Bode/Kahan/Yoo

Name

Calculus Summer Assignment 2022 No Calculator Allowed To Be Completed by: Tuesday, Sept.6, 2022

The problems in this assignment are to be completed without the use of a calculator of any kind. Show all of your work and clearly indicate final answers; **any form of a correct answer will receive full credit**. You may use your notes from Precalculus, texbooks, online sources or a peer as needed. Your work must be completed by the date above, as your first exam will include questions on the topics included in this assignment.

These topics are:

- 1. Limits
 - a) by substitution
 - b) using algebraic simplification then substitution
 - c) one-sided limits and piecewise functions
 - d) around a vertical asymptote
 - e) trigonometric limits
 - f) as x approaches $\pm \infty$
 - g) graphically
- 2. Derivatives
 - a) Definition of the Derivative
 - b) Power Rule
 - c) Equation of a tangent line
 - d) Horizontal tangent line
 - e) Product rule
 - f) Quotient rule
 - g) Trigonometric Functions
 - h) Chain Rule
- 3. Continuity of a Function
 - a) Definition of Continuity
 - b) Types of discontinuities P.O.D., Vertical Asymptote, Jump

I. Calculate each limit:

1.
$$\lim_{x\to 0} \frac{x-1}{x^2-1}$$

2.
$$\lim_{x \to 3} \frac{x-3}{\frac{1}{x} - \frac{1}{3}}$$

I. Calculate each limit (cont.)

3.
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$$

4.
$$\lim_{x \to 0} \frac{(x-1)^2 - 1}{x}$$

Remember: $\lim_{x\to a} f(x)$ exists if and only if $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$.

5.
$$\lim_{x \to 3} f(x)$$
 if $f(x) = \frac{x}{x-3}$

6.
$$\lim_{x \to 3} g(x)$$
 if $g(x) = \frac{x}{(x-3)^2}$

7. Let
$$f(x) = \begin{cases} x^2 + 3, & x \le -2 \\ 5 - x, & x > -2 \end{cases}$$

Find: a)
$$\lim_{x \to -2^{-}} f(x)$$
 b) $\lim_{x \to -2^{+}} f(x)$ c) $\lim_{x \to -2} f(x)$

b)
$$\lim_{x \to -2^{+}} f(x)$$

c)
$$\lim_{x \to -2} f(x)$$

I. Calculate each limit (cont.)

8. Let
$$f(x) = \begin{cases} x+2, & x < 0 \\ \sqrt{x} + 2, & 0 \le x < 1 \\ \ln x, & x \ge 1 \end{cases}$$

Find: a) f(0)

b)
$$\lim_{x\to 0} f(x)$$

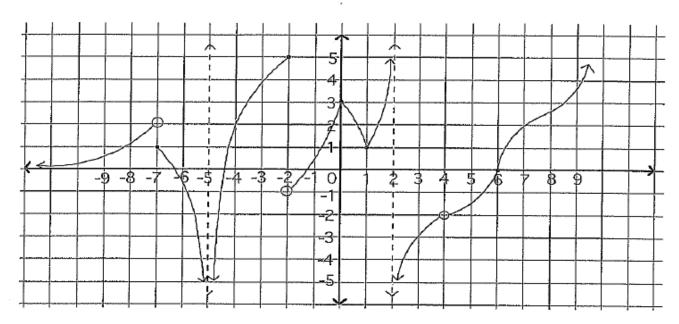
c) f(1)

d)
$$\lim_{x\to 1} f(x)$$

e) Is f(x) continuous at x = 0? Justify your answer.

f) Is f(x) continuous at x = 1? Justify your answer.

Some special trigonometric limits


$$9. \lim_{x\to 0} \frac{\sin x}{x}$$

$$10. \lim_{x\to 0} \frac{5\sin x}{4x}$$

$$11. \lim_{x\to 0} \frac{\sin x - x}{3x}$$

12.
$$\lim_{x \to 0} \frac{\cos x \tan x}{x}$$

Calculate each limit based on the graph of f(x) is shown below:

13 a)
$$\lim_{x \to -2^{-}} f(x)$$

b)
$$\lim_{x\to -2^+} f(x)$$

c)
$$\lim_{x\to -2} f(x)$$

$$\mathrm{d)} \lim_{x \to 4^{-}} f(x)$$

$$e) \lim_{x \to 4^+} f(x)$$

f)
$$\lim_{x \to 4} f(x)$$

$$g) \lim_{x \to 2^{-}} f(x)$$

$$h) \lim_{x\to 2^+} f(x)$$

i)
$$\lim_{x \to 2} f(x)$$

$$j) \lim_{x \to -7} f(x)$$

$$k) \lim_{x \to -5} f(x)$$

$$\lim_{x\to 1} f(x)$$

$$\mathrm{m)} \lim_{x \to -\infty} f(x)$$

$$n) \lim_{x\to\infty} f(x)$$

p) State each value of x at which f(x) is not continuous and state the type of discontinuity.

Limits as $x \to \infty$

14.
$$\lim_{x \to \infty} \frac{1 - x^2 - x^4}{3x^4 + 1}$$

15.
$$\lim_{x \to \infty} \frac{1 - x^2 - x^3}{3x^4 + 1}$$

$$\frac{16. \lim_{x \to \infty} \frac{1 - x^2 - x^4}{3x^3 + 1}}$$

17.
$$\lim_{x \to -\infty} \frac{1 - x^2 - x^4}{3x^3 + 1}$$

II. Derivatives

Limits involving the definition of the derivative.

18.
$$\lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h}$$

$$\lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - (x^2 - 3x)}{h}$$

Derivatives Power Rule

Find y' for each:

20.
$$y = 3$$

$$21. \ \ y = -3x^2 + 5x - 7$$

22.
$$y = \sqrt{x} - \frac{5}{\sqrt{x}} + \frac{3}{x^3}$$

Derivatives Product Rule

23. Find $\frac{dy}{dx}$ using the product rule. **Verify by distributing first then finding** $\frac{dy}{dx}$ if $y = (x^2 + 3x)(x + 5)$.

24. Find $\frac{dy}{dx}$ if $y = x^2 \sin x$

Derivatives Quotient Rule

Find y' for each:

25.
$$y = \frac{3x-2}{2x-3}$$

$$26. \ \ y = \frac{x+1}{\sqrt{x}}$$

Derivatives Trigonometric Functions

Find y' for each:

$$27. y = \sin(x) \cot(x)$$

28.
$$y = sec(x) tan(x)$$

$$29. \ \ y = \frac{\cos(x)}{\sec(x)}$$

Derivatives Using the Chain Rule

Find y' for each:

30.
$$y = (4x^2 + 1)^3$$

$$31. y = \cos(x^2)$$

32.
$$y = \sin^3(\cos(x^2))$$

$$33. \quad y = \sqrt{x + \tan x}$$

Tangent Line Equations

34. Find the slope of the normal line of $f(x) = \frac{x}{x-1}$ at (2, 2).

35. Write an equation of the tangent line of $f(x) = -3x^2 + 5x - 7$ at x = 1.

36. State the coordinates of each point(s) at which the graph of the equation $y = \frac{x^3}{3} - \frac{3x^2}{2} + 2x$ has horizontal tangent line(s).

- 37. Given $f(x) = \frac{x^2 + x 2}{x^2 + 3x 4}$, find:
 - a) the coordinates of all points of discontinuity,
 - b) an equation of all vertical asymptotes and
 - c) an equation of the horizontal asymptotes.
- 38. Using your knowledge of logarithms answer the following
 - a) Write as a single ln: $\frac{1}{2}\ln(x) + \ln(x+1) 3\ln(x^2 + 4)$
 - b) Solve for t; leave your answer in terms of ln: $100 = 50e^{3t}$
 - c) Find the value of each logarithm:
 - (i) ln *e*

(ii) ln 1

(iii) $\ln e^3$

(iv) $\ln \sqrt[3]{e}$