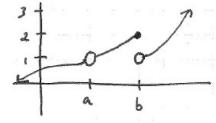
Cincinnati Country Day School

AP Calculus (BC) Summer Packet

Directions: The AP Calculus BC curriculum consists of 10 total units, where several of these units were covered in Pre-AP Calculus BC. This packet, which is due on the first day of class of the 2022-2023 school year, is a review of the first 3 units. Copy each problem onto a separate piece of paper and solve. Show your procedure, not just your answer. If you use a graph, you should show a properly labeled sketch of that graph. These Skills are expected to be MASTERED to achieve maximum success in AP Calculus.

Skill 1: Calculate limits.

1. Find the limit: 1 pts. $\lim_{x \to -3} \frac{x^2 - 9}{x^2 + x - 6}$	2. Find the limit: 1 pts. $\lim_{x \to -\infty} \frac{8x^4 + 2x - 1}{5 + 7x - 2x^4}$	3. Find the limit: 1 pts. $\lim_{x \to \infty} \frac{(2x+7)^2}{(3x-1)(4-x)}$
O A. 1	A. 8	○ A. 4/3
○ B. 3/2	B. 8/5	○ B4/3
○ C. 6/5	O C. 4	○ C. 2/3
○ D9	○ D4	○ D2/3
O E. 3	E. 1/2	○ E. 1/3
4. Find the limit: 1 pts. $\lim_{x \to 4^+} \frac{3}{4-x}$ A. Positive Infinity B. Negative Infinity C. 0 D. 3/4 E3	5. Find the limit: 1 pts. $\lim_{x \to 7^{-}} \frac{2}{(x-7)^2}$ A. Positive Infinity B. Negative Infinity C. 2/49 D. 0	11. Find the limit: 1 pts. $\lim_{x \to 2} \frac{x-2}{x^2-4}$ A. 2 B. 4 C. 1/2 D. 1/4 E. 1
12. Find the limit: 1 pts. $\lim_{x \to \infty} \frac{5 - 3x^5}{2x^5 + 7x - 1}$ A. 5/2 B3/2 C5	13. Find the limit: <i>1 pts.</i> $\lim_{x \to \infty} \frac{(5x-1)(x+2)(3x+2)}{(2x-3)^3}$ $\bigcirc A. \qquad 5/2$	14. Find: 1 pts. $\lim_{x \to 5} \frac{x-5}{x^2-3x-10}$ A. 1 B. 1/2 C. 7
D. 3	B. 15/2	D. 1/7
E. Infinity	○ C. 15/8	\bigcirc $D.$ $1/7$

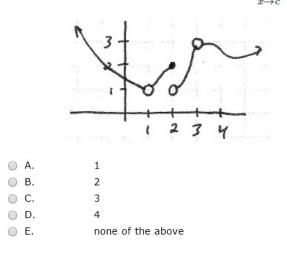

Skill 2: Find limits using a graph.

1. Consider the graph below. Which of the following statements are true? *1 pts.*

- D. I and II
- E. II and III

2. Consider the graph below. Which statement is false? *1 pts.*

 \bigcirc A. f(a) does not exist


$$B. \quad \lim_{x \to a^-} f(x) = 1$$

- \bigcirc C. $\lim_{x \to a} f(x)$ does not exist
- \bigcirc D. $\lim_{x \to b} f(x)$ does not exist

$$\bigcirc$$
 E. $f(b) = 2$

3. 1 pts.

Referring to the graph below, if $\lim f(x) = 1$, then what must c equal?

Skill 3: Identify asymptotes of functions.

4.

1 pts.

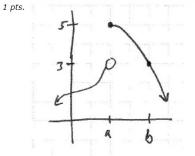
What kind of asymptote does $\lim_{x\to 5} f(x) = -\infty$ describe?

\bigcirc	Α.	Horizontal
\bigcirc	В.	Vertical

6. Which function has a horizontal asymptote of y = 3? (THERE MAY BE MORE THAN ONE CORRECT 1 pts. ANSWER - SELECT ALL THAT APPLY) (Choose all that Apply)

$$\square$$
 A. $y = 3x$

 $\blacksquare B. \quad y = e^x + 3$


C.
$$y = \frac{-3x^2 + 5x - 1}{6 - x^2}$$

D.
$$y = \frac{x+3}{x+1}$$

E.
$$y = \frac{1}{x-3}$$

Skill 4: Determine the continuity of a function.

1. Consider the graph below. Which statement is false?

• A. $\lim_{x \to a} f(x)$ does not exist

- $B. \lim_{x \to b} f(x) = 3$
- $^{\odot}$ C. f is defined at x = a (This means that f(a) exists)

```
\bigcirc D. f is continuious at x = a
```

- \bigcirc E. f is continuious at x = b
- **2.** At what value(s) of x is the function below discontinuous?

$$f(x) = \frac{(x+1)^2(x-2)}{(x+1)(x-3)}$$

- A. -1 only
- OB. 3 only
- C. -1 and 3 only
- O. -1, 2, and 3
- E. f is continuous for all values of x

3.

For what value of c is
$$f(x) = \begin{cases} 3x - 7 & \text{if } x \le 1\\ 2x + c & \text{if } x > 1 \end{cases}$$
 continuous?

A. -7
B. -6
C. 1
D. 3
E. 8

Skill 5: Evaluate derivatives using basic rules.

1.

Given the function $f(x) = 2\sqrt[5]{x^6}$, find f'(x). Express your answer in radical form without using negative exponents, simplifying all fractions.

2.

For the following equation, find f'(x).

$$f(x) = 9x^4 - x^3 - 2$$

3.

For the following equation, evaluate f'(-1).

$$f(x) = -4x^5 + x^3 + x^2$$

4.

Given $f(x) = 2x^2 - x$, find the equation of the tangent line of f at the point where x = -3.

Skill 6: Evaluate derivatives using the product and quotient rules.

1.

Given the function $f(x) = 3x^2 - x^2 \cos x$, find f'(x) in any form.

2.

Given the function $f(x) = \sqrt{25x} \sin x$, find f'(x) in any form.

3.

Given the function $f(x)=rac{3x^2}{4x^2+3},$ find f'(x) in *simplified* form.

4.

Given the function $y = \frac{5-x^3}{1-x}$, find $\frac{dy}{dx}$ in *simplified* form.

Skill 7: Evaluate derivatives using the chain rule.

1.

Given the function $y = 4(x^2+9)^{rac{3}{2}}$, find $rac{dy}{dx}$

2.

Given the function $f(x) = -\sqrt{\cos x}$, find f'(x).

3.

Given the function $f(x)=3\cosig[(2x^2+6)^5ig],$ find f'(x).

4.

Given the function $y = \cos(2x^3) \sin^4(x)$, find $\frac{dy}{dx}$

5.

Given the function $y=\sqrt[3]{rac{4x^3}{5+5x}},$ find $rac{dy}{dx}$

Skill 8: Use implicit differentiation to find derivatives.

1.
If
$$-y^3 - 4y^2 + x^3 = -4y$$
 then find $\frac{dy}{dx}$ in terms of x and y .

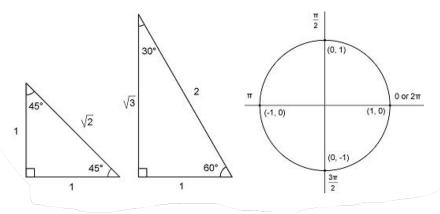
2. If $2x^3 + 4xy = -y^3 + 5$ then find $\frac{dy}{dx}$ in terms of x and y. 3. Given $\sin(x + y) = x^3$, find $\frac{dy}{dx}$ in terms of x and y.

4. If $-4x + y^2 - xy = 0$ then find the equations of all tangent lines to the curve when x = 2.

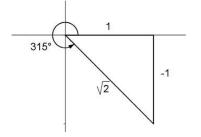
Skill 9: Find basic antiderivatives.

- 1. $\int (3x^5 4x^2 + 11)dx$
- 2. $\int (\cos x \sin x) dx$
- $3. \int \frac{3x^2 + 6x}{x} dx$
- 4. $\int (2x-1)(3x+8)dx$
- 5. $\int (4\cos x + x^5 10\sin x) dx$

Skill 10: Find antiderivatives using u-substitution.


- 1. $\int 3\cos(2x-5)dx$
- 2. $\int 2x(x^2+4)^7 dx$

3.
$$\int \frac{3x^2+3}{(x^3+3x-5)^4} dx$$


Skill 11: Trigonometry Review

Find basic trig values using the reference triangles and the unit circle.

You should know the 2 reference triangles and the unit circle like the back of your hand. Remember on the unit circle, the cosine is the x-coordinate and the sine is the y-coordinate (it's alphabetical).

Example: To find $\sin \frac{7\pi}{4}$, we first realize that the angle is in the 4th quadrant since $\frac{7\pi}{4}$ is just short of $\frac{8\pi}{4} = 2\pi$. We draw the reference triangle with a positive adjacent side since it is to the right of the origin and a negative opposite side since it is below the origin. Of course, the hypotenuse is always positive. From the triangle, we see that $\sin \frac{7\pi}{4} = -\frac{1}{\sqrt{2}}$

1. Without a calculator, evaluate the following.

(a)
$$\cos 210^{\circ}$$
 (b) $\sin \frac{5\pi}{4}$ (c) $\tan^{-1} (-1)$ (d) $\sin^{-1} (-1)$
(e) $\cos \frac{9\pi}{4}$ (f) $\sin^{-1} \frac{\sqrt{3}}{2}$ (g) $\tan \frac{7\pi}{6}$ (h) $\cos^{-1} (-1)$
(i) $\sin \frac{\pi}{6}$ (j) $\tan \frac{7\pi}{6}$ (k) $\cos 0$ (l) $\cos \frac{\pi}{4}$
(m) $\csc \left(\frac{-5\pi}{6}\right)$ (n) $\sec \pi$ (o) $\cot \left(\frac{-\pi}{2}\right)$ (p) $\tan \frac{\pi}{2}$
(q) $\sin \frac{5\pi}{6}$ (r) $\cot \frac{2\pi}{3}$ (s) $\sin \frac{\pi}{2}$ (t) $\sec \frac{3\pi}{4}$
(u) $\csc \pi$ (v) $\sec \frac{11\pi}{6}$ (w) $\cot \frac{4\pi}{3}$ (x) $\cos^{-1} \frac{\sqrt{3}}{2}$
(y) $\cot^{-1}(-1)$ (z) $\tan^{-1}(-1)$ (aa) $\sin^{-1} \left(-\frac{1}{2}\right)$ (bb) $\sin (\csc^{-1}(-2))$
(cc) $\cos^{-1} \left(\cos \left(\frac{\pi}{6}\right)\right)$

۰.

)

Skill 12: Solve Trigonometric Equations

- 1. Solve the following trigonometric equations on the interval $0 \le x \le 2\pi$
 - a. $2\sin x = 1$
 - b. $2\cos^2 x 3\cos x + 1 = 0$
 - c. $3\sin^2 x = \cos^2 x$