| Course Name: | Geometry B | | | | | |------------------------------|---|--|--|--|--| | Unit Name: Ur | nit 7 Ratios and Proportions | | | | | | Time Frame: | Weeks 1-3 | | | | | | Unit
Standards | E.1.c: Identify similar figures and use ratios and proportions to solve mathematical and real-world problems (e.g., finding the height of a tree using the shadow of the tree and the height and shadow of a person) E.1.d: Use the definition of similarity to establish the congruence of angles, proportionality of sides, and scale factor of two similar polygons E.1.h: Identify and give properties of congruent or similar solids | | | | | | Unit Essential
Questions | How can two objects be similar? Two objects could have similar designs, patterns, shapes, sizes, or color. How does similarity in mathematics compare to similarity in everyday life? In mathematics, similarity has a more specific definition: objects or figures can be similar if they have the same shape. | | | | | | Unit Essential
Vocabulary | 1. ratio 2. proportion 3. cross products 4. similar polygons 5. similar ratio 6. scale factor 7. midsegment of a triangle 8. dilation 9. similarity transformations 10. Scale factor of a dilation 11. Scale model 12. Scale drawing 13. scale 13. scale | | | | | | Resources | Textbook Kuta Worksheet Builder Examview AMSTI | | | | | | Assessment(s) | Chapter 7 Test | | | | | | Assessment
Data: | <u>Chapter Test</u> A — B — C — D — | | | | | | | F— | | | | | | Unit Name: Unit 8 Right Triangles and Trigonometry Time Frame: Weeks 4-8 Unit Standards D.2.d: Solve problems involving the relationships formed when the altitude to the hypotenuse of a right triangle is draw shadows and poles, ladders) D.2.e: Apply the Pythagorean Theorem and its converse to triangles to solve mathematical and real-world problems in shadows and poles, ladders) D.2.f: Identify and use Pythagorean triples in right triangles to find lengths of the unknown side E.1.g: Determine the geometric mean between two numbers and use it to solve problems (e.g., find the lengths of segments in right triangles) H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions Unit Essential Vocabulary 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. 1. Inverse sine 2. Pythagorean triples 1. Inverse cosine | Course Name: Geometry B | | | | | | |---|---|--|--|--|--|--| | Unit Standards D.2.d: Solve problems involving the relationships formed when the altitude to the hypotenuse of a right triangle is drast standards D.2.e: Apply the Pythagorean Theorem and its converse to triangles to solve mathematical and real-world problems is shadows and poles, ladders) D.2.f: Identify and use Pythagorean triples in right triangles to find lengths of the unknown side E.1.g: Determine the geometric mean between two numbers and use it to solve problems (e.g., find the lengths of segments in right triangles) H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | Unit Name: Unit 8 Right Triangles and Trigonometry | | | | | | | D.2.e: Apply the Pythagorean Theorem and its converse to triangles to solve mathematical and real-world problems shadows and poles, ladders) D.2.f: Identify and use Pythagorean triples in right triangles to find lengths of the unknown side E.1.g: Determine the geometric mean between two numbers and use it to solve problems (e.g., find the lengths of segments in right triangles) H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | | | | | | | | shadows and poles, ladders) D.2.f: Identify and use Pythagorean triples in right triangles to find lengths of the unknown side E.1.g: Determine the geometric mean between two numbers and use it to solve problems (e.g., find the lengths of segments in right triangles) H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | | | | | | | | E.1.g: Determine the geometric mean between two numbers and use it to solve problems (e.g., find the lengths of segments in right triangles) H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | e.g., | | | | | | | segments in right triangles) H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | | | | | | | | H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | | | | | | | | H.1.c: Use trigonometric ratios to find the sides or angles of right triangles and to solve real-world problems (e.g., us angles of elevation and depression to find missing measures) Unit Essential Questions Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | H.1.a: Apply properties of 45°-45°-90° and 30°-60°-90° triangles to determine lengths of sides of triangles | | | | | | | angles of elevation and depression to find missing measures) Unit Essential Questions 1. Why so we use mathematics to model real-world situations? To solve problems, understand phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | H.1.b: Find the sine, cosine, and tangent ratios of acute angles given the side lengths of right triangles | | | | | | | Questions phenomena, look for trends. Unit Essential 1. geometric mean 9. Inverse sine | е | | | | | | | 37 Hiverse since | | | | | | | | Vocabulary 2 Pythagorean triples 10 Inverse cosing | | | | | | | | | | | | | | | | 3. ordered triple 11. Inverse tangent | | | | | | | | 4. trigonometry 12. Angle of elevation | | | | | | | | 5. trigonometric ratio 13. Angle of depression | | | | | | | | 6. sine 14. Law of sines 7. cosine 15. Law of cosines | | | | | | | | 7. cosine 15. Law of cosines 8. tangent | | | | | | | | Resources Textbook | | | | | | | | Kuta Worksheet Builder | | | | | | | | Examview | Accessment(s) Charter 9 Test | | | | | | | | Assessment(s) Chapter 8 Test | | | | | | | | Assessment Chapter Test | | | | | | | | Data: A - | | | | | | | | В- | | | | | | | | C- | | | | | | | | D — | | | | | | | | F | | | | | | | | Course Name: Geometry B | | | | | | | |-----------------------------|--|--------------------|-----------------------------|--|--|--| | Unit Name: Unit 10 Circles | | | | | | | | Time Frame: | Weeks 12-15 | | | | | | | Unit
Standards | D.3.a: Identify and define line segments associated with circles (e.g., radii, diameters, chords, secants, tangents) | | | | | | | | D.3.b: Determine the measure of central and inscribed angles and their intercepted arcs | | | | | | | | D.3.c: Find segment lengths, angle measures, and intercepted arc measures formed by chords, secants, and tangents intersecting inside and outside circles | | | | | | | | D.3.d: Solve problems using inscribed and circumscribed polygons | | | | | | | | F.1.d: Find arc lengths and circumferences of circles from given information (e.g., radius, diameter, coordinates) | | | | | | | | G.1.d: Write equations for circles in standard form and solve problems using equations and graphs | | | | | | | Unit Essential
Questions | How can circles be used? Circles can be used for their shape, to model a circular object, or for their
properties, or to model an equal distance around a certain point. | | | | | | | Unit Essential | 1. center | 9. Central angle | 17. Inscribed angle | | | | | Vocabulary | 2. circle | 10. arc | 18. Intercepted arc | | | | | | 3. chord | 11. Minor arc | 19. tangent | | | | | | 4. diameter | 12. Major arc | 20. Point of tangency | | | | | | 5. radius | 13. Semicircle | 21. Common tangent | | | | | | 6. concentric circles | 14. Congruent arcs | 22. secant | | | | | | 7. circumferences | 15. Adjacent arcs | 23. External secant segment | | | | | | 8. pi | 16. Arc length | 24. Tangent segment | | | | | Resources | Textbook | | | | | | | | Kuta Worksheet Builder | | | | | | | | Examview | Assessment(s) | Chapter 10 Test | | | | | | | A33C33IIICII(3) | Chapter 10 lest | | | | | | | | | | | | | | | Assessment | Chapter Test | | | | | | | Data: | A – | | | | | | | | B | | | | | | | | C – , | | | | | | | | D- | | | | | | | | F- | | | | | | | | | | | | | | | Course Name: Geometry B | | | | | | |--|---|--|--|--|--| | Unit Name: Unit 11 Areas of Polygons and Circles | | | | | | | Time Frame: | Weeks 10-11 | | | | | | Unit
Standards | E.1.f: Apply relationships between perimeters of similar figures, areas of similar figures, and volumes of similar fitterms of scale factor, to solve mathematical and real-world problems | | | | | | | F.1.a: Find the perimeter and area of common plane figures, including triangles, quadrilaterals, regular polygons, and irregular figures, from given information using appropriate units of measurement | | | | | | | F.1.b: Manipulate perimeter and area formulas to solve problems (e.g., finding missing lengths) | | | | | | | F.1.c: Use area to solve problems involving geometric probability | | | | | | | F.1.d: Find arc lengths and circumferences of circles from given information (e.g., radius, diameter, coordinates) | | | | | | | F.1.e: Find the area of a circle and the area of a sector of a circle from given information (e.g., radius, diameter, coordinates) | | | | | | Unit Essential
Questions | How can decomposing and recomposing shapes help us build our understanding of mathematics? By
doing so, you can visualize how different formulas are developed; you can solve problems involving
composite figures. | | | | | | Unit Essential | 1. base 9. Center of a regular polygon | | | | | | Vocabulary | 2. height 10. Radius of a regular polygon | | | | | | | 3. perimeter 11. Composite figure 4. area | | | | | | | 5. parallelogram | | | | | | | 6. triangle | | | | | | | 7. sector of a circle | | | | | | | 8. apothem | | | | | | Resources | Textbook | | | | | | | Kuta Worksheet Builder | | | | | | | Examview | | | | | | | AMSTI | | | | | | Assessment(s) | Chapter 11 Test | | | | | | 1.000001110110(0) | Chapter 11 Test | | | | | | Assessment | Chapter Test | | | | | | Data: | A — | | | | | | | B — | | | | | | | C — | | | | | | | D – | | | | | | | F- | | | | | | | | | | | | | Course Name: | Course Name: Geometry B | | | | | | |--|--|---------------------|----------------------|--|--|--| | Unit Name: Unit 12 Surface Area and Volume | | | | | | | | Time Frame: | Weeks 16-17 | | | | | | | Unit
Standards | | | | | | | | | D.4.b: Describe and draw cross sections of prisms, cylinders, pyramids, and cones E.1.h: Identify and give properties of congruent or similar solids | | | | | | | | F.2.a:Find the lateral area, surface area, and volume of prisms, cylinders, cones, and pyramids in mathematical and real-world settings | | | | | | | | F.2.b: Use cross sections of prisms, cylinders, pyramids, and cones to solve volume problems | | | | | | | Unit Essential
Questions | F.2.c: Find the surface area and volume of a sphere in mathematical and real-world settings 1. How are two-dimensional figures and three dimensional figures related? The faces and bases of three-dimensional figures are two-dimensional figures. For example, a pyramid has faces that are triangles and a base that is a polygon. | | | | | | | Unit Essential | 1. right solid | 9. height | 17. prisms | | | | | Vocabulary | 2. oblique solid | 10. Lateral area | 18. pyramid | | | | | | 3. isometric view | 11. axis | 19. cylinders | | | | | | 4. cross section | 12. Composite solid | 20. hemisphere | | | | | | 5. lateral face | 13. Regular pyramid | 21. Similar solids | | | | | | 6. lateral edge | 14. Slant height | 22. Congruent solids | | | | | | 7. base edge | 15. Right cone | | | | | | | 8. altitude | 16. Oblique cone | | | | | | Resources | Textbook | | | | | | | | Kuta Worksheet Builder | | | | | | | | Examview | | | | | | | | | | | | | | | Assessment(s) | Chapter 12 Test | | | | | | | , | | | | | | | | Assessment | Chapter Test | | | | | | | Data: | A – | | | | | | | | В — | | | | | | | | C - | | | | | | | | D | | | | | | | | F- | | | | | |