver (b)                                                       | <b>.</b> 1aki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng the derivative of each parametric<br>$\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$ .                                                                                                   |
|                                                                             | . Takin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$                                                                                                                                             |
| equation and sub                                                            | . Taking gives the stituting gives the stituti | $\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$<br>s Alignment                                                                                                                              |
| equation and sub<br>AB/BC AP                                                | Activity?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$ <b>s Alignment</b> Analysis of functions                                                                                                    |
| equation and sub<br>equation and sub<br>AB/BC AP<br>CALCULUS                | Activity's<br>Standard 1<br>Standard 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$ <b>s Alignment</b> Analysis of functions Model numerically/analytically                                                                     |
| equation and sub<br>AB/BC AP                                                | Activity's Standard 1 Standard 2 Standard 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$<br><b>s Alignment</b><br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus                                   |
| equation and sub<br>equation and sub<br>AB/BC AP<br>CALCULUS                | Activity? Standard 1 Standard 2 Standard 3 Standard 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\int_{0}^{6} \sqrt{(2t-5)^{2} + (2)^{2}} dt \approx 23.085$ <b>s Alignment</b> Analysis of functions Model numerically/analytically Differential calculus Position, speed, acceleration                 |
| equation and sub<br>AB/BC AP<br>CALCULUS<br>STANDARD                        | Activity?<br>Standard 1<br>Standard 2<br>Standard 3<br>Standard 4<br>Standard 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s Alignment<br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus<br>Position, speed, acceleration<br>Integral calculus                                                    |
| equation and sub<br>equation and sub<br>AB/BC AP<br>CALCULUS                | Activity's<br>Standard 1<br>Standard 2<br>Standard 3<br>Standard 4<br>Standard 9<br>MA 2 geom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s Alignment<br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus<br>Position, speed, acceleration<br>Integral calculus<br>etric and spatial sense                         |
| equation and subs<br>AB/BC AP<br>CALCULUS<br>STANDARD<br>CONTENT            | Activity?<br>Standard 1<br>Standard 2<br>Standard 3<br>Standard 4<br>Standard 4<br>Standard 9<br>MA 2 geom<br>MA 4 patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Alignment<br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus<br>Position, speed, acceleration<br>Integral calculus<br>etric and spatial sense<br>ns and relationships |
| equation and sub<br>AB/BC AP<br>CALCULUS<br>STANDARD                        | Activity?<br>Standard 1<br>Standard 2<br>Standard 3<br>Standard 4<br>Standard 4<br>Standard 9<br>MA 2 geom<br>MA 4 patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Alignment<br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus<br>Position, speed, acceleration<br>Integral calculus<br>etric and spatial sense                         |
| equation and subs<br>AB/BC AP<br>CALCULUS<br>STANDARD<br>CONTENT            | Activity?<br>Standard 1<br>Standard 2<br>Standard 3<br>Standard 4<br>Standard 4<br>Standard 9<br>MA 2 geom<br>MA 4 patter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s Alignment<br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus<br>Position, speed, acceleration<br>Integral calculus<br>etric and spatial sense<br>ns and relationships |
| equation and subs<br>AB/BC AP<br>CALCULUS<br>STANDARD<br>CONTENT<br>PROCESS | Activity?<br>Standard 1<br>Standard 2<br>Standard 3<br>Standard 4<br>Standard 4<br>Standard 9<br>MA 2 geom<br>MA 2 geom<br>MA 4 patter<br>3.2 apply<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s Alignment<br>Analysis of functions<br>Model numerically/analytically<br>Differential calculus<br>Position, speed, acceleration<br>Integral calculus<br>etric and spatial sense<br>ns and relationships |

|             | Standard  | 4 Position, speed, acceleration |
|-------------|-----------|---------------------------------|
|             | Standard  | 9 Integral calculus             |
| CONTENT     | MA 2 g    | geometric and spatial sense     |
|             | MA4 p     | patterns and relationships      |
| PROCESS     | 3.2 a     | pply others' strategies         |
|             |           |                                 |
| DOK         | 2         |                                 |
| LEVEL OF    | Mastery 1 | level – 80%                     |
| EXPECTATION |           |                                 |

fhsd.acad.kg

#### Page 110

Assessment's Alignment The area of a region bounded by a polar curve is generally given as AB/BC AP Standard 1 Analysis of functions  $2\pi$  $\frac{1}{2}\int_{a}^{b} (r(\theta))^{2} d\theta$ . The inner loop is traced out for values of  $\theta$  from  $\frac{2\pi}{3}$  to CALCULUS Standard 9 Integral calculus **STANDARD**  $\frac{4\pi}{3} \int_{-\infty}^{\frac{1}{2}} \int_{\frac{2\pi}{3}}^{\frac{4\pi}{3}} (2\cos\theta + 1)^2 d\theta$ MA 2 geometric and spatial sense CONTENT MA 4 patterns and relationships will give the area of this inner loop. PROCESS 3.2 apply others' strategies 2 DOK LEVEL OF Mastery level - 80% **EXPECTATION** Activity's Alignment AB/BC AP Standard 1 Analysis of functions Standard 9 CALCULUS Integral calculus STANDARD MA 2 geometric and spatial sense CONTENT MA 4 patterns and relationships

**Learning Activity #5:** 

Set up an integral to find the area inside the smaller loop of the limaçon  $r = 2\cos\theta + 1$ 

Learning Activity #5 - KEY

#### **Assessment #5:**

Set up an integral for the area inside the circle r = 1 and outside the cardiod  $r = 1 - \cos \theta$ 

#### Assessment #5 – KEY

These curves intersect at  $-\frac{\pi}{2}$  and  $\frac{\pi}{2}$  and so, the area of this region is  $\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1^2 - (1 - \cos \theta)^2) d\theta$ 

| PROCESS       | 3.2 apply others' strategies              |
|---------------|-------------------------------------------|
| DOK           | 2                                         |
| INSTRUCTIONAL | Summarizing and Note Taking, Homework and |
| STRATEGIES    | Practice, & Nonlinguistic Representation  |
|               |                                           |
|               |                                           |

| Teacher Resources |
|-------------------|
| General:          |
|                   |
|                   |
| Enrichment:       |
|                   |
|                   |
| Intervention:     |
|                   |
|                   |
|                   |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Content Area: Mathematics                                                      | Course: AP Calculus BC | Strand: 13 |
|--------------------------------------------------------------------------------|------------------------|------------|
| Learner Objectives: The student will calculate, interpret, and apply integrals |                        |            |

**Concepts**: E. Numerical Approximations to Definite Integrals

| Students Should Know                                                                                       | Students Should Be Able to                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Understand that the definite integral can be approximated by a finite sum of areas of geometric regions. | • Use Riemann sums (left, right, midpoint, trapezoidal) to approximate the definite integral of functions represented algebraically, graphically, and/or by a table of values. |

# **Instructional Support**

| Student Essential Vocabulary |                   |                   |                  |  |
|------------------------------|-------------------|-------------------|------------------|--|
| Left-Riemann Sum             | Right-Riemann Sum | Mid-Point Riemann | Trapezoidal Rule |  |
|                              |                   | Sum               |                  |  |

| Readiness & Equity Section                                               |                                              |  |  |
|--------------------------------------------------------------------------|----------------------------------------------|--|--|
| <b>SLA</b> = Sample Learning Activities & <b>SA</b> = Sample Assessments |                                              |  |  |
| 21 <sup>st</sup> Century Themes Non Fiction Reading & Writing            |                                              |  |  |
| Learning & Innovation Skills                                             | g & Innovation Skills Enrichment Opportunity |  |  |
| Information, Media, & Technology Skills                                  | Intervention Opportunity                     |  |  |
| Life & Career Skills                                                     | Gender, Ethnic, & Disability Equity          |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
| 1 8                        |                    |

#### fhsd.acad.kg

| Page | 114 |
|------|-----|

| b. | Right Riemann sum with 4 subintervals |
|----|---------------------------------------|

c. Midpoint Riemann sum with 2 subintervals of equal length.

14

1. A tank is being filled with water using an old pump that slows down at

minute intervals. If the tank is initially empty, estimate how much

it runs. The table below gives the rate at which the pump pumps at 10

30

40 50

40 38 35 35 32 28 20 19 10

# a. Left Riemann sum with 4 subintervals

30

f(x)

methods.

water is in the tank after 80 minutes.

0

42

10 20

Learning Activity #1 :

Elapsed time

(gallons/minute)

(minutes)

Rate

| 2. Use the data table below to approximate indicated | $\int_{10}^{90} f(x)  dx$ |  |
|------------------------------------------------------|---------------------------|--|
| methods.                                             |                           |  |

22

60 70 80 90

with the

90

48

70

20

Assessment #1:

Use 4 subintervals to find the Left Riemann Sum to approximate the area bounded by the *x*-axis, y = x + 2, and x = 4.

#### Assessment #1 – KEY

13.5

|          | Assessme                        | ent's Alignment                |
|----------|---------------------------------|--------------------------------|
| AB/BC AP | Standard 1                      | Analysis of functions          |
| CALCULUS | Standard 2                      | Model numerically/analytically |
| STANDARD | Standard 3                      | Differential calculus          |
|          | Standard 9                      | Integral calculus              |
|          | Standard 10                     | Area and volume                |
| CONTENT  | MA2 geometric and spatial sense |                                |
|          | MA 4 pattern                    | ns and relationships           |
| PROCESS  | 1.8 organize data and ideas     |                                |
|          | 1.10 apply                      | information, ideas and skills  |
|          | 2.1 plan a                      | nd make presentations          |

| d. Trapezoidal Rule with 4 subintervals. |                                                              |         |          |          |              |                           |                           |       | 3.5<br>3.6<br>3.7 | reason logically (inductive/deductive)<br>examine solutions from many perspectives<br>evaluate strategies |                   |
|------------------------------------------|--------------------------------------------------------------|---------|----------|----------|--------------|---------------------------|---------------------------|-------|-------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
|                                          |                                                              |         |          |          |              |                           |                           |       |                   | 4.1                                                                                                       | support decisions |
|                                          |                                                              |         |          |          | ſ            | $\int_{20}^{120} f(x) dx$ | łx                        |       | DOK               | 2                                                                                                         |                   |
| . Use the                                | data ta                                                      | able be | low to   | appro    | ximate J     | 20 5 (11) 5               | with                      | the   | LEVEL OF          | Mast                                                                                                      | ery level – 80%   |
| indicate                                 | d metl                                                       | nods.   |          |          |              |                           |                           |       | EXPECTATION       |                                                                                                           |                   |
|                                          | 00                                                           | 40      | 45       | 00       | 70 0         |                           | 400                       | 400   |                   |                                                                                                           |                   |
| <i>x</i>                                 | 20                                                           | 40      | 45       | 60       | 70 8         |                           | 100                       | 120   |                   |                                                                                                           |                   |
| f(x)                                     | 23                                                           | 18      | 17       | 15       | 14   1       | 2 9                       | 6                         | 3     |                   |                                                                                                           |                   |
| a. Left                                  | Riem                                                         | ann su  | m with   | 5 subi   | intervals    |                           |                           |       |                   |                                                                                                           |                   |
| b. Rigl                                  | nt Rier                                                      | nann s  | um wi    | th 5 su  | bintervals   |                           |                           |       |                   |                                                                                                           |                   |
| c. Mid                                   | c. Midpoint Riemann sum with 2 subintervals of equal length. |         |          |          | gth.         |                           |                           |       |                   |                                                                                                           |                   |
| d. Trap                                  | pezoid                                                       | al Rule | e with a | 8 subin  | tervals.     |                           |                           |       |                   |                                                                                                           |                   |
|                                          |                                                              |         |          |          |              |                           |                           |       |                   |                                                                                                           |                   |
|                                          |                                                              |         |          |          |              | ۲ <sup>8</sup>            | $\mathcal{C}(\mathbf{N})$ |       |                   |                                                                                                           |                   |
| . Comple                                 | te the                                                       | data ta | ble bel  | low and  | d approxi    | mate $J_2$ .              | f(x)dx                    | where |                   |                                                                                                           |                   |
|                                          |                                                              |         |          |          | d method     |                           |                           | -     |                   |                                                                                                           |                   |
| 5 < 7                                    |                                                              | WIU     | u uie 11 | idicate  | a method     | 5.                        |                           |       |                   |                                                                                                           |                   |
| x                                        | 2                                                            | 3       | 3        | 3.5      | 4            | 6                         | 6.5                       | 8     |                   |                                                                                                           |                   |
| f(x)                                     |                                                              |         |          |          | -            | -                         |                           | -     |                   |                                                                                                           |                   |
| ) (1)                                    |                                                              |         |          |          |              |                           |                           |       |                   |                                                                                                           |                   |
| a Laft                                   | Diam                                                         | ann au  | m with   | 3 cub    | intervals of | f equal 1                 | onoth                     |       |                   |                                                                                                           |                   |
| a. Lell                                  | NICI                                                         | ann sù  |          | i 5 subl | intervals (  | n equal I                 | engui.                    |       |                   |                                                                                                           |                   |

- b. Right Riemann sum with 3 subintervals of equal length.
- c. Midpoint Riemann sum with 2 subintervals of equal length.
- d. Trapezoidal Rule with 3 subintervals of equal length.

5. Complete the data table below and approximate 
$$\int_{-1}^{15} (x^2 + 3x) dx$$
 with the indicated methods.

| x    | -1 | 3 | 7 | 11 | 15 |
|------|----|---|---|----|----|
| f(x) |    |   |   |    |    |

- a. Left Riemann sum with 4 subintervals
- b. Right Riemann sum with 4 subintervals
- c. Midpoint Riemann sum with 2 subintervals of equal length.
- d. Trapezoidal Rule with 4 subintervals.

Use the Fundamental Theorem of Calculus to evaluate each of the following:

 $\int_{2}^{8} \left(16 - x^{2}\right) dx$ 6.  $\int_{-1}^{15} (x^2 + 3x) dx$ 

fhsd.acad.kg

#### Learning Activity #1 – KEY

| 1) Results my vary but the left Riemann sum is 2890, the right Riemann sum |
|----------------------------------------------------------------------------|
| is 2570, and the trapezoidal approximation is 2730.                        |

| 2a) 1736    | b) 2636 | c) 1680  | d) 2186   |
|-------------|---------|----------|-----------|
| 3a) 1480    | b) 1080 | c) 1300  | d) 1297.5 |
| 4a) -16     | b) -136 | c) -67.5 | d) -76    |
| 5a) 960     | b) 1024 | c) 1376  | d) 992    |
| 6) 1461.333 |         | 7) -72   |           |

|               | Activ    | vity's Alignment                        |
|---------------|----------|-----------------------------------------|
| AB/BC AP      | Standard | 1 Analysis of functions                 |
| CALCULUS      | Standard | 2 Model numerically/analytically        |
| STANDARD      | Standard | 3 Differential calculus                 |
|               | Standard | 9 Integral calculus                     |
|               | Standard | 10 Area and volume                      |
| CONTENT       | MA2 g    | eometric and spatial sense              |
|               | MA4 p    | atterns and relationships               |
| PROCESS       | 1.8 o    | rganize data and ideas                  |
|               | 1.10 a   | pply information, ideas and skills      |
|               | 2.1 p    | lan and make presentations              |
|               | 3.5 re   | eason logically (inductive/deductive)   |
|               | 3.6 e    | xamine solutions from many perspectives |
|               | 3.7 e    | valuate strategies                      |
|               | 4.1 st   | upport decisions                        |
| DOK           | 2        |                                         |
| INSTRUCTIONAL | Nonlingu | istic representation                    |
| STRATEGIES    |          |                                         |

| Readiness & Equity Section                                 |    |                                     |  |  |
|------------------------------------------------------------|----|-------------------------------------|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |    |                                     |  |  |
| 21 <sup>st</sup> Century Themes                            | N  | Non Fiction Reading & Writing       |  |  |
| Learning & Innovation Skills                               | E  | Enrichment Opportunity              |  |  |
| Information, Media, & Technology Skills                    | In | ntervention Opportunity             |  |  |
| Life & Career Skills                                       | G  | Gender, Ethnic, & Disability Equity |  |  |

| Sample Learning Activities                                                                                                                                                                                                                                                                      | Sample Assessments                                                                                                                                                              |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Learning Activity #2 :                                                                                                                                                                                                                                                                          | Assessment #2:                                                                                                                                                                  |  |  |  |  |
| 1. Find each of the following approximating sums to approximate the area<br>under $f(x) = -x^2 + 5$ between $x = 0$ and $x = 2$ , using 5 subintervals:                                                                                                                                         | The function $f$ is continuous on the interval [2, 8] and has values that are given in the table below.                                                                         |  |  |  |  |
| a. Right Riemann Sum                                                                                                                                                                                                                                                                            | x 2 5 7 8                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | f(x) 10 30 40 20                                                                                                                                                                |  |  |  |  |
| <ul> <li>b. Left Riemann Sum</li> <li>c. Now, average the approximations from parts <i>a</i> and <i>b</i> and determine whether this average is equivalent to the Midpoint Riemann Sum or Trapezoidal Rule. Do not actually find value of these approximations. Explain your answer.</li> </ul> | Using the 3 subintervals available in the table, what is the approximate value of the integral $\int_{2}^{8} f(x) dx$ ? Use the Trapezoidal Rule.<br>Assessment #2 – KEY<br>160 |  |  |  |  |
| d. Is your approximation from part <i>a</i> an overapproximation or an underapproximation for the actual area defined? Explain your                                                                                                                                                             |                                                                                                                                                                                 |  |  |  |  |
| answer.                                                                                                                                                                                                                                                                                         | Assessment's Alignment                                                                                                                                                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | AB/BC AP Standard 1 Analysis of functions                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | CALCULUS Standard 2 Model numerically/analytically                                                                                                                              |  |  |  |  |
| e. Is your approximation from part <i>b</i> an overapproximation or an                                                                                                                                                                                                                          | STANDARD Standard 3 Differential calculus                                                                                                                                       |  |  |  |  |
| fhsd.acad.kg                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |  |  |  |  |

| underapproxim<br>answer. | ation for the actual area defined? Explain your                               |             | Stand<br>Stand |
|--------------------------|-------------------------------------------------------------------------------|-------------|----------------|
|                          |                                                                               | CONTENT     | MA2            |
| Learning Activity #2     | - KFV                                                                         | PROCESS     | MA4            |
| Learning Activity #2     | - KET                                                                         | PROCESS     | 1.8<br>1.10    |
| 1a) 6.48 b) 8.0          | 08 c) 7.28                                                                    |             | 2.1            |
|                          |                                                                               |             | 3.5            |
| d) under, because the    | function is decreasing on [0, 2]                                              |             | 3.6            |
| , ,                      |                                                                               |             | 3.7            |
| e) over, because the fu  | unction is decreasing on [0, 2]                                               |             | 4.1            |
|                          |                                                                               | DOK         | 2              |
|                          |                                                                               | LEVEL OF    | Maste          |
|                          |                                                                               | EXPECTATION |                |
|                          |                                                                               |             |                |
|                          |                                                                               |             |                |
| AB/BC AP                 | Activity's Alignment Standard 1 Analysis of functions                         |             |                |
| AB/BC AP<br>CALCULUS     | Standard 1Analysis of functionsStandard 2Model numerically/analytically       |             |                |
| STANDARD                 | Standard 2 Model numerically/analytically<br>Standard 3 Differential calculus |             |                |
| STANDARD                 | Standard 9 Integral calculus                                                  |             |                |
|                          | Standard 10 Area and volume                                                   |             |                |
| CONTENT                  | MA2 geometric and spatial sense                                               |             |                |
| CONTENT                  | MA2 geometric and spatial sense<br>MA4 patterns and relationships             |             |                |
| PROCESS                  | 1.8         organize data and ideas                                           |             |                |
| 1100200                  | 1.10 apply information, ideas and skills                                      |             |                |
|                          | 2.1 plan and make presentations                                               |             |                |
|                          | 3.5 reason logically (inductive/deductive)                                    |             |                |
|                          | 3.6 examine solutions from many perspectives                                  |             |                |
|                          | 3.7 evaluate strategies                                                       |             |                |
|                          | 4.1 support decisions                                                         |             |                |
| DOK                      | 2                                                                             |             |                |
| INSTRUCTIONAL            | Nonlinguistic representation                                                  |             |                |
| STRATEGIES               |                                                                               |             |                |

|             | Standa | rd 9 Integral calculus                   |
|-------------|--------|------------------------------------------|
|             | Standa | rd 10 Area and volume                    |
| CONTENT     | MA2    | geometric and spatial sense              |
|             | MA4    | patterns and relationships               |
| PROCESS     | 1.8    | organize data and ideas                  |
|             | 1.10   | apply information, ideas and skills      |
|             | 2.1    | plan and make presentations              |
|             | 3.5    | reason logically (inductive/deductive)   |
|             | 3.6    | examine solutions from many perspectives |
|             | 3.7    | evaluate strategies                      |
|             | 4.1    | support decisions                        |
| DOK         | 2      |                                          |
| LEVEL OF    | Master | ry level – 80%                           |
| EXPECTATION |        |                                          |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |
|                   |                   |

| Content Area: Mathematics                     | Course: AP Calculus BC            | Strand: 14 |
|-----------------------------------------------|-----------------------------------|------------|
| Learner Objectives: The student will apply ap | proximations and infinite series. |            |

**Concepts**: A. Series of Constants

| Students Should Know                                                      | Students Should Be Able to                                             |
|---------------------------------------------------------------------------|------------------------------------------------------------------------|
| • A series is defined as a sequence of partial sums                       | • Use technology to explore convergence and divergence                 |
| • Convergence is defined in terms of the limit of the sequence of partial | • Geometric series with applications, including decimal expansion      |
| sums                                                                      | • Harmonic series and alternating series with error bound              |
|                                                                           | • Terms of series as areas of rectangles and their relationship to     |
|                                                                           | improper integrals, including the integral test and its use in testing |
|                                                                           | the convergence of <i>p</i> -series                                    |
|                                                                           | • Apply L'Hopital's Rule to determine the convergence of improper      |
|                                                                           | integrals and series                                                   |

| • Tests of convergence including the n <sup>th</sup> term test, ratio test, root test, |
|----------------------------------------------------------------------------------------|
| direct comparison and limit comparison                                                 |

# **Instructional Support**

| Student Essential Vocabulary              |                 |                    |                           |                         |                         |
|-------------------------------------------|-----------------|--------------------|---------------------------|-------------------------|-------------------------|
| Sequence                                  | Series          | <b>Partial Sum</b> | <b>Convergent Series</b>  | <b>Divergent Series</b> | <b>Geometric Series</b> |
| <i>p</i> -series                          | Harmonic Series | Improper Integral  | n <sup>th</sup> term test | <b>Ratio Test</b>       | Root Test               |
| Direct Comparison Test Telescoping Series |                 |                    |                           |                         |                         |

| Readiness & Equity Section                                 |  |                                     |  |
|------------------------------------------------------------|--|-------------------------------------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |  |                                     |  |
| 21 <sup>st</sup> Century Themes                            |  | Non Fiction Reading & Writing       |  |
| Learning & Innovation Skills                               |  | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills                    |  | Intervention Opportunity            |  |
| Life & Career Skills                                       |  | Gender, Ethnic, & Disability Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
| 1 8                        | A                  |

#### Learning Activity #1 :

Theorem: Convergence of a Geometric Series

An infinite geometric series with common ratio r is of the form  $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ar^3 + \dots$ and will converge if 0 < |r| < 1 and diverge if  $|r| \ge 1$ . If the series converges, the sum of the infinite series is  $\frac{a}{1-r}$ . Determine the convergence of each series in (a) – (c) and find the

1-r. Determine the convergence of each series in (a) – (c) and find the sum of any that converge.

- a.  $\sum_{n=0}^{\infty} \frac{3}{2^n}$  b.  $\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$  c.  $\sum_{n=1}^{\infty} \frac{5}{4^n}$
- d. For their wedding, a couple chooses a cake that has fruit filling. Each tier of the cake consists of a layer of cake, covered with the fruit filling, and then topped with another layer of cake. The entire tier of cake is then coated in frosting. When the wedding cake is assembled, several tiers are placed on top of one another, generally getting smaller and smaller as they move up the cake. The various tiers of the cake are held together with frosting as well.

When a cake decorator makes such a cake, the fruit does not Usually extend all the way out to the edges,, but we are going to assume that is does in order to make this problem a little simpler.



The figure at left shows 2 layers of a stacked wedding cake, when viewed from above. Each tier is a square. The outermost (bottom) square tier has a top area

#### Assessment #1:

For which of these possible values of k will both 
$$\sum_{n=0}^{\infty} 3\left(\frac{k}{4}\right)^n$$
 and  $\sum_{n=0}^{\infty} \left(\frac{2}{k}\right)^n$  converge?  
A. 2 B. 3 C. 4 D. 5 E. 6

Assessment #1 – KEY

Answer: B. 3. This is the only choice given for the value of k that will result in both ratios of the given geometric series to fall between 0 and 1.

| Assessment's Alignment |                                            |  |
|------------------------|--------------------------------------------|--|
| AB/BC AP               | Standard 12 Sequence/series                |  |
| CALCULUS               |                                            |  |
| STANDARD               |                                            |  |
| CONTENT                | MA1 number sense                           |  |
|                        | MA2 geometric and spatial sense            |  |
|                        | MA4 patterns and relationships             |  |
|                        | MA5 mathematical systems                   |  |
| PROCESS                | 1.6 discover/evaluate relationships        |  |
|                        | 3.2 apply others' strategies               |  |
|                        | 3.4 evaluate problem-solving processes     |  |
|                        | 3.5 reason logically (inductive/deductive) |  |
|                        | 4.1 support decisions                      |  |
| DOK                    | 2                                          |  |
| LEVEL OF               | Mastery level – 75%                        |  |
| EXPECTATION            |                                            |  |

(just the top face, not the bottom, nor the sides) of 64 square inches. The size of the next (top) layer is determined by joining the midpoints of the sides of the tier below it.

- d. Find the sum of the top areas of both tiers (again, just the tops). This will help the cake decorator determine the amount of filling that will need to be used. You see, the total area of the tops of the tiers will be the same as the area to be covered in fruit, between the layers.
- e) Find the sum of the top areas of all such layers if there were 5 tiers.
- f) Determine the convergence or divergence of the sum of the top areas of all such layers if there were an infinite number of tiers.Write a geometric series to represent this infinite sum. If the total are does converge, be sure to state the sum.

#### Learning Activity #1 – KEY

The Convergence of a Geometric Series Theorem will be used in this solution.

a. 
$$\sum_{n=0}^{\infty} \frac{3}{2^n} = \sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^n$$
, so  $a = 3$ , and  $r = \frac{1}{2} < 1$ , so the series converges

$$\frac{3}{1-\frac{1}{2}} = 6$$
to
$$\sum_{n=0}^{\infty} \left(\frac{3}{2}\right)^n$$
diverges since
$$r = \frac{3}{2} > 1$$

c. 
$$\sum_{n=1}^{\infty} \frac{5}{4^n} = \sum_{n=1}^{\infty} 5\left(\frac{1}{4}\right)^n$$
, so  $a = 5$ , and  $r = \frac{1}{4} < 1$ , so the infinite series  
that begins at  $n = 0$  will converge to  
$$\frac{5}{1-\frac{1}{4}} = \frac{20}{3}$$
. However, the  
given series begins at  $n = 1$ , so the term at  $n = 0$   
$$\left(\frac{5}{4}\right)^n$$
 must be  
subtracted from this sum. Thus, the given series converges to  
 $\frac{20}{3} - \frac{5}{4} = \frac{65}{12}$ .  
d.  $64 + 32 = 96$  square inches  
e.  $64 + 32 + 16 + 8 + 4 = 124$  square inches  
f. The sum is represented by the series  
$$\sum_{n=0}^{\infty} 64\left(\frac{1}{2}\right)^n$$
 and the sum is  
 $\frac{64}{1-\frac{1}{2}} = 128$   
square inches.  
$$\frac{Activity's Alignment}{AB/BC AP}$$
  
Standard 2 Model numerically/analytically  
Standard 12 Sequence/series  
MA2 geometric and spatial sense  
MA4 patterns and relationships  
MA5 mathematical systems

PROCESS1.6discover/cvaluate relationships  
3.2apply others' strategies  
as strategies  
3.4evaluate problem-solving processes  
3.5reason logically (inductive/deductive)  
(4.1)support decisionsDOK2INSTRUCTIONAL  
Identifying Similarities and Differences, Homework  
and Practice, Nonlinguistic RepresentationAssessment #2Learning Activity #2:Identify which of the following series do not converge according to the nth  
Term TestIdentify which of the following series do not converge according to the nth  
Term Test or state that the nth Term Test  
s  
$$\sum_{n=1}^{\infty} a_n$$
 will not converge. $\sum_{n=1}^{\infty} \frac{3n}{n+2}$   
b.  $\sum_{n=1}^{\infty} \frac{(n+1)!}{n}$   
c.  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ Identify which of the following series do not converge according to the nth  
Term Test or state that the nth Term Test is inconclusive. $\sum_{n=1}^{\infty} \frac{3n}{n+2}$   
b.  $\sum_{n=1}^{\infty} \frac{(n+1)!}{n}$   
c.  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ Identify which of the following series do not converge according to the nth  
Term Test or state that the nth Term Test is inconclusive. $\sum_{n=1}^{\infty} \frac{3n}{n+2}$   
b.  $\sum_{n=1}^{\infty} \frac{(n+1)!}{n}$   
f.  $\sum_{n=1}^{\infty} \frac{(3n)^n}{n}$ Identify which of the following series do not converge according to the nth  
Term Test or state that the nth Term Test is inconclusive.Assessment #2 - KEV  
a. series diverges since  $\lim_{n=1}^{\infty} \frac{(n+1)!}{n+1}$   
f.  $\sum_{n=1}^{\infty} \frac{n^2}{n-2}$ d.  $\sum_{n=1}^{\infty} 2^n$   
d.  $\sum_{n=1}^{\infty} 2^n$   
e.  $\sum_{n=1}^{\infty} \frac{n!}{n-2}$ f. this test is inconclusive since  $\lim_{n=1}^{\infty} \frac{(-1)^n}{n} = 0$   
e. this test is inconclusive since  $\lim_{n=1}^{\infty} \frac{1}{n^2} = 0$ 

c. 
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} 2n$$
e. 
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{n!+1}$$
f. 
$$\sum_{n=1}^{\infty} (3n)^n$$

diverges since 
$$\lim_{n \to \infty} \left( \frac{n}{n+2} \right) = 3 \neq 0$$

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

 $\lim_{n\to\infty}\frac{1}{n^2}=0$ 

Learning Activity #2 – KEY  
a. series diverges since 
$$\lim_{n \to \infty} \left(\frac{n}{n+2}\right) = 1 \neq 0$$
  
a. series diverges since  $\lim_{n \to \infty} \left(\frac{1}{n+2}\right) = 1 \neq 0$   
b. this test is inconclusive since  $\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$   
c. this test is inconclusive since  $\lim_{n \to \infty} \left(\frac{\cos(\pi n)}{n}\right) = 0$   
c. this test is inconclusive since  $\lim_{n \to \infty} \left(\frac{\cos(\pi n)}{n}\right) = 0$   
d. series diverges since  $\lim_{n \to \infty} \left(\frac{2}{2(n!)+1}\right) = \frac{1}{2} \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \left(\frac{n!}{2(n!)+1}\right) = \frac{1}{2} \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. series diverges since  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. diverges diverges  $\lim_{n \to \infty} \frac{n^2}{2} \to \infty \neq 0$   
f. diverges diverges diverges diverges diverge

Assessment's Alignment

number sense

Sequence/series

geometric and spatial sense

discover/evaluate relationships

evaluate problem-solving processes

reason logically (inductive/deductive)

patterns and relationships

mathematical systems

apply others' strategies

support decisions

Mastery level - 80%

Standard 12

MA1

MA2 MA4

MA5

1.6 3.2

3.4

3.5

4.1

2

|               | 4.1 support decisions                              |
|---------------|----------------------------------------------------|
| DOK           | 2                                                  |
| INSTRUCTIONAL | Identifying Similarities and Differences, Homework |
| STRATEGIES    | and Practice, Nonlinguistic Representation         |
|               |                                                    |
|               |                                                    |
|               |                                                    |
|               |                                                    |
|               |                                                    |

| Readiness & Equity Section                                 |                                     |  |
|------------------------------------------------------------|-------------------------------------|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |                                     |  |
| 21 <sup>st</sup> Century Themes                            | Non Fiction Reading & Writing       |  |
| Learning & Innovation Skills                               | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills                    | Intervention Opportunity            |  |
| Life & Career Skills                                       | Gender, Ethnic, & Disability Equity |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|                            |                    |

# **Learning Activity #3:** Assessment #3: **Theorem: Direct Comparison Test** Apply the Direct Comparison Test or The Limit Comparison Test to determine the convergence or divergence of each series. $\left| \begin{array}{c} \text{Let } 0 < a_n < b_n \text{ for all } n \text{ beyond some value. If the series } \sum_{n=1}^{\infty} a_n \\ \frac{\sum_{n=1}^{\infty} b_n}{2n} & \sum_{n=1}^{\infty} b_n \text{ converges, then } \sum_{n=1}^{\infty} a_n \\ \text{diverges, then } a_{n=1} & \frac{\sum_{n=1}^{\infty} b_n}{2n} & \frac{\sum_{n=1}^{\infty} a_n}{2n} \\ \text{diverges, then } a_{n=1} & \frac{\sum_{n=1}^{\infty} a_n}{2n} \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n} \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{does} & \frac{\sum_{n=1}^{\infty} a_n}{2n^2 + 2} \\ \text{diverges, then } \sum_{n=1}^{\infty} a_n \\ \text{diverges, the$ as well. Assessment #3 – KEY **Theorem: Limit Comparison Test a.** $\frac{5^n}{3n-2} > \frac{5^n}{3n}$ and $\sum_{n=1}^{\infty} \frac{5^n}{3n}$ diverges by the nth term test, hence If $a_n$ and $b_n$ are both positive and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ for some finite $\sum_{n=1}^{\infty} \frac{5^n}{3n-2}$ diverges by Direct Comparison. and positive real number *L*, then the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ either both converge or diverge. **b.** $\frac{1}{3n^2 + 2} < \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by *p*-series, *p* = 2 > 1, hence Apply the Direct Comparison Test or the Limit Comparison Test to $\sum_{n=1}^{\infty} \frac{1}{3n^2 + 2}$ converges by Direct Comparison. determine the convergence of each of the following series: **a.** $\sum_{n=1}^{\infty} \frac{1}{5+3^n}$ **b.** $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n-1}}$ **c.** $\sum_{n=1}^{\infty} \frac{3n^2+2n-5}{2n^5+6}$ $\lim_{n \to \infty} \frac{\frac{n}{3n^2 + 2}}{\underline{1}} = \lim_{n \to \infty} \left(\frac{n}{3n^2 + 2}\right) \left(\frac{n}{1}\right) = \frac{1}{3}$ , which is both finite and **positive, also** $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is the divergent Harmonic Series, hence Learning Activity #3 – KEY

| with                                                                              | $d = \sum_{n=1}^{\infty} \frac{1}{3^n}$ converges since it is a geometric series                                                                                                     |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $r=\frac{1}{3}<1$ , hence                                                         | $\sum_{n=1}^{\infty} \frac{1}{5+3^n}$ converges by Direct Comparison.                                                                                                                |
| <b>b.</b> $\frac{1}{\sqrt{n}-1} > \frac{1}{\sqrt{n}}$ <b>a.</b> $p = \frac{1}{2}$ | nd $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges since it is a <i>p</i> -series with                                                                                             |
| $0 < \frac{1}{2} \le 1$ , hence                                                   | $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}-1}$ diverges by Direct Comparison.                                                                                                            |
| $\lim_{n \to \infty} \frac{\frac{3n^2 + 2n - 5}{2n^5 + 6}}{\frac{n^2}{n^5}}$ c.   | $\int_{-\infty}^{\infty} = \lim_{n \to \infty} \left( \frac{3n^2 + 2n - 5}{2n^5 + 6} \right) \left( \frac{n^5}{n^2} \right) = \frac{3}{2}, \text{ and } \frac{3}{2} \text{ is both}$ |
| finite and positive                                                               |                                                                                                                                                                                      |
| <i>p</i> = 3 > 1, hence                                                           | $\sum_{n=1}^{\infty} \frac{3n^2 + 2n - 5}{2n^5 + 6}$ converges by Limit Comparison.                                                                                                  |
|                                                                                   | Activity's Alignment                                                                                                                                                                 |
| AB/BC AP                                                                          | Standard 12 Sequence/series                                                                                                                                                          |
| CALCULUS                                                                          |                                                                                                                                                                                      |
| STANDARD<br>CONTENT                                                               | MA1 number sense                                                                                                                                                                     |
|                                                                                   | MA1 induced sense<br>MA2 geometric and spatial sense                                                                                                                                 |
|                                                                                   | MA2 geometric and spatial sense<br>MA4 patterns and relationships                                                                                                                    |
|                                                                                   | MA5 mathematical systems                                                                                                                                                             |
|                                                                                   |                                                                                                                                                                                      |
|                                                                                   |                                                                                                                                                                                      |

| $\sum^{\infty} n$                         |                               |
|-------------------------------------------|-------------------------------|
| $\sum_{n=1}^{\infty} \overline{3n^2 + 2}$ | diverges by Limit Comparison. |

| AB/BC AP<br>CALCULUS<br>STANDARDStandard 12Sequence/seriesCONTENTMA1number senseMA2geometric and spatial senseMA4patterns and relationshipsMA5mathematical systemsPROCESS1.6discover/evaluate relationships3.2apply others' strategies3.4evaluate problem-solving processes3.5reason logically (inductive/deductive)4.1support decisionsDOK2 | Assessment's Alignment |                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------|--|--|--|
| STANDARDCONTENTMA1number senseMA2geometric and spatial senseMA4patterns and relationshipsMA5mathematical systemsPROCESS1.6discover/evaluate relationships3.2apply others' strategies3.4evaluate problem-solving processes3.5reason logically (inductive/deductive)4.1support decisionsDOK2                                                   | AB/BC AP               | Standard 12 Sequence/series                |  |  |  |
| CONTENTMA1number senseMA2geometric and spatial senseMA4patterns and relationshipsMA5mathematical systemsPROCESS1.63.2apply others' strategies3.4evaluate problem-solving processes3.5reason logically (inductive/deductive)4.1support decisionsDOK2                                                                                          | CALCULUS               |                                            |  |  |  |
| MA2geometric and spatial senseMA2geometric and spatial senseMA4patterns and relationshipsMA5mathematical systemsPROCESS1.63.2apply others' strategies3.4evaluate problem-solving processes3.5reason logically (inductive/deductive)4.1support decisionsDOK2                                                                                  | STANDARD               |                                            |  |  |  |
| MA4patterns and relationships<br>mathematical systemsPROCESS1.6discover/evaluate relationships<br>3.23.2apply others' strategies<br>3.4evaluate problem-solving processes<br>3.53.5reason logically (inductive/deductive)<br>4.1support decisionsDOK2                                                                                        | CONTENT                | MA1 number sense                           |  |  |  |
| MA5       mathematical systems         PROCESS       1.6       discover/evaluate relationships         3.2       apply others' strategies         3.4       evaluate problem-solving processes         3.5       reason logically (inductive/deductive)         4.1       support decisions         DOK       2                              |                        | MA2 geometric and spatial sense            |  |  |  |
| PROCESS       1.6       discover/evaluate relationships         3.2       apply others' strategies         3.4       evaluate problem-solving processes         3.5       reason logically (inductive/deductive)         4.1       support decisions         DOK       2                                                                     |                        | MA4 patterns and relationships             |  |  |  |
| 3.2       apply others' strategies         3.4       evaluate problem-solving processes         3.5       reason logically (inductive/deductive)         4.1       support decisions         DOK       2                                                                                                                                     |                        | MA5 mathematical systems                   |  |  |  |
| 3.4     evaluate problem-solving processes       3.5     reason logically (inductive/deductive)       4.1     support decisions       DOK     2                                                                                                                                                                                              | PROCESS                | 1.6 discover/evaluate relationships        |  |  |  |
| 3.5     reason logically (inductive/deductive)       4.1     support decisions       DOK     2                                                                                                                                                                                                                                               |                        | 3.2 apply others' strategies               |  |  |  |
| 4.1     support decisions       DOK     2                                                                                                                                                                                                                                                                                                    |                        | 3.4 evaluate problem-solving processes     |  |  |  |
| DOK 2                                                                                                                                                                                                                                                                                                                                        |                        | 3.5 reason logically (inductive/deductive) |  |  |  |
|                                                                                                                                                                                                                                                                                                                                              |                        | 4.1 support decisions                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                              | DOK                    | 2                                          |  |  |  |
| LEVEL OF Mastery level – 75%                                                                                                                                                                                                                                                                                                                 | LEVEL OF               | Mastery level – 75%                        |  |  |  |
| EXPECTATION                                                                                                                                                                                                                                                                                                                                  | EXPECTATION            |                                            |  |  |  |

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
b.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$
Learning Activity #4 – KEYa.
$$\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \arctan x \Big|_{1}^{b}$$
a.
$$\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \arctan x \Big|_{1}^{b}$$
a.
$$\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \arctan x \Big|_{1}^{b}$$
a.
$$\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \arctan x \Big|_{1}^{b}$$
a.
$$\int_{1}^{\infty} \frac{dx}{x^2 + 1} = \lim_{b \to \infty} \arctan x \Big|_{1}^{b}$$
therefore, this improper integral converges.Also,
$$f(x) = \frac{1}{x^2 + 1}$$
is positive, continuous, and decreasingfor  $x \ge 1$  and  $a_n = f(n)$ , hence
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
which converges by  $p$ -series,
$$p = \frac{3}{2} > 1$$
b.
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
which converges by  $p$ -series,
$$p = \frac{3}{2} > 1$$
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
Which converges by  $p$ -series,
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
Which converges by  $p$ -series,
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} = \sum_{n=1}^{\infty} \frac{$$

**a.** 
$$\int_{1}^{\infty} \frac{x^2 dx}{x^3 + 1} = \lim_{b \to \infty} \int_{1}^{b} \frac{x^2 dx}{x^3 + 1} = \lim_{b \to \infty} \ln \sqrt[3]{x^3 + 1} \Big|_{1}^{b}$$
$$= \lim_{b \to \infty} \left[ \ln \sqrt[3]{b^3 + 1} - \ln \sqrt[3]{2} \right] \to \infty$$

therefore, this improper integral diverges.

Also,  $f(x) = \frac{x^2}{x^3 + 1}$  is positive, continuous, and decreasing

for  $x \ge 1$  and  $a_n = f(n)$ , hence  $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$  diverges by the Integral Test.

ing  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{5}}}$  which diverges by *p*-series,  $p = \frac{1}{5} \le 1$ .

|             | Assessment's Alignment                     |
|-------------|--------------------------------------------|
| AB/BC AP    | Standard 12 Sequence/series                |
| CALCULUS    |                                            |
| STANDARD    |                                            |
| CONTENT     | MA1 number sense                           |
|             | MA2 geometric and spatial sense            |
|             | MA4 patterns and relationships             |
|             | MA5 mathematical systems                   |
| PROCESS     | 1.6 discover/evaluate relationships        |
|             | 3.2 apply others' strategies               |
|             | 3.4 evaluate problem-solving processes     |
|             | 3.5 reason logically (inductive/deductive) |
|             | 4.1 support decisions                      |
| DOK         | 2                                          |
| LEVEL OF    | Mastery level – 75%                        |
| EXPECTATION |                                            |

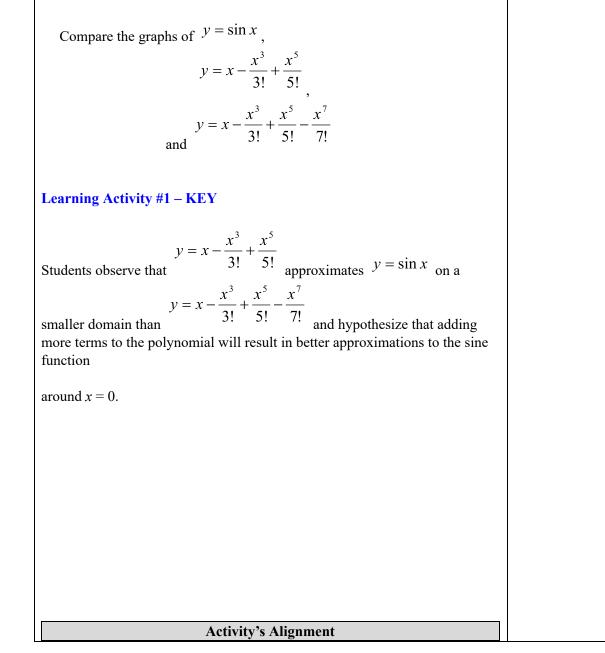
| PROCESS                     | <ol> <li>discover/evaluate relationships</li> <li>apply others' strategies</li> <li>evaluate problem-solving processes</li> <li>reason logically (inductive/deductive)</li> </ol> |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOK                         | 4.1     support decisions       2                                                                                                                                                 |
| INSTRUCTIONAL<br>STRATEGIES | Identifying Similarities and Differences, Homework<br>and Practice, Nonlinguistic Representation                                                                                  |
|                             |                                                                                                                                                                                   |
|                             |                                                                                                                                                                                   |

| Teacher Resources |
|-------------------|
| General:          |
|                   |
|                   |
| Enrichment:       |
|                   |
| Intervention:     |
| Intervention:     |
|                   |
|                   |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.

| Content Area: Mathematics                      | Course: AP Calculus BC            | Strand: 15 |
|------------------------------------------------|-----------------------------------|------------|
| Learner Objectives: The student will apply app | proximations and infinite series. |            |

**Concepts**: B. Taylor Series


| Students Should Know                                                                    | Students Should Be Able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A Taylor Series is a particular sequence of partial sums developed<br>from derivatives. | <ul> <li>Investigate Taylor polynomial approximations with graphical demonstrations of convergence (for example, viewing graphs of various Taylor polynomials of the sine function approximating the sine curve</li> <li>Generate a Taylor series for a function, centered at x = a</li> <li>Generate a Maclaurin series for a function to include e<sup>x</sup>, sin x, cos x, and 1/(1 - x)</li> <li>Manipulate Taylor series using techniques of substitution, differentiation, antidifferentiation and the formation of new series from known series</li> <li>Generate a power series for a given function</li> <li>Determine the radius and interval of convergence of power series</li> <li>Apply the Lagrange error bound for Taylor polynomials</li> </ul> |

# **Instructional Support**

|                          |                          | Student Essen               | tial Vocabulary               |                      |                         |
|--------------------------|--------------------------|-----------------------------|-------------------------------|----------------------|-------------------------|
| Polynomial               | <b>Taylor Polynomial</b> | <b>Maclaurin Polynomial</b> | <b>Remainder of a Taylor</b>  | Lagrange Form of the | Lagrange Error          |
| Approximations           | Approximations           | Approximations              | Polynomial                    | Remainder            | Bound                   |
|                          |                          |                             |                               |                      |                         |
| <b>Convergent Series</b> | <b>Divergent Series</b>  | <b>Power Series</b>         | <b>Geometric Power</b>        | <b>Taylor Series</b> | <b>Maclaurin Series</b> |
|                          |                          |                             | Series                        |                      |                         |
| <b>Radius of</b>         | Interval of              | <b>Endpoint Convergence</b> | <b>Differentiation and/or</b> |                      |                         |
| Convergence              | Convergence              |                             | <b>Integration of Power</b>   |                      |                         |
|                          |                          |                             | Series                        |                      |                         |

| Readiness & Equity Section                                               |  |                                     |  |
|--------------------------------------------------------------------------|--|-------------------------------------|--|
| <b>SLA</b> = Sample Learning Activities & <b>SA</b> = Sample Assessments |  |                                     |  |
| 21 <sup>st</sup> Century Themes                                          |  | Non Fiction Reading & Writing       |  |
| Learning & Innovation Skills                                             |  | Enrichment Opportunity              |  |
| Information, Media, & Technology Skills                                  |  | Intervention Opportunity            |  |
| Life & Career Skills                                                     |  | Gender, Ethnic, & Disability Equity |  |

#### **Introductory Activity:**



No Assessment for Introductory Activity.

| AB/BC AP<br>CALCULUS<br>STANDARD | Standard 12Sequence/seriesStandard 13Taylor polynomials                                                                                             |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| CONTENT                          | MA 4 patterns and relationships                                                                                                                     |  |
| PROCESS                          | <ol> <li>1.6 discover/evaluate relationships</li> <li>3.2 apply others' strategies</li> <li>3.6 examine solutions from many perspectives</li> </ol> |  |
| DOK                              | 1                                                                                                                                                   |  |
| INSTRUCTIONAL<br>STRATEGIES      | Identifying Similarities and Differences, Generating<br>and Testing Hypotheses                                                                      |  |

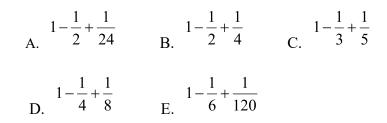
| Readiness & Equity Section                                 |                                     |  |  |
|------------------------------------------------------------|-------------------------------------|--|--|
| SLA = Sample Learning Activities & SA = Sample Assessments |                                     |  |  |
| 21 <sup>st</sup> Century Themes                            | Non Fiction Reading & Writing       |  |  |
| Learning & Innovation Skills                               | Enrichment Opportunity              |  |  |
| Information, Media, & Technology Skills                    | Intervention Opportunity            |  |  |
| Life & Career Skills                                       | Gender, Ethnic, & Disability Equity |  |  |

| Sample Learning Activities | Sample Assessments |
|----------------------------|--------------------|
|----------------------------|--------------------|

#### Learning Activity #1:

- 1. Generate the sixth-degree Taylor polynomial about x = 0 (Maclaurin) for  $\cos x$ .
- 2. Let f be the function given by  $f(x) = \ln(4-x)$ . Generate the third degree Taylor polynomial for f about x = 3. Compare the graphs of f(x) and  $P_3(x)$  about x = 3.

Learning Activity #1 – KEY


$$\cos x \approx P_6(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

2. 
$$P_3(x) = -(x-3) + \frac{(x-3)^2}{2} - \frac{(x-3)^3}{3}$$
  
Graph comparison:

| Activity's Alignment |                                              |  |  |  |
|----------------------|----------------------------------------------|--|--|--|
| AB/BC AP             | Standard 12 Sequence/series                  |  |  |  |
| CALCULUS             | Standard 13 Taylor polynomials               |  |  |  |
| STANDARD             |                                              |  |  |  |
| CONTENT              | MA 4 patterns and relationships              |  |  |  |
| PROCESS              | 1.6 discover/evaluate relationships          |  |  |  |
|                      | 3.2 apply one's own strategies               |  |  |  |
|                      | 3.6 examine solutions from many perspectives |  |  |  |
|                      |                                              |  |  |  |
| DOK                  | 2                                            |  |  |  |

#### Assessment #1:

1. What is the approximation of the value of sin1 obtained by using the fifth-degree Taylor polynomial about x = 0 for sin x?



2. The coefficient of  $x^6$  in the Taylor polynomial for  $f(x) = sin(x^2)$  is

A. 
$$-\frac{1}{6}$$
  
B. 0  
C.  $\frac{1}{120}$   
D.  $\frac{1}{6}$   
E. 1

3. Let f be the function given by  $f(x) = \ln(3-x)$ . The third-degree Taylor polynomial for f about x = 2 is

A. 
$$-(x-2) + \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$$
  
B. 
$$-(x-2) - \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$$
  
C. 
$$(x-2) + (x-2)^2 + (x-2)^3$$
  
D. 
$$(x-2) + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$$

INSTRUCTIONAL  
STRATEGIESGuided PracticeLearning Activity #2:Asset1. Use the Maclaurin series for 
$$\cos x$$
 with substitution to find the Maclaurin  
series for  $f(x) = \cos 2x$ .Image: Asset2. Use the identity $\cos^2 x = \frac{1 + \cos 2x}{2}$   
and the Maclaurin series for  
 $\cos 2x$  found above to determine the Maclaurin series for  
 $\cos 2x$  found above to determine the Maclaurin series for  $\cos^2 x$ .Image: Asset  
AB/E  
CAL  
STAN  
CON  
PROV3. If  
 $\sum_{n=0}^{\infty} a_n x^n$   
determine the series representation for  $f'(1)$ .Image: Doc  
 $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$ .4. Determine the interval of convergence for  
 $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$ .Image: The the interval of convergence for  
 $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$ .4. Determine the interval of convergence for  
 $x = \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!}$ Image: The the interval of convergence for  
 $x = \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!}$ 1. The  
function  $\cos 2x = \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!}$ Image: The the termine interval of convergence is the termine interval of convergence is  $\sum_{n=1}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!}$ 2.  $\cos^2 x = \frac{1 + \cos 2x}{2} = \frac{1}{2} + \frac{\cos 2x}{2} = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (2n)^{2n}}{(2n)!}$ 2.  $\cos^2 x = \frac{1 + \cos 2x}{2} = \frac{1}{2} + \frac{\cos 2x}{2} = \frac{1}{2} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n (2n)^{2n}}{(2n)!}$ 

E. 
$$(x-2) - \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$$
  
Essment #1 – KEY

Е 2. A

3. A

| Assessment's Alignment |                                              |  |  |
|------------------------|----------------------------------------------|--|--|
| AB/BC AP               | Standard 12 Sequence/series                  |  |  |
| CALCULUS               | Standard 13 Taylor polynomials               |  |  |
| STANDARD               |                                              |  |  |
| CONTENT                | MA 4 patterns and relationships              |  |  |
| PROCESS                | 1.6 discover/evaluate relationships          |  |  |
|                        | 3.2 apply one's own strategies               |  |  |
|                        | 3.6 examine solutions from many perspectives |  |  |
| DOK                    | Standard 12                                  |  |  |
|                        | Standard 13                                  |  |  |
| LEVEL OF               | Mastery level $-66\%$ (2 out of the 3)       |  |  |
| EXPECTATION            |                                              |  |  |
| Assessment #20.        | · · · · · · · · · · · · · · · · · · ·        |  |  |

The Taylor series for sinx about x = 0 is  $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$  If f is a nction such that  $f'(x) = \sin(x^2)$ , then the coefficient of  $x^7$  in the

ylor series for f(x) about x = 0 is

A. 
$$\frac{1}{7!}$$
 B.  $\frac{1}{7}$  C. 0 D.  $\frac{1}{7!}$  E.  $-\frac{1}{7!}$ 

| 3. $\sum_{n=1}^{\infty} na_n$<br>4. Use the ratio test to determine the possible interval of convergence, then test the endpoints: $x = -1$ produces a convergent series and $x = 5$ yields a divergent series, therefore $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$ converges for $-1 \le x < 5$ . | 2. The interval of convergence of $\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n}$ is<br>A. $-3 < x \le 3$ B. $-3 \le x \le 3$ C. $-2 < x < 4$<br>D. $-2 \le x < 4$ E. $0 \le x \le 2$<br>$\sum_{n=0}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                            | $\sum \frac{1}{\sqrt{2}}$                                                                                                                                                                                                         |
| A (* */ A A1* /                                                                                                                                                                                                                                                                                            | 3. What are all values of x for which the series $\sqrt{n}$                                                                                                                                                                       |
| Activity's Alignment                                                                                                                                                                                                                                                                                       | converges?                                                                                                                                                                                                                        |
| AB/BC AP         Standard 12         Sequence/series                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |
| CALCULUS Standard 13 Taylor polynomials                                                                                                                                                                                                                                                                    | A. $-3 < x < -1$ B. $-3 \le x < -1$ C. $-3 \le x \le -1$                                                                                                                                                                          |
| STANDARD                                                                                                                                                                                                                                                                                                   | A. $-3 < x < -1$ B. $-3 \le x < -1$ C. $-3 \le x \le -1$                                                                                                                                                                          |
| CONTENT MA 4 patterns and relationships                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |
| PROCESS1.6discover/evaluate relationships                                                                                                                                                                                                                                                                  | D. $-1 \le x < 1$ E. $-1 \le x \le 1$                                                                                                                                                                                             |
| 3.2 apply one's own strategies                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |
| 3.6 examine solutions from many perspectives                                                                                                                                                                                                                                                               | Assessment #2a – KEY                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |
| DOK 3                                                                                                                                                                                                                                                                                                      | 1. D 2. C 3. A                                                                                                                                                                                                                    |
| INSTRUCTIONAL Homework and Practice                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |
| STRATEGIES                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |
| STRATEGIES                                                                                                                                                                                                                                                                                                 | Assessment's Alignment                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                            | AB/BC AP Standard 12 Sequence/series                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                            | CALCULUS Standard 13 Taylor polynomials                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                            | STANDARD                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                            | STANDARD       CONTENT     MA 4 patterns and relationships                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                            | PROCESS 1.6 discover/evaluate relationships                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                            | 3.2 apply one's own strategies                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                            | 3.6 examine solutions from many perspectives                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                            | DOK 3                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                            | LEVEL OF Mastery level – 66% (2 out of the 3)                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                            | EXPECTATION                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                            | Assessment #2b:                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                   |

#### **Learning Activity #3:**

1. Use the remainder in Taylor's Theorem to obtain a Lagrange error

 $\arcsin(0.4) \approx 0.4 + \frac{(0.4)^3}{2 \cdot 3}$ bound for the error of the approximation:

2. Determine the degree of the Maclaurin polynomial required for the error in the approximation of  $f(x) = e^x$  at x = 0.6 to be less than 0.001.

# Learning Activity #3 – KEY

$$R_3 \le 7.82 \times 10^{-3}$$

2. Degree 5

# 2010 FRQ6

$$f(x) = \begin{cases} \frac{\cos x - 1}{x^2} & \text{for } x \neq 0\\ -\frac{1}{2} & \text{for } x = 0 \end{cases}$$

The function f, defined above, has derivatives of all orders. Let g be the

function defined by  $g(x) = 1 + \int_0^x f(t) dt$ 

- a. Write the first three nonzero terms and the general term of the Taylor series for  $\cos x$  about x = 0. Use this series to write the first three nonzero terms and the general term of the Taylor series for *f* about x = 0.
- b. Use the Taylor series for f about x = 0 found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at x = 0. Give a reason for your answer.
- c. Write the fifth-degree Taylor polynomial for g about x = 0.
- d. The Taylor series for g about x = 0, evaluated at x = 1, is an alternating series with individual terms that decrease in absolute value to 0. Use the third-degree Taylor polynomial for g about x = 0 to estimate the value of g(1). Explain why this estimate differs from the actual value

$$\frac{1}{6!}$$
 g(1) by less than  $\frac{1}{6!}$ .

of

gnment

| Activity's Alignment |              | Assessment #2b – KEY |                                 |
|----------------------|--------------|----------------------|---------------------------------|
| AB/BC AP             | Standard 12  | Sequence/series      | Assessment $\#20 = \text{KE I}$ |
| CALCULUS             | Standard 13  | Taylor polynomials   |                                 |
| STANDARD             |              |                      | Assessment's Alig               |
| CONTENT              | MA 4 pattern | ns and relationships | Assessment's Ang                |

| PROCESS                            | <ol> <li>discover/evaluate relationships</li> <li>apply one's own strategies</li> <li>examine solutions from many perspectives</li> </ol> | AB/BC AP<br>CALCULUS<br>STANDARD | Standard 12Sequence/seriesStandard 13Taylor polynomials                                                                                               |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | 5.0 Examine solutions from many perspectives                                                                                              | CONTENT                          | MA 4 patterns and relationships                                                                                                                       |
| DOK<br>INSTRUCTIONAL<br>STRATEGIES | 2<br>Guided Practice                                                                                                                      | PROCESS                          | <ul> <li>1.6 discover/evaluate relationships</li> <li>3.2 apply one's own strategies</li> <li>3.6 examine solutions from many perspectives</li> </ul> |
|                                    |                                                                                                                                           | DOK<br>LEVEL OF<br>EXPECTATION   | 3<br>Mastery level – 70%                                                                                                                              |

| Student Resources | Teacher Resources |
|-------------------|-------------------|
| General:          | General:          |
|                   |                   |
|                   |                   |
| Enrichment:       | Enrichment:       |
|                   |                   |
|                   |                   |
| Intervention:     | Intervention:     |
|                   |                   |
|                   |                   |

NOTE: These sections will be partially completed during the curriculum writing process and finalized during the year one review process.