TOPIC: 1.7 PERIODIC TRENDS

ENDURING U	Jnderstanding:
SAP-2	The periodic table shows patterns in electronic structure and trends in atomic properties.
LEARNING O	BJECTIVE:
SAP-2.A	Explain the relationship between trends in atomic properties of elements and electronic structure and periodicity.
ESSENTIAL F	KNOWLEDGE:
SAP-2.A.1	The organization of the periodic table is based on the recurring properties of the elements and explained by the pattern of electron configurations and the presence of completely or partially filled shells (and subshells) of electrons in atoms.
	WRITING THE ELECTRON CONFIGURATION OF ELEMENTS THAT ARE EXCEPTIONS TO THE AUFBAU PRINCIPLE WILL NOT BE ASSESSED ON THE AP EXAM. Rationale: The mere rote recall of the exceptions does not match the goals of the curriculum revision.
SAP-2.A.2	Trends in atomic properties within the periodic table (periodicity) can be qualitatively understood through the position of the element in the periodic table, Coulomb's law, the shell model, and the concept of shielding/effective nuclear charge. These properties include: a. Ionization energy b. Atomic and ionic radii c. Electron affinity d. Electronegativity.
SAP-2.A.3	The periodicity (in SAP-2.A.2) is useful to predict /estimate values of properties in the absence of data.
EQUATION(S	5):
	N/A

NOTES:

The periodic table is arranged in order from lowest atomic number (# of protons) to highest. The blocks of the periodic table correspond to the s/p/d/f groups for the electron configuration.

s-block																
1												ŀ	o-bl	loc	k	18
+1 <i>s</i> 2											13		15		17	1 <i>s</i> ≁
← 2 <i>s</i> →				6	/-b	loc	k				←		- 2	р —		->
← 3 <i>s</i> →	3	4	5	6	7	8	9	10	11	12	•		— 3	р —		->
← 4 <i>s</i> →	ł				— 3	d –				Ļ	<		— 4	р —	_	\rightarrow
←5 <i>s</i> →	•				- 4	ld —	-				•		— 5	р —	_	
← 6 <i>s</i> →	•	-			- 5	d –	-				<		— 6	р —	_	
← 7s→	•				- 6	d –	_			->	•		- 7	'p —		
								1	f-bl	ocl	k					
			-						- 4	1 <i>f</i> —						•
			-							f —						

<u>https://socratic.org/questions/what-is-the-electron-configuration-for-francium</u> Elements that have the same valence electron configuration tend to have similar chemical properties.

Periodic Table of the Elements

http://nobel.scas.bcit.ca/wiki/index.php/File:Ptable_econfig.gif#filelinks

Most, if not all, periodic trends can be explained by the arrangement of the electrons and the number of protons in the atoms.

https://chem.libretexts.org/Under Construction/Purgatory/Essential Chemistry (Curriki)/Unit 1%3A Atomic an d Molecular Structure/1.4%3A Electron Configuration and Orbital Diagrams

REMEMBER: Stating a trend is not EXPLAINING a trend. Explanations of trends should never be in terms of the location of the periodic table.

Coulombic Attraction is the electrostatic attraction between two charged particles. Often when discussing periodic trends the charged particles are the nucleus (specifically the total number of protons) and the electrons. Often we are referring to the outermost electrons, the valence electrons.

Coulomb's law states that the attraction between two charged particles is proportional to the magnitude of the charge and inversely proportional to the distance between them. To make this simpler, the larger the charge, the more attractive forces between the particles. The further away the particles are from each other, the weaker the attraction.

PERIODIC TRENDS

Key Terms:

COULOMBIC ATTRACTION/ ELECTROSTATIC INTERACTIONS

The positive-negative attraction which takes place when you have two charged particles in close proximity.

- Increases with increase in charge
- Increases with decrease in distance between particles

EFFECTIVE NUCLEAR CHARGE AND ELECTRON SHIELDING

The **effective nuclear charge** is the net positive **charge** experienced by valence electrons. It can be approximated by the equation: $Z_{eff} = Z - S$, where Z is the atomic number and S is the number of electrons in orbitals that are closer to the nucleus.

A) FIRST IONIZATION ENERGY

The energy required to remove the outermost (highest energy) electron from the gas from of a neutral atom in its ground state.

First Ionization energy *decreases* as you move down a group. Electrons are further from the nucleus and therefore have a lower Coulombic attraction. Additionally, the inner shells of electrons *shield* or block the protons force of attraction, so that outermost electrons do not feel as much of the nuclear force. This results in the outer electrons being even easier to remove.

First Ionization energy *increases* as you move across a period on the periodic table, from left to right. As you move across the period the atomic radius is smaller and there is an increase in protons in the nucleus. Both factors result in greater Coulombic attraction, which in turn means that it will require more energy to remove the first electron.

https://wps.pearsoned.com.au/ibcsl/89/22896/58615 61.cw/content/index.html

There are a few places where the ionization doesn't appear to follow a trend. You can see this on the graph between Be and B or between N and O. These are actually for two slightly different reasons. https://useruploads.socratic.org/N5qKJ5fTLiJK3MXQAifQ_Ionization_En

ergy Trend IK.png

Be and B exception $(s^2 \text{ to } s^2 p^1)$ Be = $1s^2 2s^2$ B = $1s^2 2s^2 2p^1$ When the first electron is removed from the boron, B, atom, the electron is being removed from the 2p orbital. Since the 2p orbital is further

is being removed from the 2p orbital. Since the 2p orbital is further away from the nucleus it takes less energy to remove it even though there are more protons in the atom.

N and O exception(s^2p^3 to s^2p^4)

 $N = 1s^2 2s^2 2p^3$

 $0 = 1s^2 2s^2 2p^4$

When the first electron is removed from oxygen it takes less energy (despite the increase in protons) than from nitrogen because the electrons in oxygen are sharing the $2p_x$ orbital and therefore have greater electron-electron repulsions making it easier to remove one electron.

The second ionization energy is the energy to remove a second electron from the atom and so on for each successive electron.

By examining the successive ionization energies for an element we can determine how many valence electrons

there are in that element. When all of the valence electrons have been removed, you will see a large "jump" in the ionization energy values. This "jump" is due to the fact that the core electrons are closer to and less shielded from the nucleus and therefore it requires more energy to remove them.

For example:

Consider magnesium, Mg, the electron configuration is $1s^2 2s^2 2p^6 3s^2$ and we can see that it has 2 valence electrons. <u>https://www.webelements.com/magnesium/atoms.html</u>

You can see that there is a big jump between the 2nd and 3rd

ionization energies and again between the 10th and 11th ionization energies. This shows when electrons are being removed from a shell that is closer to the nucleus.

Incre	ASING	Ion	IZATION	Energy

Enthalpy (kJ/mole)
738
1451
7733
10543
13636
18020
21711
25658
31646
35457
169988

B) ATOMIC RADIUS

The **atomic radius** of a chemical element is a measure of the size of its **atoms**, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding cloud of electrons.

Atomic Radii <u>increases</u> as you move down a column as there are more electron shells.

https://byjus.com/chemistry/ato mic-radius-in-periodic-table-inbasic-chemistry/

Atomic Radii <u>decreases</u> as you move across a period on the periodic table, from left to right. Electrons are being added to the same energy level. At the same time, protons are being added to the nucleus. Increasing the number of protons gives a <u>higher effective nuclear charge</u>. In other words, there is a stronger force of attraction pulling the electrons closer to the nucleus. This results in a smaller atomic radius, as with greater numbers of protons there is more pull on the electrons. <u>https://www.geocities.ws/junebug sophia/atmRad.</u> gif

H He B 0 0 0 0 Be N Li C 0 F Ne 0 0 0 P S CI Ar Na Mg AI Si 0 0 Ge As Se Br Kr Ca Ga Sr In Sn Sb Те E Xe Rh Bi Ba TI Pb Po At Rn CS

Atomic Radius vs Atomic Number

IONIC RADIUS

The trends for ionic radii are similar to those of atomic radii, except that cations and anions are different from each other.

Cations are always smaller than the parent atoms, because they have lost their valence shell. This causes them to be smaller. They also decrease in size because the nuclear attraction is now acting on fewer electrons so they are drawn in toward the nucleus due to the greater attraction. Additionally there are fewer electron-electron repulsions.

Anions, on the other hand, are always larger than the parent atom. Electrons are added to the same valence shell; however, there are greater electron-electron repulsions so the ion increases in size.

https://slideplayer.com/slide/8861824/

C) ELECTRON AFFINITY

Electron affinity is the amount of energy involved when an electron is accepted by a gaseous atom to form a negative ion. In other words, the neutral atom's likelihood of gaining an electron. The values tend to be negative to show the energy is released as electrons are added to the atoms.

In general, the electron affinity increases from left to right on the periodic table. This is caused by the filling of the valence shell of the atom; a Group 17atom releases more energy than a Group 1 atom when it gains an electron, this indicates that it is more stable.

1 H 150094																	2 He 1003
3	4											5	6	7	8	9	10
Li	Be											B	С	N	0	F	Ne
6.941	8.012182											10.811	Carbon 12.0107	Nacion 14.00674	Oopte 15,9994	Finister 18,9984032	20.1397
11	12	1										13	14	15	16	17	18
Na Solien 22.0003710	Mg 24,3050											Al 26.981538	Si Shom 28.0855	P	S Saller 32,066	Cl Olivene 35.4527	Ar Arpm 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Neuseum MA.09383	Calciers 40.078	Scandaut 44/951910	Ti Ineism 47,867	Vanadum 50.0415	Crunica 51,9961	Mn Vanjance 54.938049	Fe 55.845	Co Citok 55,933200	Ni Nout 58.6034	Cu Copper 63,546	Zn 65.39	Ga Gathan (0.723	Ge Generation 72,61	As Abone 24.92160	Sel Sciences T8.96	Br teense 79.934	Kr Stypen 83,80
37	38	39	40	41	42	43	- 44	45	46	47	48	49	50	51	52	53	54
Rb Rabidiani 85.4678	Secondarian 87.62	Ynsus 88.90585	Zr 2monum 91,224	Nb Notican 92.99638	Mo Mo	Tc Technorium	Ru Ratheniars 101.07	Rh Ebodian 102.90550	Pd Paladum 105.42	Ag Shut 107.8682	Cd Cadman	In Infans 114.818	Sn Tis	Sb 121,760	Te Telutan 127.60	I 126.90447	Xe Xosca 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Crisian 132-00545	Ba Itanian 137.327	Latharan 138.9055	Hf Italian 178.49	Ta Taviation 180,9479	W Tangatan 183.84	Re House	Os Desenant 150.23	Ir indum 192.217	Pt Plane	Au Gall 195.95655	Hg Manualy 200.59	TI Dathan 204,3833	Pb Load 207.2	Bi Itemate 208.98938	Po	At Amateur (210)	Rn Rades (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr Finalization (223)	Ra Radiani (226)	Ac Activitian (227)	Rf Potherlands	Db Datasan (262)	Sg Subscription (263)	Bh Boleison (202)	Hs iterium (265)	Mt Merantum (286)	(209)	(272)	(277)						

https://chem.libretexts.org/Bookshelves/Physical and Theoretical Chemistry Textbook Maps/Supplemental Mo

<u>Theoretical Chemistry Textbook Maps/Supplemental Mo</u> <u>dules (Physical and Theoretical Chemistry)/Physical Pro</u> <u>perties of Matter/Atomic and Molecular Properties/Elect</u> <u>ron Affinity</u>

A trend of decreasing electron affinity when moving down the groups in the periodic table might be expected. The additional electron will be entering an orbital farther away from the nucleus. Since this electron is farther from the nucleus it is less attracted to the nucleus and would release less energy when added. However, a clear counterexample to this trend can be found in Group 2, and inspecting the entire periodic table, it turns out that the proposed trend only applies to Group 1 atoms.

D) ELECTRONEGATIVITY

Electronegativity is a measure of the ability of an atom (or group of atoms) to attract shared electrons.

Electronegativity **decreases** as you move down a column as there is a greater distance from the nucleus and because there is also more electron shielding.

Electronegativity **increases** as you move across a period on the periodic table, from left to right. This is because the atomic radius is decreasing while the number of protons (and effective nuclear charge) is increasing.

Fluorine is the most electronegative element.

Increasing Electronegativity

1 H 1,00794																	2 He 1003
3	4	1										5	6	7	8	9	10
Li	Be											B	Cathon	N	Ouper	P	Ne
6.941	9.012182	ł										10.811	12.0107	14,00674	15,9994	18.9984032	20.1397
Na Solum 22. 9892710	Mg											AI 26.981538	Si	P Phophone 30.973761	Salto 32,016	CI (Mean 15.4527	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K Paraman Va prist	Calcium aligned	Sc Scenter	Ti Theran 47,867	V Vanadian 50 0415	Cr	Mn Manganose	Fe	C0 Citule 55,933200	Ni Nout	Cu	Zn	Ga Gaban (0.723	Germanian 72.61	As Americ 24.92160	Selement TN 95	Br	Kr Krypon x1.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb Rabidum 85.4078	Strontum 87.62	Ynsus AK ODTAS	Zr Znoman 91.224	Nb Notium 92.93638	Mo 55/65denam 95.94	Tc Technorium (98)	Ru Rathenians 101.07	Rh Rhodian 162,90550	Pd Paladuati 105.42	Ag 5840	Cd Caterian	In Infan	Sn 118,710	Sb Antomatiy 121,260	Te tohatan	I 126.90447	Xe Xosca 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs Cmmm 132-90545	Ba Barines 137,327	Latheran 138.9055	Hf Balants 178.49	Ta Tarahas 180,9479	W Imples 183,84	Re House	Os	Ir indus 192.217	Pt Planer	Au Gall 195.95655	Hg Marriety 200.59	TI Bahan 204.3833	Pb Land 207.2	Bi Itemete 208.98038	Po	At	Rn Raden (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114		1.11.11	1000	
Fr runcium (223)	Ra Radium (226)	Activitian (227)	Rf Rotherfordname (261)	Datoises (262)	Suborpan (253)	Bh Outrien (202)	Hs itaniam (265)	Mt Memory (266)	(209)	(272)	am						

Example	Difference in	Type of
	electronegativity	Bond
H-H	No difference – Electrons are	Nonpolar
	shared equally	covalent
		bond
H-Br	Slight difference in values –	Polar
	Electrons are shared	covalent
	unequally	bond
NaCl	Large difference in values –	Ionic
	Electrons are not shared,	Bond
	they are transferred	

3)	The first ionization energy for potassium, K, is 419 kJ/mol and the second ionization energy for calcium, Ca, is 1145 kJ/mol. Using concepts from this unit explain why they are different even though they are isoelectric (have the same number of electrons). $K_{(g)} \rightarrow K^{+}_{(g)} + e^{-}$ $Ca^{+}_{(g)} \rightarrow Ca^{2+}_{(g)} + e^{-}$
4)	Element X has an electron configuration of 1s ² 2s ² 2p ⁶ 3s ¹ , while element Z has an electron configuration of
	1s ² 2s ² 2p ⁵ .
	a) Which element would have greater first ionization energy?
	b) Which element would have a larger radius?
	c) Which element would have higher electronegativity?
	d) Which element would form an ion that has a larger radius?
	e) Which element would release more energy when it gains an electron?
5)	Predict two elements that would have properties similar to:
	a) Chlorine
	b) Sodium
	c) Calcium
	c) Calcium
6)	Nitrogen is in column 5A of the periodic table, which is called the pnictogens. When nitrogen reacts with iodine it forms nitrogen triiodide, NI ₃ , which is a contact explosive that explodes with a snap releasing
	clouds of purple iodine vapor. Select another pnictogen and predict the formula of the compound that
	would be formed with a reaction with bromine.
7)	
/)	Based on the given electron configurations, group together the elements that would have similar chemical properties.
	a) $1s^22s^22p^63s^1$ b) $1s^22s^22p^63s^23p^64s^2$
	c) $1s^22s^22p^5$
	d) $1s^22s^22p^63s^23p^64s^24p^65s^2$ e) $1s^22s^1$
	f) $1s^22s^22p^63s^23p^5$