MATHEMATICS

A Summer Review of Algebra

Designed for the Student Entering "
Pre-Calculus Honors

- Please <u>print this packet in its entirety</u> to be completed for evaluation on the <u>second day of school</u>
- All problems in this packet reflect <u>concepts that you have</u> <u>learned</u> in Algebra 1 and Algebra 2
- Complete each problem in the space provided on this packet
- Show all steps/work clearly. CIRCLE final answers.
- A separate <u>Note Guideline</u> is available on the Math website to help you with each concept

V	lame		

Solving Equations in One Variable

Solve.

1.
$$\frac{3y-2(y-1)}{6}=-1$$

2.
$$3(x-2)-x=2(2x+1)$$

Solving Inequalities in One Variable

Solve and Graph on a number line.

3.
$$3x \ge 11x + 4$$

4.
$$-2(x + 3) < 4x - 7$$

1

Solving Combined Inequalities

Solve and Graph on a number line.

5.
$$2x + 7 \ge 13$$
 or $5x - 4 < 6$

6.
$$x-7 < 3x-5 < x+11$$

Solving Absolute Value Equations and Inequalities

Solve.

7.
$$|3x + 2| = 4$$

Solve and Graph on a number line.

$$8. \qquad \left|1-\frac{x}{2}\right| \leq 2$$

9.
$$4-|3x+1|<2$$

The Slope of a Line

Given two points, find the slope.

10.
$$(3,-4)$$
 and $(3,-2)$

11.
$$\left(\frac{3}{2}, -3\right)$$
 and $\left(\frac{1}{2}, -7\right)$

Graphs of Linear Equations in Two Variables

Graph the following.

12.
$$2x + 5y = 15$$

Graphs of Linear Inequalities in Two Variables

Graph the following.

13.
$$y < 5$$

14.
$$2x - y \le 2$$

Finding the Equation of a Line

Write the equation of the line in standard form that has the given conditions.

- **15.** Contains the point (-4,-2) and has slope = $\frac{1}{2}$
- **16.** Contains the points (3, -2) and (2, -3)

- 17. Perpendicular to the line 4x y = -3 and passes through the point (-8,3)
- **18.** Has x-intercept -3 and y- intercept -1

Algebraic Solving of Systems of Linear Equations in Two Variables

Solve the system of equations algebraically.

19.
$$8x - 3y = 3$$

 $3x - 2y + 5 = 0$

20.
$$6x = 4y + 5$$

 $6y = 9x - 5$

Graphs of Systems of Linear Inequalities in Two Variables

Graph the systems.

21.
$$3x - y = 4$$
$$x + 2y = -8$$

22.
$$x + 2y \le 6$$
$$x - 3y > 4$$

Relations and Functions

23. Given $f(x) = 2x^2 - 1$ with a domain $D = \{-1, 0, 1\}$, find the range of f. Is the relation a function? How do you know?

Give the domain of each.

24.
$$f(x) = \frac{3}{x}$$

25.
$$f(x) = \sqrt{2-x}$$

Addition and Scalar Multiplication of Matrices

Use the following matrices to perform the given operations:

$$A = \begin{bmatrix} 5 & 7 \\ -6 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 5 \\ -1 & 8 \end{bmatrix}$$

$$E = \begin{bmatrix} 8 & -4 & 2 \\ 3 & 1 & -5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 7 \\ -6 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 5 \\ -1 & 8 \end{bmatrix} \qquad E = \begin{bmatrix} 8 & -4 & 2 \\ 3 & 1 & -5 \end{bmatrix} \qquad F = \begin{bmatrix} -6 & -1 & 0 \\ 1 & 4 & 0 \end{bmatrix}$$

Laws of Exponents

Simplify.

30.
$$\left(\frac{-4a^2}{3b}\right)^2 \left(\frac{-b}{2a}\right)^3$$
 31. $a^2 \cdot a^{x+7} \cdot a^{x-3}$ **32.** $(y^{h-k})^h \cdot (y^{h+k})^k$ **33.** $2x^0 y^{-2}$

33.
$$2x^0 y^{-2}$$

34.
$$\frac{(pq^2r^3)^3}{(p^3qr^2)^2}$$
 35. $\left(\frac{2a^3b}{a^2b^2}\right)^{-4}$

$$35. \quad \left(\frac{2a^3b}{a^2b^2}\right)^{-4}$$

$$36. \qquad \frac{4 \ x^{-2} \ y^3}{32 \ x^5 \ y^{-6}}$$

<u>Factoring</u>

Factor.

<u>GCF</u>

 $37. 14x^5y^3z + 10x^2y - 2x^3yz^2$

Difference of two Squares

38.
$$c^2 - 4d^2$$

39. 36a² - 49b²

<u>Sum/Difference of two Cubes</u>

40. x³ – 216

<u>Perfect Square Trinomials</u>

41.
$$4k^2 + 20k + 25$$

42. $25j^2 - 80j + 64$

General Trinomials

43.
$$5x^2 + 13x + 6$$

44. $x^2 - 10xy + 24y^2$

Factor by Grouping:

45.
$$x^3 + 5x^2 - 9x - 45$$

Factor Completely

48.
$$16x^2 + 40xy + 25y^2$$

49.
$$8nm - 10n + 12m - 15$$
 50. $6x^2 - 7x - 3$

50.
$$6x^2 - 7x - 3$$

51.
$$x^4 - 2x^2 + 1$$

52.
$$16x^3 - 64x^2$$

Solve/Find the Roots by Factoring

Solve by factoring. Indicate multiple solutions. Find the roots by factoring.

54.
$$x^3 - 4x^2 + 4x = 0$$

55.
$$3t(t+1) = 4(t+1)$$

Find the Zeros by Factoring

Find the zeros by factoring.

56.
$$f(x) = x^3 - x$$

Simplifying Rational Algebraic Expressions/Determining Domain

57. Simplify.
$$\frac{x^2 + x - 20}{x^2 + 2x - 15}$$

58. State the zeros and domain of
$$f(x) = \frac{x-2}{x^2 + 2x - 35}$$

Products and Quotients of Rational Expressions Simplify.

59.
$$\frac{xy^2}{6} \div \frac{x^2y^{-1}}{9}$$

60.
$$\frac{x^2y}{x^2-y^2} \bullet \frac{2x+2y}{xy}$$

59.
$$\frac{xy^2}{6} \div \frac{x^2y^{-1}}{9}$$
 60. $\frac{x^2y}{x^2-y^2} \bullet \frac{2x+2y}{xy}$ **61.** $\frac{x^2+5x-6}{3x-3} \div \frac{3x+18}{x^2-x}$

Simplifying Complex Fractions

Simplify.

62.
$$\frac{\frac{3}{x+1} - \frac{4}{x}}{\frac{4}{x+1} + \frac{3}{x}}$$

Adding or Subtracting Rational Expressions

Simplify.

63.
$$\frac{3}{x^2-4x-12} + \frac{4}{x^2-4}$$

64.
$$\frac{1}{x-4} - \frac{2}{x+4}$$

Solving Fractional Equations

Solve.

65.
$$\frac{3}{x+2} = \frac{6}{x-1}$$

66.
$$\frac{3}{x^2 - 7x + 10} + 2 = \frac{x - 4}{x - 5}$$

Solving Fractional Inequalities

Solve.

67.
$$\frac{x}{8} - \frac{x-2}{3} \ge \frac{x+1}{6} - 1$$

Roots of Real Numbers

Simplify.

68.
$$\sqrt{\frac{16}{25}}$$

69.
$$-\sqrt{9}$$

70.
$$\pm \sqrt[6]{64}$$

71.
$$\sqrt[4]{\frac{81}{16}}$$

68.
$$\sqrt{\frac{16}{25}}$$
 69. $-\sqrt{9}$ **70.** $\pm \sqrt[6]{64}$ **71.** $\sqrt[4]{\frac{81}{16}}$ **72.** $\sqrt[3]{-135a^{15}}$

Find the real roots of each equation.

73.
$$25y^2 + 16 = 17$$

74.
$$5 = 9 + 16x^2$$

Properties of Radicals

Simplify.

75.
$$\sqrt[3]{20} \cdot \sqrt[3]{14}$$

76.
$$\frac{\sqrt[3]{175}}{\sqrt[3]{50}}$$

Sums/Differences of Radicals

Simplify.

77.
$$\sqrt{18} + \sqrt{24} - \sqrt{54}$$

78.
$$\sqrt{15}(\sqrt{3} + 2\sqrt{5})$$

77.
$$\sqrt{18} + \sqrt{24} - \sqrt{54}$$
 78. $\sqrt{15}(\sqrt{3} + 2\sqrt{5})$ 79. $\frac{\sqrt{40} - 2\sqrt{5}}{\sqrt{10}}$

Binomials Containing Radicals

Simplify.

80.
$$(3\sqrt{6} + \sqrt{2})(\sqrt{6} - 4\sqrt{3})$$

81.
$$(2\sqrt{5} + \sqrt{7})^2$$

82.
$$\frac{\sqrt{5}+1}{\sqrt{5}-3}$$

The Imaginary Number i

Simplify.

83.
$$\sqrt{-75}$$

84.
$$\sqrt{-3} \circ \sqrt{-6}$$

85.
$$(3i\sqrt{5})^2$$

86.
$$\frac{\sqrt{18}}{2i\sqrt{6}}$$

87.
$$i\sqrt{-98} - \sqrt{98}$$

Solve.

88.
$$x^2 + 144 = 0$$

89.
$$3u^2 + 40 = 4$$

Complex Numbers

Simplify.

90.
$$3(-2+i)-4(3-2i)$$

91.
$$(6-7i)^2$$

92.
$$\frac{8-i\sqrt{2}}{6+i\sqrt{2}}$$

The Quadratic Formula

Solve using the Quadratic Formula.

93.
$$8x = 1 - x^2$$

The Discriminant

Give the nature of the roots without solving.

94.
$$3m^2 - 8m - 5 = 0$$

95.
$$-20 = t^2 + 8t$$

Quadratic Functions

96. Graph the quadratic function by calculating the vertex and making a table of values. Then, answer the questions below.

$$f(x) = -x^2 - 2x + 8$$

Is the vertex a max or a min?

Give the domain of the function.

Give the range of the function.

Dividing Polynomials (Long Division)

Find the quotient using Long Division.

97.
$$\frac{x^3 - 3x^2 - 13x + 6}{x - 2}$$

98.
$$\frac{2x^3 - 29x + 13}{x + 4}$$

Synthetic Division

Find the quotient using Synthetic Division.

99.
$$\frac{3x^3 - 5x^2 + x - 2}{x - 2}$$

$$100. \quad \frac{x^4 + 5x^3 - 2x - 7}{x + 5}$$

Rational Exponents

Simplify.

101.
$$(-125)^{\frac{2}{3}}$$

102. 32^{-0.2}

103.
$$-81^{\frac{3}{4}}$$

104. Write in Exponential Form.

$$\sqrt[4]{\frac{16^3 a^{-2}}{b^6}}$$

Solve.

105.
$$2y^{\frac{1}{2}} = 10$$

106.
$$(3n-1)^{\frac{2}{3}} = \frac{1}{4}$$

Composition of Functions

Given:
$$f(x) = x + 6$$

and

$$g(x) = -x^2 - 3$$
, find:

107. g(f(1))

108.
$$f(g(-2))$$

109. g(f(x))

Inverses of Functions

110. Find the inverse.

$$f(x) = 5x + 1$$

111. Verify that the functions are inverses by composition

$$f(x) = \frac{x+6}{3}$$
 and $f^{-1}(x) = 3x-6$