Trinity Area School District Template for Curriculum Mapping

In grade 8, instructional time should focu modeling an association in bivariate data concept of a function and using functions distance, angle, similarity, and congruend	s on three critical areas: (1) formulating and reasoning with a linear equation, and solving linear equations an to describe quantitative relationships; (3) analyzing tw e, and understanding and applying the Pythagorean Th	about expressions and equations, including d systems of linear equations; (2) grasping the yo- and three-dimensional space and figures using
Standard(s) Addressed (What Common Core Standard(s) and/or PA Standard(s) addresses this Big Idea?)	Enduring Understanding(s) (SAS refers to Enduring Understandings as "Big Ideas." EUs are the understandings we want students to carry with them after they graduate. EUs will link Big Ideas together. Consider having only one or two EUs per Big Idea.)	Essential Question(s) (Essential Questions are broad and open ended. Sometimes, EQs can be debated. A student's answer to an EQ will help teachers determine if he/she truly understands. Consider having only one or two EQs per Enduring Understanding.)
to rational numbers. CC.2.1.HS.F.2 Apply properties of rational and irrational numbers to solve real world or mathematical problems. CC.2.1.HS.F.4	of repeated multiplication.The definition of a square root can be used to find the exact square roots of some nonnegative numbers. The square roots of other nonnegative numbers can be approximated.Numbers can be classified by their characteristics.Relationships that are always true for real	 Why is it helpful to write numbers in different ways? How can you represent quantities, patterns, and relationships? How are properties of real numbers related to algebra?
	In grade 8, instructional time should focu- modeling an association in bivariate data concept of a function and using functions distance, angle, similarity, and congruence Overarching Big Ideas, F (These "spin Standard(s) Addressed (What Common Core Standard(s) and/or PA Standard(s) addresses this Big Idea?) CC.2.1.8.E.1 Distinguish between rational and irrational numbers using their properties. CC.2.1.8.E.4 Estimate irrational numbers by comparing them to rational numbers. CC.2.1.HS.F.2 Apply properties of rational and irrational numbers to solve real world or mathematical problems. CC.2.1.HS.F.4 Use units as a way to understand problems and t	In grade 8, instructional time should focus on three critical areas: (1) formulating and reasoning modeling an association in bivariate data with a linear equation, and solving linear equations an concept of a function and using functions to describe quantitative relationships; (3) analyzing tw distance, angle, similarity, and congruence, and understanding and applying the Pythagorean TH Overarching Big Ideas, Enduring Understandings, and Essential Questions (These "spiral" throughout the entire curriculum.)Standard(s) Addressed (What Common Core Standard(s) and/or PA Standard(s) addresses this Big Idea?)Enduring Understanding(s) (SAS refers to Enduring Understandings as "Big Ideas." EUs are the understandings we want students to carry with them after they graduate. EUs will link Big Ideas together. Consider having only one or two EUs per Big Idea.)CC.2.1.8.E.1 Distinguish between rational and irrational numbers using their properties.CC.2.1.8.E.4 Estimate irrational numbers.Algebra uses symbols to represent quantities that are unknown or that vary. Mathematical phrases and real-world relationships can be represented using symbols and operations.CC.2.1.HS.F.2 Apply properties of rational and irrational numbers to solve real world or mathematical problems.Powers can be used to shorten representation of repeated multiplication.CC.2.1.HS.F.4 Use units as a way to understand problems and to guide the solution of multi-step problems.Numbers can be classified by their characteristics.

Distributive Property	CC.2.1.HS.F.1 Apply and extend the properties of exponents to solve problems with rational	The distributive property is to be used when solving and simplifying all styles and types of	What truly defines a "like" term?
	exponents.	equations. It will be used throughout all algebra classes and beyond.	When are all like terms completely combined?
	CC.2.2.HS.D.2 Write expressions in equivalent forms to solve problems.	Multiplying using the distributive property is a fast and simple method to simplify an	When is it logical to use the distributive property?
	CC.2.1.HS.C.3 Write functions or sequences that model relationships between two quantities.	expression.	Can the distributive property be used in a reverse method to solve problems?
One-Step and Multi-Step Equations	 CC.2.1.HS.F.2 Apply properties of rational and irrational to solve real world or mathematical problems. CC.2.1.HS.F.4 Use units as a way to understand problems and to guide the solution of multi-step problems. CC.2.2.HS.D.1 Interpret the structure of expressions to represent a quantity in terms of its context. CC.2.2.HS.D.2 Write expressions in equivalent forms to solve problems. CC.2.2.HS.D.3 Extend the knowledge of arithmetic operations and apply to polynomials. CC.2.2.HS.D.6 Extend the knowledge of rational 	Solving multi-step equations requires the ability to understand which terms or parts of an expression can be combined and which cannot. Solving multi-step equations is combining many one-step equation steps together. Multi-step equations are used as a stepping stone to solving more complex equations. Multi-step equations utilize the distributive property and all of the other mathematical properties necessary to solve equations.	Are there "rules" on how to solve multi-step equations? What are the rules? (Do the rules apply to all types of multi-step equations or just a select few?) How can understanding the concept of "like terms" help us simplify algebraic expressions? Are multi-step equations just a combination of many one-step equations or are the approaches handled differently?
Inequalities	functions to rewrite in equivalent forms. CC.2.1.HS.F.2 Apply properties of rational and irrational to solve real world or mathematical problems.	Inequalities are terms that are not equal. When solving an inequality, the student must	How is solving an inequality similar to solving an equation?
	CC.2.1.HS.F.4 Use units as a way to understand problems and to guide the solution of multi-step	take into consideration the sign of the inequality.	How does solving an inequality differ from solving an equation?
	problems.	The concept is similar when solving inequalities compared to solving equalities.	

	 CC.2.2.HS.D.1 Interpret the structure of expressions to represent a quantity in terms of its context. CC.2.2.HS.D.2 Write expressions in equivalent forms to solve problems. CC.2.2.HS.D.3 Extend the knowledge of arithmetic operations and apply to polynomials. CC.2.2.HS.D.6 Extend the knowledge of rational functions to rewrite in equivalent forms. 	Solving inequalities are similar to multi-step equations, except for a sign change.	Are there "rules" on how to solve multi-step inequalities? What are the rules? (Do the rules apply to all types of multi-step inequalities or just a select few?) How can understanding the concept of "like terms" help us simplify algebraic expressions? Are multi-step inequalities just a combination of many one-step inequalities or are the approaches handled differently?
Functions	 CC.2.2.HS.D.1 Interpret the structure of expressions to represent a quantity in terms of its context. CC.2.2.HS.D.2 Write expressions in equivalent forms to solve problems. CC.2.2.HS.C.1 Use the concept and notation of functions to interpret and apply them in terms of their context. CC.2.2.HS.C.2 Graph and analyze functions and use their properties to make connections between the different representations. CC.2.2.HS.C.3 Write functions or sequences that model relationships between two quantities. CC.2.2.HS.C.5 Construct and compare linear, quadratic, and exponential models to solve problems. 	A function is a relationship between two variables in which each value of the input variable is associated with a unique value of the output variable. Functions can be represented in a variety of different ways, such as graphs, tables, equations, or words. Each representation is particularly helpful in certain situations. A function that models a real-world situation can be used to make estimates or predictions about future occurrences.	How can using a graph give a visual representation of the comparison of two different quantities? What is the difference between a relation and a function? What tests can we use to prove a function is a relation? Can most real world examples have a function modeled after their behavior?

	CC.2.2.HS.C.6 Interpret functions in terms of the situations they model. CC.2.2.8.C.1 Define, evaluate, and compare functions. CC.2.2.8.C.2 Use concepts of functions to model relationships between quantities.		
Rate of Change	 CC.2.1.HS.F.1 Apply and extend the properties of exponents to solve problems with rational exponents. CC.2.1.HS.F.2 Apply properties of rational and irrational to solve real world or mathematical problems. CC.2.1.HS.F.3 Apply quantitative reasoning to choose and interpret units and scales in formulas, graphs, and data displays. CC.2.2.HS.D.4 Understand the relationship between zeros and factors of polynomials to make generalizations about functions and their graphs. CC.2.2.HS.D.7 Create and graph equations or inequalities to describe numbers or relationships CC.2.2.HS.D.10 Represent, solve, and interpret equations/inequalities algebraically and graphically. 	The slope of a linear function represents a constant rate of change for f(x) when x changes by a fixed amount. (The steepness of a line determines how quickly or how slowly the data changes.) The equation of a line defines the relationship between two variables. The rate of change is used in all aspects of life from the math classroom to correctly building a new roof on a home.	What information is given in the different forms of a linear equation: slope-intercept form, point-slope form, and standard form? How can you justify that slopes are undefined or zero? How and when do we use slope in our daily lives?
Linear Functions	CC.2.2.8.B.2	A function is a relationship between two variables in which each value of the input	What are the different types of linear functions and when will each type be used most effectively?

	Understand the connections between proportional relationships, lines, and linear equations. CC.2.2.8.B.3 Analyze and solve linear equations and pairs of simultaneous linear equations. CC.2.2.HS.D.10 Represent, solve, and interpret equations/inequalities and systems of equations/inequalities algebraically and graphically.	 variable is associated with a unique value of the output variable. Functions can be represented in a variety of different ways, such as graphs, tables, equations, or words. Each representation is particularly helpful in certain situations. A function that models a real-world situation can be used to make estimates or predictions about future occurrences. 	Can linear functions be used to model real- world scenarios? How can the relationship between two lines be compared? How can systems of equations effectively compare two sets of data?
Scatter Plots and Data Analysis	CC.2.4.8.B.1Analyze and/or interpret bivariate data displayedin multiple representations.CC.2.4.8.B.2Understand that patterns of association can beseen in bivariate data utilizing frequencies.CC.2.4.HS.B.1Summarize, represent, and interpret data on asingle count or measurement variable.CC.2.4.HS.B.2Summarize, represent, and interpret data on twocategorical and quantitative variables.CC.2.4.HS.B.3Analyze linear models to make interpretationsbased on the data.	Two sets of data can be graphed as ordered pairs to determine if the two sets of data are related. Scatter plots are used to find trends in data to compare relationships. Three types of relationships occur in scatter plots: positive correlation, negative correlation, or no correlation.	How are patterns used when comparing two quantities? How can you make predictions based on the graph of a scatter plots? What are the different types of correlation and how can they be used to identify the slope of a line?
Exponents	CC.2.1.HS.F.1 Apply and extend the properties of exponents to solve problems with rational exponents.	Properties of exponents make it easier to simplify products or quotients of powers with the same base or powers raised to a power or products raised to a power.	How do parentheses affect the outcome of multiplied exponents? How are multiplication and division of exponents different, yet similar?

Extend and ap CC.2.2. Unders factors about CC.2.2.		and apply to polynomi CC.2.2.HS.D.4 Jnderstand the relation actors of polynomials about functions and the CC.2.2.HS.D.5	onship between zeros and to make generalizations	include zero and negativ Simplify and evaluate ex multiplying and dividing powers of powers, and p Polynomials are combina and letters with an addit between them. Like integers, polynomia subtracted, and multiplic	The idea of exponents can be extended to include zero and negative exponents. Simplify and evaluate expressions involving multiplying and dividing with exponents, powers of powers, and powers of products. Polynomials are combinations of both numbers and letters with an addition or subtraction sign between them. Like integers, polynomials can be added, subtracted, and multiplied. Recognize, evaluate, and simplify polynomials.		How do negative and zero exponents affect the simplifying of an exponential expression? How do polynomials form a system similar to integers? (How are polynomials and integers alike?) How would we perform the basic mathematical operations on polynomials and polynomial equations?	
				standings, and Essential Ques nout the entire curriculum, bu	-	.)		
Month of Instruction (In what month(s) will you teach this unit?)	Title of Unit	Big Idea(s) (A Big Idea is typically a noun and always transferable within and among content areas.)	Standard(s) Addressed (What Common Core Standard(s) and/or PA Standard(s) addresses this Big Idea?)	Enduring Understanding(s) (SAS refers to Enduring Understandings as "Big Ideas." EUs are the understandings we want students to carry with them after they graduate. EUs will link Big Ideas together. Consider having only one or two EUs per Big Idea.)	Essential Question(s) (Essential Questions are broad and open ended. Sometimes, EQs can be debated. A student's answer to an EQ will help teachers determine if he/she truly understands. Consider having only one or two EQs per Enduring Understanding.)	Common Assessment(s)* (What assessments will all teachers of this unit use to determine if students have answered the Essential Questions?)	Common Resource(s)* Used (What resources will all teachers of this unit use to help students understand the Big Ideas?)	
August- September	The Number System	Real Numbers	CC.2.1.8.E.1 Distinguish between rational and irrational	Rational numbers are numbers that can be written as fractions.	Why is it necessary to write numbers in different ways?	Chapter Test Quizzes	<u>Glencoe Math –</u> <u>Common Core</u> Edition, Course 3,	

numbers using their	When writing repeated	How can I write	Quarterly	McGraw Hill
properties.	multiplication using	repeated multiplication	Assessment	Education, 2013
P P	powers, the repeated	using powers?		,
CC.2.1.8.E.4	factor is the base and the			Notes
Estimate irrational	number of times it	How can I use		Homework
numbers by comparing t	repeats is the exponent.	properties of integer		Activities
hem to rational		exponents to simplify		
numbers.	When multiplying powers	algebraic and numeric		
	with the same base, keep	expressions?		
	the base and add the			
	exponents.	How can I determine if		
		a number is a rational		
	When dividing powers	number?		
	with the same base, keep			
	the base and subtract the	How is scientific		
	exponents.	notation useful in the		
		real world?		
	All irrational numbers are			
	non-terminating, non-	Why would I need to		
	repeating decimals.	use square roots and		
		cube roots?		
	Negative exponents do			
	not produce negative	How can I estimate the		
	numbers. They produce	square root of a non-		
	fractions.	perfect square?		
	Scientific notation is a	How are real numbers		
	way to write very large or	different from		
	very small numbers.	irrational numbers?		
	If you know the area of a			
	square of the volume of a			
	cube, you could find the			
	length of one side by			
	finding the square root or			
	the cube root.			

October - November	Solving Equations	Solving 1 Variable Equations	CC.2.2.8.B.2 Understand the connections between proportional relationships, lines, and I inear equations. CC.2.2.8.B.3 Analyze and solve Linear equations and pairs of simultaneous linear equations.	Square roots of non- perfect squares can be found by estimating which two perfect squares the original number is between. The "solution" to an equation is any value or set of values that can be substituted for the variable to make the statement true. When writing an equation, assigning a variable to an unknown helps you when translating the verbal model into an algebraic equation.	What does "solution to an equation" mean? Why is it important to define a variable before writing an equation? How many possible solutions are there to a linear equation in 1 variable? Describe them.	Chapter Test Quizzes Quarterly Exam	<u>Glencoe Math –</u> <u>Common Core</u> <u>Edition, Course 3,</u> McGraw Hill Education, 2013 Notes Homework Activities
November- December	Solving Equations	Solving 2 Variable Equations	CC.2.2.8.B.3 Analyze and solve linear equations and	Any two variable equation with variable exponents of 1 represents a linear relationship. An equation may have 1 solution, infinitely many solutions, or no solution. Slope is the ratio of vertical change to horizontal change.	How can you use a table to determine if there is a proportional	Chapter Test Quizzes	<u>Glencoe Math –</u> <u>Common Core</u> Edition, Course 3,
			pairs of simultaneous linear equations.	Slope means rate of change.	relationship between two quantities?	Quarterly Exam	McGraw Hill Education, 2013

CC.2.2.8.C.1		In any linear	Notes
Define, evaluate, and	Two quantities have a	relationship, why is the	Homework
compare functions.	proportional linear	slope always the same?	Activities
	relationship if they have a		
CC.2.2.8.C.2	constant ratio (rate of	What is the	
Use concepts of	change).	relationship among unit	
functions to model	chunge).	rate, slope, and	
relationships between q	Slope, unit rate, and	constant rate of change	
uantities.	constant rate of change	of a proportional linear	
uantities.	mean the same thing.	relationship?	
	mean the same thing.	relationship:	
	You can write the ratio $\frac{y}{x}$	How does the y-	
		intercept appear in	
	for each pair of points in	these three	
	a table to determine if a	representations: table,	
	constant ratio exists.	equation, graph?	
	la succión se a seleti e a shin	equation, Brahm	
	In any linear relationship,	How can the x-	
	the rate of change is	intercept and y-	
	constant.	intercept be used to	
		graph a linear	
	You can graph a linear	equation?	
	equation by finding the x-		
	and y-intercepts and	How does using the	
	plotting the ordered	point-slope form of a	
	pairs.	linear equation make it	
	If we want to be a low	easier to write the	
	If you don't know the y-	equation of a line?	
	intercept, you can		
	substitute the slope and a	How can you use a	
	point into the equation.	graph to solve a system	
		of equations?	
	In the linear equation		
	y=mx+b, m represents	How can you solve a	
	the slope and b	system of equations?	
	represents the y-	system of equations:	
	intercept.	What do m and b	
		represent if an	

				 In y = mx+b form, b represents the beginning point on the graph. In a table, the y-intercept is the y-value when the x- value is 0. In a system of equations the ordered pair for the point of intersection of the graphs is the solution of the system because it satisfies both equations. 	equation is in slope intercept form?		
				When writing an equation, x represents the independent variable and y represents the dependent variable.			
January- February	Functions	Functions	CC.2.2.8.C.1 Define, evaluate, and compare functions. CC.2.2.8.C.2 Use concepts of functions to model relationships between q uantities.	Words, equations, tables, and graphs can be used to represent linear relationships. You can use a graph to write an equation by choosing 2 points on the graph and finding the slope. Use the slope and 1 point from the graph in slope-intercept form to find the y-intercpet. A set of ordered pairs is a relation.	How can you use a graph to write an equation? How do tables and graphs represent relations? How can functions be used to solve real- world situations? What are the advantages and disadvantages to representing a function as an equation instead of a graph?	Chapter Test Quizzes Quarterly Exam	<u>Glencoe Math –</u> <u>Common Core</u> <u>Edition, Course 3,</u> McGraw Hill Education, 2013 Notes Homework Activities

	In a relation, the set of x-	
	coordinates is called the	What are functions?
	domain and the set of y-	
	coordinates is called the	How is the initial value
	range.	of a function
	Talige.	represented in a table
	Functions are	and in a graph?
	relationships that assign	
	each member of the	How can you use a
	domain to a unique	table or a graph to
	member of the range,	determine if a function
	and the relationship is	is linear or nonlinear?
	recognizable across	
	representations.	When does the graph
	representations.	of a quadratic function
	The initial value of a	open upward or
	function is the y-intercept	
	of the equation.	
	of the equation.	
	The initial value of a	
	function shown in a table	
	is the corresponding y-	
	value when x=0.	
	If a table shows a	
	constant rate of change	
	between the x- and y-	
	values, the function is	
	linear.	
	Y=mx+b is a linear	
	function whose graph is a	
	straight line.	
, , , , , , , , , , , , , , , , ,		· · · · ·

February -	Geometry -	Angles,	CC.2.3.8.A.3	A missing length of a	How can you use	Chapter Test	<u>Glencoe Math –</u>
March	Triangles and	Polygons,	Understand and apply	right triangle can be	different	Quizzes	<u>Common Core</u>
	the		the Pythagorean		measurements to	Quarterly Exam	Edition, Course 3,

Pythagorean Theorem	Pythagorean Theorem	Theorem to solve problems.	determined by using the Pythagorean Theorem.	solve real-life problems?	McGraw Hill Education, 2013
			In a right triangle, $(leg)^2 + (leg)^2 =$ $(hypotenuse)^2$	When can you use the Pythagorean Theorem to solve a problem?	Notes Homework Activities
			In a triangle if $(a)^2 + (b)^2 = (c)^2$ then the triangle is a right triangle. C is the longest side.	How can you prove the Pythagorean Theorem and its converse?	
			Side.	What is the relationship among the sides of a right triangle?	
				How do you know if a triangle is a right triangle?	
				What is meant by the "legs and hypotenuse" of a right triangle and what is their relation to the Pythagorean Thoerem?	
				What is the relationship between the square root of a number and the square of a number?	
				What is the relationship among the sides of a right triangle?	

March-April	Geometry -	Transformation	CC.2.3.8.A.2	Translations, reflections,	How do you find a missing side of a right triangle? How can you use the Pythagorean Theorem to find the distance between two points on the coordinate plane? How can we best show	Chanter Test	<u>Glencoe Math –</u>
March-April	Geometry - Transformati ons	S S	Understand and apply congruence, similarity, and geometric transformations using various tools.	 Translations, reflections, and rotations are transformations that do not change the shape or size of a figure, just the position. A transformation is an operation that places an original figure, the preimage, onto a new figure, the image. A dilation is the only transformation that results in a figure that is not congruent to the original figure. Dilations reduce or enlarge a figure to create a similar figure. 	How can we best show or describe the change in position of a figure? How are figures translated on the coordinate plane? How can you determine the coordinates of a figure after a reflection over either axis? What is the difference between rotating a figure about a given point that is a vertex and rotating the same figure about the origin if the rotation is less than 360°? What are the results of a dilation of a triangle? What is a scale factor?	Chapter Test Quizzes Quarterly Exam	Glencoe Math – Common Core Edition, Course 3, McGraw Hill Education, 2013 Notes Homework Activities

					How are dilations similar to scale drawings? How can you identify rotational symmetry? What are the results of a dilation of a triangle?		
April	Geometry - Congruence and Similarity	Congruence, Similarity, Transformation s	CC.2.3.8.A.2 Understand and apply congruence, similarity, and geometric transformations using various tools. CC.2.2.8.B.2 Understand the connections between proportional relationships, lines, and linear equations.	Indirect measurement is a technique using properties of similar polygons to find distances or lengths that are difficult to measure directly. You can prove two figures are congruent if one is the result of a translation, reflection, or rotation of the other. If $\triangle ABC \cong \triangle DEF$, then $m \angle A \cong m \angle D$ $m \angle B \cong m \angle E$ $m \angle C \cong m \angle F$ $\overline{AB} = \overline{DE}$ $\overline{BC} = \overline{EF}$ $\overline{CA} = \overline{FD}$ Drawing a diagram is a good strategy for solving spatial and geometric problems. Sometimes it is helpful to list the information from the	How can you determine congruence and similarity? How does a combination of transformations differ from a single transformation? How are they the same? Why do translations, reflections, and rotations create congruent images? Which three pairs of corresponding parts can be used to show that two triangles are congruent? How can the coordinate plane help you determine that corresponding sides are congruent?	Chapter Test Quizzes Quarterly Exam	<u>Glencoe Math –</u> <u>Common Core</u> <u>Edition, Course 3,</u> McGraw Hill Education, 2013 Notes Homework Activities

problem and use the list	How are two triangle
to make a diagram.	related if they have
to make a diagram.	the same shape but
Congressent Triongles and	different sizes?
Congruent Triangles are	unierent sizes?
exactly the same, only	
the position changes	What is the difference
and/or orientation.	between using
	transformations to
A dilation is the only	create similar figures
transformation that	versus using
results in a figure that is	transformations to
not congruent to the	create congruent
original figure.	figures?
Two figures are similar	How would you
if the second can be	determine if the
obtained from the first	lengths of the
by a sequence of	corresponding sides
transformations and	are proportional?
dilations.	How does the scale
unations.	factor of a dilation
Corresponding sides of	relate to the ratio of
similar figures are	two of the
proportional.	corresponding sides of
proportional.	the pre-image and the
The ratio of the rise to	image?
the run of two slop	
triangles formed by a	How do similar
line is equal to the slope	triangles make it
of the line.	easier to measure very
	tall objects?
The perimeters of	
similar figures are	How is the slope of a
related by the scale	line related to the
factor.	similar slope triangles
	formed by the line?
The areas of similar	
figures are related by	If you know two
inguites are related by	figures are similar and
	ngur co ar commar anu

				the square of the scale factor. The ratio of the vertical leg to the horizontal leg of each similar slope triangle formed by the line is equivalent to the absolute value of the slope. Squaring and taking the square root are inverse operations.	you are given the area of both figures, how can you determine the scale factor of the similarity? How does a scale factor affect a figure, its area, and its position in the coordinate plane?		
April - May	Geometry - Volume and Surface Area	Volume, Surface Area, Effects on SA and Volume when changing one dimension and/or multiplying by a scale factor.	CC.2.3.8.A.1 Apply the concepts of volume of cylinders, cones, and spheres to solve real-world and mathematical problems.	The area of a geometric figure is the measure of the surface enclosed by the figure. Area is measured in Square units. Volumes of all figures are measured in cubic units. Volume of a figure is found by multiplying the area of the Base times the height of the figure, except those that come to a point. The volume of a figure that comes to a point is one third of the area of the Base times the height of the figure.	What information is essential in finding volume? What is a square/cubic unit? How are the units of measurement for volume different than those used for area? How is a calculation affected if you round π to 3.14 or use the pi key on your calculator?	Chapter Test Quizzes Quarterly Exam	<u>Glencoe Math –</u> <u>Common Core</u> <u>Edition, Course 3,</u> McGraw Hill Education, 2013 Notes Homework Activities

				Volume is the measure of space inside a figure (the amount the containers holds).			
May	Statistics and Probability - Scatter Plots and Data Analysis	Scatter Plots, Data Analysis	CC.2.4.8.B.1 Analyze and/or interpr et bivariate data displa yed in multiple represe ntations.	To write an equation for a line of fit you can find the slope and use point slope form or solve for b in slope intercept form.	How can I use a graph to investigate the relationship or trend between two sets of data?	Chapter Test Quizzes Quarterly Exam	<u>Glencoe Math –</u> <u>Common Core</u> <u>Edition, Course 3,</u> McGraw Hill Education, 2013
			CC.2.4.8.B.2 Understand that patterns of association can be seen in bivariate data utilizing frequencies.	The easiest way to investigate the relationship or trends between two sets of data is to write the data as ordered pairs and graph the data on a coordinate plane to see if there is a trend in the data.	What are the inferences that can be drawn from sets of data points having a positive association and a negative association?		Notes Homework Activities
				A scatter plot is a graph that shows the relationship between a data set with two variables graphed as ordered pairs on a coordinate plane.	How do you write an equation for a line of fit? How do you use a line of fit to make predictions?		
				A set of data points with positive association indicate that the values of the two variables are	Why do we estimate a line of best fit for a scatter plot?		
				increasing at the same time. A negative association indicates that as the value of the independent variable increases, the value of	How is a two-way table used when determining possible associations between two different categories form the same sample group?		

	the dependent variable decreases.	
	It is important to interpret the meaning of the slope and <i>y</i> -intercept in context of a problem.	
	A line of best fit helps in making interpretations and predictions about the situation modeled in the data set.	