

Setting the Standard in Comprehensive Environmental Solutions

15 Park Avenue Gaithersburg, MD 20877 PHONE: 301-548-0382

FAX: 301-527-0248

Indoor Air Quality Assessment Report

at

George Mason Elementary School

2601 Cameron Mills Road, Alexandria, VA 22302

Report Prepared for:

John Contreras Alexandria City Public Schools 2601 Cameron Mills Rd, Alexandria, VA 22302

Dated: September 22, 2021

Table of Contents

1	Execu	tive Summary	1
2	Asses	sment Methods	2
3	Visua	Observations	6
4	Condi	tions for Human Occupancy	7
	4.1	Temperature	8
	4.2	Relative Humidity	8
	4.3	Carbon Dioxide	8
	4.4	Carbon Monoxide	8
	4.5	Multi-Gas	8
5	Mold	Sampling Results	8
6	Rador	n Gas Sampling Results	9
7	Forma	aldehyde Gas Sampling Results	9
8	TO+1	5 (VOCs) Sampling Results	9
9	4-pch	Sampling Results	10
10	Multi-	gas detector (MSA Altair Multi-gas) Readings – Oxygen, VOCs, Hydro	ger
	Sulfid	e	10

Appendices

Appendix A: Mold Analytical Results

Appendix B: Radon Analytical Results

Appendix C: VOCs (TO+15) Analytical Results

Appendix D: Formaldehyde Analytical Results

Appendix E: 4-PCH Analytical Results

Appendix F: Sampling Locations

Appendix G: Photographs

Abbreviations and Acronyms

AHU Air-Handling Unit

AIHA American Industrial Hygiene Association

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning

Engineers

ASTM American Society for Testing and Materials

CO Carbon Monoxide CO2 Carbon Dioxide

EMLAP Environmental Microbiology Laboratory Accreditation Program

HVAC Heating, Ventilating, And Air-Conditioning

IAQ Indoor Air Quality

NIST National Institute for Standards and TechnologyNVLAP National Voluntary Laboratory Accreditation Program

RH Relative Humidity

Abbreviations involving scientific volume and measurements involving media or water sampling

Spores/m3 Mold spores per cubic meter of air

LPM Liters Per Minute
NTE Not to exceed
°F degree Fahrenheit
PPM Parts Per Million

1. Executive Summary

Total Environmental Concepts (TEC) was contracted by Alexandria City Public Schools (ACPS) to perform Indoor Air Quality (IAQ) assessments at 19 schools. Douglas MacArthur Elementary was out of service and not assessed. The original list included:

- Alexandria City High School (AC)
- AC Satellie Campus, Central Offices (CO)
- Charles Barrett Elementary School (BC)
- Cora Kelly School for Math (CK)
- Frances C. Hammond Elementary School (FH)
- George Mason Elementary School (GM)
- George Mason Elementary School (GW)
- James Polk Elementary School (JP)
- John Adams Elementary School (JA)
- Lyles-Crouch Elementary School (LC)
- Minnie Howard High School (MH)
- Samuel Tucker Elementary School (ST)
- William Ramsey Elementary School (WR)
- Douglas MacAurthur Elementary School (Out of Service)
- Jefferson-Houston Elementary School (JH)
- Ferdinand T. Day Elementary School (FD)
- Patrick Henry Elementary School (PH)
- Mount Vernon Community School (MV)

This IAQ assessment was conducted at George Mason Elementary School on Friday, August 16, 2021. ACPS required that the testing to be based on the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) guidelines. ACPS provided site plans and fifteen (15) sampling locations per school. Sampling locations were chosen by ACPS based on internal review of facilities maintenance records, and a review of facilities maintenance related issues. These sampling locations were selected to collect representative IAQ data in these specific areas and to document any areas of potential concern observed during the site assessment. As such, ACPS required that TEC test for the following major indoor air pollutants:

- Radon
- Mold
- TO+15 (VOCs)
- 4-polycyclohexene (4-pch)
- Formaldehyde

In accordance with ASHRAE, TEC also took measurements of the following at each school:

- Carbon Monoxide
- Carbon Dioxide
- Humidity
- Temperature
- Oxygen

<u>Summary of findings and recommendations during this limited IAQ investigation:</u>

- Radon levels recorded in all locations were less than 4pCi/L, as recommended by EPA and HUD.
- **Mold** spore levels recorded in all locations were within acceptable ranges as compared to site-specific background mold spore counts.
 - Classroom A124 staff reported water issues. TEC observed staining on floors and ceiling tiles and other signs of water intrusion. TEC performed an additional mold sampling in this location. Results were normal when compared to site-specific baseline counts. TEC would recommend that ACPS investigate the source of the water intrusion.
 - TEC observed water stains on ceiling tiles in Classroom A 109. No evidence of active water intrusion was observed. TEC would recommend that ACPS investigate the source of the water staining.
- **VOCs** The levels of volitile organic compounds (VOCs) recorded at each location were within acceptable ranges, when compared to EPA Regional Screening Levels (RSLs).
- **4-pch** levels recorded during this investigation were within the LEED (Leadership of Energy and Environmental Design) IAQ guideline of 6.5 ug/m3.
- **Formaldehyde** the levels of formaldehyde recorded at each location were within an acceptable range, compared to EPA Regional Screening Level (RSLs) of 1ug/m3.
- **Carbon monoxide** concentrations in all areas were less than the EPA and ASHRAE recommended limit of 9 ppm.
- Carbon dioxide concentrations in all tested spaces were less than the ASHRAE limit of 1,092 ppm.
- RH the relative humidity in all tested spaces was within the ASHRAE guidelines of ≤ 67%, and for the purposes of this investigation ≤ 65%. None of the tested locations had a relative humidity greater than 65%.
- **Temperature** none of the tested spaces had a temperatures greater than the ASHRAE recommended summer range of 75°F-80.5°F.

2. Assesment Methods

Under the direction of TEC Industrial Hygienist Nikki Satari; Margaret Stanger, Victoria Powers, and Channing Jackson, also of TEC, conducted IAQ inspections and air sampling on August 16, 2021. All air samples were collected three-six feet from floor level, the typical breathing zone for adults.

Mold air samples were collected with a field calibrated Environmental Monitoring Systems High Volume Sampling Pump on Allergenco-D Disposable IAQ Air Monitoring Cassettes at a flow rate of 10 liters per minute for a sample volume of 75 liters during the assessment (photograph below). The Hayes Microbial Consulting laboratory reports are included in Appendix A.

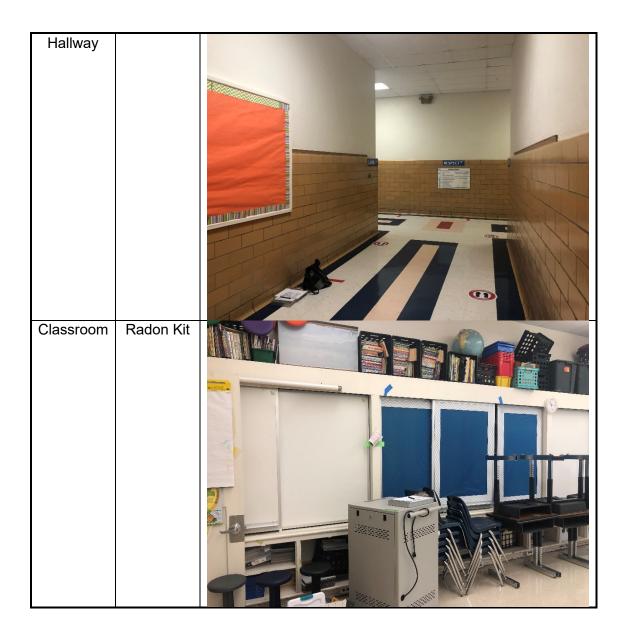
Radon gas samples were collected by securing Air Chek Radon Test Kits (photograph below). Samples were collected within the breathing zone (4-6ft from ground level) at each sample location. In accordance with Air Chek's Radon Test Kit Instructions, kits were secured to walls inside the building and away from, open windows, doors to the outside, or interior air ventilation systems. Sampling time was 72 hours. Radon analytical results can be found in Appendix B.

Formaldehyde gas air samples were collected using static Aldehyde TraceAir II Monitors (photograph below). Samples were secured to surrounding testing equipment to expose the full surface area of the sampling device for the full 4 hours of sampling time. Monitors were collected after 4 hours and processed for shipment to Phase Separation Science located in Catonsville, MD. Formaldehyde analytical results can be found in Appendix D. Photograph Below.

The 4-polycyclohexene (4-PCH) samples were collected in SKC's Anasorb CSC sorbent tubes through Gilian GilAir3 Air Sampling Pumps (photograph below). Pumps were placed within the breathing zone (4-6ft from ground level). Run times were 8 hours or time weighted 4 hour runs. 4-PCH analytical results can be found in Appendix E. Photograph Below.

TO+15 (VOCs) samples were collected using ENTECH Instruments 1.4L SUMMA canisters with an ENTECH regulator attachment (photograph below). Canisters were deployed at each location for a run time of 8 hours or a time weighted run time of 4 hours. Internal pressure readings were recorded at the start and end of each sample run time. TO+15 (VOCs) analytical results can be found in Appendix C. Photograph Below.

The temperature and relative humidity were taken with the AcuRite Digital Indoor Temperature and Humidity Monitor in the lobby of each school. Teperature and relative humidity readings can be found in Section 5 Mold Sampling Results, below.


Real-time measurements for oxygen, carbon dioxide, carbon monoxide, VOC, hydrogen sulfides were taken with multi-gas detector. These measurements can be found in Section 10 Multi-gas Detector (MSA Altair Multi-gas) Readings. Readings can be found below in Table 1. Photograph

3. <u>Visual Observations</u>

Sample Location	August 16, 2021	Visual Observations
Hallway by Classroom 18	Classroom materials were observed being stored in the hallway by classroom 18 during sampling	
Classroom 3	Classroom 3.	

4. Conditions for Human Occupancy

Conditions for Human Occupancy are addressed in ASHRAE Standard 55-2017. These standards are designed to provide comfort for an estimated 80% of occupants. The standard provides for a temperature range from between approximately 67 and 82 °F. A more specific range based on relative humidity, season, clothing worn, activity levels, and other factors can be determined. For example, the standard does not specify a lower humidity range, but notes that issues of comfort, skin irritation, dry mucous membranes, and static electricity may arise when the relative humidity is less than 30%. ASHRAE Standard 62.1-2016 does recommend an upper limit of 67% humidity to avoid conditions conducive to microbial growth. For the purposes of this investigation, TEC used a conservative upper limit of 65%. The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F.

4.1 Temperature

The recommended ASHRAE temperature range for schools and office spaces in summer is 75°F-80.5°F. The recorded relative humidity in all locations was below 65% and average indoor temperature can be found in Table 2.

4.2 Relative Humidity

ASHRAE Standard 62.1-2016 recommends a relative humidity no greater than 67% to avoid conditions conducive to microbial growth. The relative humidity observed by TEC during this investigation was observed to be below 65% in all locations. Average relative humidity can be found in Table 2.

4.3 Carbon Dioxide

Carbon dioxide (CO2) is a byproduct of combustion burning engines. Generators, furnaces, boilers, idling automobile engines. High CO2 measurements may indictae engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.4 Carbon Monoxide

Carbon monoxide (CO) is a byproduct of the combustion of fossil fuels. Generators, furnaces, boilers, idling automobile engines, may all produce CO. High CO measurements may indicate engine maintenance issues. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

4.5 Multi-gas Detector Readings

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Complete results can be found in Table 1.

5. Mold Sampling Results

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings and the HVAC system. To thrive indoors, mold requires a food source, proper temperature, and humidity to foster its growth.

Mold spores are also part of the natural environment. However, excess mold growth may arise as a result of excess moisture, i.e., high indoor humidity.

TEC conducted site-specific mold sampling outside to obtain a baseline spore count. This baseline was compared to inside mold spore counts at the designated sampling locations.

Interior spore counts above baseline readings, may indicate internal sources of mold. This would indicate a requirement for further investigation and potential mitigation.

None of the other results from the fourteen sampling locations at George Mason Elementary School were indicative of mold issues. Mold analytical results can be found in Appendix A.

6. Radon Gas Sampling Results

Radon forms as the result of the radioactive decay of uranium. Uranium is a naturally occurring radioactive by product that occurs when rock and soil breaks down. Some building materials, such as granite, may be a source of radon. Sampling areas were provided by ACPS. This did not allow for TEC to utilize the sampling protocol provided by Air Chek for performing a comprehensive survey. Air Chek Radon Test Kits collection times were a minimum of 72 hours. Test kits were then retrieved and shipped to Air Chek Inc. located in Mills River, NC. Air Chek laboratories are National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP), and American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP) certified. Analytical results can be found in Appendix B.

7. Formaldehyde Gas Sampling Results

Sources of formaldehyde are similar to sources of carbon monoxide. They include gas-burning engines and space heaters. Other sources include smoking, household products, pressed wood products, and adhesives. Analytical results can be found in Appendix D.

8. TO+15 (VOC) Sampling Results

Volatile organic compounds (VOCs), are organic chemicals emitted as gases. Carpets, flooring materials, cleaning agents, disinfectants, air fresheners, and vinyl furnishings, may all be sources of VOCs in indoor air. Analytical results can be found in Appendix C.

9. 4-pch Sampling Results

4-polycyclohexene is a common indoor air contaminant most commonly associated with "new-carpet" smell complaints. 4-pch is a byproduct of carpet manufacturing and has been associated with adverse health effects. None of the areas investigated during this study indictated elevated levels of pch. Analytical results can be found in Appendix E.

10. Multi-Gas Detector (MSA Altair Multi-gas) Readings

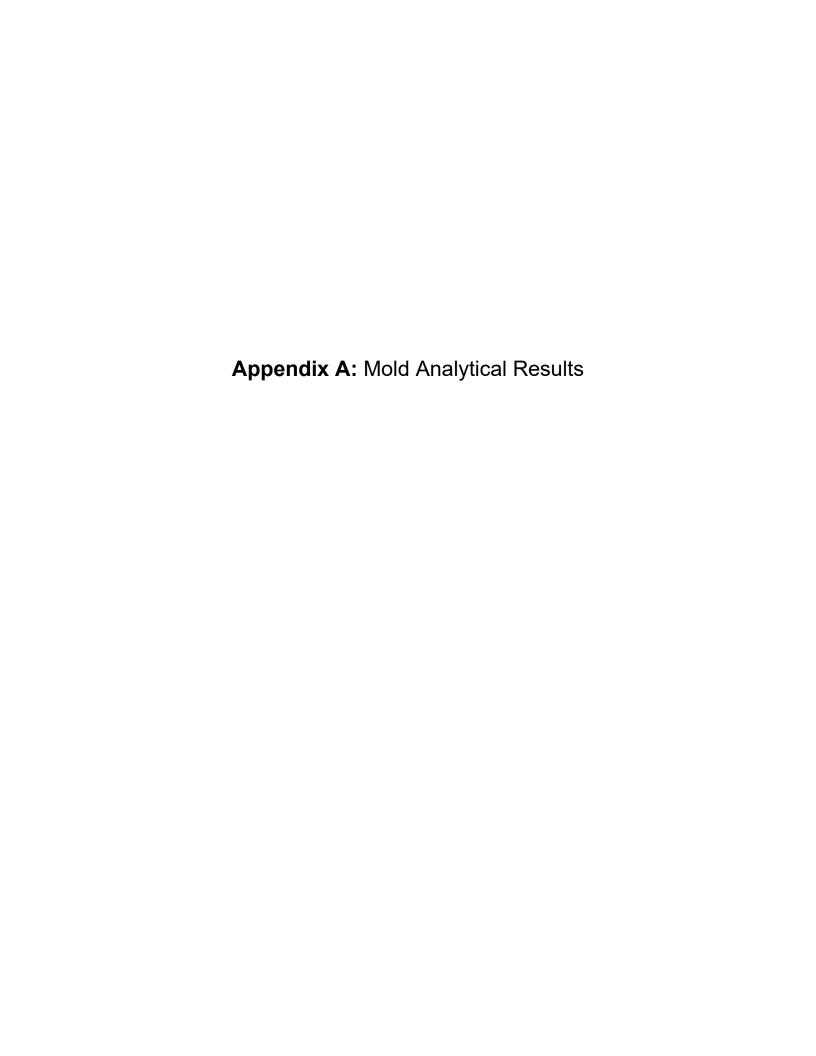

Multi-gas readings were taken at each location to document current conditions at the time of the sampling efforts and to monitor the environment between sampling locations. There were no exceedances in real-time during the IAQ investigation. Multi-gas results can be found below in Table 1.

Table 1
Multi-Gas Detector Readings

Location	VOC	СО	OXYGEN	H2S
Cafeteria	0.0	0.0	20.8	0.0
Gym	0.0	0.0	20.8	0.0
Classroom 26	0.0	0.0	20.8	0.0
Classroom 22	0.0	0.0	20.8	0.0
Hall 18	0.0	0.0	20.8	0.0
Classroom 3	0.0	0.0	20.8	0.0
Classroom 17	0.0	0.0	20.8	0.0
Classroom 13	0.0	0.0	20.8	0.0
Reception Office	0.0	0.0	20.8	0.0
Classroom 8	0.0	0.0	20.8	0.0
Library	0.0	0.0	20.8	0.0
Band Room	0.0	0.0	20.8	0.0
Office Floor 2	0.0	0.0	20.8	0.0
Hall 3	0.0	0.0	20.8	0.0
Classroom 30	0.0	0.0	20.8	0.0

Table 2

		Results of Analytes by L	ocation		
Location	Radon	Mold AVG: 81 F AVG: 45 %	TO+15 VOCs	4PCH	Formaldehyde
Cafeteria	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Gym	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 26	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 22	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Hall 18	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 3	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 17	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 13	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Reception Office	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 8	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Library	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Band Room	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Office Floor 2	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Hall 3	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL
Classroom 30	< 4 pCi/L	Spore Count Normal	< RSL	< 6.5 ug/m3	< RSL

Analysis Report prepared for

Total Environmental Concepts, Inc.

8382 Terminal Road Suite B Lorton, VA 22079

Phone: (571) 289-2173

Collected: August 16, 2021 Received: August 17, 2021 Reported: August 17, 2021 We would like to thank you for trusting Hayes Microbial for your analytical needs! We received 16 samples by FedEx in good condition for this project on August 17th, 2021.

The results in this analysis pertain only to this job, collected on the stated date, and should not be used in the interpretation of any other job. This report may not be duplicated, except in full, without the written consent of Hayes Microbial Consulting, LLC..

This laboratory bears no responsibility for sample collection activities, analytical method limitations, or your use of the test results. Interpretation and use of test results are your responsibility. Any reference to health effects or interpretation of mold levels is strictly the opinion of Hayes Microbial. In no event, shall Hayes Microbial or any of its employees be liable for lost profits or any special, incidental or consequential damages arising out of the use of these test results.

Steve Hayes, BSMT(ASCP) Laboratory Director

Hayes Microbial Consulting, LLC.

EPA Laboratory ID: VA01419

phen N. Hoyes

Lab ID: #188863

DPH License: #PH-0198

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Spore Trap Blank

SOP - HMC#101

75.00 liter 13 spores/m 1 ND Count / m³			75.00 liter 13 spores/m ³ 2 ND Count / m ³			75.00 liter 13 spores/m ³ 2 ND Count / m ³		Raw Count	GM Gym 75.00 liter 13 spores/m ³ 1 ND Count / m ³	% of Total
13 spores/m 1 ND	% of Total	Raw Count	13 spores/m ³ 2 ND Count / m ³	% of Total	Raw Count	13 spores/m ³ 2 ND Count / m ³			13 spores/m³ 1 ND	
1 ND Count / m ³	% of Total	Raw Count	2 ND	% of Total	Raw Count	2 ND			1 ND	
nt Count / m ³			ND Count / m ³			ND Count / m ³	% of Total	Raw Count	ND	% of Total
nt Count / m ³			Count / m ³			Count / m ³	% of Total	Raw Count		% of Total
							% of Total	Raw Count	Count / m ³	% of Total
							% of Total	Raw Count	Count / m°	% of Total
13	33.3%	1	13	50.0%	2					
13	33.3%	I	13	50.0%		0.7	FO 000		10	100.00
						27	50.0%	1	13	100.0%
		1	13	50.0%	1	13	25.0%			
			13	50.0%	I	13	25.0%			
27	66.7%				1	12	25.0%			
	00.7 %				<u>'</u>	13	23.0%			
3 40	100%	2	26	100%	4	53	100%	1	13	100%
			3 40 100% 2	3 40 100% 2 26	3 40 100% 2 26 100%	3 40 100% 2 26 100% 4	3 40 100% 2 26 100% 4 53	3 40 100% 2 26 100% 4 53 100%	3 40 100% 2 26 100% 4 53 100% 1	3 40 100% 2 26 100% 4 53 100% 1 13

Collected: Aug 16, 2021

Received: Aug 17, 2021

Reported: Aug 17, 2021

Project Analyst:

Ramesh Poluri, PhD

Date: 08 - 17 - 2021 Reviewed By:

Steve Hayes, BSMT

Date: 08 - 17 - 2021

contact@hayesmicrobial.com

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Spore Trap Blank

SOP - HMC#101

Sample Number	5	GM43	15307	6	GM43	15317	7	GM43	15312	8	GM43	15305	
Sample Name	GM	Classroom	30	GM	GM Hallway L 18		GM Classroom 17				GM Library		
Sample Volume		75.00 liter			75.00 liter 75.00 l		75.00 liter			75.00 liter			
Reporting Limit		13 spores/m ³		13 spores/m ³		13 spores/m ³			13 spores/m³				
Background		2			2		2			2			
Fragments		ND			ND			ND			ND		
		3	0. 57.1	D 0 .	Count / m ³	0. (7.1		3	0. (7.1		3	0. 67.1	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	
Alternaria Ascospores	2	27	66.7%	3	40	60.0%	2	27	100.0%	1	13	100.0%	
Aspergillus Penicillium		21	00.1 %		40	00.070		21	100.0%	·	10	100.0%	
Basidiospores	1	13	33.3%	2	27	40.0%							
Bipolaris Drechslera			00.010			10.0.0							
Chaetomium													
Cladosporium													
Curvularia													
Epicoccum													
Fusarium													
Memnoniella													
Myxomycetes													
Pithomyces													
Stachybotrys													
Stemphylium													
Torula													
Ulocladium													
Total	3	40	100%	5	67	100%	2	27	100%	1	13	100%	
Water Damage Indicato	r	Commo	n Allergen		Slightly Higher	than Baseline	Signi	ficantly Higher	than Baseline		Ratio Abnormal	ity	

Collected: Aug 16, 2021

Project Analyst:

Ramesh Poluri, PhD

Received: Aug 17, 2021

Reported: Aug 17, 2021

Date:

08 - 17 - 2021

Reviewed By:

Steve Hayes, BSMT

Date:

08 - 17 - 2021

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Spore Trap, Spore Trap Blank

SOP - HMC#101

Sample Number	9	GM43	15301	10	GM43	15297	11	GM43	15300	12	GM43	15295
Sample Name		GM Band			GM Office		GM Classroom 13		13	GM Hallway R13		13
Sample Volume		75.00 liter			75.00 liter		75.00 liter				75.00 liter	
Reporting Limit		13 spores/m ³		13 spores/m ³		13 spores/m³			13 spores/m ³			
Background		2			2		2			2		
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total
Alternaria				1	13	33.3%						
Ascospores	1	13	50.0%	2	27	66.7%	1	13	100.0%	1	13	50.0%
Aspergillus Penicillium												
Basidiospores	1	13	50.0%							1	13	50.0%
Bipolaris Drechslera												
Chaetomium												
Cladosporium												
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes												
Pithomyces												
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Total	2	26	100%	3	40	100%	1	13	100%	2	26	100%

Water Damage Indicator

Common Allergen

Slightly Higher than Baseline

Date:

Significantly Higher than Baseline

Ratio Abnormality

HAYES
MICROBIAL CONSULTING

Collected: Aug 16, 2021

Received: Aug 17, 2021

Reported: Aug 17, 2021

Project Analyst:

Ramesh Poluri, PhD

08 - 17 - 2021

Reviewed By:

Steve Hayes, BSMT

Date:

08 - 17 - 2021

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Spore Trap Blank

SOP - HMC#101

Sample Number	13	GM43	15294	14	GM43	15299	15	GM43	15296	16	GM43	15304
Sample Name	GM	Classroom	3	GM	Classroom	8	GM Reception			GM Outside		
Sample Volume		75.00 liter		75.00 liter		75.00 liter				75.00 liter		
Reporting Limit		13 spores/m ³		13 spores/m ³		13 spores/m ³			13 spores/m ³			
Background		2			2		2			2		
Fragments		ND			ND			ND			ND	
Organism	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total	Raw Count	Count / m ³	% of Total
Alternaria	naw Count	Count / III	% OI TOTAL	naw Count	Count / III	% OI TOTAL	naw Count	Count / III	% OI TOTAL	naw Count	Count / III	% OI TOTAL
Ascospores	2	27	66.7%	1	13	25.0%	1	13	50.0%	196	2613	59.4%
Aspergillus Penicillium			00.170	3	40	75.0%			00.010	3	40	<1%
Basidiospores	1	13	33.3%				1	13	50.0%	120	1600	36.4%
Bipolaris Drechslera												
Chaetomium												
Cladosporium										11	147	3.3%
Curvularia												
Epicoccum												
Fusarium												
Memnoniella												
Myxomycetes												
Pithomyces												
Stachybotrys												
Stemphylium												
Torula												
Ulocladium												
Total	3	40	100%	4	53	100%	2	26	100%	330	4400	100%
Water Damage Indicator			on Allergen		Slightly Higher			ficantly Higher			Ratio Abnormal	

T H AVEC

Collected: Aug 16, 2021

Project Analyst:

Ramesh Poluri, PhD

Received: Aug 17, 2021

Date:

08 - 17 - 2021

Reported: Aug 17, 2021

1

Reviewed By:

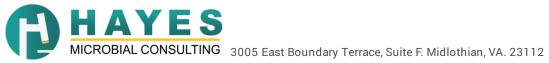
Steve Hayes, BSMT

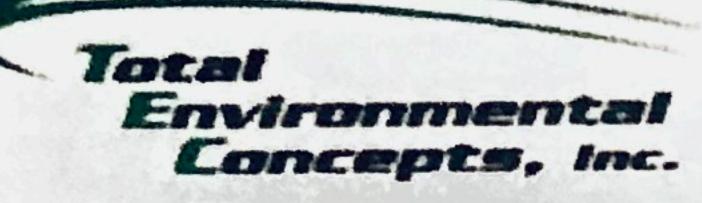
phen N. Hoyes

Date: **08 - 17 - 2021**

8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Spore Trap Information


Reporting Limit	The Reporting Limit is the lowest number of spores that can be detected based on the total volume of the sample collected and the percentage of the slide that is counted. At Hayes Microbial, 100% of the slide is read so the LOD is based solely on the total volume. Raw spore counts that exceed 500 spores will be estimated.
Blanks	Results have not been corrected for field or laboratory blanks.
Background	The Background is the amount of debris that is present in the sample. This debris consists of skin cells, dirt, dust, pollen, drywall dust and other organic and non-organic matter. As the background density increases, the likelihood of spores, especially small spores such as those of Aspergillus and Penicillium may be obscured. The background is rated on a scale of 1 to 5 and each level is determined as follows:
	 NBD: No background detected due to possible pump or cassette malfunction. Recollect sample. (Field Blanks will display NBD) 1: <5% of field occluded. No spores will be uncountable. 2: 5-25% of field occluded. 3: 25-75% of field occluded. 4: 75-90% of field occluded. 5: >90% of field occluded. Suggested recollection of sample.
Fragments	Fragments are small pieces of fungal mycelium or spores. They are not identifiable as to type and when present in very large numbers, may indicate the presence of mold amplification.
Control Comparisons	There are no national standards for the numbers of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should not exceed those that are present outdoors at any given time. There will always be some mold spores present in "normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.
Water Damage Indicator	Blue: These molds are commonly seen in conditions of prolonged water intrusion and usually indicate a problem.
Common Allergen	Green: Although all molds are potential allergens, these are the most common allergens that may be found indoors.
Slightly Higher than Baseline	Orange: The spore count is slightly higher than the outside count and may or may not indicate a source of contamination. Red: The spore count is significantly higher than the baseline count and probably indicates a source of contamination.
Significantly Higher than Baseline	
Ratio Abnormality	Violet: The types of spores found indoors should be similar to the ones that were identified in the baseline sample. Significant increases (more than 25%) in the ratio of a particular spore type may indicate the presence of abnormal levels of mold, even if the total number of spores of that type is lower in the indoor environment than it was outdoors.
Color Coding	Fungi that are present in indoor samples at levels lower than 200 per cubic meter are not color coded on the report, unless they are one of the water damage indicators.



8382 Terminal Road Suite B Lorton, VA 22079 (571) 289-2173

Organism Descriptions

Alternaria	Habitat:	Commonly found outdoors in soil and decaying plants. Indoors, it is commonly found on window sills and other horizontal surfaces.
	Effects:	A common allergen and has been associated with hypersensitivity pneumonitis. Alternaria is capable of producing toxic metabolites which may be associated with disease in humans or animals. Occasionally an agent of onychomycosis, ulcerated cutaneous infection and chronic sinusitis, principally in the immunocompromised patient.
Ascospores	Habitat:	A large group consisting of more than 3000 species of fungi. Common plant pathogens and outdoor numbers become very high following rain. Most of the genera are indistinguishable by spore trap analysis and are combined on the report.
	Effects:	Health affects are poorly studied, but many are likely to be allergenic.
Aspergillus Penicillium	Habitat:	The most common fungi isolated from the environment. Very common in soil and on decaying plant material. Are able to grow well indoors on a wide variety of substrates.
	Effects:	This group contains common allergens and many can cause hypersensitivity pneumonitis. They may cause extrinsic asthma, and many are opportunistic pathogens. Many species produce mycotoxins which may be associated with disease in humans and other animals. Toxin production is dependent on the species, the food source, competition with other organisms, and other environmental conditions.
Basidiospores	Habitat:	A common group of Fungi that includes the mushrooms and bracket fungi. They are saprophytes and plant pathogens. In wet conditions they can cause structural damage to buildings.
	Effects:	Common allergens and are also associated with hypersensitivity pneumonitis.
Cladosporium	Habitat:	One of the most common genera worldwide. Found in soil and plant debris and on the leaf surfaces of living plants. The outdoor numbers are lower in the winter and often relatively high in the summer, especially in high humidity. The outdoor numbers often spike in the late afternoon and evening. Indoors, it can be found growing on textiles, wood, sheetrock, moist window sills and in HVAC supply ducts.
	Effects:	A common allergen, producing more than 10 allergenic antigens and a common cause of hypersensitivity pneumonitis.

Placement Tech	Muggie s	Sample Type	Mold
Placement Date	8/16/21	Email	16 ford @teci.pro
Address			

Sample #	Location/ . room	Flow Rate	Sampling Time	Pump Start Time	Pump End Time	Comments
GM 43/5311	CM cafeteria	10,110	10:03 am	10:03	10'.10	
	CM Hanwaye 22/23		10:17	0:18	10:26	
GN4315316	GM Classroom 26		10'.22	10:23	10:31	
			10'145	10.45	10:53	
CM 4315307	GM CLUSSIDOM 30		10:45	101.48	10:56	
CM 4315317	Com Hallway R18		11'.11	11:12	11,20	
	Cam classroom 17		11:11	11:15	11:22	
CaM4315305	CaM Library		11:37	11:37	11:44	
CaM4315301	GM Band		11:48	11',48	11:56	
CM 4315297	GMoffice		12:00	12:00	12:08	
am 4315 300	GM classroom 13		12:23	12:23	12:30	
2M4315295	Cam Hanway 123		12:38	12:39	12:46	
M4315294	CM Elassroom 3		12:49	12:50	12:57	
Cym4315299	GM classroom 8		12:51	12:51	12:58	
CM4315 296	am preception		12'.59	1:00	1:07	
GM4315304	EMGW Blank	N. Carrier and Car	12:00	12:00	12:07	
		V				

Appendix B: Radon Analytical Results

** LABORATORY ANALYSIS REPORT **

Pg 1 of 7

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723553

Result: < 0.3 pCi/l

Location:

Gm Es 3

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 8.7% 70°F

Kit #: 9723554

Result: < 0.3 pCi/l

Location:

Gm Es librory

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 11:00 am Ended: 2021-08-19 at 12:00 pm

Hours/MST%: 73 hours 18.2% 70°F

Kit #: 9723557 Result: < 0.3 pCi/l

Location:

Gm Es

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 10:00 am

Ended: 2021-08-19 at 11:00 am Hours/MST%: 73 hours 8.0% 70°F

Kit #: 9723558

Result: < 0.3 pCi/l

Location:

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm

Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 12:00 pm Hours/MST%: 74 hours 16.5% 70°F

Gm Es Band

Kit #: 9723563 Result: < 0.3 pCi/l

Location:

Gm Es OFFICE

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 11:00 am

Ended: 2021-08-19 at 12:00 pm Hours/MST%: 73 hours 17.6% 70°F

Kit #: 9723564 Result: < 0.3 pCi/l

Location:

Gm Es hall 3a

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm

Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 11.5% 70°F

** LABORATORY ANALYSIS REPORT **

Pg 2 of 7

Attention: P8184 / LE	EILA DEAN / TOTAL	ENVIRONMENTAL	CONCEPTS
-----------------------	-------------------	----------------------	----------

Kit #: 9723569

Result: < 0.3 pCi/l

Location:

Gm Es

Kit #: 9723570

Result: < 0.3 pCi/l

Location:

reception Gm Es

Kit #: 9723571 Result: < 0.3 pCi/l

Result: < 0.3 pCi/l

Result: < 0.3 pCi/l

Location:

hall 18 Gm Es

Kit #: 9723572

Location:

Gm Es

Kit #: 9723573

Location:

Gm Es

Kit #: 9723574

Result: < 0.3 pCi/l

Location:

Gm Es

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 10.2% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 9.7% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm

Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 12.1% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am

Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 9.4% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 11:00 am Started: 2021-08-16 at 10:00 am

Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 14.4% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm

Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am

Hours/MST%: 73 hours 10.9% 70°F

** LABORATORY ANALYSIS REPORT **

Pg 3 of 7

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723575

Result: < 0.3 pCi/l

Location:

Gm Es Gym 2

Kit #: 9723576 Result: < 0.3 pCi/l

Location:

Gm Es Gym \

Kit #: 9723577 Result: < 0.3 pCi/l

Location:

hall 22 Gm Es

Kit #: 9723578 Result: < 0.3 pCi/l

Location:

Gm Es COFE 2

Kit #: 9723579 Result: < 0.3 pCi/l

Location:

Gm Es CWE |

Kit #: 9723580

Result: ????

Location:

(ase) Gm Es

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am Hours/MST%: 73 hours 17.1% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 11:00 am Hours/MST%: 73 hours 17.0% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 10:00 am Ended: 2021-08-19 at 10:00 am

Hours/MST%: 72 hours 13.8% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 9:00 am Ended: 2021-08-19 at 10:00 am

Hours/MST%: 73 hours 19.3% 70°F

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 9:00 am Ended: 2021-08-19 at 10:00 am Hours/MST%: 73 hours 17.1% 70°F

Analysis Note: WI

Analyzed: 2021-08-23 at 12:00 pm Started: 2021-08-16 at 9:00 am

Ended: 2021-08-19 at 10:00 am

Hours/MST%: 73 hours 20.8% 70°F

** LABORATORY ANALYSIS REPORT **

Pg 4 of 7

Attention: P8184 / LEILA DEAN / TOTAL ENVIRONMENTAL CONCEPTS

Kit #: 9723581

Result: < 0.3 pCi/l

Location:

Gm Es Cufe B

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm

Started: 2021-08-16 at 9:00 am

Ended: 2021-08-19 at 10:00 am

Hours/MST%: 73 hours 6.6% 70°F

Kit #: 9723583

Result: < 0.3 pCi/l

Location:

library 2

Analysis Note:

Analyzed: 2021-08-23 at 12:00 pm

Started: 2021-08-16 at 11:00 am

Ended: 2021-08-19 at 12:00 pm

Hours/MST%: 73 hours 17.0% 70°F

		-
Total		- Annahari
	onmen	tal
Con	cepts,	Inc.

Placement Tech	Muggie s	Sample Type	Mold
Placement Date	8/16/21	Email	Kford@teci.pro
Address			

	VALUE OF THE PARTY				
	Flow Rate			Pump End Time	Comments
	10,111				
GM GYM					- 0
GM CLUSSIDOM 30					
GMHallway R18		11, 11		11,20	
Cam classroom 17		11:11	11:15	11:22	
a M Library		11:37	11:37	11:44	
		11:48	11:48	11:56	
11/2		12:00	12:00	12:08	
		12:23	12:13	12130	
		12:38	12:39	12:46	
		12:49	12:50	12:57	
	1	12:51	12:51	12:58	
		12:59	1:00	1:07	
	.*	12:00	12:00	12:07	
			012: 98-3	17-2021	21030239
		CM cafeteria CM Hallway 22223 CM Classroom 26 CM Classroom 30 CM Classroom 30 CM Hallway R) 8 CM Classroom 17 CM Library CM Band CM Classroom 13 CM Classroom 13 CM Classroom 13 CM Classroom 3 CM Classroom 3 CM Classroom 3 CM Classroom 8 CM Classroom 8 CM Reception	CM cafeteria CM Hallways22823 CM Classroom 26 CM Classroom 26 CM Classroom 30 CM Classroom 30 CM Classroom 17 CM Classroom 17 CM Classroom 17 CM Library CM Classroom 13 CM Classroom 13 CM Classroom 13 CM Classroom 13 CM Classroom 3 CM Classroom 8 CM Clas	CM CAFETERIA 10.1/M 10:03 am 10:03 CM HILLWAYEZZEZ3 10:17 10:18 CM CLASSFORM 26 10:45 CM CLASSFORM 30 10:45 CM CLASSFORM 30 10:45 CM CLASSFORM 30 11:11 11:12 CM CLASSFORM 17 11:11 11:15 CM LIBRARY 11:37 11:37 CM Band 11:48 11:48 CM CLASSFORM 3 12:23 CM CLASSFORM 3 12:23 CM CLASSFORM 3 12:39 CM CLASSFORM 3 12:39 CM CLASSFORM 3 12:51 CM CLASSFORM 3 12:51 CM CLASSFORM 3 12:59 CM CLASSFORM 3 12:50 CM C	CM Cafeteria 10.11/m 10:03 am 10:03 10:10 CM Hillway (22) (23) 10:27 10:28 10:36 CM Classroom 26 10:27 10:28 10:31 CM CYM 10:45 10:45 10:53 CM Classroom 30 10:45 10:48 10:56 CM Hallway R) 8 11:11 11:12 11:20 CM Classroom 17 11:11 11:15 11:22 CM Library 11:37 11:37 11:44 CM Band 11:48 11:48 11:56 CM Classroom 13 12:23 12:00 12:08 CM Classroom 13 12:23 12:39 12:39 CM Classroom 3 12:40 CM Classroom 3 12:40 CM Classroom 3 12:51 12:57 CM Classroom 8 12:59 1:00 11:07

CPP 8/17/21

Appendix C: VOCs (TO+15) Analytical Results

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081828

August 25, 2021

Karl Ford
Total Environmental Concepts - Lorton
8382 Terminal Road, Suite B
Lorton, VA 22079

Reference: PSS Project No: 21081828

Project Name: ACPS IAQ Testing

Project Location: George Mason Elementary

Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21081828**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 22, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

TNI ABORATORI

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081828

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/18/2021 at 03:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21081828-001	GM - Class 3	AIR	08/16/21 20:24
21081828-002	GM - Hallway 3	AIR	08/16/21 20:27
21081828-003	GM - Reception	AIR	08/16/21 20:31
21081828-004	GM - Class 8	AIR	08/16/21 20:35
21081828-005	GM - Class 13	AIR	08/16/21 20:40
21081828-006	GM - Class 17	AIR	08/16/21 20:43
21081828-007	GM - Hallway 18	AIR	08/16/21 20:49
21081828-008	GM - Gym	AIR	08/16/21 20:54
21081828-009	GM - Class 30	AIR	08/16/21 20:56
21081828-010	GM - Class 26	AIR	08/16/21 21:03
21081828-011	GM - Hallway 22	AIR	08/16/21 21:07
21081828-012	GM - Cafeteria	AIR	08/16/21 20:31
21081828-013	GM - Library	AIR	08/16/21 20:19
21081828-014	GM - Band Room	AIR	08/16/21 20:15
21081828-015	GM - Office	AIR	08/16/21 21:15

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

SCIENCE

Project Name: ACPS IAQ Testing

PSS Project No.: 21081828

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 3 Date/Time Sampled: 08/16/2021 20:24 PSS Sample ID: 21081828-001

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

Qualifier(s): See Batch 186939 on Case Narrative.

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	25	ug/M3	9.5	1	08/19/21	08/19/21 21:10	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/19/21 21:10	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/19/21 21:10	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/19/21 21:10	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/19/21 21:10	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/19/21 21:10	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/19/21 21:10	1014
2-Butanone (MEK)	2.8	ug/M3	1.5	1	08/19/21	08/19/21 21:10	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/19/21 21:10	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/19/21 21:10	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/19/21 21:10	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/19/21 21:10	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/19/21 21:10	1014
Chloromethane	0.87	ug/M3	0.41	1	08/19/21	08/19/21 21:10	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/19/21 21:10	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/19/21 21:10	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/19/21 21:10	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 21:10	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 21:10	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 21:10	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 21:10	1014
Dichlorodifluoromethane	1.3	ug/M3	0.99	1	08/19/21	08/19/21 21:10	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 21:10	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 21:10	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 21:10	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 21:10	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 21:10	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/19/21 21:10	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 21:10	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 21:10	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 21:10	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/19/21 21:10	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/19/21 21:10	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/19/21 21:10	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/19/21 21:10	1014

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 3 Date/Time Sampled: 08/16/2021 20:24 PSS Sample ID: 21081828-001

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

Qualifier(s): See Batch 186939 on Case Narrative.

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/19/21 21:10	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/19/21 21:10	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/19/21 21:10	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 21:10	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 21:10	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/19/21 21:10	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 21:10	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/19/21 21:10	1014
Naphthalene	1.4	ug/M3	0.52	1	08/19/21	08/19/21 21:10	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/19/21 21:10	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 21:10	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/19/21 21:10	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 21:10	1014
Tetrachloroethene	2.4	ug/M3	1.4	1	08/19/21	08/19/21 21:10	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/19/21 21:10	1014
Toluene	2.1	ug/M3	0.38	1	08/19/21	08/19/21 21:10	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/19/21 21:10	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 21:10	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 21:10	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/19/21 21:10	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 21:10	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 21:10	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 21:10	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 21:10	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/19/21 21:10	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/19/21 21:10	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/19/21 21:10	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/19/21 21:10	1014
m&p-Xylene	0.87	ug/M3	0.87	1	08/19/21	08/19/21 21:10	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/19/21 21:10	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	101	%	87-120	1	08/19/21	08/19/21 21:10	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Hallway 3 Date/Time Sampled: 08/16/2021 20:27 PSS Sample ID: 21081828-002

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	14	ug/M3	9.5	1	08/19/21	08/19/21 22:04	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/19/21 22:04	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/19/21 22:04	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/19/21 22:04	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/19/21 22:04	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/19/21 22:04	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/19/21 22:04	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:04	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/19/21 22:04	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/19/21 22:04	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/19/21 22:04	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/19/21 22:04	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:04	1014
Chloromethane	0.83	ug/M3	0.41	1	08/19/21	08/19/21 22:04	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/19/21 22:04	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/19/21 22:04	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/19/21 22:04	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:04	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 22:04	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 22:04	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 22:04	1014
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/19/21	08/19/21 22:04	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 22:04	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 22:04	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 22:04	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 22:04	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 22:04	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/19/21 22:04	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 22:04	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 22:04	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 22:04	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/19/21 22:04	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/19/21 22:04	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/19/21 22:04	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:04	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Hallway 3 Date/Time Sampled: 08/16/2021 20:27 PSS Sample ID: 21081828-002

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/19/21 22:04	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/19/21 22:04	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/19/21 22:04	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 22:04	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:04	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/19/21 22:04	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 22:04	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/19/21 22:04	1014
Naphthalene	0.63	ug/M3	0.52	1	08/19/21	08/19/21 22:04	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/19/21 22:04	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:04	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/19/21 22:04	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 22:04	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/19/21 22:04	1014
Tetrahydrofuran	1.1	ug/M3	0.59	1	08/19/21	08/19/21 22:04	1014
Toluene	0.94	ug/M3	0.38	1	08/19/21	08/19/21 22:04	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:04	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:04	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:04	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:04	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:04	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:04	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:04	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:04	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/19/21 22:04	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/19/21 22:04	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/19/21 22:04	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/19/21 22:04	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/19/21	08/19/21 22:04	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/19/21 22:04	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	103	%	87-120	1	08/19/21	08/19/21 22:04	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Reception Date/Time Sampled: 08/16/2021 20:31 PSS Sample ID: 21081828-003

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	20	ug/M3	9.5	1	08/19/21	08/19/21 22:58	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/19/21 22:58	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/19/21 22:58	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/19/21 22:58	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/19/21 22:58	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/19/21 22:58	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/19/21 22:58	1014
2-Butanone (MEK)	1.6	ug/M3	1.5	1	08/19/21	08/19/21 22:58	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/19/21 22:58	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/19/21 22:58	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/19/21 22:58	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/19/21 22:58	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:58	1014
Chloromethane	0.72	ug/M3	0.41	1	08/19/21	08/19/21 22:58	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/19/21 22:58	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/19/21 22:58	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/19/21 22:58	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:58	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 22:58	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 22:58	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 22:58	1014
Dichlorodifluoromethane	1.2	ug/M3	0.99	1	08/19/21	08/19/21 22:58	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 22:58	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 22:58	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 22:58	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 22:58	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 22:58	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/19/21 22:58	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 22:58	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 22:58	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 22:58	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/19/21 22:58	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/19/21 22:58	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/19/21 22:58	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:58	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Reception Date/Time Sampled: 08/16/2021 20:31 PSS Sample ID: 21081828-003

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/19/21 22:58	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/19/21 22:58	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/19/21 22:58	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 22:58	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:58	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/19/21 22:58	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 22:58	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/19/21 22:58	1014
Naphthalene	ND	ug/M3	0.52	1	08/19/21	08/19/21 22:58	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/19/21 22:58	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:58	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/19/21 22:58	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 22:58	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/19/21 22:58	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/19/21 22:58	1014
Toluene	1.4	ug/M3	0.38	1	08/19/21	08/19/21 22:58	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:58	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:58	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:58	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:58	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 22:58	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 22:58	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:58	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 22:58	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/19/21 22:58	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/19/21 22:58	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/19/21 22:58	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/19/21 22:58	1014
m&p-Xylene	1.0	ug/M3	0.87	1	08/19/21	08/19/21 22:58	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/19/21 22:58	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	103	%	87-120	1	08/19/21	08/19/21 22:58	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 8 Date/Time Sampled: 08/16/2021 20:35 PSS Sample ID: 21081828-004

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	80	ug/M3	24	2.5	08/19/21	08/20/21 18:24	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/19/21 23:52	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/19/21 23:52	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/19/21 23:52	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/19/21 23:52	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/19/21 23:52	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/19/21 23:52	1014
2-Butanone (MEK)	28	ug/M3	1.5	1	08/19/21	08/19/21 23:52	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/19/21 23:52	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/19/21 23:52	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/19/21 23:52	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/19/21 23:52	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/19/21 23:52	1014
Chloromethane	0.87	ug/M3	0.41	1	08/19/21	08/19/21 23:52	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/19/21 23:52	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/19/21 23:52	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/19/21 23:52	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 23:52	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 23:52	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 23:52	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/19/21 23:52	1014
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/19/21	08/19/21 23:52	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 23:52	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/19/21 23:52	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 23:52	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 23:52	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/19/21 23:52	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/19/21 23:52	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 23:52	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/19/21 23:52	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 23:52	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/19/21 23:52	1014
Ethyl Acetate	0.94	ug/M3	0.72	1	08/19/21	08/19/21 23:52	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/19/21 23:52	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/19/21 23:52	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 8 Date/Time Sampled: 08/16/2021 20:35 PSS Sample ID: 21081828-004

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

	_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane		ND	ug/M3	0.82	1	08/19/21	08/19/21 23:52	1014
Hexachlorobut	tadiene	ND	ug/M3	2.1	1	08/19/21	08/19/21 23:52	1014
n-Hexane		ND	ug/M3	14	1	08/19/21	08/19/21 23:52	1014
2-Hexanone (M	MBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 23:52	1014
Isopropylbenze	ene	ND	ug/M3	0.98	1	08/19/21	08/19/21 23:52	1014
Methylene Chl	oride	ND	ug/M3	14	1	08/19/21	08/19/21 23:52	1014
4-Methyl-2-Pe	ntanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/19/21 23:52	1014
Methyl-t-Butyl	Ether	ND	ug/M3	0.36	1	08/19/21	08/19/21 23:52	1014
Naphthalene		ND	ug/M3	0.52	1	08/19/21	08/19/21 23:52	1014
Propylene		ND	ug/M3	1.7	1	08/19/21	08/19/21 23:52	1014
n-Propylbenze	ene	ND	ug/M3	0.98	1	08/19/21	08/19/21 23:52	1014
Styrene		ND	ug/M3	4.3	1	08/19/21	08/19/21 23:52	1014
1,1,2,2-Tetracl	hloroethane	ND	ug/M3	1.4	1	08/19/21	08/19/21 23:52	1014
Tetrachloroeth	ene	ND	ug/M3	1.4	1	08/19/21	08/19/21 23:52	1014
Tetrahydrofura	an	ND	ug/M3	0.59	1	08/19/21	08/19/21 23:52	1014
Toluene		8.3	ug/M3	0.38	1	08/19/21	08/19/21 23:52	1014
1,2,4-Trichloro	benzene	ND	ug/M3	1.5	1	08/19/21	08/19/21 23:52	1014
1,1,1-Trichloro	ethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 23:52	1014
1,1,2-Trichloro	ethane	ND	ug/M3	1.1	1	08/19/21	08/19/21 23:52	1014
Trichloroethen	е	ND	ug/M3	1.1	1	08/19/21	08/19/21 23:52	1014
Trichlorofluoro	methane	ND	ug/M3	1.1	1	08/19/21	08/19/21 23:52	1014
1,1,2-Trichloro	trifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/19/21 23:52	1014
1,2,4-Trimethy	lbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 23:52	1014
1,3,5-Trimethy	lbenzene	ND	ug/M3	0.98	1	08/19/21	08/19/21 23:52	1014
2,2,4-Trimethy	Ipentane	ND	ug/M3	0.93	1	08/19/21	08/19/21 23:52	1014
Vinyl acetate		ND	ug/M3	1.8	1	08/19/21	08/19/21 23:52	1014
Bromoethene		ND	ug/M3	0.87	1	08/19/21	08/19/21 23:52	1014
Vinyl chloride		ND	ug/M3	0.51	1	08/19/21	08/19/21 23:52	1014
m&p-Xylene		ND	ug/M3	0.87	1	08/19/21	08/19/21 23:52	1014
o-Xylene		ND	ug/M3	0.43	1	08/19/21	08/19/21 23:52	1014
	Surrogate(s)	Recovery		Limits				
	4-Bromofluorobenzene	103	%	87-120	1	08/19/21	08/19/21 23:52	1014
	4-Bromofluorobenzene	98	%	87-120	2.5	08/20/21	08/20/21 18:24	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 13 Date/Time Sampled: 08/16/2021 20:40 PSS Sample ID: 21081828-005

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	31	ug/M3	9.5	1	08/19/21	08/20/21 00:46	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/20/21 00:46	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/20/21 00:46	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/20/21 00:46	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/20/21 00:46	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/20/21 00:46	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/20/21 00:46	1014
2-Butanone (MEK)	2.6	ug/M3	1.5	1	08/19/21	08/20/21 00:46	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/20/21 00:46	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/20/21 00:46	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/20/21 00:46	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/20/21 00:46	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/20/21 00:46	1014
Chloromethane	0.89	ug/M3	0.41	1	08/19/21	08/20/21 00:46	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/20/21 00:46	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/20/21 00:46	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/20/21 00:46	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 00:46	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 00:46	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 00:46	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 00:46	1014
Dichlorodifluoromethane	1.3	ug/M3	0.99	1	08/19/21	08/20/21 00:46	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 00:46	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 00:46	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 00:46	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 00:46	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 00:46	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/20/21 00:46	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 00:46	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 00:46	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 00:46	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/20/21 00:46	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/20/21 00:46	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/20/21 00:46	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/20/21 00:46	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 13 Date/Time Sampled: 08/16/2021 20:40 PSS Sample ID: 21081828-005

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	•	08/19/21	08/20/21 00:46	1014
Hexachlorobutadiene	ND	ug/M3	2.1	•	08/19/21	08/20/21 00:46	1014
n-Hexane	ND	ug/M3	14	•	08/19/21	08/20/21 00:46	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	•	08/19/21	08/20/21 00:46	1014
Isopropylbenzene	ND	ug/M3	0.98	•	08/19/21	08/20/21 00:46	1014
Methylene Chloride	ND	ug/M3	14	•	08/19/21	08/20/21 00:46	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	•	08/19/21	08/20/21 00:46	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	•	08/19/21	08/20/21 00:46	1014
Naphthalene	ND	ug/M3	0.52	•	08/19/21	08/20/21 00:46	1014
Propylene	ND	ug/M3	1.7	•	08/19/21	08/20/21 00:46	1014
n-Propylbenzene	ND	ug/M3	0.98	•	08/19/21	08/20/21 00:46	1014
Styrene	ND	ug/M3	4.3	•	08/19/21	08/20/21 00:46	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	•	08/19/21	08/20/21 00:46	1014
Tetrachloroethene	ND	ug/M3	1.4	•	08/19/21	08/20/21 00:46	1014
Tetrahydrofuran	ND	ug/M3	0.59	•	08/19/21	08/20/21 00:46	1014
Toluene	5.2	ug/M3	0.38	•	08/19/21	08/20/21 00:46	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	•	08/19/21	08/20/21 00:46	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	•	08/19/21	08/20/21 00:46	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	•	08/19/21	08/20/21 00:46	1014
Trichloroethene	ND	ug/M3	1.1	•	08/19/21	08/20/21 00:46	1014
Trichlorofluoromethane	ND	ug/M3	1.1	•	08/19/21	08/20/21 00:46	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	•	08/19/21	08/20/21 00:46	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	•	08/19/21	08/20/21 00:46	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	•	08/19/21	08/20/21 00:46	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	•	08/19/21	08/20/21 00:46	1014
Vinyl acetate	ND	ug/M3	1.8	•	08/19/21	08/20/21 00:46	1014
Bromoethene	ND	ug/M3	0.87	•	08/19/21	08/20/21 00:46	1014
Vinyl chloride	ND	ug/M3	0.51	•	08/19/21	08/20/21 00:46	1014
m&p-Xylene	1.1	ug/M3	0.87	•	08/19/21	08/20/21 00:46	1014
o-Xylene	ND	ug/M3	0.43	,	08/19/21	08/20/21 00:46	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	102	%	87-120		1 08/19/21	08/20/21 00:46	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 17 Date/Time Sampled: 08/16/2021 20:43 PSS Sample ID: 21081828-006

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	14	ug/M3	9.5	1	08/19/21	08/20/21 01:39	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/20/21 01:39	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/20/21 01:39	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/20/21 01:39	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/20/21 01:39	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/20/21 01:39	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/20/21 01:39	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/19/21	08/20/21 01:39	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/20/21 01:39	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/20/21 01:39	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/20/21 01:39	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/20/21 01:39	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/20/21 01:39	1014
Chloromethane	0.85	ug/M3	0.41	1	08/19/21	08/20/21 01:39	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/20/21 01:39	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/20/21 01:39	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/20/21 01:39	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 01:39	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 01:39	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 01:39	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 01:39	1014
Dichlorodifluoromethane	1.5	ug/M3	0.99	1	08/19/21	08/20/21 01:39	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 01:39	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 01:39	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 01:39	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 01:39	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 01:39	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/20/21 01:39	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 01:39	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 01:39	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 01:39	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/20/21 01:39	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/20/21 01:39	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/20/21 01:39	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/20/21 01:39	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 17 Date/Time Sampled: 08/16/2021 20:43 PSS Sample ID: 21081828-006

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/20/21 01:39	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/20/21 01:39	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/20/21 01:39	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 01:39	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 01:39	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/20/21 01:39	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 01:39	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/20/21 01:39	1014
Naphthalene	ND	ug/M3	0.52	1	08/19/21	08/20/21 01:39	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/20/21 01:39	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 01:39	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/20/21 01:39	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 01:39	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/20/21 01:39	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/20/21 01:39	1014
Toluene	1.1	ug/M3	0.38	1	08/19/21	08/20/21 01:39	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/20/21 01:39	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 01:39	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 01:39	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/20/21 01:39	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 01:39	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 01:39	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 01:39	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 01:39	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/20/21 01:39	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/20/21 01:39	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/20/21 01:39	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/20/21 01:39	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/19/21	08/20/21 01:39	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/20/21 01:39	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	99	%	87-120	1	08/19/21	08/20/21 01:39	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Hallway 18 Date/Time Sampled: 08/16/2021 20:49 PSS Sample ID: 21081828-007

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	17	ug/M3	9.5	1	08/19/21	08/20/21 02:33	1014
Benzene	ND	ug/M3	0.32	1	08/19/21	08/20/21 02:33	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/20/21 02:33	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/20/21 02:33	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/20/21 02:33	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/20/21 02:33	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/20/21 02:33	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/19/21	08/20/21 02:33	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/20/21 02:33	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/20/21 02:33	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/20/21 02:33	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/20/21 02:33	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/20/21 02:33	1014
Chloromethane	0.91	ug/M3	0.41	1	08/19/21	08/20/21 02:33	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/20/21 02:33	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/20/21 02:33	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/20/21 02:33	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 02:33	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 02:33	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 02:33	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 02:33	1014
Dichlorodifluoromethane	1.5	ug/M3	0.99	1	08/19/21	08/20/21 02:33	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 02:33	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 02:33	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 02:33	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 02:33	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 02:33	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/20/21 02:33	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 02:33	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 02:33	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 02:33	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/20/21 02:33	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/20/21 02:33	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/20/21 02:33	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/20/21 02:33	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Hallway 18 Date/Time Sampled: 08/16/2021 20:49 PSS Sample ID: 21081828-007

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/20/21 02:33	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/20/21 02:33	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/20/21 02:33	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 02:33	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 02:33	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/20/21 02:33	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 02:33	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/20/21 02:33	1014
Naphthalene	ND	ug/M3	0.52	1	08/19/21	08/20/21 02:33	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/20/21 02:33	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 02:33	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/20/21 02:33	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 02:33	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/20/21 02:33	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/20/21 02:33	1014
Toluene	1.5	ug/M3	0.38	1	08/19/21	08/20/21 02:33	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/20/21 02:33	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 02:33	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 02:33	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/20/21 02:33	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 02:33	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 02:33	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 02:33	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 02:33	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/20/21 02:33	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/20/21 02:33	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/20/21 02:33	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/20/21 02:33	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/19/21	08/20/21 02:33	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/20/21 02:33	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	100	%	87-120	1	08/19/21	08/20/21 02:33	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Gym Date/Time Sampled: 08/16/2021 20:54 PSS Sample ID: 21081828-008

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

Acetone 17 ug/M3 9.5 1 08/19/21 08/20/21 03:27 1014 Benzene ND ug/M3 0.32 1 08/19/21 08/20/21 03:27 1014 Benzyl Chloride ND ug/M3 1.0 1 08/19/21 08/20/21 03:27 1014 Bromodichloromethane ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Bromoform ND ug/M3 2.1 1 08/19/21 08/20/21 03:27 1014 Bromomethane ND ug/M3 0.78 1 08/19/21 08/20/21 03:27 1014 1,3-Butadiene ND ug/M3 0.44 1 08/19/21 08/20/21 03:27 1014 2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 1.2 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1		Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Benzyl Chloride ND ug/M3 1.0 1 08/19/21 08/20/21 03:27 1014 Bromodichloromethane ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Bromoform ND ug/M3 2.1 1 08/19/21 08/20/21 03:27 1014 Bromomethane ND ug/M3 0.78 1 08/19/21 08/20/21 03:27 1014 1,3-Butadiene ND ug/M3 0.44 1 08/19/21 08/20/21 03:27 1014 2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 1.2 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.98	Acetone	17	ug/M3	9.5	1	08/19/21	08/20/21 03:27	1014
Bromodichloromethane ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Bromoform ND ug/M3 2.1 1 08/19/21 08/20/21 03:27 1014 Bromomethane ND ug/M3 0.78 1 08/19/21 08/20/21 03:27 1014 1,3-Butadiene ND ug/M3 0.44 1 08/19/21 08/20/21 03:27 1014 2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 1.2 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41	Benzene	ND	ug/M3	0.32	1	08/19/21	08/20/21 03:27	1014
Bromoform ND ug/M3 2.1 1 08/19/21 08/20/21 03:27 1014 Bromomethane ND ug/M3 0.78 1 08/19/21 08/20/21 03:27 1014 1,3-Butadiene ND ug/M3 0.44 1 08/19/21 08/20/21 03:27 1014 2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 12 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1	Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/20/21 03:27	1014
Bromomethane ND ug/M3 0.78 1 08/19/21 08/20/21 03:27 1014 1,3-Butadiene ND ug/M3 0.44 1 08/19/21 08/20/21 03:27 1014 2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 12 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/20/21 03:27	1014
1,3-Butadiene ND ug/M3 0.44 1 08/19/21 08/20/21 03:27 1014 2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 12 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Bromoform	ND	ug/M3	2.1	1	08/19/21	08/20/21 03:27	1014
2-Butanone (MEK) 1.7 ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014 Carbon Disulfide ND ug/M3 12 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroethane ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/20/21 03:27	1014
Carbon Disulfide ND ug/M3 12 1 08/19/21 08/20/21 03:27 1014 Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chlorofethane ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/20/21 03:27	1014
Carbon Tetrachloride ND ug/M3 1.3 1 08/19/21 08/20/21 03:27 1014 Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroethane ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	2-Butanone (MEK)	1.7	ug/M3	1.5	1	08/19/21	08/20/21 03:27	1014
Chlorobenzene ND ug/M3 0.92 1 08/19/21 08/20/21 03:27 1014 Chloroethane ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/20/21 03:27	1014
Chloroethane ND ug/M3 0.53 1 08/19/21 08/20/21 03:27 1014 Chloroform ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/20/21 03:27	1014
Chloroform ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014 Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/20/21 03:27	1014
Chloromethane 0.91 ug/M3 0.41 1 08/19/21 08/20/21 03:27 1014 Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/20/21 03:27	1014
Allyl Chloride (3-Chloropropene) ND ug/M3 0.63 1 08/19/21 08/20/21 03:27 1014	Chloroform	ND	ug/M3	0.98	1	08/19/21	08/20/21 03:27	1014
•	Chloromethane	0.91	ug/M3	0.41	1	08/19/21	08/20/21 03:27	1014
	Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/20/21 03:27	1014
Cyclohexane ND ug/M3 0.69 1 08/19/21 08/20/21 03:27 1014	Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/20/21 03:27	1014
Dibromochloromethane ND ug/M3 1.7 1 08/19/21 08/20/21 03:27 1014	Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/20/21 03:27	1014
1,2-Dibromoethane ND ug/M3 1.5 1 08/19/21 08/20/21 03:27 1014	1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 03:27	1014
1,2-Dichlorobenzene ND ug/M3 1.2 1 08/19/21 08/20/21 03:27 1014	1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 03:27	1014
1,3-Dichlorobenzene ND ug/M3 1.2 1 08/19/21 08/20/21 03:27 1014	1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 03:27	1014
1,4-Dichlorobenzene ND ug/M3 1.2 1 08/19/21 08/20/21 03:27 1014	1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 03:27	1014
Dichlorodifluoromethane 1.4 ug/M3 0.99 1 08/19/21 08/20/21 03:27 1014	Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/19/21	08/20/21 03:27	1014
1,1-Dichloroethane ND ug/M3 0.81 1 08/19/21 08/20/21 03:27 1014	1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 03:27	1014
1,2-Dichloroethane ND ug/M3 0.81 1 08/19/21 08/20/21 03:27 1014	1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 03:27	1014
1,1-Dichloroethene ND ug/M3 0.79 1 08/19/21 08/20/21 03:27 1014	1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 03:27	1014
cis-1,2-Dichloroethene ND ug/M3 0.79 1 08/19/21 08/20/21 03:27 1014	cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 03:27	1014
trans-1,2-dichloroethene ND ug/M3 0.79 1 08/19/21 08/20/21 03:27 1014	trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 03:27	1014
1,2-Dichloropropane ND ug/M3 1.8 1 08/19/21 08/20/21 03:27 1014	1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/20/21 03:27	1014
cis-1,3-Dichloropropene ND ug/M3 0.91 1 08/19/21 08/20/21 03:27 1014	cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 03:27	1014
trans-1,3-dichloropropene ND ug/M3 0.91 1 08/19/21 08/20/21 03:27 1014	trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 03:27	1014
1,2-Dichlorotetrafluoroethane ND ug/M3 1.4 1 08/19/21 08/20/21 03:27 1014	1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 03:27	1014
1,4-Dioxane (P-Dioxane) ND ug/M3 3.6 1 08/19/21 08/20/21 03:27 1014	1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/20/21 03:27	1014
Ethyl Acetate ND ug/M3 0.72 1 08/19/21 08/20/21 03:27 1014	Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/20/21 03:27	1014
Ethylbenzene ND ug/M3 0.43 1 08/19/21 08/20/21 03:27 1014	Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/20/21 03:27	1014
4-Ethyltoluene ND ug/M3 0.98 1 08/19/21 08/20/21 03:27 1014	4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/20/21 03:27	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Gym Date/Time Sampled: 08/16/2021 20:54 PSS Sample ID: 21081828-008

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/20/21 03:27	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/20/21 03:27	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/20/21 03:27	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 03:27	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 03:27	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/20/21 03:27	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 03:27	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/20/21 03:27	1014
Naphthalene	ND	ug/M3	0.52	1	08/19/21	08/20/21 03:27	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/20/21 03:27	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 03:27	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/20/21 03:27	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 03:27	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/20/21 03:27	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/20/21 03:27	1014
Toluene	0.75	ug/M3	0.38	1	08/19/21	08/20/21 03:27	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/20/21 03:27	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 03:27	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 03:27	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/20/21 03:27	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 03:27	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 03:27	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 03:27	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 03:27	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/20/21 03:27	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/20/21 03:27	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/20/21 03:27	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/20/21 03:27	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/19/21	08/20/21 03:27	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/20/21 03:27	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	100	%	87-120	1	08/19/21	08/20/21 03:27	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 30 Date/Time Sampled: 08/16/2021 20:56 PSS Sample ID: 21081828-009

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	11	ug/M3	9.5	1	08/19/21	08/20/21 04:21	1014
Benzene	0.35	ug/M3	0.32	1	08/19/21	08/20/21 04:21	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/20/21 04:21	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/20/21 04:21	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/20/21 04:21	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/20/21 04:21	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/20/21 04:21	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/19/21	08/20/21 04:21	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/20/21 04:21	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/20/21 04:21	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/20/21 04:21	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/20/21 04:21	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/20/21 04:21	1014
Chloromethane	0.91	ug/M3	0.41	1	08/19/21	08/20/21 04:21	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/20/21 04:21	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/20/21 04:21	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/20/21 04:21	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 04:21	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 04:21	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 04:21	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 04:21	1014
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/19/21	08/20/21 04:21	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 04:21	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 04:21	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 04:21	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 04:21	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 04:21	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/20/21 04:21	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 04:21	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 04:21	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 04:21	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/20/21 04:21	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/20/21 04:21	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/20/21 04:21	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/20/21 04:21	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 30 Date/Time Sampled: 08/16/2021 20:56 PSS Sample ID: 21081828-009

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/20/21 04:21	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/20/21 04:21	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/20/21 04:21	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 04:21	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 04:21	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/20/21 04:21	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 04:21	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/20/21 04:21	1014
Naphthalene	ND	ug/M3	0.52	1	08/19/21	08/20/21 04:21	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/20/21 04:21	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 04:21	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/20/21 04:21	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 04:21	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/20/21 04:21	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/20/21 04:21	1014
Toluene	1.5	ug/M3	0.38	1	08/19/21	08/20/21 04:21	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/20/21 04:21	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 04:21	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 04:21	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/20/21 04:21	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 04:21	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 04:21	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 04:21	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 04:21	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/20/21 04:21	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/20/21 04:21	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/20/21 04:21	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/20/21 04:21	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/19/21	08/20/21 04:21	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/20/21 04:21	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	101	%	87-120	1	08/19/21	08/20/21 04:21	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 26 Date/Time Sampled: 08/16/2021 21:03 PSS Sample ID: 21081828-010

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	65	ug/M3	19	2	08/19/21	08/20/21 19:16	1014
Benzene	0.35	ug/M3	0.32	1	08/19/21	08/20/21 05:14	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/19/21	08/20/21 05:14	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/19/21	08/20/21 05:14	1014
Bromoform	ND	ug/M3	2.1	1	08/19/21	08/20/21 05:14	1014
Bromomethane	ND	ug/M3	0.78	1	08/19/21	08/20/21 05:14	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/19/21	08/20/21 05:14	1014
2-Butanone (MEK)	1.6	ug/M3	1.5	1	08/19/21	08/20/21 05:14	1014
Carbon Disulfide	ND	ug/M3	12	1	08/19/21	08/20/21 05:14	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/19/21	08/20/21 05:14	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/19/21	08/20/21 05:14	1014
Chloroethane	ND	ug/M3	0.53	1	08/19/21	08/20/21 05:14	1014
Chloroform	ND	ug/M3	0.98	1	08/19/21	08/20/21 05:14	1014
Chloromethane	0.99	ug/M3	0.41	1	08/19/21	08/20/21 05:14	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/19/21	08/20/21 05:14	1014
Cyclohexane	ND	ug/M3	0.69	1	08/19/21	08/20/21 05:14	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/19/21	08/20/21 05:14	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 05:14	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 05:14	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 05:14	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/19/21	08/20/21 05:14	1014
Dichlorodifluoromethane	1.5	ug/M3	0.99	1	08/19/21	08/20/21 05:14	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 05:14	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/19/21	08/20/21 05:14	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 05:14	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 05:14	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/19/21	08/20/21 05:14	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/19/21	08/20/21 05:14	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 05:14	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/19/21	08/20/21 05:14	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 05:14	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/19/21	08/20/21 05:14	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/19/21	08/20/21 05:14	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/19/21	08/20/21 05:14	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/19/21	08/20/21 05:14	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Class 26 Date/Time Sampled: 08/16/2021 21:03 PSS Sample ID: 21081828-010

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/19/21	08/20/21 05:14	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/19/21	08/20/21 05:14	1014
n-Hexane	ND	ug/M3	14	1	08/19/21	08/20/21 05:14	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 05:14	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 05:14	1014
Methylene Chloride	ND	ug/M3	14	1	08/19/21	08/20/21 05:14	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/19/21	08/20/21 05:14	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/19/21	08/20/21 05:14	1014
Naphthalene	ND	ug/M3	0.52	1	08/19/21	08/20/21 05:14	1014
Propylene	ND	ug/M3	1.7	1	08/19/21	08/20/21 05:14	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 05:14	1014
Styrene	ND	ug/M3	4.3	1	08/19/21	08/20/21 05:14	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/19/21	08/20/21 05:14	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/19/21	08/20/21 05:14	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/19/21	08/20/21 05:14	1014
Toluene	5.7	ug/M3	0.38	1	08/19/21	08/20/21 05:14	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/19/21	08/20/21 05:14	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 05:14	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 05:14	1014
Trichloroethene	ND	ug/M3	1.1	1	08/19/21	08/20/21 05:14	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/19/21	08/20/21 05:14	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/19/21	08/20/21 05:14	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 05:14	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/19/21	08/20/21 05:14	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/19/21	08/20/21 05:14	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/19/21	08/20/21 05:14	1014
Bromoethene	ND	ug/M3	0.87	1	08/19/21	08/20/21 05:14	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/19/21	08/20/21 05:14	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/19/21	08/20/21 05:14	1014
o-Xylene	ND	ug/M3	0.43	1	08/19/21	08/20/21 05:14	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	102	%	87-120	1	08/19/21	08/20/21 05:14	1014
4-Bromofluorobenzene	99	%	87-120	2	08/20/21	08/20/21 19:16	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Hallway 22 Date/Time Sampled: 08/16/2021 21:07 PSS Sample ID: 21081828-011

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	34	ug/M3	9.5	1	08/20/21	08/20/21 13:58	1014
Benzene	ND	ug/M3	0.32	1	08/20/21	08/20/21 13:58	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/20/21	08/20/21 13:58	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/20/21	08/20/21 13:58	1014
Bromoform	ND	ug/M3	2.1	1	08/20/21	08/20/21 13:58	1014
Bromomethane	ND	ug/M3	0.78	1	08/20/21	08/20/21 13:58	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/20/21	08/20/21 13:58	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/20/21	08/20/21 13:58	1014
Carbon Disulfide	ND	ug/M3	12	1	08/20/21	08/20/21 13:58	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/20/21	08/20/21 13:58	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/20/21	08/20/21 13:58	1014
Chloroethane	ND	ug/M3	0.53	1	08/20/21	08/20/21 13:58	1014
Chloroform	ND	ug/M3	0.98	1	08/20/21	08/20/21 13:58	1014
Chloromethane	1.0	ug/M3	0.41	1	08/20/21	08/20/21 13:58	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/20/21	08/20/21 13:58	1014
Cyclohexane	ND	ug/M3	0.69	1	08/20/21	08/20/21 13:58	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/20/21	08/20/21 13:58	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 13:58	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 13:58	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 13:58	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 13:58	1014
Dichlorodifluoromethane	1.5	ug/M3	0.99	1	08/20/21	08/20/21 13:58	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 13:58	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 13:58	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 13:58	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 13:58	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 13:58	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/20/21	08/20/21 13:58	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 13:58	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 13:58	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 13:58	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/20/21	08/20/21 13:58	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/20/21	08/20/21 13:58	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/20/21	08/20/21 13:58	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/20/21	08/20/21 13:58	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Hallway 22 Date/Time Sampled: 08/16/2021 21:07 PSS Sample ID: 21081828-011

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/20/21	08/20/21 13:58	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/20/21	08/20/21 13:58	1014
n-Hexane	ND	ug/M3	14	1	08/20/21	08/20/21 13:58	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 13:58	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 13:58	1014
Methylene Chloride	ND	ug/M3	14	1	08/20/21	08/20/21 13:58	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 13:58	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/20/21	08/20/21 13:58	1014
Naphthalene	ND	ug/M3	0.52	1	08/20/21	08/20/21 13:58	1014
Propylene	ND	ug/M3	1.7	1	08/20/21	08/20/21 13:58	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 13:58	1014
Styrene	ND	ug/M3	4.3	1	08/20/21	08/20/21 13:58	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 13:58	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/20/21	08/20/21 13:58	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/20/21	08/20/21 13:58	1014
Toluene	1.6	ug/M3	0.38	1	08/20/21	08/20/21 13:58	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/20/21	08/20/21 13:58	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 13:58	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 13:58	1014
Trichloroethene	ND	ug/M3	1.1	1	08/20/21	08/20/21 13:58	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 13:58	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 13:58	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 13:58	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 13:58	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/20/21	08/20/21 13:58	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/20/21	08/20/21 13:58	1014
Bromoethene	ND	ug/M3	0.87	1	08/20/21	08/20/21 13:58	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/20/21	08/20/21 13:58	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/20/21	08/20/21 13:58	1014
o-Xylene	ND	ug/M3	0.43	1	08/20/21	08/20/21 13:58	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenze	ene 100	%	87-120	1	08/20/21	08/20/21 13:58	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Cafeteria Date/Time Sampled: 08/16/2021 20:31 PSS Sample ID: 21081828-012

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	10	ug/M3	9.5	1	08/20/21	08/20/21 14:52	1014
Benzene	ND	ug/M3	0.32	1	08/20/21	08/20/21 14:52	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/20/21	08/20/21 14:52	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/20/21	08/20/21 14:52	1014
Bromoform	ND	ug/M3	2.1	1	08/20/21	08/20/21 14:52	1014
Bromomethane	ND	ug/M3	0.78	1	08/20/21	08/20/21 14:52	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/20/21	08/20/21 14:52	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/20/21	08/20/21 14:52	1014
Carbon Disulfide	ND	ug/M3	12	1	08/20/21	08/20/21 14:52	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/20/21	08/20/21 14:52	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/20/21	08/20/21 14:52	1014
Chloroethane	ND	ug/M3	0.53	1	08/20/21	08/20/21 14:52	1014
Chloroform	ND	ug/M3	0.98	1	08/20/21	08/20/21 14:52	1014
Chloromethane	0.89	ug/M3	0.41	1	08/20/21	08/20/21 14:52	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/20/21	08/20/21 14:52	1014
Cyclohexane	ND	ug/M3	0.69	1	08/20/21	08/20/21 14:52	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/20/21	08/20/21 14:52	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 14:52	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 14:52	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 14:52	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 14:52	1014
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/20/21	08/20/21 14:52	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 14:52	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 14:52	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 14:52	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 14:52	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 14:52	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/20/21	08/20/21 14:52	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 14:52	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 14:52	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 14:52	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/20/21	08/20/21 14:52	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/20/21	08/20/21 14:52	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/20/21	08/20/21 14:52	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/20/21	08/20/21 14:52	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Cafeteria Date/Time Sampled: 08/16/2021 20:31 PSS Sample ID: 21081828-012

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/20/21	08/20/21 14:52	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/20/21	08/20/21 14:52	1014
n-Hexane	ND	ug/M3	14	1	08/20/21	08/20/21 14:52	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 14:52	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 14:52	1014
Methylene Chloride	ND	ug/M3	14	1	08/20/21	08/20/21 14:52	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 14:52	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/20/21	08/20/21 14:52	1014
Naphthalene	ND	ug/M3	0.52	1	08/20/21	08/20/21 14:52	1014
Propylene	ND	ug/M3	1.7	1	08/20/21	08/20/21 14:52	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 14:52	1014
Styrene	ND	ug/M3	4.3	1	08/20/21	08/20/21 14:52	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 14:52	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/20/21	08/20/21 14:52	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/20/21	08/20/21 14:52	1014
Toluene	1.2	ug/M3	0.38	1	08/20/21	08/20/21 14:52	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/20/21	08/20/21 14:52	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 14:52	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 14:52	1014
Trichloroethene	ND	ug/M3	1.1	1	08/20/21	08/20/21 14:52	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 14:52	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 14:52	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 14:52	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 14:52	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/20/21	08/20/21 14:52	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/20/21	08/20/21 14:52	1014
Bromoethene	ND	ug/M3	0.87	1	08/20/21	08/20/21 14:52	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/20/21	08/20/21 14:52	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/20/21	08/20/21 14:52	1014
o-Xylene	ND	ug/M3	0.43	1	08/20/21	08/20/21 14:52	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	99	%	87-120	1	08/20/21	08/20/21 14:52	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Library Date/Time Sampled: 08/16/2021 20:19 PSS Sample ID: 21081828-013

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	10	ug/M3	9.5	1	08/20/21	08/20/21 15:46	1014
Benzene	ND	ug/M3	0.32	1	08/20/21	08/20/21 15:46	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/20/21	08/20/21 15:46	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/20/21	08/20/21 15:46	1014
Bromoform	ND	ug/M3	2.1	1	08/20/21	08/20/21 15:46	1014
Bromomethane	ND	ug/M3	0.78	1	08/20/21	08/20/21 15:46	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/20/21	08/20/21 15:46	1014
2-Butanone (MEK)	ND	ug/M3	1.5	1	08/20/21	08/20/21 15:46	1014
Carbon Disulfide	ND	ug/M3	12	1	08/20/21	08/20/21 15:46	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/20/21	08/20/21 15:46	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/20/21	08/20/21 15:46	1014
Chloroethane	ND	ug/M3	0.53	1	08/20/21	08/20/21 15:46	1014
Chloroform	ND	ug/M3	0.98	1	08/20/21	08/20/21 15:46	1014
Chloromethane	0.76	ug/M3	0.41	1	08/20/21	08/20/21 15:46	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/20/21	08/20/21 15:46	1014
Cyclohexane	ND	ug/M3	0.69	1	08/20/21	08/20/21 15:46	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/20/21	08/20/21 15:46	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 15:46	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 15:46	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 15:46	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 15:46	1014
Dichlorodifluoromethane	1.2	ug/M3	0.99	1	08/20/21	08/20/21 15:46	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 15:46	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 15:46	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 15:46	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 15:46	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 15:46	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/20/21	08/20/21 15:46	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 15:46	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 15:46	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 15:46	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/20/21	08/20/21 15:46	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/20/21	08/20/21 15:46	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/20/21	08/20/21 15:46	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/20/21	08/20/21 15:46	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Library Date/Time Sampled: 08/16/2021 20:19 PSS Sample ID: 21081828-013

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/20/21	08/20/21 15:46	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/20/21	08/20/21 15:46	1014
n-Hexane	ND	ug/M3	14	1	08/20/21	08/20/21 15:46	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 15:46	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 15:46	1014
Methylene Chloride	ND	ug/M3	14	1	08/20/21	08/20/21 15:46	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 15:46	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/20/21	08/20/21 15:46	1014
Naphthalene	ND	ug/M3	0.52	1	08/20/21	08/20/21 15:46	1014
Propylene	ND	ug/M3	1.7	1	08/20/21	08/20/21 15:46	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 15:46	1014
Styrene	ND	ug/M3	4.3	1	08/20/21	08/20/21 15:46	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 15:46	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/20/21	08/20/21 15:46	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/20/21	08/20/21 15:46	1014
Toluene	0.64	ug/M3	0.38	1	08/20/21	08/20/21 15:46	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/20/21	08/20/21 15:46	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 15:46	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 15:46	1014
Trichloroethene	ND	ug/M3	1.1	1	08/20/21	08/20/21 15:46	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 15:46	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 15:46	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 15:46	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 15:46	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/20/21	08/20/21 15:46	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/20/21	08/20/21 15:46	1014
Bromoethene	ND	ug/M3	0.87	1	08/20/21	08/20/21 15:46	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/20/21	08/20/21 15:46	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/20/21	08/20/21 15:46	1014
o-Xylene	ND	ug/M3	0.43	1	08/20/21	08/20/21 15:46	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	97	%	87-120	1	08/20/21	08/20/21 15:46	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Band Room Date/Time Sampled: 08/16/2021 20:15 PSS Sample ID: 21081828-014

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	15	ug/M3	9.5	1	08/20/21	08/20/21 16:40	1014
Benzene	ND	ug/M3	0.32	1	08/20/21	08/20/21 16:40	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/20/21	08/20/21 16:40	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/20/21	08/20/21 16:40	1014
Bromoform	ND	ug/M3	2.1	1	08/20/21	08/20/21 16:40	1014
Bromomethane	ND	ug/M3	0.78	1	08/20/21	08/20/21 16:40	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/20/21	08/20/21 16:40	1014
2-Butanone (MEK)	1.6	ug/M3	1.5	1	08/20/21	08/20/21 16:40	1014
Carbon Disulfide	ND	ug/M3	12	1	08/20/21	08/20/21 16:40	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/20/21	08/20/21 16:40	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/20/21	08/20/21 16:40	1014
Chloroethane	ND	ug/M3	0.53	1	08/20/21	08/20/21 16:40	1014
Chloroform	ND	ug/M3	0.98	1	08/20/21	08/20/21 16:40	1014
Chloromethane	0.93	ug/M3	0.41	1	08/20/21	08/20/21 16:40	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/20/21	08/20/21 16:40	1014
Cyclohexane	ND	ug/M3	0.69	1	08/20/21	08/20/21 16:40	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/20/21	08/20/21 16:40	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 16:40	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 16:40	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 16:40	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 16:40	1014
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/20/21	08/20/21 16:40	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 16:40	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 16:40	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 16:40	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 16:40	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 16:40	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/20/21	08/20/21 16:40	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 16:40	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 16:40	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 16:40	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/20/21	08/20/21 16:40	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/20/21	08/20/21 16:40	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/20/21	08/20/21 16:40	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/20/21	08/20/21 16:40	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Band Room Date/Time Sampled: 08/16/2021 20:15 PSS Sample ID: 21081828-014

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/20/21	08/20/21 16:40	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/20/21	08/20/21 16:40	1014
n-Hexane	ND	ug/M3	14	1	08/20/21	08/20/21 16:40	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 16:40	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 16:40	1014
Methylene Chloride	ND	ug/M3	14	1	08/20/21	08/20/21 16:40	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 16:40	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/20/21	08/20/21 16:40	1014
Naphthalene	0.84	ug/M3	0.52	1	08/20/21	08/20/21 16:40	1014
Propylene	ND	ug/M3	1.7	1	08/20/21	08/20/21 16:40	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 16:40	1014
Styrene	ND	ug/M3	4.3	1	08/20/21	08/20/21 16:40	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 16:40	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/20/21	08/20/21 16:40	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/20/21	08/20/21 16:40	1014
Toluene	1.1	ug/M3	0.38	1	08/20/21	08/20/21 16:40	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/20/21	08/20/21 16:40	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 16:40	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 16:40	1014
Trichloroethene	ND	ug/M3	1.1	1	08/20/21	08/20/21 16:40	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 16:40	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 16:40	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 16:40	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 16:40	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/20/21	08/20/21 16:40	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/20/21	08/20/21 16:40	1014
Bromoethene	ND	ug/M3	0.87	1	08/20/21	08/20/21 16:40	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/20/21	08/20/21 16:40	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/20/21	08/20/21 16:40	1014
o-Xylene	ND	ug/M3	0.43	1	08/20/21	08/20/21 16:40	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	100	%	87-120	1	08/20/21	08/20/21 16:40	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Office Date/Time Sampled: 08/16/2021 21:15 PSS Sample ID: 21081828-015

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	17	ug/M3	9.5	1	08/20/21	08/20/21 17:34	1014
Benzene	ND	ug/M3	0.32	1	08/20/21	08/20/21 17:34	1014
Benzyl Chloride	ND	ug/M3	1.0	1	08/20/21	08/20/21 17:34	1014
Bromodichloromethane	ND	ug/M3	1.3	1	08/20/21	08/20/21 17:34	1014
Bromoform	ND	ug/M3	2.1	1	08/20/21	08/20/21 17:34	1014
Bromomethane	ND	ug/M3	0.78	1	08/20/21	08/20/21 17:34	1014
1,3-Butadiene	ND	ug/M3	0.44	1	08/20/21	08/20/21 17:34	1014
2-Butanone (MEK)	1.8	ug/M3	1.5	1	08/20/21	08/20/21 17:34	1014
Carbon Disulfide	ND	ug/M3	12	1	08/20/21	08/20/21 17:34	1014
Carbon Tetrachloride	ND	ug/M3	1.3	1	08/20/21	08/20/21 17:34	1014
Chlorobenzene	ND	ug/M3	0.92	1	08/20/21	08/20/21 17:34	1014
Chloroethane	ND	ug/M3	0.53	1	08/20/21	08/20/21 17:34	1014
Chloroform	ND	ug/M3	0.98	1	08/20/21	08/20/21 17:34	1014
Chloromethane	0.89	ug/M3	0.41	1	08/20/21	08/20/21 17:34	1014
Allyl Chloride (3-Chloropropene)	ND	ug/M3	0.63	1	08/20/21	08/20/21 17:34	1014
Cyclohexane	ND	ug/M3	0.69	1	08/20/21	08/20/21 17:34	1014
Dibromochloromethane	ND	ug/M3	1.7	1	08/20/21	08/20/21 17:34	1014
1,2-Dibromoethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 17:34	1014
1,2-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 17:34	1014
1,3-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 17:34	1014
1,4-Dichlorobenzene	ND	ug/M3	1.2	1	08/20/21	08/20/21 17:34	1014
Dichlorodifluoromethane	1.4	ug/M3	0.99	1	08/20/21	08/20/21 17:34	1014
1,1-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 17:34	1014
1,2-Dichloroethane	ND	ug/M3	0.81	1	08/20/21	08/20/21 17:34	1014
1,1-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 17:34	1014
cis-1,2-Dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 17:34	1014
trans-1,2-dichloroethene	ND	ug/M3	0.79	1	08/20/21	08/20/21 17:34	1014
1,2-Dichloropropane	ND	ug/M3	1.8	1	08/20/21	08/20/21 17:34	1014
cis-1,3-Dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 17:34	1014
trans-1,3-dichloropropene	ND	ug/M3	0.91	1	08/20/21	08/20/21 17:34	1014
1,2-Dichlorotetrafluoroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 17:34	1014
1,4-Dioxane (P-Dioxane)	ND	ug/M3	3.6	1	08/20/21	08/20/21 17:34	1014
Ethyl Acetate	ND	ug/M3	0.72	1	08/20/21	08/20/21 17:34	1014
Ethylbenzene	ND	ug/M3	0.43	1	08/20/21	08/20/21 17:34	1014
4-Ethyltoluene	ND	ug/M3	0.98	1	08/20/21	08/20/21 17:34	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21081828

Sample ID: GM - Office Date/Time Sampled: 08/16/2021 21:15 PSS Sample ID: 21081828-015

Matrix: AIR Date/Time Received: 08/18/2021 15:00

VOCs in Air by GC/MS Analytical Method: EPA TO-15 Preparation Method: TO-15P

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
n-Heptane	ND	ug/M3	0.82	1	08/20/21	08/20/21 17:34	1014
Hexachlorobutadiene	ND	ug/M3	2.1	1	08/20/21	08/20/21 17:34	1014
n-Hexane	ND	ug/M3	14	1	08/20/21	08/20/21 17:34	1014
2-Hexanone (MBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 17:34	1014
Isopropylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 17:34	1014
Methylene Chloride	ND	ug/M3	14	1	08/20/21	08/20/21 17:34	1014
4-Methyl-2-Pentanone (MIBK)	ND	ug/M3	2.0	1	08/20/21	08/20/21 17:34	1014
Methyl-t-Butyl Ether	ND	ug/M3	0.36	1	08/20/21	08/20/21 17:34	1014
Naphthalene	ND	ug/M3	0.52	1	08/20/21	08/20/21 17:34	1014
Propylene	ND	ug/M3	1.7	1	08/20/21	08/20/21 17:34	1014
n-Propylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 17:34	1014
Styrene	ND	ug/M3	4.3	1	08/20/21	08/20/21 17:34	1014
1,1,2,2-Tetrachloroethane	ND	ug/M3	1.4	1	08/20/21	08/20/21 17:34	1014
Tetrachloroethene	ND	ug/M3	1.4	1	08/20/21	08/20/21 17:34	1014
Tetrahydrofuran	ND	ug/M3	0.59	1	08/20/21	08/20/21 17:34	1014
Toluene	1.1	ug/M3	0.38	1	08/20/21	08/20/21 17:34	1014
1,2,4-Trichlorobenzene	ND	ug/M3	1.5	1	08/20/21	08/20/21 17:34	1014
1,1,1-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 17:34	1014
1,1,2-Trichloroethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 17:34	1014
Trichloroethene	ND	ug/M3	1.1	1	08/20/21	08/20/21 17:34	1014
Trichlorofluoromethane	ND	ug/M3	1.1	1	08/20/21	08/20/21 17:34	1014
1,1,2-Trichlorotrifluoroethane	ND	ug/M3	1.5	1	08/20/21	08/20/21 17:34	1014
1,2,4-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 17:34	1014
1,3,5-Trimethylbenzene	ND	ug/M3	0.98	1	08/20/21	08/20/21 17:34	1014
2,2,4-Trimethylpentane	ND	ug/M3	0.93	1	08/20/21	08/20/21 17:34	1014
Vinyl acetate	ND	ug/M3	1.8	1	08/20/21	08/20/21 17:34	1014
Bromoethene	ND	ug/M3	0.87	1	08/20/21	08/20/21 17:34	1014
Vinyl chloride	ND	ug/M3	0.51	1	08/20/21	08/20/21 17:34	1014
m&p-Xylene	ND	ug/M3	0.87	1	08/20/21	08/20/21 17:34	1014
o-Xylene	ND	ug/M3	0.43	1	08/20/21	08/20/21 17:34	1014
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	101	%	87-120	1	08/20/21	08/20/21 17:34	1014

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081828

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Canister number for sample 003 listed as 4257 on COC; received canister 4252. Canister number for sample 011 listed as 3517 on COC; received canister 3519.

Analytical:

VOCs in Air by GC/MS

Batch: 186939

Method exceedance: Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) exceedances identified; see QC summary.

Batch: 186940

Method exceedance: Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) exceedances identified; see QC summary.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

EPA TO-15: 1,2-Dichlorotetrafluoroethane, Chloroethane, Dibromochloromethane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081828

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Ba	atch Prepared	Analyzed
EPA TO-15	GM - Class 3	Initial	21081828-001	A	87375	186939	08/19/2021 07:42	08/19/2021 21:10
	GM - Hallway 3	Initial	21081828-002	A	87375	186939	08/19/2021 07:42	08/19/2021 22:04
	GM - Reception	Initial	21081828-003	A	87375	186939	08/19/2021 07:42	08/19/2021 22:58
	GM - Class 8	Initial	21081828-004	A	87375	186939	08/19/2021 07:42	08/19/2021 23:52
	GM - Class 13	Initial	21081828-005	A	87375	186939	08/19/2021 07:42	08/20/2021 00:46
	GM - Class 17	Initial	21081828-006	A	87375	186939	08/19/2021 07:42	08/20/2021 01:39
	GM - Hallway 18	Initial	21081828-007	A	87375	186939	08/19/2021 07:42	08/20/2021 02:33
	GM - Gym	Initial	21081828-008	A	87375	186939	08/19/2021 07:42	08/20/2021 03:27
	GM - Class 30	Initial	21081828-009	A	87375	186939	08/19/2021 07:42	08/20/2021 04:21
	GM - Class 26	Initial	21081828-010	A	87375	186939	08/19/2021 07:42	08/20/2021 05:14
	87375-1-BKS	BKS	87375-1-BKS	A	87375	186939	08/19/2021 07:42	08/19/2021 09:45
	87375-1-BLK	BLK	87375-1-BLK	A	87375	186939	08/19/2021 07:42	08/19/2021 12:25
	87375-1-BSD	BSD	87375-1-BSD	A	87375	186939	08/19/2021 07:42	08/19/2021 10:37
	GM - Hallway 22	Initial	21081828-011	A	87376	186940	08/20/2021 06:00	08/20/2021 13:58
	GM - Cafeteria	Initial	21081828-012	A	87376	186940	08/20/2021 06:00	08/20/2021 14:52
	GM - Library	Initial	21081828-013	A	87376	186940	08/20/2021 06:00	08/20/2021 15:46
	GM - Band Room	Initial	21081828-014	A	87376	186940	08/20/2021 06:00	08/20/2021 16:40
	GM - Office	Initial	21081828-015	A	87376	186940	08/20/2021 06:00	08/20/2021 17:34
	87376-1-BKS	BKS	87376-1-BKS	A	87376	186940	08/20/2021 06:00	08/20/2021 07:41
	87376-1-BLK	BLK	87376-1-BLK	A	87376	186940	08/20/2021 06:00	08/20/2021 13:04
	87376-1-BSD	BSD	87376-1-BSD	A	87376	186940	08/20/2021 06:00	08/20/2021 11:16
	GM - Class 8	Reanalysis	21081828-004	A	87375	186940	08/19/2021 07:42	08/20/2021 18:24
	GM - Class 26	Reanalysis	21081828-010	A	87375	186940	08/19/2021 07:42	08/20/2021 19:16

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

 Analytical Method: EPA TO-15
 Prep Method: TO-15P

 Seq Number:
 186939
 Matrix: Air
 Date Prep: 08/19/21

 MB Sample Id:
 87375-1-BLK
 LCS Sample Id: 87375-1-BKS
 LCSD Sample Id: 87375-1-BSD

MB Sample Id. 6/3/5-	I-DLN	L	CO Sampi	e iu. 07 c	010-1-010		LOGE	Jampie	iu. 075	75-1-050	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Acetone	<9.498	11.87	10.23	86	10.42	88	69-118	2	25	ug/M3	
Benzene	< 0.3193	15.97	14.98	94	15.58	98	79-107	4	25	ug/M3	
Benzyl Chloride	<1.035	25.87	29.55	114	31.10	120	78-143	5	25	ug/M3	
Bromodichloromethane	<1.340	33.49	30.61	91	31.55	94	81-111	3	25	ug/M3	
Bromoform	<2.067	51.67	51.98	101	54.56	106	78-133	5	25	ug/M3	
Bromomethane	< 0.7764	19.41	19.14	99	19.02	98	76-116	1	25	ug/M3	
1,3-Butadiene	< 0.4423	11.06	10.61	96	10.39	94	70-116	2	25	ug/M3	
2-Butanone (MEK)	<1.474	14.74	13.68	93	14.12	96	74-114	3	25	ug/M3	
Carbon Disulfide	<12.45	15.56	14.23	91	14.44	93	79-117	2	25	ug/M3	
Carbon Tetrachloride	<1.258	31.45	28.43	90	29.62	94	81-110	4	25	ug/M3	
Chlorobenzene	< 0.9204	23.01	23.38	102	24.48	106	84-119	4	25	ug/M3	
Chloroethane	< 0.5276	13.19	12.90	98	12.95	98	72-118	0	25	ug/M3	
Chloroform	< 0.9761	24.40	22.35	92	23.18	95	82-108	3	25	ug/M3	
Chloromethane	<0.4128	10.32	9.268	90	8.855	86	64-121	5	25	ug/M3	
Allyl Chloride (3-Chloropropene)	< 0.6258	15.64	14.67	94	14.96	96	77-113	2	25	ug/M3	
Cyclohexane	<0.6881	17.20	17.34	101	18.06	105	82-110	4	25	ug/M3	
Dibromochloromethane	<1.703	42.58	39.77	93	41.56	98	82-113	5	25	ug/M3	
1,2-Dibromoethane	<1.536	38.40	36.94	96	38.79	101	86-110	5	25	ug/M3	
1,2-Dichlorobenzene	<1.202	30.05	31.91	106	33.66	112	83-130	6	25	ug/M3	
1,3-Dichlorobenzene	<1.202	30.05	31.55	105	33.06	110	85-128	5	25	ug/M3	
1,4-Dichlorobenzene	<1.202	30.05	31.49	105	33.06	110	82-132	5	25	ug/M3	
Dichlorodifluoromethane	< 0.9887	24.72	20.32	82	19.58	79	62-122	4	25	ug/M3	
1,1-Dichloroethane	<0.8092	20.23	18.69	92	19.30	95	79-110	3	25	ug/M3	
1,2-Dichloroethane	<0.8092	20.23	17.92	89	18.53	92	75-112	3	25	ug/M3	
1,1-Dichloroethene	<0.7926	19.82	18.79	95	18.98	96	80-110	1	25	ug/M3	
cis-1,2-Dichloroethene	<0.7926	19.82	19.46	98	20.01	101	84-109	3	25	ug/M3	
trans-1,2-dichloroethene	<0.7926	19.82	19.02	96	19.50	98	81-109	2	25	ug/M3	
1,2-Dichloropropane	<1.848	23.10	21.66	94	22.27	96	81-111	2	25	ug/M3	
cis-1,3-Dichloropropene	<0.9074	22.68	22.82	101	23.73	105	89-109	4	25	ug/M3	
trans-1,3-dichloropropene	< 0.9074	22.68	22.37	99	23.41	103	89-114	4	25	ug/M3	
1,2-Dichlorotetrafluoroethane	<1.398	34.94	32.84	94	31.94	91	72-116	3	25 25	ug/M3	
1,4-Dioxane (P-Dioxane)	<3.602	18.01	18.88	105	19.34	107	70-120	2	25 25	ug/M3	
Ethyl Acetate	<0.7204	18.01	18.73	103	19.45	107	87-124	4	25 25	ug/M3	
Ethylbenzene	< 0.4340	21.70	24.39	112	25.48	117	87-124 87-125	4	25 25	ug/M3	
4-Ethyltoluene	<0.4340	24.57	27.22	111	28.84	117	87-123 87-127	5	25 25	ug/M3	
n-Heptane	<0.8193	20.48	21.55	105	22.41	109	90-110	4	25 25	ug/M3	
Hexachlorobutadiene	<2.132	53.30	55.44	103	58.42	110	83-126	6	25 25	ug/M3	
n-Hexane	<14.09	17.61	18.46	104	19.02	108	84-114	3	25 25	ug/M3	
2-Hexanone (MBK)	<2.047	20.47	20.06	98	20.68	103	68-133	3	25 25	ug/M3	
	<0.9827	24.57	25.80		27.03		88-117	5	25 25	ug/M3	
Isopropylbenzene Methylene Chloride				105		110				-	
,	<13.89	17.36	15.31	88	15.84	91	63-130	3	25	ug/M3	
4-Methyl-2-Pentanone (MIBK)	<2.047	20.47	19.86	97	20.60	101	78-115	4	25	ug/M3	
Methyl-t-Butyl Ether	< 0.3604	18.02	18.70	104	19.35	107	86-109	3	25	ug/M3	
Naphthalene	< 0.5240	26.20	39.30	150	40.19	153	65-129	2	25	ug/M3	Н
Propylene	<1.720	8.602	7.621	89	7.312	85	58-129	5	25	ug/M3	
n-Propylbenzene	<0.9828	24.57	26.83	109	28.40	116	86-121	6	25	ug/M3	
Styrene	<4.258	21.29	24.91	117	26.18	123	86-137	5	25	ug/M3	
1,1,2,2-Tetrachloroethane	<1.373	34.31	34.79	101	36.51	106	88-119	5	25	ug/M3	
Tetrachloroethene	<1.356	33.90	32.75	97	34.44	102	86-107	5	25	ug/M3	
Tetrahydrofuran	<0.5895	14.74	14.62	99	15.18	103	80-117	4	25	ug/M3	
Toluene	<0.3767	18.83	19.44	103	20.34	108	91-106	5	25	ug/M3	Н

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

Analytical Method: EPA TO-15 Prep Method: TO-15P Seq Number: 186939 Matrix: Air Date Prep: 08/19/21

MB Sample Id: 87375-	1-BLK	L	LCS Sample Id: 87375-1-BKS					LCSD Sample Id: 87375-1-BSD					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag		
1,2,4-Trichlorobenzene	<1.484	37.09	49.41	133	50.82	137	75-126	3	25	ug/M3	Н		
1,1,1-Trichloroethane	<1.091	27.27	25.09	92	26.02	95	81-109	3	25	ug/M3			
1,1,2-Trichloroethane	<1.091	27.27	25.69	94	26.78	98	83-111	4	25	ug/M3			
Trichloroethene	<1.074	26.86	25.57	95	26.65	99	88-106	4	25	ug/M3			
Trichlorofluoromethane	<1.123	28.08	25.11	89	25.27	90	78-109	1	25	ug/M3			
1,1,2-Trichlorotrifluoroethane	<1.532	38.31	35.85	94	36.70	96	84-107	2	25	ug/M3			
1,2,4-Trimethylbenzene	< 0.9828	24.57	28.06	114	29.58	120	86-130	5	25	ug/M3			
1,3,5-Trimethylbenzene	< 0.9828	24.57	26.59	108	27.81	113	87-122	5	25	ug/M3			
2,2,4-Trimethylpentane	< 0.9339	23.35	22.65	97	23.54	101	78-107	4	25	ug/M3			
Vinyl acetate	<1.760	17.60	17.60	100	18.30	104	76-119	4	25	ug/M3			
Bromoethene	< 0.8746	21.86	21.91	100	21.91	100	77-117	0	25	ug/M3			
Vinyl chloride	< 0.5110	12.78	12.14	95	11.70	92	72-116	3	25	ug/M3			
m&p-Xylene	<0.8681	43.41	47.18	109	49.83	115	88-122	5	25	ug/M3			
o-Xylene	<0.4341	21.70	23.66	109	24.96	115	89-120	5	25	ug/M3			
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag			.CSD L Flag	imits	Units				
4-Bromofluorobenzene	100		103			105	8	7-120	%				

Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	LCSD Result	LCSD Flag	Limits	Units
4-Bromofluorobenzene	100		103		105		87-120	%

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

 Analytical Method: EPA TO-15
 Prep Method: TO-15P

 Seq Number:
 186940
 Matrix: Air
 Date Prep: 08/20/21

 MB Sample Id:
 87376-1-BLK
 LCS Sample Id: 87376-1-BKS
 LCSD Sample Id: 87376-1-BSD

MB Sample Id: 8737	6-1-BLK	L	.CS Sampl	e ld: 873	876-1-BKS		LCSI) Sample	ld: 873	76-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Acetone	<9.498	11.87	10.26	86	9.902	83	69-118	4	25	ug/M3	
Benzene	< 0.3193	15.97	15.46	97	15.84	99	79-107	2	25	ug/M3	
Benzyl Chloride	<1.035	25.87	30.07	116	30.74	119	78-143	3	25	ug/M3	
Bromodichloromethane	<1.340	33.49	31.01	93	31.55	94	81-111	1	25	ug/M3	
Bromoform	<2.067	51.67	52.19	101	55.49	107	78-133	6	25	ug/M3	
Bromomethane	< 0.7764	19.41	18.63	96	17.12	88	76-116	9	25	ug/M3	
1,3-Butadiene	< 0.4423	11.06	10.28	93	9.487	86	70-116	8	25	ug/M3	
2-Butanone (MEK)	<1.474	14.74	13.97	95	14.27	97	74-114	2	25	ug/M3	
Carbon Disulfide	<12.45	15.56	14.07	90	13.67	88	79-117	2	25	ug/M3	
Carbon Tetrachloride	<1.258	31.45	29.56	94	30.38	97	81-110	3	25	ug/M3	
Chlorobenzene	< 0.9204	23.01	23.93	104	24.16	105	84-119	1	25	ug/M3	
Chloroethane	< 0.5276	13.19	12.40	94	11.42	87	72-118	8	25	ug/M3	
Chloroform	< 0.9761	24.40	22.89	94	23.43	96	82-108	2	25	ug/M3	
Chloromethane	< 0.4128	10.32	9.537	92	8.381	81	64-121	13	25	ug/M3	
Allyl Chloride (3-Chloropropene)	< 0.6258	15.64	14.80	95	14.71	94	77-113	1	25	ug/M3	
Cyclohexane	<0.6881	17.20	18.10	105	18.51	108	82-110	3	25	ug/M3	
Dibromochloromethane	<1.703	42.58	40.62	95	41.81	98	82-113	3	25	ug/M3	
1,2-Dibromoethane	<1.536	38.40	37.86	99	38.71	101	86-110	2	25	ug/M3	
1,2-Dichlorobenzene	<1.202	30.05	32.46	108	33.54	112	83-130	4	25	ug/M3	
1,3-Dichlorobenzene	<1.202	30.05	31.91	106	32.76	109	85-128	3	25	ug/M3	
1,4-Dichlorobenzene	<1.202	30.05	31.85	106	32.82	109	82-132	3	25	ug/M3	
Dichlorodifluoromethane	< 0.9887	24.72	20.66	84	18.69	76	62-122	10	25	ug/M3	
1,1-Dichloroethane	<0.8092	20.23	19.22	95	19.18	95	79-110	0	25	ug/M3	
1,2-Dichloroethane	< 0.8092	20.23	18.57	92	18.97	94	75-112	2	25	ug/M3	
1,1-Dichloroethene	<0.7926	19.82	18.90	95	18.03	91	80-110	4	25	ug/M3	
cis-1,2-Dichloroethene	<0.7926	19.82	19.90	100	20.25	102	84-109	2	25	ug/M3	
trans-1,2-dichloroethene	<0.7926	19.82	19.42	98	19.26	97	81-109	1	25	ug/M3	
1,2-Dichloropropane	<1.848	23.10	22.03	95	22.40	97	81-111	2	25	ug/M3	
cis-1,3-Dichloropropene	< 0.9074	22.68	23.41	103	23.95	106	89-109	3	25	ug/M3	
trans-1,3-dichloropropene	< 0.9074	22.68	23.14	102	23.55	104	89-114	2	25	ug/M3	
1,2-Dichlorotetrafluoroethane		34.94	33.05	95	29.91	86	72-116	10	25	ug/M3	
1,4-Dioxane (P-Dioxane)	<3.602	18.01	19.06	106	19.16	106	70-120	0	25	ug/M3	
Ethyl Acetate	<0.7204	18.01	19.34	107	19.70	109	87-124	2	25	ug/M3	
Ethylbenzene	<0.4340	21.70	24.87	115	25.22	116	87-125	1	25	ug/M3	
4-Ethyltoluene	<0.9827	24.57	27.86	113	28.45	116	87-127	3	25	ug/M3	
n-Heptane	< 0.8193	20.48	22.08	108	22.45	110	90-110	2	25	ug/M3	
Hexachlorobutadiene	<2.132	53.30	56.18	105	57.99	109	83-126	4	25	ug/M3	
n-Hexane	<14.09	17.61	18.99	103	19.06	108	84-114	0	25 25	ug/M3	
2-Hexanone (MBK)	<2.047	20.47	20.47	100	20.92	100	68-133	2	25 25	ug/M3	
Isopropylbenzene	<0.9827	24.57	26.24	107	26.68	102	88-117	2	25 25	ug/M3	
Methylene Chloride	<13.89	17.36	15.52	89	15.18	87	63-117	2	25 25	ug/M3	
4-Methyl-2-Pentanone (MIBK		20.47	20.35	99	20.64	101	78-115	2	25 25	ug/M3	
Methyl-t-Butyl Ether	<0.3604	18.02	19.39	108	19.46	101	86-109	0	25 25	ug/M3	
Naphthalene	<0.5240	26.20	38.93	149	40.29	154	65-129	3	25 25	ug/M3	Н
Propylene	<1.720	8.602	7.896	92	6.933	81	58-129	13	25 25	ug/M3	11
	<0.9828	24.57	26.09	106	26.54		86-121		25 25	ug/M3	
n-Propylbenzene						108		2		-	
Styrene	<4.258	21.29	25.55	120	26.06	122	86-137	2	25	ug/M3	
1,1,2,2-Tetrachloroethane	<1.373	34.31	35.34	103	36.10	105	88-119	2	25	ug/M3	
Tetrachloroethene	<1.356	33.90	33.83	100	34.72	102	86-107	2	25	ug/M3	
Tetrahydrofuran	< 0.5895	14.74	15.18	103	15.59	106	80-117	3	25	ug/M3	
Toluene	<0.3767	18.83	20.15	107	20.41	108	91-106	1	25	ug/M3	Н

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

 Analytical Method: EPA TO-15
 Prep Method: TO-15P

 Seq Number:
 186940
 Matrix: Air
 Date Prep: 08/20/21

 MB Sample Id:
 87376-1-BLK
 LCS Sample Id: 87376-1-BKS
 LCSD Sample Id: 87376-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,2,4-Trichlorobenzene	<1.484	37.09	48.59	131	50.37	136	75-126	4	25	ug/M3	Н
1,1,1-Trichloroethane	<1.091	27.27	26.07	96	26.67	98	81-109	2	25	ug/M3	
• •										J	
1,1,2-Trichloroethane	<1.091	27.27	26.24	96	26.78	98	83-111	2	25	ug/M3	
Trichloroethene	<1.074	26.86	26.11	97	26.38	98	88-106	1	25	ug/M3	
Trichlorofluoromethane	<1.123	28.08	25.05	89	23.70	84	78-109	6	25	ug/M3	
1,1,2-Trichlorotrifluoroethane	<1.532	38.31	36.16	94	34.93	91	84-107	3	25	ug/M3	
1,2,4-Trimethylbenzene	<0.9828	24.57	28.65	117	29.39	120	86-130	3	25	ug/M3	
1,3,5-Trimethylbenzene	<0.9828	24.57	26.93	110	27.76	113	87-122	3	25	ug/M3	
2,2,4-Trimethylpentane	< 0.9339	23.35	23.25	100	23.49	101	78-107	1	25	ug/M3	
Vinyl acetate	<1.760	17.60	18.23	104	18.51	105	76-119	1	25	ug/M3	
Bromoethene	< 0.8746	21.86	21.43	98	20.07	92	77-117	6	25	ug/M3	
Vinyl chloride	<0.5110	12.78	11.98	94	10.78	84	72-116	11	25	ug/M3	
m&p-Xylene	<0.8681	43.41	48.22	111	49.09	113	88-122	2	25	ug/M3	
o-Xylene	< 0.4341	21.70	24.18	111	24.70	114	89-120	3	25	ug/M3	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag			.CSD L Flag	imits	Units		
4-Bromofluorobenzene	100		103			104	8	7-120	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

Analytical Method: EPA TO-15

Seq Number: 186939 Matrix: Air

CCV Sample Id: CCV-01 Analyzed Date: 08/19/21 08:32

CCV Sample Id: CCV-01				Analyzed Date: 08/19/21 08:32					
Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag			
Acetone	11.87	10.08	85	70-130	ug/M3				
Benzene	15.97	15.54	97	70-130	ug/M3				
Benzyl Chloride	25.87	27.48	106	70-130	ug/M3				
Bromodichloromethane	33.49	30.67	92	70-130	ug/M3				
Bromoform	51.67	51.35	99	70-130	ug/M3				
Bromomethane	19.41	21.06	109	70-130	ug/M3				
1,3-Butadiene	11.06	10.81	98	70-130	ug/M3				
2-Butanone (MEK)	14.74	13.56	92	70-130	ug/M3				
Carbon Disulfide	15.56	16.32	105	70-130	ug/M3				
Carbon Tetrachloride	31.45	28.39	90	70-130	ug/M3				
Chlorobenzene	23.01	23.56	102	70-130	ug/M3				
Chloroethane	13.19	13.84	105	70-130	ug/M3				
Chloroform	24.40	22.99	94	70-130	ug/M3				
Chloromethane	10.32	9.884	96	70-130	ug/M3				
Allyl Chloride (3-Chloropropene)	15.64	17.06	109	70-130	ug/M3				
Cyclohexane	17.20	18.02	105	70-130	ug/M3				
Dibromochloromethane	42.58	39.33	92	70-130	ug/M3				
1,2-Dibromoethane	38.40	37.26	97	70-130	ug/M3				
1,2-Dichlorobenzene	30.05	31.20	104	70-130	ug/M3				
1,3-Dichlorobenzene	30.05	30.95	103	70-130	ug/M3				
1,4-Dichlorobenzene	30.05	30.39	101	70-130	ug/M3				
Dichlorodifluoromethane	24.72	24.25	98	70-130	ug/M3				
1,1-Dichloroethane	20.23	19.48	96	70-130	ug/M3				
1,2-Dichloroethane	20.23	18.41	91	70-130	ug/M3				
1,1-Dichloroethane	19.82	20.25	102	70-130	ug/M3				
cis-1,2-Dichloroethene	19.82	20.23	102	70-130	ug/M3				
trans-1,2-dichloroethene	19.82	19.63	99	70-130	ug/M3				
1,2-Dichloropropane	23.10	21.78	94	70-130	ug/M3				
cis-1,3-Dichloropropene	22.68	22.66	100	70-130	ug/M3				
trans-1,3-dichloropropene	22.68	22.19	98	70-130	ug/M3				
1,2-Dichlorotetrafluoroethane	34.94	35.55	102	70-130	ug/M3				
1,4-Dioxane (P-Dioxane)	18.01	19.11	102	70-130	-				
,	18.01	18.88	105	70-130 70-130	ug/M3				
Ethyl Acetate Ethylbenzene	21.70	24.54	113	70-130	ug/M3				
4-Ethyltoluene	24.57	26.73	109	70-130 70-130	ug/M3 ug/M3				
n-Heptane	20.48	22.05	108	70-130	ug/M3				
Hexachlorobutadiene	53.30	53.23	100	70-130	ug/M3				
n-Hexane	17.61	18.95	108	70-130	ug/M3				
	20.47	20.15	98	70-130	-				
2-Hexanone (MBK)	24.57	25.60		70-130 70-130	ug/M3				
Isopropylbenzene Methylene Chloride			104		ug/M3				
•	17.36	16.70	96	70-130 70-130	ug/M3				
4-Methyl-2-Pentanone (MIBK)	20.47	20.29	99	70-130	ug/M3				
Methyl-t-Butyl Ether	18.02	19.15	106	70-130 70-130	ug/M3				
Naphthalene	26.20	32.76	125	70-130 70-130	ug/M3				
Propylene	8.602	7.946	92	70-130 70-130	ug/M3				
n-Propylbenzene	24.57	26.71	109	70-130 70-130	ug/M3				
Styrene	21.29	24.86	117	70-130	ug/M3				
1,1,2,2-Tetrachloroethane	34.31	34.39	100	70-130	ug/M3				
Tetrachloroethene	33.90	33.33	98	70-130	ug/M3				
Tetrahydrofuran	14.74	14.10	96	70-130	ug/M3				
Toluene	18.83	19.72	105	70-130	ug/M3				

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

Analytical Method: EPA TO-15

Seq Number: 186939 Matrix: Air

CCV Sample Id: CCV-01 Analyzed Date: 08/19/21 08:32

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Flag
1,2,4-Trichlorobenzene	37.09	43.23	117	70-130	ug/M3
1,1,1-Trichloroethane	27.27	25.66	94	70-130	ug/M3
1,1,2-Trichloroethane	27.27	26.11	96	70-130	ug/M3
Trichloroethene	26.86	26.27	98	70-130	ug/M3
Trichlorofluoromethane	28.08	27.97	100	70-130	ug/M3
1,1,2-Trichlorotrifluoroethane	38.31	38.64	101	70-130	ug/M3
1,2,4-Trimethylbenzene	24.57	27.96	114	70-130	ug/M3
1,3,5-Trimethylbenzene	24.57	26.16	106	70-130	ug/M3
2,2,4-Trimethylpentane	23.35	23.33	100	70-130	ug/M3
Vinyl acetate	17.60	17.12	97	70-130	ug/M3
Bromoethene	21.86	24.83	114	70-130	ug/M3
Vinyl chloride	12.78	12.60	99	70-130	ug/M3
m&p-Xylene	43.41	47.59	110	70-130	ug/M3
o-Xylene	21.70	23.70	109	70-130	ug/M3

Surrogate	CCV Result	Limits	Units	Flag
4-Bromofluorobenzene	82	50-150	%	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

Analytical Method: EPA TO-15

Seq Number: Matrix: Air 186940

Analyzed Date: 08/20/21 06:50 CCV Sample Id: CCV-01 CCV CCV Spike Limits Units

Parameter	Spike	CCV	CCV	Limits	Units	Flag
	Amount	Result	%Rec			
Acetone	11.87	10.38	87	70-130	ug/M3	
Benzene	15.97	15.75	99	70-130	ug/M3	
Benzyl Chloride	25.87	27.86	108	70-130	ug/M3	
Bromodichloromethane	33.49	31.04	93	70-130	ug/M3	
Bromoform	51.67	51.80	100	70-130	ug/M3	
Bromomethane	19.41	19.01	98	70-130	ug/M3	
1,3-Butadiene	11.06	10.62	96	70-130	ug/M3	
2-Butanone (MEK)	14.74	14.23	97	70-130	ug/M3	
Carbon Disulfide	15.56	15.59	100	70-130	ug/M3	
Carbon Tetrachloride	31.45	28.63	91	70-130	ug/M3	
Chlorobenzene	23.01	23.89	104	70-130	ug/M3	
Chloroethane	13.19	12.58	95	70-130	ug/M3	
Chloroform	24.40	23.12	95	70-130	ug/M3	
Chloromethane	10.32	9.781	95	70-130	ug/M3	
Allyl Chloride (3-Chloropropene)	15.64	15.13	97	70-130	ug/M3	
Cyclohexane	17.20	18.38	107	70-130	ug/M3	
Dibromochloromethane	42.58	40.08	94	70-130	ug/M3	
1,2-Dibromoethane	38.40	38.26	100	70-130	ug/M3	
1,2-Dichlorobenzene	30.05	31.87	106	70-130	ug/M3	
1,3-Dichlorobenzene	30.05	31.46	105	70-130	ug/M3	
1,4-Dichlorobenzene	30.05	31.34	104	70-130	ug/M3	
Dichlorodifluoromethane	24.72	24.68	100	70-130	ug/M3	
1,1-Dichloroethane	20.23	19.49	96	70-130	ug/M3	
1,2-Dichloroethane	20.23	18.75	93	70-130	ug/M3	
1,1-Dichloroethene	19.82	19.41	98	70-130	ug/M3	
cis-1,2-Dichloroethene	19.82	20.16	102	70-130	ug/M3	
trans-1,2-dichloroethene	19.82	19.77	100	70-130	ug/M3	
1,2-Dichloropropane	23.10	22.38	97	70-130	ug/M3	
cis-1,3-Dichloropropene	22.68	23.52	104	70-130	ug/M3	
trans-1,3-dichloropropene	22.68	23.05	102	70-130	ug/M3	
1,2-Dichlorotetrafluoroethane	34.94	33.83	97	70-130	ug/M3	
1,4-Dioxane (P-Dioxane)	18.01	19.83	110	70-130	ug/M3	
Ethyl Acetate	18.01	19.37	108	70-130	ug/M3	
Ethylbenzene	21.70	25.00	115	70-130	ug/M3	
4-Ethyltoluene	24.57	27.80	113	70-130	ug/M3	
n-Heptane	20.48	22.37	109	70-130	ug/M3	
Hexachlorobutadiene	53.30	55.00	103	70-130	ug/M3	
n-Hexane	17.61	19.12	109	70-130	ug/M3	
2-Hexanone (MBK)	20.47	21.26	104	70-130	ug/M3	
Isopropylbenzene	24.57	26.25	107	70-130	ug/M3	
Methylene Chloride	17.36	15.76	91	70-130	ug/M3	
4-Methyl-2-Pentanone (MIBK)	20.47	21.13	103	70-130	ug/M3	
Methyl-t-Butyl Ether	18.02	19.71	109	70-130	ug/M3	
Naphthalene	26.20	33.93	130	70-130	ug/M3	
Propylene	8.602	8.311	97	70-130	ug/M3	
n-Propylbenzene	24.57	26.45	108	70-130	ug/M3	
Styrene	21.29	25.51	120	70-130	ug/M3	
1,1,2,2-Tetrachloroethane	34.31	35.03	102	70-130	ug/M3	
Tetrachloroethene	33.90	34.25	101	70-130	ug/M3	
Tetrahydrofuran	14.74	15.31	104	70-130	ug/M3	
Toluene	18.83	20.25	108	70-130	ug/M3	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

ug/M3

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

o-Xylene

Analytical Method: EPA TO-15

 Seq Number:
 186940
 Matrix: Air

 CCV Sample Id:
 CCV-01
 Analyzed Date: 08/20/21 06:50

21.70

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Flag
1,2,4-Trichlorobenzene	37.09	44.60	120	70-130	ug/M3
1,1,1-Trichloroethane	27.27	26.28	96	70-130	ug/M3
1,1,2-Trichloroethane	27.27	26.58	97	70-130	ug/M3
Trichloroethene	26.86	26.81	100	70-130	ug/M3
Trichlorofluoromethane	28.08	25.80	92	70-130	ug/M3
1,1,2-Trichlorotrifluoroethane	38.31	36.89	96	70-130	ug/M3
1,2,4-Trimethylbenzene	24.57	28.67	117	70-130	ug/M3
1,3,5-Trimethylbenzene	24.57	27.05	110	70-130	ug/M3
2,2,4-Trimethylpentane	23.35	23.54	101	70-130	ug/M3
Vinyl acetate	17.60	17.79	101	70-130	ug/M3
Bromoethene	21.86	21.86	100	70-130	ug/M3
Vinyl chloride	12.78	12.28	96	70-130	ug/M3
m&p-Xylene	43.41	48.53	112	70-130	ug/M3

Surrogate	CCV Result	Limits	Units	Flag
4-Bromofluorobenzene	83	50-150	%	

112

70-130

24.30

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Analyzed Date: 07/15/21 13:32

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

Analytical Method: EPA TO-15

Seq Number: 185968 Matrix: Air
Parent Sample Id: ICV-01 ICV Sample Id: ICV-01

r arent cample ia. Tov or	•	0 1 Cap.o		,a.,	0.7.07=0.0=	_
Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Acetone	11.87	10.66	90	70-130	ug/M3	
Benzene	15.97	15.51	97	70-130	ug/M3	
Benzyl Chloride	25.87	27.08	105	70-130	ug/M3	
Bromodichloromethane	33.49	32.04	96	70-130	ug/M3	
Bromoform	51.67	53.22	103	70-130	ug/M3	
Bromomethane	19.41	19.17	99	70-130	ug/M3	
1,3-Butadiene	11.06	10.68	97	70-130	ug/M3	
2-Butanone (MEK)	14.74	14.29	97	70-130	ug/M3	
Carbon Disulfide	15.56	15.20	98	70-130	ug/M3	
Carbon Tetrachloride	31.45	30.48	97	70-130	ug/M3	
Chlorobenzene	23.01	22.75	99	70-130	ug/M3	
Chloroethane	13.19	12.91	98	70-130	ug/M3	
Chloroform	24.40	23.55	97	70-130	ug/M3	
Chloromethane	10.32	9.584	93	70-130	ug/M3	
Allyl Chloride (3-Chloropropene)	15.64	15.43	99	70-130	ug/M3	
Cyclohexane	17.20	18.31	106	70-130	ug/M3	
Dibromochloromethane	42.58	41.98	99	70-130	ug/M3	
1,2-Dibromoethane	38.40	38.46	100	70-130	ug/M3	
1,2-Dichlorobenzene	30.05	29.90	100	70-130	ug/M3	
1,3-Dichlorobenzene	30.05	30.07	100	70-130	ug/M3	
1,4-Dichlorobenzene	30.05	30.27	101	70-130	ug/M3	
Dichlorodifluoromethane	24.72	23.21	94	70-130	ug/M3	
1,1-Dichloroethane	20.23	19.62	97	70-130	ug/M3	
1,2-Dichloroethane	20.23	19.32	96	70-130	ug/M3	
1,1-Dichloroethene	19.82	19.75	100	70-130	ug/M3	
cis-1,2-Dichloroethene	19.82	20.37	103	70-130	ug/M3	
trans-1,2-dichloroethene	19.82	19.79	100	70-130	ug/M3	
1,2-Dichloropropane	23.10	22.40	97	70-130	ug/M3	
cis-1,3-Dichloropropene	22.68	23.89	105	70-130	ug/M3	
trans-1,3-dichloropropene	22.68	23.53	104	70-130	ug/M3	
1,2-Dichlorotetrafluoroethane	34.94	33.51	96	70-130	ug/M3	
1,4-Dioxane (P-Dioxane)	18.01	19.14	106	70-130	ug/M3	
Ethyl Acetate	18.01	19.17	106	70-130	ug/M3	
Ethylbenzene	21.70	23.79	110	70-130	ug/M3	
4-Ethyltoluene	24.57	26.79	109	70-130	ug/M3	
n-Heptane	20.48	22.37	109	70-130	ug/M3	
Hexachlorobutadiene	53.30	47.13	88	70-130	ug/M3	
n-Hexane	17.61	18.94	108	70-130	ug/M3	
2-Hexanone (MBK)	20.47	21.03	103	70-130	ug/M3	
Isopropylbenzene	24.57	25.34	103	70-130	ug/M3	
Methylene Chloride	17.36	16.17	93	70-130	ug/M3	
4-Methyl-2-Pentanone (MIBK)	20.47	21.14	103	70-130	ug/M3	
Methyl-t-Butyl Ether	18.02	19.55	108	70-130	ug/M3	
Naphthalene	26.20	21.32	81	70-130	ug/M3	
Propylene	8.602	8.112	94	70-130	ug/M3	
n-Propylbenzene	24.57	26.87	109	70-130	ug/M3	
Styrene	21.29	24.28	114	70-130	ug/M3	
1,1,2,2-Tetrachloroethane	34.31	32.86	96	70-130	ug/M3	
Tetrachloroethene	33.90	34.26	101	70-130	ug/M3	
Tetrahydrofuran	14.74	15.47	105	70-130	ug/M3	
Toluene	18.83	20.13	107	70-130	ug/M3	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name ACPS IAQ Testing

PSS Project No.: 21081828

Analytical Method: EPA TO-15

Seq Number: 185968 Matrix: Air

ICV Sample Id: ICV-01 Analyzed Date: 07/15/21 13:32 Parent Sample Id: ICV-01

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units Flag
1,2,4-Trichlorobenzene	37.09	33.48	90	70-130	ug/M3
1,1,1-Trichloroethane	27.27	26.75	98	70-130	ug/M3
1,1,2-Trichloroethane	27.27	26.47	97	70-130	ug/M3
Trichloroethene	26.86	26.83	100	70-130	ug/M3
Trichlorofluoromethane	28.08	26.66	95	70-130	ug/M3
1,1,2-Trichlorotrifluoroethane	38.31	37.18	97	70-130	ug/M3
1,2,4-Trimethylbenzene	24.57	27.23	111	70-130	ug/M3
1,3,5-Trimethylbenzene	24.57	26.05	106	70-130	ug/M3
2,2,4-Trimethylpentane	23.35	23.79	102	70-130	ug/M3
Vinyl acetate	17.60	18.06	103	70-130	ug/M3
Bromoethene	21.86	21.66	99	70-130	ug/M3
Vinyl chloride	12.78	12.23	96	70-130	ug/M3
m&p-Xylene	43.41	46.74	108	70-130	ug/M3
o-Xylene	21.70	23.49	108	70-130	ug/M3

Surrogate	ICV Result	Limits	Units	Flag
4-Bromofluorobenzene	103	50-150	%	

X = Recovery outside of QC Criteria

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

www.phaseonline.com

PHASE SEPARATION SCIENCE, INC.

email: info@phaseonline.com

-		MENTAL															
(1) *CLIENT	Total Environmental Concep	ots, Inc. *OFF	ICE LOC.: LO	rton		PSS W			C		PAGE_		OF	2		
	*PROJE	_{ст мск:} Karl Ford						21081878									
		kford@teci.pro		*PHONE NO: ((703) 567-4	4346											
	*PROJE	CT NAME: ACPS IAQ te			PROJECT NO.: 4920002)	*	• ±	ھ ھ *	er -ab	ab *	Air *			
		George Washington Middl P.O. NO.: ODC 4920002-001						G. Pe	ressu g) Sta	ressu g) Sto	Canist "Hg) I	Gas / Subslab	bient	l List	1 7		
		_{R(S):} Karl Ford					Can ID *		Sample Reg. ID	Canister Pressure in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab		Indoor/Ambient Air *	TO-15 Full List	Special List	
2		*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Can		San	Can	Can in fi	Pre	Soil	Indo	6	Spe	REMARKS
	1	GM - Class 3	8-16-21	1030	8-16-21	2024	3531		12323	31	0	0			√		
	9	GM - Hallway 3	8-16-21	1036	8-16-21	2027	4315		10946	30	0	0			√		0
	3	GM - Reception	8-16-21	1042	8-16-21	2031	4257		6170	32	0	0			√		
	4	GM - Class 8	8-16-21	1048	8-16-21	2035	4309		03235	31	2.8	0			√		
	5	GM - Class 13	8-16-21	1055	8-16-21	2040	4250		12327	32	2	1			/		
	6	GM - Class 17	8-16-21	1100	8-16-21	2043	4195		3215	30	0	0			√		
	า	GM - Hallway 18	8-16-21	1107	8-16-21	2049	4314		05676	30	0	0			√		
	8	GM - Gym	8-16-21	1122	8-16-21	2054	4251		03160	31	1.8	2			1		
	4	GM - Class 30	8-16-21	1127	8-16-21	2056	4264		13651	32	0	0			/		
	10	GM - Class 26	8-16-21	1142	8-16-21	2103	4254		11062	31	0	2			/		
5	Relingu	ished By: (1)	Date	Time	Received By:	1		(4)	*Reque 5-Day	sted TAT		T per CC	C) 2-Da	.,	Ship	ping C	Carrier:
		ennic John	8/18/00	(58)	14	Color			Next D	_	3-Day Emerg	ency	Othe	-		Cli	at
	Relinqu	ished By: (2)/	Date	Time	Received By:			Data	a Deliverabl	es Requi	red:						
	Relinquished By: (3) Date Time Received By:			Spe	cial Instruct	ions:											
	Relinqu	ished By: (4)	Date	Time	Received By:												

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

STANDONMENTAL SCHOOL

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

www.phaseonline.com

email: info@phaseonline.com

PHASE SEPARATION SCIENCE, INC.

1	*CLIENT: Total Environmental Concepts, Inc. *OFFICE LOC.: Lorton						PSS Work Order #: PAGE 2 OF 2									
		: CT MGR: Karl Ford	*OFF	ICE LOC.:			21081828									
		kford@teci.pro			(703) 567-4	1346										
							* (3)		*	*		*	*			
		PROJECT NAME: ACPS IAQ testing PROJECT NO.: 4920002						* 0	sure	sure	iister i) Lab	oslab	nt Air	±		
		CATION: George Wash	ington Mic	P.O. NO.:	ODC 4920	0002-001		Reg.	Pres 'Hg) \$	Pres 'Hg) (Can ("Hg	/ Sul	mbie	Full List	ist .	
	SAMPLE	_{R(S):} Karl Ford		_	-		Can ID *	Sample Reg. ID	Canister Pressure * in field ("Hg) Start	Canister Pressure * in field ("Hg) Stop	Incoming Canister Pressure ("Hg) Lab	Soil Gas / Subslab	ndoor/Ambient Air	TO-15 F	Special List	
2	LAB#	*SAMPLE IDENTIFICATION	*DATE START	*Time Start (24hr clock)	*DATE STOP	*Time Stop (24hr clock)	Sa			D. Ca		Soi	Pu	2	Spe	REMARKS
	4	GM - Hallway 22	8-16-21	1146	8-16-21	2107	3517	11060	31	3	3			√		
	73	GM - Cafeteria	8-16-21	1152	8-16-21	2031	4271	05675	31	2.2	2			√		
	7	GM - Library	8-16-21	1013	8-16-21	2019	4312	10947	30	0	0			\checkmark		
	14	GM - Band room	8-16-21	1020	8-16-21	2015	3528	11059	31	2.5	6			✓		
	15	GM - Office 4	8-16-21	1136	8-16-21	2115	4313	10948	31	2.2	2			✓		
													Щ			
												Щ			Щ	
1						1										
Y	100	shed By: (1)	PIF/X	Time 1500 =	Received B			4 √ 5-Day		3-Day	AT per CC	2-Da	•	Ship		arrier:
ŀ	Relinqui	shed By: (2)	Date	Time	Received By:			Next Data Deliverabl		Emerg	ency	Othe	r			11(21)
								Data Doniolabi	oo roqui		lide a					
	Relinqui	shed By: (3)	Date	Time	Received By:			Special Instruc	tions:							
\mathbf{F}	Relingui	shed By: (4)	Date	Time	Received By:											
					-											

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

Effective Date: 11/09/18

TO-15 Canister and Flow Controller Check List

Check	Check	
Out	In (use n/a as necessary)	Check Out
	No. Canisters: 15	BO#/Client: 14268 TEC
		Assembled/Checked Out: Date/Initials 812121 BW
Q	Top of Micro QT tight	Serial #s Entered in LIMS: Date/Initials (17)
	Sampling tag/label	Verified: Date/Initials 7 M2
	Stands	
V	No. Flow controllers: 15	
/[Use COC pressures to evaluate sampling	time accuracy
	Leak evaluated	Check In
V	Gauge checked / adjusted (29 – 30" Hg)	Sample Receipt Checklist: Date/Initials: 8/11/31 T
M	Flow set	Work Order No.: 21081838
V	Purged with N	Checked In: Date/Initials
L	*Checked for water if soil gas	
	Duplicate T-piece(s)	
	Other items in bin:	
	Hard Copy of O-01.05.F01 TO-15 Client Sar	npling Guide
	COC Form(s) (+1 extra)	M
V	Client copy of bottle order	Notes Cameter nuber for sample 003
	STOP Notice if split IA/SG order	listed as 4257 on Coc; received
	Soil Gas? wrench/nuts/ferules Qty	carrister 4252.
	Tubing? purged/capped: ft	Canister number for sample OII
	Tubing cutter	listed as 3517 on coc;
	Bin labelled, copy of BO for receiving	received canister 3519.
	Client survey response card	
Vapor I	Pins – indicate type: barbed/compression	
	Vapor Pins with sleeves: Qty	
	Tygon pieces/FLX Fittings: Qty	
	Installation tool	
一百	Deadblow hammer	
mi	Hole Brush	
	Additional Items (see form F06)	
	Sample Receipt Checklist (Y/N): To be c	ompleted during login
NI	*All sample fields completed and accurate	e: Sample ID; Start/Stop Dates/Times; Canister ID (S/N); Flow
an 81	Controller ID (S/N); Field Start and Stop Pr	ressures; Soil Gas/Indoor Air.
	*Sampling times documented in 24 hour cl	
	*Incoming lab pressure w/in 5" of field sto	p pressure and < 10" Hg for indoor air and <15" Hg for soil gas.

^{*}These sample check in criteria must be met or the nonconformance must be documented in the Sampling & Login case narrative field of the work order in LIMS and communicated to the PSS project manager for client notification.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21081828

Client Name Total Environmental Concepts - Lorto Received By Thomas Wingate

Disposal Date 09/22/2021 08/18/2021 03:00:00 PM Date Received

> **Delivered By** Client

Not Applicable **Tracking No**

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers

N/A Ice

Custody Seal(s) Intact? N/A Temp (deg C)

N/A Temp Blank Present No Seal(s) Signed / Dated?

Sampler Name Karl Ford Documentation

COC agrees with sample labels? MD DW Cert. No. No N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Total No. of Samples Received **Holding Time** 15

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 15

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos (pH<2)N/A VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Canister number for sample	003	listed as	4257	on COC	; received	canister	4252.
Canister number for sample	011	listed as	3517	on COC	 received 	canister	3519

Samples Inspected/Checklist Completed By:	Temme Windle	Date: 08/18/2021	
	Thomas Wingate		

PM Review and Approval:

Multiple AmBage distert 49 Date: 08/19/2021

Relinquished By: (3)

Relinquished By: (4)

Date

Date

Time

Time

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC. www.phaseonline.com email: info@phaseonline.com

Data Deliverables Required:

Special Instructions:

PSS Work Order #: PAGE OF *CLIENT: *OFFICE LOC.: *PROJECT MGR: EMAIL: *PHONE NO: (* (3) Canister Pressure * in field ("Hg) Stop Incoming Canister Pressure ("Hg) Lab Indoor/Ambient Air Soil Gas / Subslab PROJECT NO .: Canister Pressure in field ("Hg) Start *PROJECT NAME: Sample Reg. ID TO-15 Full List SITE LOCATION: P.O. NO.: Special List SAMPLER(S): *DATE *Time Start *DATE *Time Stop REMARKS LAB# *SAMPLE IDENTIFICATION START (24hr clock) STOP (24hr clock) Relinquished By: (1) Date *Requested TAT (One TAT per COC) Shipping Carrier: Time Received By: (4) 5-Day ☐ 3-Dav ☐ 2-Day ☐ Next Day ☐ Emergency ☐ Other Relinquished By: (2) Date Time Received By:

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

Received By:

Received By:

Relinquished By: (3)

Relinquished By: (4)

Date

Date

Time

Time

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM TO-15

PHASE SEPARATION SCIENCE, INC. www.phaseonline.com email: info@phaseonline.com

Data Deliverables Required:

Special Instructions:

PSS Work Order #: PAGE OF *CLIENT: *OFFICE LOC.: *PROJECT MGR: EMAIL: *PHONE NO: (* (3) Canister Pressure * in field ("Hg) Stop Incoming Canister Pressure ("Hg) Lab Indoor/Ambient Air Soil Gas / Subslab PROJECT NO .: Canister Pressure in field ("Hg) Start *PROJECT NAME: Sample Reg. ID TO-15 Full List SITE LOCATION: P.O. NO.: Special List SAMPLER(S): *DATE *Time Start *DATE *Time Stop REMARKS LAB# *SAMPLE IDENTIFICATION START (24hr clock) STOP (24hr clock) Relinquished By: (1) Date *Requested TAT (One TAT per COC) Shipping Carrier: Time Received By: (4) 5-Day ☐ 3-Dav ☐ 2-Day ☐ Next Day ☐ Emergency ☐ Other Relinquished By: (2) Date Time Received By:

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

Received By:

Received By:

Appendix D: Formaldehyde Analytical Results

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082530

September 3, 2021

Karl Ford
Total Environmental Concepts - Lorton
8382 Terminal Road, Suite B
Lorton, VA 22079

Reference: PSS Project No: 21082530

Project Name: ACPS IAQ Testing Project Location: George Mason School

Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 21082530.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 29, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan PrucnalLaboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082530

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/25/2021 at 05:35 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21082530-001	GM-Class 3	AIR	08/16/21 00:00
21082530-002	GM-Hallway 3	AIR	08/16/21 00:00
21082530-003	GM-Reception	AIR	08/16/21 00:00
21082530-004	GM-Class 8	AIR	08/16/21 00:00
21082530-005	GM-Class 13	AIR	08/16/21 00:00
21082530-006	GM-Class 17	AIR	08/16/21 00:00
21082530-007	GM-Hallway 18	AIR	08/16/21 00:00
21082530-008	GM-Gym	AIR	08/16/21 00:00
21082530-009	GM-Class 30	AIR	08/16/21 00:00
21082530-010	GM-Class 26	AIR	08/16/21 00:00
21082530-011	GM-Hallway 22	AIR	08/16/21 00:00
21082530-012	GM-Cafeteria	AIR	08/16/21 00:00
21082530-013	GM-Library	AIR	08/16/21 00:00
21082530-014	GM-Band room	AIR	08/16/21 00:00
21082530-015	GM-Office 4	AIR	08/16/21 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082530

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 September 02, 2021

Account# 15354 Login# L545210

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on August 27, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Luab

Enclosure(s)

ANALYTICAL REPORT

Account : 15354 Login No.: L545210

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

National/International	Accreditation/Recognition	Lab ID#	Program/Sector
AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead,
			Environmental Microbiology
		•	
State	Accreditation/Recognition	Lab ID#	Program/Sector
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license
	Regulation		

Legend

< - Less than MDL - Method Detection Limit mg - Milligrams ppb - Parts per Billion > - Greater than ug - Micrograms NA - Not Applicable ppm - Parts per Million I - Liters m3 - Cubic Meters NS - Not Specified ppbv - ppb Volume LOQ - Limit of Quantitation kg - Kilograms ND - Not Detected ppmv - ppm Volume ft2 - Square Feet cm2 - Square Centimeters in2 - Square Inches ng - Nanograms

LABORATORY ANALYSIS REPORT

GALSON

East Syracuse, NY 13057 6601 Kirkville Road FAX: (315) 437-0571 www.sgsgalson.com (315) 432-5227

Login No. : L545210 Account No.: 15354 : Phase Separation Science, Inc. : GEORGE MASON SCHOOL Site

: ACPS IAQ TESTING-4920002 : 16-AUG-21 Date Sampled Date Received Project No.

: 27-AUG-21

Date Analyzed : 31-AUG-21 Report ID : 1262677

Formaldehyde

	mdd	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Conc	mg/m3	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Total	nd	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Time	minutes	248	246	243	242	240	243	240	235	240	240	240	240	252	251	235
	<u>Lab ID</u>	L545210-1	L545210-2	L545210-3	L545210-4	L545210-5	L545210-6	L545210-7	L545210-8	L545210-9	L545210-10	L545210-11	L545210-12	L545210-13	L545210-14	L545210-15
	Sample ID	GM-CLASS 3	GM-HALLWAY 3	GM- RECEPTION	GM-CLASS 8	GM-CLASS 13	GM-CLASS 17	GM-HALLWAY 18	GM-GYM	GM-CLASS 30	GM-CLASS 26	GM-HALLWAY 22	GM-CAFETERIA	GM-LIBRARY	GM-BAND ROOM	GM-OFFICE 4
	Total	Time Total minutes ug	Time Total Conc Lab ID minutes ug mg/m3 - 3 L545210-1 248 <0.4 <0.01	Time Total Conc Lab ID minutes ug mg/m3 L545210-1 248 <0.4 <0.01 Y 3 L545210-2 246 <0.4 <0.01	Time Total Conc Lab ID minutes ug mg/m3 3 L545210-1 248 <0.4 <0.01 Y 3 L545210-2 246 <0.4 <0.01 TION L545210-3 243 <0.4 <0.01	Time Total Conc Lab ID minutes ug mg/m3 3 L545210-1 248 <0.4 <0.01 Y 3 L545210-2 246 <0.4 <0.01 TION L545210-3 243 <0.4 <0.01 B L545210-4 242 <0.4 <0.01	Time Total Conc minutes ug mg/m3 — 1545210-1 248	Time Total Conc Lab ID minutes uq mg/m3 L545210-1 248 <0.4 <0.01 TION L545210-3 246 <0.4 <0.01 E455210-4 242 <0.4 <0.01 L545210-4 242 <0.4 <0.01 L545210-5 240 <0.4 <0.01 L545210-6 243 <0.4 <0.01 L545210-6 243 <0.4 <0.01	Time Total Conc Lab ID minutes uq mg/m3 1545210-1 248 <0.4 <0.01 TION L545210-3 246 <0.4 <0.01 E455210-4 242 <0.4 <0.01 13 L545210-5 240 <0.4 <0.01 13 L545210-6 243 <0.4 <0.01 17 L545210-6 243 <0.4 <0.01 17 L545210-7 240 <0.4 <0.01 18 L545210-7 240 <0.4 <0.01	Time Total Conc Lab ID minutes uq mg/m3 1545210-1 248 <0.4 <0.01 IS45210-2 246 <0.4 <0.01 IS45210-3 243 <0.4 <0.01 S L545210-4 242 <0.4 <0.01 IS45210-5 240 <0.4 <0.01 IS45210-6 243 <0.4 <0.01 IS45210-7 240 <0.4 <0.01 IS45210-8 235 <0.4 <0.01 IS45210-7 240 <0.4 <0.01 IS45210-7 240 <0.4 <0.01 IS45210-7 240 <0.4 <0.01 IS45210-8 235 <0.4 <0.01	Time Total Conc Jab ID minutes uq mq/m3 1545210-1 248 <0.4 <0.01 1545210-2 246 <0.4 <0.01 1545210-4 242 <0.4 <0.01 1545210-4 242 <0.4 <0.01 17 1545210-5 240 <0.4 <0.01 18 1545210-7 240 <0.4 <0.01 19 1545210-7 240 <0.4 <0.01 10 1545210-8 235 <0.4 <0.01 10 1545210-9 240 <0.4 <0.01 10 1545210-9 240 <0.4 <0.01 10 1545210-9 240 <0.4 <0.01 10 1545210-9 240 <0.4 <0.01 10 10 10 10 10 <0.4 <0.01 10 10 10 10 10 10 <0.4 <0.01 10 10 10 10 10 10 <0.4 <0.01 10 10 10 10 10 10 <0.4 <0.01 10 10 10 10 10 10 <0.4 <0.01 10 10 10 10 10 10 10	Time Total Conc Jab ID minutes uq mq/m3 1545210-1 248 <0.4 <0.01 1545210-2 246 <0.4 <0.01 1545210-3 243 <0.4 <0.01 1545210-4 242 <0.4 <0.01 13 1545210-5 240 <0.04 <0.01 17 1545210-6 243 <0.4 <0.01 18 1545210-7 240 <0.4 <0.01 19 1545210-8 235 <0.4 <0.01 24 24 <0.01 <0.01 25 25 24 <0.01 25 25 24 <0.01 25 25 24 <0.01 25 25 24 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 <0.4 <0.01 25 25 25 25 <0.4 25 25 25 25 25 25 25	Time Total Conc Tab ID minutes uq mq/m3	Time Total Conc Tab ID minutes uq mq/m3 1545210-1 248 <0.4 <0.01 1545210-2 246 <0.04 <0.01 1545210-3 243 <0.4 <0.01 1545210-4 242 <0.4 <0.01 13 1545210-5 240 <0.04 <0.01 17 1545210-6 243 <0.4 <0.01 18 1545210-7 240 <0.04 <0.01 19 1545210-7 240 <0.04 <0.01 24 24 <0.04 <0.01 25 24 <0.04 <0.01 25 25 24 <0.04 <0.01 25 25 24 <0.04 <0.01 25 25 24 <0.04 <0.01 25 25 25 24 <0.04 <0.01 25 25 25 25 25 <0.04 <0.01 25 25 25 25 25 <0.04 <0.01 25 25 25 25 25 <0.04 <0.01 25 25 25 25 25 <0.04 <0.01 25 25 25 25 25 25 25	Time Total Conc Jab ID minutes uq mq/m3 1545210-1 248 <0.4 <0.01 1545210-2 246 <0.04 <0.01 1545210-3 243 <0.4 <0.01 1545210-4 242 <0.04 <0.01 13 1545210-6 243 <0.04 <0.01 17 1545210-6 243 <0.04 <0.01 18 1545210-7 240 <0.04 <0.01 19 1545210-7 240 <0.04 <0.01 24 24 <0.04 <0.01 25 24 <0.04 <0.01 25 24 <0.04 <0.01 25 24 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 <0.04 <0.01 25 25 25 <0.04 <0.01 25 25 25 25 25 25 25	1ab ID 1545210-1 Y 3 L545210-2 TION L545210-3 8 L545210-4 13 L545210-4 17 L545210-7 L545210-7 L545210-9 26 L545210-10 Y 22 L545210-11 RIA L545210-12 NA L545210-13 Y L545210-13 Y L545210-14

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of Quantitation: 0.4 ug	0.4 ug	Submitted by:	JLL	Approved by: NKP
Analytical Method : r	: mod. OSHA 1007; HPLC/UV	Date :	02-SEP-21	
Collection Media : 7	Assay 581	Supervisor:	MMJ	

Page 6 of 14

LABORATORY FOOTNOTE REPORT

GALSON

East Syracuse, NY 13057 (315) 432-5227 6601 Kirkville Road FAX: (315) 437-0571 www.sgsgalson.com

Client Name : Phase Separation Science, Inc. Site : GEORGE MASON SCHOOL Project No. : ACPS IAQ TESTING-4920002

Login No. : L545210 Account No.: 15354 Date Sampled : 16-AUG-21 Date Received: 27-AUG-21 Date Analyzed: 31-AUG-21

L545210 (Report ID: 1262677):

Total ug corrected for a desorption efficiency of 96%. FORMALDEHYDE results have been corrected for the average background found on the media: 0.1305 ug for lot #12B20 (samples 1-15). SOPS: LC-SOP-4(23)

ID: 1262677): L545210 (Report

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Mean Recovery Accuracy Parameter

+/-12.1%

Formaldehyde

Page 7 of 14

08578012

Hexavalent Chromium Time Process (e.g., welding plating, painting, etc.) 7 121 Cal OSHA ซ Please indicate which OEL this data will be used for: Call for Credit Card Info. mod. OSHA 1007: TPLC/UV OZ5203 mod. OSHA 1007: TPLC/UV OZ4955 mod. OSHA 1007: TPLC/UV | OZ5310 mod. OSHA 1007: TPLC/UV OZ4076 OZ5229 OZ4406 mod. OSHA 1007: TPLC/UV OZ4506 mod. OSHA 1007: TPLC/UV OZ3932 mod. OSHA 1007; TPLC/UV OZ5313 Samples submitted using the FreeSamplingBadges[™] Program mod. OSHA 1007: TPLC/UV OZ4297 mod. OSHA 1007: TPLC/UV OZ5157 Invoice To*: Phase Separation Science 10122 B Date mod, OSHA 1007; TPLC/UV mod. OSHA 1007: TPLC/UV Email: invoicing@phaseonline.com Method Reference^A Other (specify): ACGIH TLV P.O. No.: ODC 4920002-001 Money Phone No.: 410-747-8770 Credit Card : Card on File Sampled by: Karl Ford OSHA PEL MSHA Sold Sold * Required fields, failure to complete these fields may result in a delay to pursamples being processed. AGalson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: 🔽 Use method(s) listed on COC Print Name/Signature とととと **Brett Grenert-Fischer** Analysis Requested* For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG): Samples received after 3pm will be considered as next day's business State samples were collected in (e.g., NY) Project: ACPS IAQ testing - 4920002 Formaldehyde Samples submitted using the FreePumpLoan[™] Program Dosimeter cartrige # noted in the (Hexavelent Chromium Process) colum ≶ Sample Units*: L, ml,min,in2,cm2,ft2 Received by: Received by: 6630 Baltimore National Pike List description of industry or Process/interferences present in sampling area: Email address: reporting@phaseonline.com Report To*: Phase Separation Science Ξ Ξ Ξ Ξ Ξ Ξ Ξ <u>S</u> Ξ Μin Ξ 25U Baltimore, MD 21228 Time Sample Volume Sample Time Sample Area* For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*: Email Results to : Amber Confer Phone No.*:410-747-8770 <u>शक्र</u>ाप 246 243 240 243 240 235 242 Assay N581 Aldehyde Badge 240 Assay N581 Aldehyde Badge 240 Assay N581 Aldehyde Badge 240 248 Assay N581 Aldehyde Badge Collection Medium Public grade school building Site Name: George Mason School Cell No. Client Account No.*: 243 New Client? Print Name/Signature Date Sampled 08/16/21 08/16/21 08/16/21 08/16/21 08/16/21 08/16/21 08/16/21 08/16/21 08/16/21 08/16/21 6-06 08/16/21 Comments State of the state Tel: (315) 432-5227 888-432-LABS (5227) (surcharge) 100% 150% 200% www.sgsgalson.com 75% 35% 20% % (Maxmium of 20 Characters) Sample Identification* 122313E40165461239 Date:08/27/21 Standard 4 Business Days 3 Business Days 2 Business Days Next Day by Noon Next Day by 6pm Same Day GM - Hallway 18 Need Results By: GM - Hallway 22 GM - Hallway 3 GM - Reception Chain of Custody Relinquished by: Relinquished by: GM - Class 13 GM - Class 30 GM - Class 26 GM - Class 17 GM - Class 8 GM - Class 3 Initials: BGF Prep: UNKNOMN Shipper:UPS GM - Gym $oldsymbol{\mathbb{Z}}$

Page 8 of 14

2108 1230

SGS GALSON	ALSOF	New Client?	Report To* :	Report To*: Phase Separation Science 6630 Baltimore National Pike	cience onal Pike	Invoice To* : Ph	Invoice To*: Phase Separation Science	cience	
		Client Account No.*:		Baltimore, IVID 21228	\$				
6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227	9, NY 13057 1-5227		Phone No.*: 410-747-8770 Cell No.:	0-747-8770		Phone No.: 410-747-8770 Email : invoicing@ph	ne No.: 410-747-8770 Email : invoicing@phaseonline.com	mo	
888-432-LABS (5 www.sgsgalson.com	LABS (5227) on.com		Email Results to : Amber Confer Email address: reporting@ph	nail Results to : <u>Amber Confer</u> Email address: <u>reporting@phaseonline.com</u>	le.com	P.O. No.: OD	P.O. No.: <u>ODC 4920002-001</u>	Call for Credit Card Info	
┢		_	2	Samples submitted using the FreePumpLoan™ Program	ig the FreePumpLoan™		Samples submitted using the FreeSamplingBadges [™] Program	ıdges [™] Program	
Need Results by: Standard	(surcharge)	Site Name: Georg	George Mason School	Pro	Project: ACPS IAQ testing	sting - 4920002 sampled by :	Karl Ford		
4 Busir	35%	Ι							
3 Business Days	20%	Dosimeter cartr	Dosimeter cartrige # noted in the	(Hexavelent Chr	(Hexavelent Chromium Process) colum	olum			
2 Business Days	75%)						
☐ Next Day by 6pm	100%	List description of ind	List description of industry or Process/interferences present in sampling area:	rences present in sampl	ing area :		흏[will be used for	
Next Day by Noon	150%	Public grade s	Public grade school building			collected in (e.g., NY)	OSHA PEL ACGIH TLV MSHA Other (specify):	Cal OSHA	
Sample Identification* (Maxmium of 20 Characters)	tion*	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*	Method Reference^	Hexavalent Chromium Ce^ Process (e.g., welding plating, painting, etc.)*	Chromium ., welding iting, etc.)*
GM - Cafeteria		08/16/21	Assay N581 Aldehyde Badge	240	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV		
GM - Library		08/16/21	Assay N581 Aldehyde Badge	252	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	cov OZ4676	
GM - Band room		08/16/21	Assay N581 Aldehyde Badge	251	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	C/UV OZ4345	
GM - Office 4		08/16/21	Assay N581 Aldehyde Badge	235	Min	Formaldehyde	mod. OSHA 1007: TPLC/JV OZ4337	cruv OZ4337	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV	c/uv	
			Assay N581 Aldehyde Badge			Formaldehyde	mod, OSHA 1007: TPLC/UV	כיחי	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/JJV	cuv	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/JVV	C/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/JJV	כיחי	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/IUV	C/UV	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/JJV	C/U/V	
^Galson Laboratories will substitute our routine/preferred method if it does not match	ubsititute our	r routine/preferred met	hod if it does not match	the method listed on th	e COC unless this box i	the method listed on the COC unless this box is checked: 🗾 Use method(s) listed on COC	n COC		
For metals analysis: if reque	esting an anal	lyte with the option of a	lower LOQ, please indi	icate if the lower LOQ is	required (only availabl	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):			
For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*	s) of silica nee	ded must be indicated	(Quartz, Cristobalite, an	ıd/or Tridymite)* :					
Chain of Custody	Pri	Print Name/Signature		Date Time		Print Name/Signature	ture	Date	Time
Relinquished by :					Received by :				
Relinquished by:					Received by :		15 - Jane 1 - 15	-	9211
		*	Samples tequired figlds, failyfe	s received after 3pm 70 cemplete Refet	will be considered as ields may gesult in a	Samples received after 3pm will be considered as next day's business. * Required fields, failure to camplete these fields may soult in a delay taypurs amples being processed.	,	6127 1719 2	of 2
)	Pag	Page 9 of 14	Version 1.000			

Samples Transferred To:

Chain of Custody Form for Subcontracted Analyses

Phase Separation Science, Inc 6630 Baltimore National Pike Phone: (410) 747-8770 Fax: (410) 788-8723 Baltimore, MD 21228

For Questions or issues please contact: Amber Confer

21082530 W.O. No. :

Project Location: George Mason School

Project Number: 4920002 Report To LOD: No

Report Due On:09/03/21 05:00

Old SGS Galson Labs. bsc Phone: 315-432-5227 East Syracuse, NY 13057 SGS North America - NY 6601 Kirkville Road

			,	I a ca I acc				
Lab	Field	Date	Time	Matrix	Analyses Required	Method	Type of	Preservative
Sample ID	Sample ID	Sampled	Sampled				Container	
21082530-001	GM-Class 3	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-002	GM-Hallway 3	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-003	GM-Reception	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-004	GM-Class 8	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-005	GM-Class 13	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-006	GM-Class 17	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-007	GM-Hallway 18	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-008	GM-Gym	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-009	GM-Class 30	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007, HPLC/UV)	VARIOUS	NONSC	NON
21082530-010	GM-Class 26	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-011	GM-Hallway 22	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-012	GM-Cafeteria	12/91/80	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-013	GM-Library	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-014	GM-Band room	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON
21082530-015	GM-Office 4	08/16/21	00:00	Air	Formaldehyde (mod. OSHA 1007; HPLC/UV)	VARIOUS	NONSC	NON

Data Deliverables Required: COA

reporting@phaseonline.com Send Report Attn:

Carrier:

Airbill No.:

Condition Upon Receipt: Comments:

Brett Grenert-Fischer
Samples Received By:
$\mathcal{V}_{\text{Time:}}$
76
Alexandroate: \$126

Date:

Samples Relinquished By:

Page 7 of 7_{Time} Report Reference:1 Generated:02-SEP-21 12:08
Samples Received By:

Page 10 of 14 Date: Samples Relinquished By:

Samples Received By:

But Burned - Shedran 8127121

invoicing@phaseonline.com

Send InvoiceAttn:

Perform Q.C. on Sample:

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082530

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

21082530: Analyses associated with analyst code 4051 were performed by SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

21082530

SGS GALSON	3ALSO	New Client?		Report To*: Phase Separation Science 6630 Baltimore National Pike	paration Somore Nation	cience onal Pike	Invoice To*	*:Phase S	Invoice To*: Phase Separation Science	ence	
_		Client Account No.*:	t No.*:	Baltimore, MD 21228	MD 2122	8					
6601 Kirkvi East Syracı Tel: (315) 4	6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227		Phone No.* :41	:410-747-8770	770		Phone No.	Phone No.: 410-747-8770	02		
ooo-452-LABS (s www.sgsgalson.com	st-LABS (522)		Email Results to : Amber Confer Email address: reporting@phaseonline.com	Amber Cor reporting@	ofer ophaseonlir	le.com	P.O. No.:	<u>Involcing@phaseo</u> P.O. No. : <u>ODC 4920002-001</u> dit Card :	Ernall : <u>Involcing@phaseonline.com</u> J. No. : <u>ODC 4920002-001</u> Card :	online.com 1 Call for Credit Card Info.	
Need Besults Bv.	(surchards)	,		Samples so	ubmitted usin	Samples submitted using the FreePumpLoan™ Program		omitted using the	Samples submitted using the Free Sampling Badge M Bragger	M. O. C.	
Standard	%0	Site Name: Georg	George Mason School	•	Pro	Project - ACPS IA tacting	10000			. Togram	1
☐ 4 Business Days	35%	1					- 1920002	Sampled by: Karl Ford	La		
3 Business Days	20%	Dosimeter cart	Dosimeter cartrige # noted in the	the (Hexa	/elent Chr	e (Hexavelent Chromium Droces) colum	<u> </u>				
2 Business Days	75%			חום (ו ופאמ		ominim Process) (colum				
Next Day by 6pm	100%	List description of inc	List description of industry or Process/interfe	erferences pre	rences present in sampling area :	ing area :	State samples were	described occo	1. Oct. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		T
☐ Next Day by Noon	150%	ild. O						Passe indicate wr	Flease indicate which OEL this data will be used for: OSHA PEL	be used for:	
Same Day	200%	r ublic grade	r ubiic grade school building	<u>م</u>			NA L	MSHA	Other (specify):		
Sample Identification* (Maxmlum of 20 Characters)	cation* ıaracters)	Date Sampled	Collection Medium		Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*	*pe	Method Reference^	Hexavalent Chromium Process (e.g., welding	E D
GM - Class 3		08/16/21	Assay N581 Aldehyde Badge	5		Min	Formaldehyde		mod, OSHA 1007: TPLC/UV	plating, painting, etc.)* O75229	•
GM - Hallway 3		08/16/21	Assay N581 Aldehyde Badge	adge 246		Min	Formaldehvde		mod. OSHA 1007: TPI CAIV	024408	1
GM - Reception		08/16/21	Assay N581 Aldehyde Badge	adge 243		Min	Formaldehyde		_	02/1007	T
GM - Class 8		08/16/21	Assay N581 Aldehyde Badge	ldge 242		Min	Formaldehyde			025457	T
GM - Class 13		08/16/21	Assay N581 Aldehyde Badge	idge 240		Min	Formaldehyde			OZAKOR	T
GM - Class 17		08/16/21	Assay N581 Aldehyde Badge	dge 243		Min	Formaldehyde			02500	T
GM - Hallway 18		08/16/21	Assay N581 Aldehyde Badge	+		Min	Formaldehyde		_	074076	1
GM - Gym		08/16/21	Assay N581 Aldehyde Badge	dge 235		Min	Formaldehyde		mod. OSHA 1007: TPLC/UV	OZ5203	\top
GM - Class 30		08/16/21	Assay N581 Aldehyde Badge	dge 240		Min	Formaldehyde	-	mod. OSHA 1007: TPLC/UV	OZ4955	Τ
GM - Class 26		08/16/21	Assay N581 Aldehyde Badge	dge 240		Min	Formaldehyde	-	mod. OSHA 1007: TPLC/UV	OZ5310	T
GM - Hallway 22		08/16/21	Assay N581 Aidehyde Badge	tge 240		Min	Formaldehyde	2	mod. OSHA 1007: TPLC/UV	OZ5313	Τ
Agalson Laboratories will subsititute our routine/preferred method if it does not match	subsititute our	routine/preferred meth	nod if it does not mat	ch the method	listed on the	COC unless this box is	the method listed on the COC unless this box is checked: 🖊 Use method(s) listed on COC	ted on COC			
For metals analysis: if requ	Jesting an analy	rte with the option of a	lower LOQ, please in	ndicate if the Ic	ower LOQ is re	equired (only available	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):				T
For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*:	(s) of silica need	ded must be indicated (Quartz, Cristobalite,	and/or Tridym	nite)*:						1
Chain of Custody	Prin	Print Name/Signature		Date	Time		Print Name/Signature	gnature	Date	Time	Τ
Relinquished by:		11802	8	125/21	1135	Received by :	any com	2			1
Relinquished by :	3					Received by:					Т
		*	Samples Required fields, failure	les received are to comple	after 3pm wi	received after 3pm will be considered as next day's business to complete these fields may result in a delay in your sample	received after 3pm will be considered as next day's business to complete these fields may result in a delay in your samples heing propessed	rocessed	Pa	Page 1 of 2	
							4 8	Ji Ovesseu.		.1	_

Page 12 of 14

2108 1520

SES	SGS GALSON	New Client? F	Report To*: Pr 66 10.*: Ba	Report To*: Phase Separation Science 6630 Baltimore National Pike Baltimore, MD 21228	Science ional Pike :8	Invoice To*: Phase Separation Science	Separation Sc	ience	
6601 East Tel:	6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227)		Phone No.* : 411	0-747-8770		Phone No.: 410-747-8770 Email : invoicing@phi	ne No.: 410-747-8770 Email : <u>invoicing@phaseonline.com</u>	E	
ww	www.sgsgalson.com		Email Results to : <u>Amber Confer</u> Email address: <u>reporting@ph</u> a	nail Results to : <u>Amber Confer</u> Email address: <u>reporting@phaseonline.com</u>	ine.com	P.O. No. : <u>ODC 4920002-001</u> Credit Card : Card on File	20002-001	01 Call for Credit Card Info.	
Need Results By:	By: (surcharge)		2	Samples submitted usi	Samples submitted using the FreePumpLoan [™] Program	Program Samples submitted using the FreeSamplingBadges [™] Program	the FreeSamplingBade	jes™ Program	
Z Sta	Standard 0%	Site Name: Georg	George Mason School	Pr	Project: ACPS IAQ testing	- 4920002 Sampled by :	Karl Ford		1
4 Business Days	Davs 50%	Comments:	:						1
2 Business Days		Dosimeter cart	Dosimeter cartrige # noted in the	e (Hexavelent Ch	(Hexavelent Chromium Process) colum	colum			
Next Day by 6pm		List description of inc	List description of industry or Process/interferences present in sampling area	rences present in samp	ling area :		Please indicate which OEL this data will be used for:	ill be used for :	\neg
☐ Next Day by Noon ☐ Same Day	Noon 150% 9 Day 200%	Public grade (Public grade school building			collected in (e.g., NY)	L ACGIH TLV	Cal OSHA	·
Sample (Maxmium	Sample Identification* (Maxmlum of 20 Characters)	Date Sampled	Collection Medium	Sample Volume Sample Time Sample Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requeste	Method Reference^		1_
GM - Cafeteria		08/16/21	Assay N581 Aldehyde Badge	57	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	plating, painting, etc.)	
GM - Library		08/16/21	Assay N581 Aldehyde Badge	252	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV		1-
GM - Band room	u	08/16/21	Assay N581 Aldehyde Badge	251	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV		1
GM - Office 4		08/16/21	Assay N581 Aldehyde Badge	235	Min	Formaldehyde	mod. OSHA 1007: TPLC/UV	_	
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/JVV		1
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV		1-
			Assay N581 Aidehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/JV		1
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV		1
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV		
			Assay N581 Aldehyde Badge			Formaldehyde	mod. OSHA 1007: TPLC/UV		1
			Assay N581 Aldehyde Badge			Formaldehyde	mod, OSHA 1007: TPLC/UV		-
AGalson Laborator	es will subsititute our r	routine/preferred meth	nod if it does not match t	the method listed on the	3 COC unless this box is	Agalson Laboratories will substitute our routine/preferred method if it does not match the method listed on the COC unless this box is checked: [V] Use method(s) listed on COC			1—
For metals analysis	: if requesting an analyt	te with the option of a	lower LOQ, please indic	tate if the lower LOQ is	required (only available	For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):			1
ror crystalline sillo	a: torm(s) of silica needs	ed must be indicated (For crystalline silica: form(s) of silica needed must be indicated (Quartz, Cristobalite, and/or Tridymite)*	d/or Tridymite)* :					
Chain of Custody	Prin	Print Name/Signature	Õ	Date Time		Print Name/Signature	Date	te Time	
Relinquished by:					Received by :				1
reinquisued by :					Received by:				-
		* Re	Samples : * Required fields, failure	received after 3pm v to complete these fi	received after 3pm will be considered as next day's business to complete these fields may result in a delay in your sample	received after 3pm will be considered as next day's business to complete these fields may result in a delay in your samples being processed.		Page 2 of 2	1

Page 13 of 14

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21082530

Total Environmental Concepts - Lorto Received By Amber Confer **Client Name**

08/25/2021 05:35:00 PM **Disposal Date** 09/29/2021 **Date Received**

> Client **Delivered By**

> > Temp (deg C)

MD DW Cert. No.

N/A

Not Applicable **Tracking No Amber Confer** Logged In By

Shipping Container(s)

No. of Coolers

Custody Seal(s) Intact?

N/A Ice

Seal(s) Signed / Dated? N/A Temp Blank Present No

Sampler Name Karl Ford **Documentation** Yes

COC agrees with sample labels? Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

N/A

Intact? Yes

Labeled and Labels Legible? Yes

Total No. of Samples Received 15 **Holding Time**

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 15

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols (pH<2)N/A TOX, TKN, NH3, Total Phos (pH<2)N/A VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Outer I longer	Date: 08/26/2021
	Amber Confer	

PM Review and Approval:

Lynn Jackson Page 14 of 14

Date: 08/26/2021

SGS	ALSOI	New Client?	Report To* :					Invoice To	o*:				
343	ALSUI	Client Account											
		Cheffit Account											
6601 Kirkvi	lle Rd use, NY 13057		 Phone No.* :					Phone N	 lo.:				
Tel: (315) 4	32-5227		Cell No. :					Ema	lo.: ail :				
888-43	2-LABS (5227)							P.O. N	0.:				
www.sgsga	alson.com							Credit Car	rd : Card on F	ile 🗌	Call for Cred	dit Card I	nfo.
			_										
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples s	submitted using th	ie FreeSam	plingBadge	s™ Progra	am
Standard	0%	Site Name :			Pro	ject :		Samp	oled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%						_						
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampl	ing area :	State samples w		Please indicate v				
Next Day by Noon	150%						collected in (e.g.,	, NY)	OSHA PEL	_		Cal	OSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identifi (Maxmium of 20 Cl		Date Sampled	Collection Medium	Sample \ Sample Sample	Time	Sample Units*: L, ml,min,in2,cm2,ft2	Ana	alysis Reque	ested*	Method F	Reference^	Process (ent Chromium e.g., welding painting, etc.)*
^Galson Laboratories wil	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked: U	se method(s	s) listed on COC	<u> </u>		l	
For metals analysis: if re-	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the lov	ver LOQ is	required (only availabl	e for certain analy	tes - see SA	.G):				
For crystalline silica: forn	n(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:		<u>-</u>						
Chain of Custody	Pr	int Name/Signature	Г	Date	Time			Print Nam	e/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by:						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ng processed.	_	P	age	of

SGS	ALSOI	New Client?	Report To* :					Invoice To	o*:				
343	ALSUI	Client Account											
		Cheffit Account											
6601 Kirkvi	lle Rd use, NY 13057		 Phone No.* :					Phone N	 lo.:				
Tel: (315) 4	32-5227		Cell No. :					Ema	lo.: ail :				
888-43	2-LABS (5227)							P.O. N	0.:				
www.sgsga	alson.com							Credit Car	rd : Card on F	ile 🗌	Call for Cred	dit Card I	nfo.
			_										
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples s	submitted using th	ie FreeSam	plingBadge	s™ Progra	am
Standard	0%	Site Name :			Pro	ject :		Samp	oled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%						_						
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampl	ing area :	State samples w		Please indicate v				
Next Day by Noon	150%						collected in (e.g.,	, NY)	OSHA PEL	_		Cal	OSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identifi (Maxmium of 20 Cl		Date Sampled	Collection Medium	Sample \ Sample Sample	Time	Sample Units*: L, ml,min,in2,cm2,ft2	Ana	alysis Reque	ested*	Method F	Reference^	Process (ent Chromium e.g., welding painting, etc.)*
^Galson Laboratories wil	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked: U	se method(s	s) listed on COC	<u> </u>		l	
For metals analysis: if re-	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the lov	ver LOQ is	required (only availabl	e for certain analy	tes - see SA	.G):				
For crystalline silica: forn	n(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:		<u>-</u>						
Chain of Custody	Pr	int Name/Signature	Г	Date	Time			Print Nam	e/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by:						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ng processed.	_	P	age	of

Appendix E: 4-PCH Analytical Results

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082531

September 3, 2021

Karl Ford
Total Environmental Concepts - Lorton
8382 Terminal Road, Suite B
Lorton, VA 22079

Reference: PSS Project No: 21082531

Project Name: ACPS IAQ Testing Project Location: George Mason School

Project ID.: 4920002

Dear Karl Ford:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **21082531**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 29, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082531

Project ID: 4920002

The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/25/2021 at 05:35 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
21082531-001	GM-Class 3	AIR	08/16/21 00:00
21082531-002	GM-Hallway 3	AIR	08/16/21 00:00
21082531-003	GM-Reception	AIR	08/16/21 00:00
21082531-004	GM-Class 8	AIR	08/16/21 00:00
21082531-005	GM-Class 13	AIR	08/16/21 00:00
21082531-006	GM-Class 17	AIR	08/16/21 00:00
21082531-007	GM-Hallway 18	AIR	08/16/21 00:00
21082531-008	GM-Gym	AIR	08/16/21 00:00
21082531-009	GM-Class 30	AIR	08/16/21 00:00
21082531-010	GM-Class 26	AIR	08/16/21 00:00
21082531-011	GM-Hallway 22	AIR	08/16/21 00:00
21082531-012	GM-Cafeteria	AIR	08/16/21 00:00
21082531-013	GM-Library	AIR	08/16/21 00:00
21082531-014	GM-Band room	AIR	08/16/21 00:00
21082531-015	GM-Office 4	AIR	08/16/21 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

SCIENCE

Project Name: ACPS IAQ Testing

PSS Project No.: 21082531

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Ms. Amber Confer Phase Separation Science, Inc. 6630 Baltimore National Pike Baltimore, MD 21228 September 03, 2021

Account# 15354 Login# L545203

Dear Amber Confer:

Enclosed are the analytical results for the samples received by our laboratory on August 27, 2021. All samples on the chain of custody were received in good condition unless otherwise noted. Any additional observations will be noted on the chain of custody.

Please contact client services at (888) 432-5227 if you would like any additional information regarding this report. Thank you for using SGS Galson.

Sincerely,

SGS Galson

Lisa Swab Laboratory Director

Lisa Luab

Enclosure(s)

ANALYTICAL REPORT

Account : 15354 Login No. : L545203

Terms and Conditions & General Disclaimers

- This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.
- Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention
 only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not
 exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized
 alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the
 fullest extent of the law.

Analytical Disclaimers

- Unless otherwise noted within the report, all quality control results associated with the samples were within established control limits or did not impact reported results.
- Note: The findings recorded within this report were drawn from analysis of the sample(s) provided to the laboratory by the Client (or a third party acting at the Client's direction). The laboratory does not have control over the sampling process, including but not limited to the use of field equipment and collection media, as well as the sampling duration, collection volume or any other collection parameter used by the Client. The findings herein constitute no warranty of the sample's representativeness of any sampled environment, and strictly relate to the samples as they were presented to the laboratory. For recommended sampling collection parameters, please refer to the Sampling and Analysis Guide at www.sgsgalson.com.
- Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of
 significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the
 final result column may have been rounded and therefore, if carried through the calculations, may not yield an identical final result to the
 one reported.
- The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).
- Unless otherwise noted within the report, results have not been blank corrected for any field blank or method blank data.

Accreditation/Recognition

Accreditations SGS Galson holds a variety of accreditations and recognitions. Our quality management system conforms with the requirements of ISO/IEC 17025. Where applicable, samples may also be analyzed in accordance with the requirements of ELAP, NELAC, or LELAP under one of the state accrediting bodies listed below. Current Scopes of Accreditation can be viewed at http://www.sgsgalson.com in the accreditations section of the "About" page. To determine if the analyte tested falls under our scope of accreditation, please visit our website or call Client Services at (888) 432-5227.

AIHA-LAP, LLC - IHLAP, ELLAP, EMLAP	ISO/IEC 17025 and USEPA NLLAP	Lab ID 100324	Industrial Hygiene, Environmental Lead			
			Environmental Microbiology			
State	Accreditation/Recognition	Lab ID#	Program/Sector			
New York (NYSDOH)	ELAP and NELAC (TNI)	Lab ID: 11626	Air Analysis, Solid and Hazardous Waste			
New Jersey (NJDEP)	NELAC (TNI)	Lab ID: NY024	Air Analysis			
Louisiana (LDEQ)	LELAP	Lab ID: 04083	Air Analysis, Solid Chemical Materials			
Texas	Texas Dept. of Licensing and	Lab ID: 1042	Mold Analysis Laboratory license			
	Regulation					

Lab ID#

Legend

National/International

< - Less than MDL - Method Detection Limit ppb - Parts per Billion mg - Milligrams > - Greater than ug - Micrograms NA - Not Applicable ppm - Parts per Million I - Liters m3 - Cubic Meters NS - Not Specified ppbv - ppb Volume LOQ - Limit of Quantitation kg - Kilograms ND - Not Detected ppmv - ppm Volume ft2 - Square Feet cm2 - Square Centimeters ng - Nanograms in2 - Square Inches

Program/Sector

LABORATORY ANALYSIS REPORT

GALSON

6601 Kirkville Road
East Syracuse, NY 13057

(315) 432-5227 FAX: (315) 437-0571 www.sqsqalson.com Client : Phase Separation Science, Inc. Account No.: 15354 Site : GEORGE MASON SCHOOL Login No. : L545203

Project No. : ACPS IAQ TESTING-4920002

Date Sampled : 16-AUG-21 Date Received : 27-AUG-21 Report ID : 1263236

4-Phenylcyclohexene (4PCH low LOQ)

		Air Vol	Front	Back	Total	Conc	ppm
<u>Sample ID</u>	<u>Lab ID</u>	liter	uq	uq	uq	mq/m3	
GM-CLASS 3	L545203-1	49.6	<0.2	<0.2	<0.2	<0.004	<0.0006
GM-HALLWAY 3	L545203-2	49.2	<0.2	<0.2	<0.2	<0.004	<0.0006
GM-RECEPTION	L545203-3	48.6	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-CLASS 8	L545203-4	48.4	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-CLASS 13	L545203-5	48	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-CLASS 17	L545203-6	48.6	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-HALLWAY 18	L545203-7	48	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-GYM	L545203-8	47	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-CLASS 30	L545203-9	48	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-CLASS 26	L545203-10	48	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-HALLWAY 22	L545203-11	48	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-CAFETERIA	L545203-12	48	<0.2	<0.2	<0.2	<0.004	<0.0007
GM-LIBRARY	L545203-13	50.4	<0.2	<0.2	<0.2	<0.004	<0.0006
GM-BAND ROOM	L545203-14	50.2	<0.2	<0.2	<0.2	<0.004	<0.0006
GM-OFFICE 4	L545203-15	47	<0.2	<0.2	<0.2	<0.004	<0.0007

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of Quantitation: 0.2 ug Submitted by: BDK Approved by: MLN

Analytical Method : mod. NIOSH 1501; GC/PID Date : 03-SEP-21

Collection Media : 226-01 Supervisor : KAG

Client Name : Phase Separation Science, Inc.

: GEORGE MASON SCHOOL Project No. : ACPS IAQ TESTING-4920002

Date Sampled : 16-AUG-21 Account No.: 15354 Date Received: 27-AUG-21 Login No. : L545203

Date Analyzed: 01-SEP-21

L545203 (Report ID: 1263236):

6601 Kirkville Road

FAX: (315) 437-0571

www.sgsgalson.com

East Syracuse, NY 13057 (315) 432-5227

> Total ug corrected for a desorption efficiency of 97%. SOPs: GC-SOP-16(26), GC-SOP-8(27), GC-SOP-12(20)

L545203 (Report ID: 1263236):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated accuracy applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process. The accuracy is based solely on spike recovery data from internal quality control samples. Where N/A appears below, insufficient data is available to provide statistical accuracy and mean recovery values for the associated analyte.

Parameter	Accuracy	Mean Recovery
4-Phenylcyclohexene (4PCH low LOQ)	+/-18%	88.2%

231	3E40165461239								•	·					
ate:08/27/21 hipper:UPS				Report To*: Phase Separation Science					Invoice To	Invoice To*: Phase Separation Science					
aitials:BGF I New Client? ne			•	6630 Baltimore National Pike											
TERREMENTAL DESIGNATION OF THE REPORT OF THE PERSON OF THE		Client Account N	o.*:	Balti	more, ML	21228									
rep	: UNKNOWN		Cheff Account												
	WWW I MICKYIII	ı a nu		Phone N	Phone No.: <u>410-747-8770</u>										
	East Syracus Tel: (315) 43	se, NY 1305/	Phone No.* : 410-747-8770 Cell No. :					Email: invoicing@phaseonline.com							
	888-432	2-LABS (5227)	Email Results to : Amber Confer					P.O. No. : ODC 4920002-001							
	www.sgsga	lson.com		Email address: reporting@phaseonline.com						Credit Card : Card on File Call for Credit Card Info.					
	• -							the FreePumpLoan™ F	Program Samples s	submitted using the	e FreeSampl	ingBadges¹	™ Progran	n	
<u> </u>	ti I D la Per	(surcharge)			V S	amples subn									
	Need Results By: Standard	0%	Site Name : George	Mason Scho	ool		Proj	ect: ACPS IAQ tes	sting - 4920002 Samp	oled by: Karl Fo	ora				
	4 Business Days	35%	Comments:												
片	3 Business Days	50%													
后	2 Business Days	75%	<u></u>						State samples were	Please indicate w	hich OEL thi	is data will	be used fo	or:	
后	Next Day by 6pm	100%	List description of ind	ustry or Process/i	nterfer	ences preser	it in sampli	ng alea.	collected in (e.g., NY)	OSHA PEL			Cal O		
	Next Day by Noon	150%	Public grade s	chool a	11 1	16 8	16F 612	7/21	VA	□ мѕна	Other (s	pecify):		1	
	Same Day	200%		- -	- 1	Sample		Sample Units*:			Method Re	forenceA		t Chromium	
Sample Identification*		Date Sampled	Collection Me	dium	Sample Sample	Time	L, ml,min,in2,cm2,ft2	Analysis Requ	estea-	Method Ne	referice		inting, etc.)*		
(Maxmium of 20 Characters)		08/16/21	Sm Charcoal tubes	/ 226-01	49.6		L	4-Phenylcyclohexene		mod. NIOSH 1501					
GM - Class 3		08/16/21	Sm Charcoal tubes		49.2		L	4-Phenylcyclohexene		mod. NIOSH 1501					
GM - Hallway 3			Sm Charcoal tubes		48.6		L	4-Phenylcyclohexene		mod. NIOSH 1501					
GM - Reception		08/16/21			48.4		1	4-Phenylcyclohexene		mod. NIOSH 1501					
(SM - Class 8		08/16/21	Sm Charcoal tubes				1	4-Phenylcyclohexene		mod. NIO	SH 1501			
GM - Class 13 08/16/21		Sm Charcoal tubes	/ 226-01	48.0		<u> </u>	4-Phenylcyclohexene		mod. NIO	SH 1501					
1	M - Class 17		08/16/21	Sm Charcoal tubes	/ 226-01	48.6		<u>.</u>			mod. NIO				
		Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcyclohexene		mod. NIO						
GM - Gym 08/16/21 Sm Charcoal tubes / 226			/ 226-01	47.0		L	4-Phenylcyclohexene		mod. NIO			<u> </u>			
GM - Class 30 08/16/21 Sm Charcoal tubes			/ 226-01	48.0		L	4-Phenylcyclohexene		mod. NIO						
<u> </u>	SM - Class 26		08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcyclohexene						
⊢			08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcyclohexene		mod. NIO	SH 1501		···	
GWI - Trailway ZZ Use method (s) listed on COC Use method (s) listed on COC															
-	AGalson Laboratories will substitute our routine/preferred method in the design of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG): For metals analysis: if requesting an analyte with the option of a lower LOQ, please indicate if the lower LOQ is required (only available for certain analytes - see SAG):														
d ill and description indicated (Quartz, Cristobalite, and/or Tridymite)*:															
D. L. Al /Cimpotuso		· ·	Date	Time	1	Print Na	me/Signature		Dat	.e	Time				
	Chain of Custody		Client		8	25/21	1735		areste	P 4 h	- 1	۳. ا		1121	
<u> </u>	Relinquished by: Relinquished by:		me 1	WM		•	<u> </u>	Received by:	Brett Grenert-Fisc	her Butt 1)	unill."	Jischun 9.12	7/21	1126	
}	Hamildanian of				Sample	es received	after 3pm	will be considered a	as next day's business a delay in your samples b	eing processed.		P	age 1	of <u>2</u>	
- 1	* Required Raigle, Britist to Republic Reference and Control of Co														

21082531

S	GS G	ALSON	New Client?	663	Invoice T	•*: <u>Phase Se</u>	eparatio	on Scie	nce					
6601 Kirkville Rd East Syracuse, NY 13057 Tel: (315) 432-5227 888-432-LABS (5227) www.sgsgalson.com			E	Phone No.* : 410-747-8770 Cell No. : Email Results to : Amber Confer Email address: reporting@phaseonline.com ✓ Samples submitted using the FreePumpLoan™ Program						Phone No.: 410-747-8770 Email: invoicing@phaseonline.com P.O. No.: ODC 4920002-001 Credit Card: Card on File Call for Credit Card Info. Samples submitted using the FreeSamplingBadges™ Program				
Ne	ed Results By:	(surcharge)						Jan Korl Er	ord			· · · · · · · · · · · · · · · · · · ·		
Ø	Standard	0%	Site Name: George	Name: George Mason School Project: ACPS IAQ testing - 4920002 Sampled by: Karl Ford										
	4 Business Days	35%	Comments:	nments:										
	3 Business Days	50%												
	2 Business Days	75%	List description of ind	st description of industry or Process/interferences present in sampling area: State samples were Please indicate which OEL this data will be use										
	Next Day by 6pm Next Day by Noon	100% 150%				collected in (e.g., NY) OSHA PEL ACGIH TLV Cal OSHA					SHA			
믐	Same Day	200%	Public grade s	school			VA	☐ MSHA	Other (specify):				
			Collection Medium	Sample Volume Sample Time Sample Area*		Sample Units*: ., ml,min,ln2,cm2,ft2	Analysis Requ	ested*	Method Reference		plating, painting, etc.)*			
GM - Cafeteria			08/16/21	Sm Charcoal tubes / 226-01	48.0	L		4-Phenylcyclohexene		mod. NIC	OSH 1501			
GM - Library			08/16/21	Sm Charcoal tubes / 226-01	50.4	L		4-Phenylcyclohexene		mod. NIC	OSH 1501			
	Band room		08/16/21	Sm Charcoal tubes / 226-01	50.2	L	•	4-Phenylcyclohexene		mod. NIOSH 1501				
	Office 4		08/16/21	Sm Charcoal tubes / 226-01	47.0	L	•	4-Phenylcyclohexene	mod. NIOSH 1501					
GIVI .	Onice 4			Sm Charcoal tubes / 226-01				4-Phenylcyclohexene		mod. NIOSH 1501				
				Sm Charcoal tubes / 226-01				4-Phenylcyclohexene		mod. NIOSH 1501				
				Sm Charcoal tubes / 226-01				4-Phenylcyclohexene	mod. NIOSH 1501					
				Sm Charcoal tubes / 226-01				4-Phenylcyclohexene		mod. NIC	OSH 1501			
				Sm Charcoal tubes / 226-01				4-Phenylcyclohexene	mod. NIC	OSH 1501				
				Sm Charcoal tubes / 226-01				4-Phenylcyclohexene	· · · · · · · · · · · · · · · · · · ·	mod. NIC	OSH 1501			
<u> </u>				Sm Charcoal tubes / 226-01				4-Phenylcyclohexene		mod, NIC	OSH 1501			
<u> </u>			A 6			ed on the	COC unless this box i	s checked: V Use method	(s) listed on COC					
^Ga	son Laboratories v	vill subsititute ou	r routine/preterred met	a leves LOC place inc	licate if the lowe	r LOO is re	equired (only available	e for certain analytes - see S	AG):				:	
For	metals analysis: if r	requesting an ana	lyte with the option of	(Ouartz Cristobalita a	nd/or Tridymital	*:								
				(Quartz, Cristobalite, a	Date	Time		Print Na	ne/Signature		Da	te	Time	
	n of Custody	Pr	int Name/Signature			1735	Received by:	alery	W57		c (-			
	equished by:				Received by:	Brett Grenert-Fisc	ther Bull (runut-	vischer		1126			
Kelii	quished by:	ale	*1	Sample Required fields failu	s received afte	er 3pm w	ill be considered a	s next day's business delay in your samples b	eing processed.		6 27	71 Page 2	of <u>2</u>	

Chain of Custody Form for Subcontracted Analyses

Dha				0 - 01	m 101 Subcontracted Analyse	es					
Phase Separation	on Science, Inc							Page 1 of 1			
OJU Baltimore	AT										
Phone: (410) 74	21228		W	/.O. No. :	21082531	San	ples Transferred To				
ax: (410) 788-8	77-8770 8723		Pr	oject Loca	ntion : George Mason School	SGS	S North America - N	,. IY			
				oject Num	ber: 4920002		1 Kirkville Road	-			
or Questions	or issues please conta		P.o	now4 70	. 4920002 		Syracuse, NY 130:	57			
T .1	or issues please conta	ct: Amber Confer	IX.	hort 1.0 F	OD: No						
Lab Field Date				Repor	t Due On :09/02/21 05:00	Old Phor	Old SGS Galson Labs. bsc Phone:				
	Sample ID	Date	Time	Matri			315-432-5227				
082531-001		Sampled	Sampled	TVIALITY	Analyses Required	Method	1				
082531-002	GM-Class 3	08/16/21	000		1	Memod	Type of	Preservative			
082531-003	GM-Hallway 3	08/16/21	00:00	Air	4-Phenylcyclohexene		Container				
82531-004	GM-Reception	·····	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
2531-005	GM-Class 8	08/16/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
2551-005	GM-Class 13	08/16/21	00:00	Air ·		VARIOUS	NONSC				
2531-006	GM-Class 17	08/16/21	00:00	Air	4-Phenylcyclohexene	VARIOUS		NON			
2531-007	GM-Hallway 18	08/16/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
531-008	GM-Gym	08/16/21	00:00		4-Phenylcyclohexene	VARIOUS	NONSC	NON			
31-009	GM-Class 30	08/16/21	00:00	Air	4-Phenylcyclohexene		NONSC	NON			
31-010		08/16/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
31-011	GM-Class 26	08/16/21		Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
31-012	GM-Hallway 22	08/16/01	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
1-013	GM-Cafeteria	08/16/21	00:00	Air	4-Phenylcyclohexene	VARIOUS	NONSC	NON			
1-013	GM-Library		00:00		4-Phenylcyclohexene	VARIOUS	NONSC	NON			
1-014	GM-Band room	08/16/21	00:00			VARIOUS	NONSC				
-015	GM-Office 4	08/16/21	20:00		4-Phenylcyclohexene	VARIOUS		NON			
		08/16/21 0	0.00		4-Phenylcyclohexene	VARIOUS	NONSC	NON			
eliverab	oles Required:			All	I-Phenylcyclohexene		NONSC	NON			
eport A	tn: reporting@ph	<u>JOA</u>				VARIOUS	NONSC	NON			
L'OLUZAL	reporting@ph	aseonline.com			Perform Q.C.	on Commit					
	Carrie		10		4	on Sample:					
on Receipt:		TI UP			Send 1	InvoiceAttn: inv	oicing@phaseonl	ine com			
								<u></u>			
quished By:	alex wo	0.									
quished By:	- J · Di	ate: 8) 26/21	Time:								
	Da	ite:		<u> </u>	Samples Received By: Brott Co	D D	, , ,				
luished By:	Da Da	ite:	Page 7 of	7Rep	ort Reference: 1 Generated: 03-5	Eperatuscher Dut (Junut - Fische	N 812713			
			Time:	^	Page 10 of 14 amples Received By:	Version 1.000		112			
		77-9-1	the state of		ampies Received By:						

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing

PSS Project No.: 21082531

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

21082531: Analyses associated with analyst code 4051 were performed by SGS North America - NY, 6601 Kirkville Road, East Syracuse, NY 13057 - NY 11626

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

21082531

SGS GALSON New Client? Report To						aration S			Invoice To*: Phase Separation Science							
	GALOUI	Client Account	No.*:			MD 2122			-							
		*******				···			-							
6601 Kirk East Syra	ville Rd cuse, NY 13057		Phone No.*: 410-747-8770						Phone No.: 410-747-8770							
Tel: (315) 432-5227 432-LABS (5227)	1	Cell No. :						Email: invoicing@phaseonline.com							
		'	Email Results to : Amber Confer							P.O. No. : ODC 4920002-001						
www.sgs	galson.com		Email address: reporting@phaseonline.com							rd : Card on F		Call for Cred	dit Card I	nfo.		
		•	Samples submitted using the FreePumpLoan™ Program Samples submitted using the FreeSamplingBadges™ Program													
Need Results By:	(surcharge)		Samples submitted using the FreePumpLoan™ Program Samples submitted using the FreePumpLoan™ Program								g the FreeSamplingBadges™ Program					
Standar	d 0%	Site Name: Georg	e Mason Sch	ool		Pro	oject: ACPS IAQ te	esting - 49	20002 Samı	pled by: Karl F	ord					
4 Business Day	s 35%	Comments:	omments :													
3 Business Day																
2 Business Day								1								
Next Day by 6pm	_	List description of ind	lustry or Process	/interfe	rences pres	sent in sampl	ing area :	State samp		Please indicate v						
Next Day by Noo		Public grade s	school					1					Cal C	JSHA		
Same Day 200% T dolle grade 301001							T	VA		MSHA	Other	(specify):				
Sample Iden (Maxmium of 20		Date Sampled	Collection M	edium	Sami	le Volume ple Time ple Area*	Sample Units*: L, ml,min,in2,cm2,ft2	2 Analysis Requested* M			Method I	d Reference^ Proc		Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*		
GM - Class 3		08/16/21	Sm Charcoal tubes	/ 226-01	49.6		L	4-Phenylc	yclohexene		mod. NI	OSH 1501				
GM - Hallway 3		08/16/21	Sm Charcoal tubes	/ 226-01	49.2		L	4-Phenylc	yclohexene		mod. Ni	OSH 1501				
GM - Reception		08/16/21	Sm Charcoal tubes	/ 226-01	48.6		L	4-Phenylcyclohexene			mod. NIOSH 1501					
GM - Class 8		08/16/21	Sm Charcoal tubes	tubes / 226-01 48.4			L	4-Phenylcyclohexene		mod. NIOSH 1501						
GM - Class 13		08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcyclohexene mo			mod. NI	OSH 1501				
GM - Class 17		08/16/21	Sm Charcoal tubes	/ 226-01	48.6		L 4-Phenylcyclohex			ohexene mod. N			NIOSH 1501			
GM - Hallway 18		08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcyclohexene			mod. NIOSH 1501					
GM - Gym		08/16/21	Sm Charcoal tubes	/ 226-01	47.0		L	4-Phenylcy	/clohexene		mod. NI	OSH 1501				
GM - Class 30		08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcyclohexene			mod. NIC	OSH 1501				
GM - Class 26		08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcy	clohexene		mod. NI	OSH 1501				
GM - Hallway 22		08/16/21	Sm Charcoal tubes	/ 226-01	48.0		L	4-Phenylcy	vclohexene		mod. Ni	OSH 1501				
^Galson Laboratories v	vill subsititute our	routine/preferred meth	od if it does not	match	the method	listed on the	COC unless this box is	checked:	Use method(s) listed on COC						
For metals analysis: if r	equesting an analy	yte with the option of a	lower LOQ, plea	se indi	cate if the l	ower LOQ is	required (only available	for certain	analytes - see SA	G):						
For crystalline silica: fo	rm(s) of silica need	ded must be indicated (Quartz, Cristoba	lite, an	d/or Tridyn	nite)* :										
Chain of Custody Print Name/Signature					ate	Time			Print Name	e/Signature		Dat	e	Time		
Relinquished by:	C	lient		8/2	SM	1735	Received by :	2	er y W	V27						
Relinquished by: Received by:																
			Sa				vill be considered as elds may result in a			ng processed.		Pa	age_1_	of _2_		

21082531

CCC	0.81.00	New Client	New Client? Report To*: Phase Separation Science						Invoice To*: Phase Separation Science					
SGS GALSON New Client? Report					nore Natio									
Client Account No.*			No.*:	Baltimore, MD 21228										
6601 Kirk	سئالہ الط													
East Syra	cuse, NY 13057		Phone No.* : 4	hone No.* :410-747-8770					No.: <u>410-747-8</u>	770				
) 432-5227 432-LABS (5227))	Cell No. :_						ail : invoicing@		nline.com			
		•	Email Results to : A					P.O. N	lo.: <u>ODC 4920</u>	002-001				
www.sgs	galson.com		Email address: reporting@phaseonline.com							ile 🔲	Call for Cred	dit Card I	nfo.	
	.	1 Samples s	uhmittad usir	ng the FreePumpLoan™	Commiss.				-TM O					
Need Results By:	(surcharge)] Gairibles si					submitted using th	ie rreesam	piingbaage	s''' Progra	am	
☑ Standar	d 0%	Site Name: Georg	je Mason School		Pro	oject: ACPS IAQ te	esting - 492	0002 Samı	pled by: Karl F	ord				
4 Business Day	s 35%	Comments:												
3 Business Day														
2 Business Day							·							
Next Day by 6pm		List description of inc	dustry or Process/inter	ferences pre	sent in sampl	ling area :	State sample		Please indicate v					
Next Day by Noor		Public grade :	school					collected in (e.g., NY) SHA PEL						
Same Day	200%		T	VA			VA L MSHA		Other (specify):					
Sample Ident (Maxmium of 20		Date Sampled	Collection Mediur	n Sam	le Volume ple Time ole Area*	Sample Units*: L, ml,min,in2,cm2,ft2	Analysis Requested*			Method F	Method Reference^		ent Chromium le.g., welding painting, etc.)*	
GM - Cafeteria		08/16/21	Sm Charcoal tubes / 226-	48.0		L	4-Phenylcyc	lohexene		mod. NIOSH 1501				
GM - Library		08/16/21	Sm Charcoal tubes / 226-	50.4		L	4-Phenylcyc	lohexene		mod. Ni	OSH 1501			
GM - Band room		08/16/21	Sm Charcoal tubes / 226-	50.2 L			4-Phenylcyclohexene			mod. NIOSH 1501				
GM - Office 4		08/16/21	Sm Charcoal tubes / 226-0	226-01 47.0		L	4-Phenylcyclohexene			mod. NIOSH 1501				
		· · · · · · · · · · · · · · · · · · ·	Sm Charcoal tubes / 226-0	01			4-Phenylcyc	lohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-0	01			4-Phenylcyc	lohexene		mod. NIOSH 1501				
			Sm Charcoal tubes / 226-0	01			4-Phenylcyclohexene			mod. NIC	OSH 1501			
			Sm Charcoal tubes / 226-6	01			4-Phenylcyclohexene			mod. NIC	OSH 1501			
			Sm Charcoal tubes / 226-0)1			4-Phenylcyc	lohexene		mod. NIC	OSH 1501			
			Sm Charcoal tubes / 226-0)1			4-Phenylcyc	lohexene		mod. NIC	OSH 1501			
			Sm Charcoal tubes / 226-0)1			4-Phenylcyc	lohexene		mod. NIC	OSH 1501			
^Galson Laboratories v	vill subsititute our	routine/preferred met	hod if it does not mate	h the method	d listed on the	e COC unless this box is	s checked: 🔽	Use method(s) listed on COC	-				
For metals analysis: if r	requesting an anal	yte with the option of a	lower LOQ, please in	dicate if the I	ower LOQ is	required (only available	e for certain an	alytes - see SA	G):					
For crystalline silica: fo	rm(s) of silica need	ded must be indicated	(Quartz, Cristobalite,	and/or Tridyr	nite)* :									
Chain of Custody Print Name/Signature				Date	Time			Print Nam	e/Signature		Dat	e	Time	
Relinquished by:		Client	8	125/21	1135	Received by:	an	ery 1	267					
Relinquished by:	arle	17 win		•		Received by:								
		* V * * R				vill be considered as elds may result in a			ng processed.		P	age 2	of <u>2</u>	

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: ACPS IAQ Testing PSS Project No.: 21082531

Client Name Total Environmental Concepts - Lort Received By Amber Confer

Delivered By Client

Tracking No Not Applicable

Logged In By Amber Confer

Shipping Container(s)

No. of Coolers 0

Ice N/A

Custody Seal(s) Intact? N/A Temp (deg C)

Seal(s) Signed / Dated?

N/A Temp Blank Present No

Documentation Sampler Name <u>Karl Ford</u>

COC agrees with sample labels? Yes MD DW Cert. No. N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 15

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 15

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos (pH<2)N/A VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

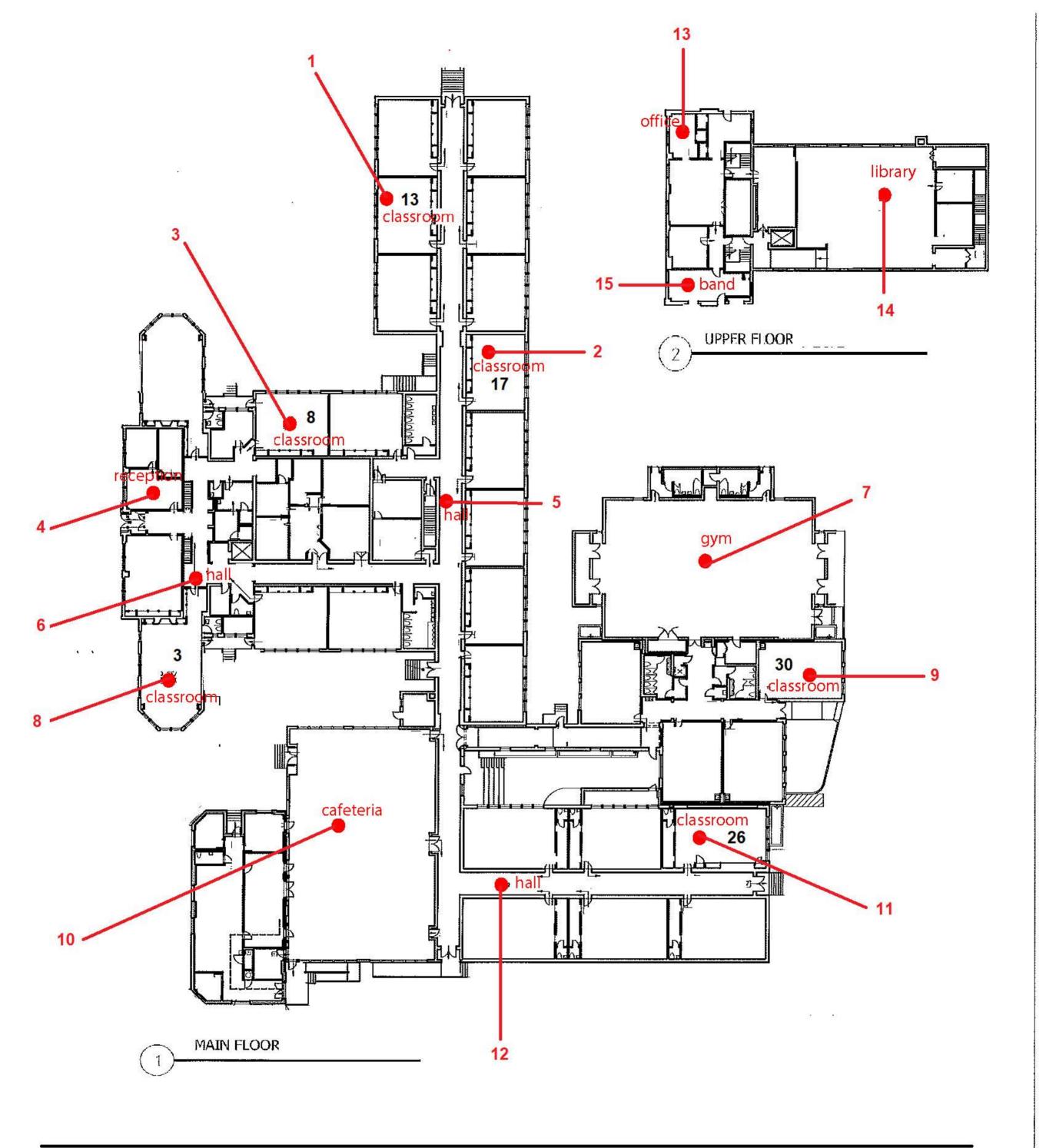
Comments: (Any "No" response must be detailed in the comments section below.)

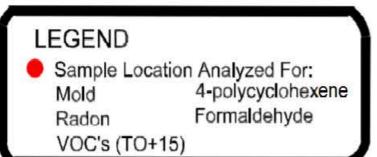
For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Outer I loofer	Date: 08/26/2021
	Amber Confer	

PM Review and Approval:

Lynn Jackson
Page 14 of 14


Date: 08/26/2021


Version 1.000

SGS	ALSOI	New Client?	Report To* :					Invoice To	o*:				
343	ALSUI	Client Account											
		Cheffit Account											
6601 Kirkvi	lle Rd use, NY 13057		 Phone No.* :					Phone N	 lo.:				
Tel: (315) 4	32-5227		Cell No. :					Fma	lo.: ail :				
888-43	2-LABS (5227)							P.O. N	0.:				
www.sgsga	alson.com							Credit Car	rd : Card on Fi	le 🗆	Call for Cred	dit Card Ir	nfo.
			_										
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples s	submitted using th	e FreeSam	plingBadge	s™ Progra	am.
Standard	0%	Site Name :			Pro	ject :		Samp	oled by :				
4 Business Days	35%	Comments :											
3 Business Days	50%												
2 Business Days	75%						_						
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampli	ing area :	State samples we		Please indicate w				
Next Day by Noon	150%						collected in (e.g.,	NY)	OSHA PEL	_		Cal (DSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identification* (Maxmium of 20 Characters) Date Sampled Collection				Sample Volume Sample Time Sample Area* Sample Units*: L, ml,min,in2,cm2,ft2				Analysis Requested* Method			Reference Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*		
^Galson Laboratories wil	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked: Us	se method(s	s) listed on COC				
For metals analysis: if re-	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the low	ver LOQ is	required (only availabl	e for certain analyt	tes - see SA	G):				
For crystalline silica: forr	n(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:								
Chain of Custody	Pr	int Name/Signature		Date	Time			Print Nam	e/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by:						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ng processed.	_	P	'age	of

SGS	ALSOI	New Client?	Report To* :					Invoice To	o*:				
343	ALSUI	Client Account											
		Cheffit Account											
6601 Kirkvi	lle Rd use, NY 13057		 Phone No.* :					Phone N	 lo.:				
Tel: (315) 4	32-5227		Cell No. :					Fma	lo.: ail :				
888-43	2-LABS (5227)							P.O. N	0.:				
www.sgsga	alson.com							Credit Car	rd : Card on Fi	le 🗆	Call for Cred	dit Card Ir	nfo.
			_										
Need Results By:	(surcharge)			Samples subn	nitted usin	g the FreePumpLoan [™]	Program	Samples s	submitted using th	e FreeSam	plingBadge	s™ Progra	am.
Standard	0%	Site Name :			Pro	ject :		Samp	oled by :				
4 Business Days	35%	Comments:											
3 Business Days	50%												
2 Business Days	75%						_						
Next Day by 6pm	100%	List description of ind	ustry or Process/interfer	ences presen	t in sampli	ing area :	State samples we		Please indicate w				
Next Day by Noon	150%						collected in (e.g.,	NY)	OSHA PEL	_		Cal (DSHA
Same Day	200%								MSHA	Other (specify):		
Sample Identification* (Maxmium of 20 Characters) Date Sampled Collection				Sample Volume Sample Time Sample Area* Sample Units*: L, ml,min,in2,cm2,ft2				Analysis Requested* Method			Reference Hexavalent Chromium Process (e.g., welding plating, painting, etc.)*		
^Galson Laboratories wil	II subsititute ou	r routine/preferred meth	I nod if it does not match	the method li	sted on the	e COC unless this box is	s checked: Us	se method(s	s) listed on COC				
For metals analysis: if re-	questing an ana	lyte with the option of a	lower LOQ, please indi	cate if the low	ver LOQ is	required (only availabl	e for certain analyt	tes - see SA	G):				
For crystalline silica: forr	n(s) of silica nee	eded must be indicated	(Quartz, Cristobalite, an	d/or Tridymit	e)*:								
Chain of Custody	Pr	int Name/Signature		Date	Time			Print Nam	e/Signature		Da	te	Time
Relinquished by :		-				Received by :							
Relinquished by:						Received by :							
		* R	Samples equired fields, failure			will be considered as elds may result in a			ng processed.	_	P	'age	of

George Mason Elementary School
2601 Cameron Mills Rd,
Alexandria, VA 22302

George Mason, Band Room

George Mason, Cafeteria

George Mason, Office

George Mason, Classroom

George Mason, Gym

George Mason, Hallway