- 1. Are the following statements true? If not, explain in words why not?
- a) $\frac{2k}{2x+h} = \frac{k}{x+h}$

- b) $\frac{1}{p+q} = \frac{1}{p} + \frac{1}{q}$ c) $\frac{x+y}{2} = \frac{x}{2} + \frac{y}{2}$

d) $3\frac{a}{b} = \frac{3a}{3b}$

- e) $3\frac{a}{b} = \frac{3a}{b}$ f) $3\frac{a+b}{c} = \frac{3a+b}{c}$

Simplify

a)
$$\frac{\frac{x}{2}}{\frac{x}{4}}$$

b)
$$h \div \frac{(x+h)}{h}$$

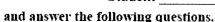
$$c) \quad \frac{\sqrt{x-2} + \frac{5}{\sqrt{x-2}}}{x-2}$$

3. Solve:

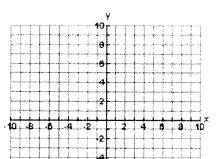
$$xy' + y = 1 + y' \quad \text{for} \quad y'$$

4. Solve the following quadratic equations.

a)
$$4x^2 - 21x - 18 = 0$$


b)
$$2x^2 - 3x + 3 = 0$$

c)
$$x^4 - 9x^2 + 8 = 0$$


5. Write as a single factor with denominator in factored form:

$$\frac{7x^2 + 5x}{x^2 + 1} - \frac{5x}{x^2 - 6} = 0$$

 $v=x^3-x$ Graph the equation

Is the point (3, 2) on the graph? a)

- b) Is the point (2, 6) on the graph?
- Is the function even, odd, or neither? c)
- What is the y-intercept? d)
- Find the x-intercepts. e)
- Show your work to determine if the relation is odd, even, or neither.

a)
$$f(x) = 2x^2 - 7$$

b)
$$f(x) = -4x^3 - 2x$$

b)
$$f(x) = -4x^3 - 2x$$
 c) $f(x) = 4x^2 - 4x + 4$

8. Find the equation of the straight line that passes through the point (2, 4) and is parallel to the line 2x+3y-8=0

9. Find the equation of the line that is perpendicular to the line 2x + 3y - 8 = 0at the point (1, 2).

10. The line with the slope 5 that passes through the point (-1, 3) intersects the x axis at a point. What are the coordinates of this point?

11. What are the coordinates of the point at which the line passing through the points (1, -3) and (-2, 4) intersects the y axis?

12. Given f(x) = |x-3| - 5, find f(1) - f(5).

13. Given $f(x) = x^2 - 3x + 4$, find f(x+2) - f(2).

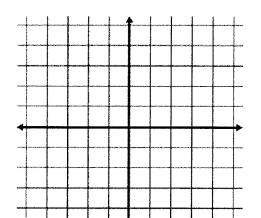
14. Find the domain of each of the following functions:

a)
$$h(x) = \frac{1}{4x^2 - 21x - 18}$$

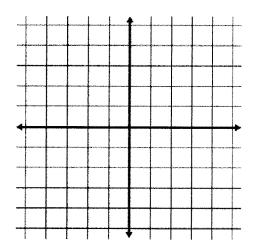
b)
$$k(x) = \sqrt{x^2 - 5x - 14}$$

b)
$$p(x) = \frac{\sqrt[3]{x-6}}{\sqrt{x^2-x-30}}$$

$$d) \quad y = \ln(2x - 12)$$


15. Find $f(x + \Delta x)$ for $f(x) = x^2 - 2x - 3$.

16. Find
$$\frac{f(x+\Delta x)-f(x)}{\Delta x}$$
 if $f(x)=8x^2+1$.


17. Given
$$f(x) = \frac{1}{x}$$
 find $\frac{f(x+h)-f(x)}{h}$

18. Sketch the graph of each function.

a)
$$f(x) = \begin{cases} 1 & x \le 0 \\ -1 & x > 0 \end{cases}$$

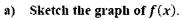
b)
$$f(x) = \begin{cases} 2x & (-\infty, -1) \\ 2x^2 & [-1, 2) \\ -x + 3 & (-2, \infty) \end{cases}$$

19. Given f(x) = x - 3 and $g(x) = \sqrt{x}$, complete the following:

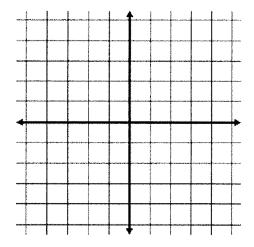
a)
$$f(g(x)) =$$

b)
$$g(f(x)) =$$

c)
$$f(f(x)) =$$


20. Given $f(x) = \frac{1}{x-5}$ and $g(x) = x^2 - 5$, complete the following:

a)
$$f(g(7)) =$$


b)
$$g(f(v)) =$$

c)
$$g(g(x)) =$$

21. Let f(x) = 2x - 2. Complete the following:

- b) Determine whether f has an inverse function.
- c) In another color, sketch the graph of $f^{-1}(x)$.
- d) Give the equation for $f^{-1}(x)$.

22. Simplify using only positive exponents. Do not rationalize the denominator.

a)
$$\frac{\sqrt{4x-16}}{\sqrt[4]{(x-4)^3}}$$

b)
$$\left(\frac{1}{x^{-2}} + \frac{1}{x^{-1}y^{-1}} + \frac{1}{y^{-2}}\right)^{-\frac{1}{2}}$$

- 23. If $f(x) = x^2 1$, describe in words what the following would do to the graph of f(x).
- a) f(x) 4

- b) f(x-4)
- c) -f(x+2)

c) f(x) + 3

d) f(2x)

e) |f(x)|

- 24. Find the surface area of a box of height h whose base dimensions are p and q, and that satisfies the following condition:
 - a) The box is closed.
 - b) The box has an open top.
 - c) The box has an open top and a square base with side length p.

Student	

A seven foot ladder, leaning against a wall, touches the wall x feet above the ground. Write an expression (in terms of x) for the distance from the foot of the ladder to the base of the wall.

26. A piece of wire 5 inches long is to be cut into two pieces. One piece is x inches long and is to be bent into the shape of a square. The other piece is to be bent into the shape of a circle. Find an expression for the total area made up by the square and the circle as a function of x.

DO NOT USE A CALCULATOR FOR THE FOLLOWING QUESTIONS (27 - 33)

27. Evaluate: Answer must be in radians.

- a) cos 0
- b) sin 0

- c) $\tan \frac{\pi}{2}$ d) $\cos \frac{\pi}{4}$

e)
$$\sin \frac{\pi}{2}$$

f) $\sin \pi$

- g) $arc \cos \frac{\sqrt{3}}{2}$ h) $arc \tan 1$

On questions 28-30, find the solution to the equations for $0 \le x \le 2\pi$.

$$28. \quad 2\sin^2\theta = 1 - \sin\theta$$

28.
$$2\sin^2\theta = 1 - \sin\theta$$
 29. $2\tan\theta - \sec^2\theta = 0$ 30. $\sin 2\theta = \sin\theta = 0$

30.
$$\sin 2\theta = \sin \theta = 0$$

- 31. Which of the following expressions are identical?
- a) $\cos^2 x$

b) $(\cos x)^2$

- c) $\cos x^2$
- 32. Which of the following expressions are identical?
- a) $(\sin x)^{-1}$
- b) arcsin x
- c) $\sin x^{-1}$

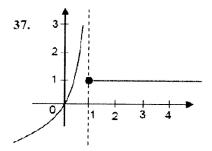
- 33. Solve for x.
- a) $\ln e^3 = x$

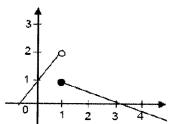
- b) $\ln e^x = 4$
- c) $\ln x + \ln x = 0$

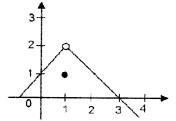
d) $e^{\ln 5} = x$

- e) $\ln 1 \ln e = 0$ f) $\ln 6 + \ln x \ln 2 = 3$

g) $\ln(x+5) = \ln(x-1) - \ln(x+1)$


On questions 34 - 39, determine the following:


 $\lim_{x\to 1^-} f(x)$


b) $\lim_{x\to 1^+} f(x)$

c) $\lim_{x\to 1} f(x)$

- 34. $f(x) = \begin{cases} x^2 1 & x < 1 \\ 4 x & x \ge 1 \end{cases}$ 35. $f(x) = \begin{cases} 3x 1 & x \le 1 \\ 3 x & x > 1 \end{cases}$ 36. $f(x) = \begin{cases} -x^2 & x < 1 \\ 2 & x = 1 \\ x 2 & x > 1 \end{cases}$

