
PUBLIC SCHOOLS OF EDISON TOWNSHIP

OFFICE OF CURRICULUM AND INSTRUCTION

Functional Programming in Python

Length of Course: Term

Elective/Required: Elective

Schools: High School

Eligibility: Grade 9-12

Credit Value: 6 Credits

Date Approved: August 23, 2022

Functional Programming in Python 2

TABLE OF CONTENTS

Statement of Purpose 3

Suggested Time Schedule 5

Unit 1: Introduction to Computers 6

Unit 2: Basics of Programming 7

Unit 3: Conditional Statements 8

Unit 4: Loops 9

Unit 5: User Defined Functions 10

Unit 6: Modules 11

Unit 7: Data Structures & Statistics 12

Modifications will be made to accommodate IEP mandates for classified students

Functional Programming in Python 3

Statement of Purpose

The focus of this course is on learning the functional aspects of programming. This intro-level course will teach
students how to utilize the basic structures common to most actionable programming languages in a language with
a low-barrier to entry (Python). As a result of this course, students should be able to translate their understanding of
the concepts they learned in Python to other programming languages that have the same or similar structures by
only learning the new syntax. A concentrated focus of the course will be analytical computing problem solving skills.

This guide was revised by:
Robert Giordano (JPS)
John Krajunus (EHS)

Completed under the supervision of:

A copy of this curriculum guide for review on the District website and in the Office of Curriculum and Instruction.

Functional Programming in Python 4

Course Name: Functional Programming in Python

Grade Level(s) 9-12

Comp Sci & Design
Thinking Processes
(CS&DTP)

1. Fostering an Inclusive Computing and Design Culture
2. Collaborating Around Computing and Design
3. Recognizing and Defining Computational Problems
4. Developing and Using Abstractions
5. Creating Computational Artifacts
6. Testing and Refining Computational Artifacts
7. Communicating About Computing and Design

Standards: From 2020 New Jersey Student Learning Standards – Computer Science and Design Thinking

Computing
Systems(CS):

● CS.8.1 - The study of human & computer interaction can improve the design of devices and extend the abilities of humans
● CS.8.3 - Troubleshooting a problem is more effective when knowledge of the specific device along with a systematic process is used to identify the source of a

problem.
● CS.12.2 - A computing system involves interaction among the user, hardware, application software and system software.
● CS.12.3 - Successful troubleshooting of complex problems involves multiple approaches including research, analysis, reflection, interaction with peers and drawing

on past experiences.

Impact of
Computing(IC):

● IC.8.1 - Advancements in computing technology can change individuals’ behaviors
● IC.8.2 - Society is faced with trade offs due to the increasing globalization and automation that computing brings
● IC.12.1 - The design and use of computing technologies and artifacts can positively or negatively affect equitable access to information and opportunities.

Data and
Analysis(DA):

● DA.8.1 - People use digital devices and tools to automate the collection, use, and transformation of data.
● DA.8.3 - Date is represented in many formats. Software tools translate the low-level representation of bits into a form understandable by individuals. Data is

organized and accessible based on the application used to store it.
● DA.12.1 - Individuals select digital tools and design automated processes to collect, transform, generalize, simplify, and present large data sets in different ways to

influence how other people interpret and understand the underlying information.
● DA.12.3 - Large data sets can be transformed, generalized, simplified, and presented in different ways to influence how individuals interpret and understand the

underlying information.

Algorithms and
Programming (AP):

● AP.8.1 - Individuals design algorithms that are reusable in many situations
● AP.8.2 - Algorithms that are readable are easier to follow, test, and debug
● AP.8.3 - Programmers create variables to store data values of different types and perform appropriate operations on their values.
● AP.8.4 - Control structures are selected and combined in programs to solve more complex problems
● AP.8.5 - Programs use procedures to organize code and hide implementation details. Procedures can be repurposed in new programs. Defining parameters for

procedures can generalize behavior and increase reusability.
● AP.12.1 - Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation
● AP.12.2 - Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs
● AP.12.3 - Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures.
● AP.12.4 - Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Modules allow

for better management of complex tasks.

Networks and the
Internet: (NI)

● NI.8.2 - The information sent and received across networks can be protected from unauthorized access and modification in a variety of ways
● NI.12.1 - The scalability and reliability of the internet are enabled by the hierarchy and redundancy of networks

https://www.nj.gov/education/cccs/2020/2020%20NJSLS-CSDT.pdf

Functional Programming in Python 5

Suggested Time Schedule

Unit Number Unit Name Total Days
(est)

1 Intro to Computers 15

2 Basics of Programming 25

3 Control Structures I -
Conditional Statements

20

4 Control Structures II - Loops 25

5 Functions 15

6 Modules 20

7 Data Structures & Statistics 35

Total 155

Functional Programming in Python 6

Unit of Study: 1. Introduction to Computers
Targeted State Standard(s):

● CS.8.1 - The study of human & computer interaction can improve the design of devices and extend the abilities of humans
● CS.8.3 - Troubleshooting a problem is more effective when knowledge of the specific device along with a systematic process is used to identify the source of a problem.
● CS.12.2 - A computing system involves interaction among the user, hardware, application software and system software.
● CS.12.3 - Successful troubleshooting of complex problems involves multiple approaches including research, analysis, reflection, interaction with peers and drawing on past experiences.
● IC.8.1 - Advancements in computing technology can change individuals’ behaviors
● IC.8.2 - Society is faced with trade offs due to the increasing globalization and automation that computing brings
● IC.12.1 - The design and use of computing technologies and artifacts can positively or negatively affect equitable access to information and opportunities
● NI.8.2 - The information sent and received across networks can be protected from unauthorized access and modification in a variety of ways
● NI.12.1 - The scalability and reliability of the internet are enabled by the hierarchy and redundancy of networks
● AP.8.1 - Individuals design algorithms that are reusable in many situations
● AP.8.2 - Algorithms that are readable are easier to follow, test, and debug

Unit Objectives/Enduring Understandings:
● Students will understand the origins of computing, its strengths and weaknesses, and the relationship between hardware, software, and user.

Essential Questions:
● What effects have the increased prevalence of computers, globalization, and automation had on our world/society?
● What are the 4 essential components of every computing device?
● What are the responsibilities of the programmer in the computer application design process?

Unit Assessment:
● Computing Impact Project - Research of a Computing Technology and its impact on people’s lives (positive and negative).
● Computer Pioneer Poster Project - Make a biographical poster of a famous computing pioneer

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Identify the differences
between hardware and
software and the purpose
of each.

● Identify the 4 main
components of every
computing device.

● Identify the impact of
computing on society

● Convert numbers between
number systems (binary,
decimal, hexadecimal)

● History of Computers
● Parts of a Computer
● Impacts of Computing
● The Internet and Digital

Data
● Digital Literacy &

Organization
● Problem Solving & Critical

Thinking
● Number Systems

● Identify the components of
a computer and the
difference between
hardware and software.

● Identifying the impacts that
computers have on society.

● Identifying how computers
interpret, translate, and
exchange data.

● Creating a program in the
IDE

● Maintaining an organized
digital workspace.

● Convert between number
systems

● Powerpoint/Slides
presentations

● Research Projects
● Creating Computational

Artifacts

● Reflection questions
● Show What You Know

Questions.
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

Functional Programming in Python 7

Unit of Study: 2. Basics of Programming
Targeted State Standard(s):

● AP.8.2 - Algorithms that are readable are easier to follow, test, and debug
● AP.8.3 - Programmers create variables to store data values of different types and perform appropriate operations on their values.

Unit Objectives/Enduring Understandings:
● Making programs interactive by using input and output
● Using variables to make program functional
● Use math operators and functions to perform calculations.
● Strings store an array of characters

Essential Questions:
● How do we define and use variables?
● How do we take input from the user?
● What is the purpose of an escape sequence?
● How do we format numbers when printing?
● Why are comments and documentation important?

Unit Assessment:
● Programming Project using output, input, variables, math methods, and string formatting for decimals

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Using output to the console
to communicate with the
user of the program.

● Using variables to take and
store data

● Using math operators and
functions to perform
calculations.

● Taking input from the user
for use in the program.

● Using the random module
to generate random
numbers

● Getting the current date
and time from the
computer

● Comments & Program
Documentation

● Output & Strings
● Variables & Storage
● Math Operators and

Functions
● String Formatting
● Random Numbers
● User Input
● Date/Time Object

● Write a single line
comment

● Write a multi line comment
● Write the standard program

documentation at the
beginning of every program

● Print to the console
● Use String methods to

manipulate strings
● Use the math operators

and functions to perform
calculations

● Format strings for decimal
output

● Generate a random
number in a given range

● Take input from the user.
● Get current date/time from

the computer

● Powerpoint/Slides
presentations

● Discovery Activities
● Math/Science Formulas
● Collaborative/Pair

Programming
(12.CS.3,8.DA.5)

● Passion Projects(12.CS.3,
8.DA.5, 8.AP.5, 12.ED.1)

● Reflection Questions
● Show What You Know

Questions
● Classwork programming

assignments
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

Functional Programming in Python 8

Unit of Study: 3. Conditional Statements
Targeted State Standard(s):

● AP.8.1 - Individuals design algorithms that are reusable in many situations
● AP.8.2 - Algorithms that are readable are easier to follow, test, and debug
● AP.8.4 - Control structures are selected and combined in programs to solve more complex problems
● AP.12.3 - Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures.

Unit Objectives/Enduring Understandings:
● Format of an if/else and elif statement.
● Proper indentation is needed to indicate the body of a conditional statement
● Nesting conditional statements allows for more complex tasks to be completed.

Essential Questions:
● When should we use the if/else and elif statement?
● Why is it important to use proper indentation when writing if/else and elif statements?
● How do we represent an if/else/elif statement on a flowchart algorithm?

Unit Assessment:
● Programming assignment using if/else/elif statements and nesting.

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Determine the true/false
outcome of a boolean
statement.

● Use the if statement to skip
over code if a condition is
not met.

● Use the else statement as
a default to offer a second
choice

● Use the elif statement to
expand an if/else
statement to model more
outcomes.

● Nest block statements
inside of each other.

● Boolean Logic
● If Statements
● Else Statement
● Nesting If/Else Statements
● Elif Statements
● Flowchart Algorithms

● Evaluate boolean
statements.

● Write if/else and elif
statements

● Nest if/else statements
● Read and write flowchart

algorithms

● Powerpoint/Slides
presentations

● Discovery Activities
● Math/Science Formulas
● Collaborative/Pair

Programming
(12.CS.3,8.DA.5)

● Passion Projects(12.CS.3,
8.DA.5, 8.AP.5, 12.ED.1)

● Reflection Questions
● Show What You Know

Questions
● Classwork programming

assignments
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

Functional Programming in Python 9

Unit of Study: 4. Loops
Targeted State Standard(s):

● AP.8.1 - Individuals design algorithms that are reusable in many situations
● AP.8.2 - Algorithms that are readable are easier to follow, test, and debug
● AP.8.4 - Control structures are selected and combined in programs to solve more complex problems
● AP.12.3 - Trade-offs related to implementation, readability, and program performance are considered when selecting and combining control structures.

Unit Objectives/Enduring Understandings:
● Format of a For Loop and While Loop
● How to use a loop to repeat code
● How to represent a loop on a flowchart algorithm
● How to nest loops and other structures.

Essential Questions:
● What is the difference between a for loop and a while loop?
● When would you use a for loop and when would you use a while loop?

Unit Assessment:
● Programming Project that uses both for and while loops.

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Using a for loop over a
range to repeat a fixed
number of times.

● Using a while loop in a
fixed looping setting.

● Using a while loop in a
variable looping setting.

● For loop over a range
● Fixed length application of

while loops
● Variable length application

length of while loops
● Nesting Loops

● Use a For Loop to repeat
code

● Use a While Loop to repeat
code

● Nest Loops to solve more
complex tasks.

● Powerpoint/Slides
presentations

● Discovery Activities
● Math/Science Formulas
● Collaborative/Pair

Programming
(12.CS.3,8.DA.5)

● Passion Projects(12.CS.3,
8.DA.5, 8.AP.5, 12.ED.1)

● Reflection Questions
● Show What You Know

Questions
● Classwork programming

assignments
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

Functional Programming in Python 10

Unit of Study: 5. User Defined Functions
Targeted State Standard(s):

● AP.8.1 - Individuals design algorithms that are reusable in many situations
● AP.8.2 - Algorithms that are readable are easier to follow, test, and debug
● AP.8.5 - Programs use procedures to organize code and hide implementation details. Procedures can be repurposed in new programs. Defining parameters for procedures can generalize

behavior and increase reusability.
● AP.12.1 - Individuals evaluate and select algorithms based on performance, reusability, and ease of implementation

Unit Objectives/Enduring Understandings:
● We use functions to simplify our programs and to abstract away details.

Essential Questions:
● How do we define a function?
● Where do we define a function?
● What do we do to return a value?
● How do we activate a function?
● What is the difference between a function and a lambda?

Unit Assessment:
● Programming Assignment that combines functions and all previous content.

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Writing a function and
calling it

● Writing and using a lambda

● User Defined Functions
● Lambdas

● Define a function
● Call a function
● Return a value
● Write a lambda

● Powerpoint/Slides
presentations

● Discovery Activities
● Math/Science Formulas
● Collaborative/Pair

Programming
(12.CS.3,8.DA.5)

● Passion Projects(12.CS.3,
8.DA.5, 8.AP.5, 12.ED.1)

● Reflection Questions
● Show What You Know

Questions
● Classwork programming

assignments
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

Functional Programming in Python 11

Unit of Study: 6. Modules
Targeted State Standard(s):

● AP.12.4 - Complex programs are designed as systems of interacting modules, each with a specific role, coordinating for a common overall purpose. Modules allow for better management of
complex tasks.

Unit Objectives/Enduring Understandings:
● Modules can be used to simplify code and offer abstraction.
● Modules can be designed to perform tasks and shared with others to aid them in solving problems

Essential Questions:
● What is abstraction and how does it help programmers write programs?
● How do we create a module?
● How do we import a module?
● How do we access variables/functions from a module?

Unit Assessment:
● Programming Project incorporating previous topics

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Creating a module
● Importing a module
● Working with the variables

or functions from a module

● Modules in Python ● Create a module
● Import a module or part of

a module
● Rename a module in a

program

● Powerpoint/Slides
presentations

● Discovery Activities
● Math/Science Formulas
● Collaborative/Pair

Programming
(12.CS.3,8.DA.5)

● Passion Projects(12.CS.3,
8.DA.5, 8.AP.5, 12.ED.1)

● Reflection Questions
● Show What You Know

Questions
● Classwork programming

assignments
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

Functional Programming in Python 12

Unit of Study: 7. Data Structures & Statistics
Targeted State Standard(s):

● AP.12.2 - Programmers choose data structures to manage program complexity based on functionality, storage, and performance trade-offs
● DA.8.1 - People use digital devices and tools to automate the collection, use, and transformation of data.
● DA.12.1 - Individuals select digital tools and design automated processes to collect, transform, generalize, simplify, and present large data sets in different ways to influence how other people

interpret and understand the underlying information.
● DA.12.3 - Large data sets can be transformed, generalized, simplified, and presented in different ways to influence how individuals interpret and understand the underlying information.

Unit Objectives/Enduring Understandings:
● Python uses 4 data structures
● Each data structure has its strengths and weaknesses.
● When to use each data structure
● Using data structures to analyze statistics

Essential Questions:
● Elaborate on the differences between lists, tuples, sets, and dictionaries.
● When should you choose to use a list/set/tuple/dictionary?

Unit Assessment:
● Programming Project involving prior content and the use of statistics.

Core Content Objectives Instructional Actions

Cumulative Progress
Indicators

Concepts
(What students will know)

Skills
(What students will be able to do)

Activities/ Strategies
(Technology Implementation/
Interdisciplinary Connections)

Assessment Check Points

● Declare and initialize a:
○ List
○ Tuple
○ Set
○ Dictionary

● Explain the differences
between list, tuple, set,
dictionary

● Evaluate a dataset and find
mean, median, mode,
standard deviation, and
variance

● Create a graph of a dataset

● Data Structures:
○ List
○ Tuple
○ Set
○ Dictionary

● Use the mean, median,
and mode methods of the
numpy module

● Use the standard deviation
and variance methods of
the numpy module

● Use the percentile method
of the numpy module

● Use the matplotlib library to
create and show graphs
from datasets.

● Use data structures to
store multiple pieces of
information

● Analyze data in a dataset
using the numpy module

● Use the matplotlib library to
create graphs of a dataset

● Powerpoint/Slides
presentations

● Discovery Activities
● Math/Science Formulas
● Collaborative/Pair

Programming
(12.CS.3,8.DA.5)

● Passion Projects(12.CS.3,
8.DA.5, 8.AP.5, 12.ED.1)

● Reflection Questions
● Show What You Know

Questions
● Classwork programming

assignments
● Workspace check

Resources: Essential Materials, Supplementary Materials, Links to Best Practices
● Textbook and related resources
● MacBook
● PyCharm Edu
● Website articles
● Video Library

Instructional Adjustment: Modifications, student difficulties, possible
misunderstandings

● Circulate during work time to answer questions and provide clarity.
● Utilize pair programming to ensure students have a person with

whom to collaborate and discuss difficulties.(CS&DTP - 1, 2, & 7)

