

Strands	Course Level Expectations
Define Problems	 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
Design Solutions	 Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
Optimize and Revise Solutions	 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Unit Title	Design Process and Planning	Length of Unit	4-5 weeks

Inquiry Questions (Engaging & Debatable)	How can we best complete this year's challenge? How can we break down this problem into smaller engineering problems?
Standards*	HS-ETS1-1, HS-ETS1-2
Unit Strands & Concepts	 Engineering design process, Project Management
Key Vocabulary	Electrical Engineering, Mechanical Engineering, Project, brainstorming, Design Process

^{*}Standards based on Next Generation Science Standards (NGSS) For more information visit: https://www.nextgenscience.org/

Unit Title	Design Process and Planning	Length of Unit	4-5 weeks
------------	-----------------------------	----------------	-----------

Critical Content: My students will Know	Key Skills: My students will be able to (Do)	
 How to organize their thinking to come to a consensus on a possible solution to the challenge How to apply CAD to help visualize their solution to the challenge. 	 Combine their ideas to create a design for the year's challenge Research similar engineering solutions Evaluate and integrate solutions to a problem Draw their mechanical ideas in 3D using Computer Aided Design (CAD) software 	

Assessments:	Design book: Document where daily ideas and contributions to the project are recorded Research report on a mechanical system or control system student wants to use to complete the project. CAD drawing of their piece of the project
Teacher Resources:	Mechanical project building kit. Computers with AutoDesk Inventor.

Unit Title	Building using CAD and CAM	Length of Unit	4-5 weeks
Inquiry Questions (Engaging & Debatable)	How can we build our project?What are the ways other people have used to do similar	things?	
Standards*	HS-ETS1-2, HS-ETS1-3		
Unit Strands & Concepts	Project ManagementEngineering research		
Key Vocabulary	CAD, CAM, Control System, Torque, Sensor		

Unit Title	Building using CAD and CAM	Length of Unit	4-5 weeks

Critical Content: My students will Know	Key Skills: My students will be able to (Do)
 Engineering principles relevant to the solution of their design problems Automated control system basics so they can make their project move. 	 Apply engineering and physics principles to the solution of their design problems Calculate torques and speeds needed for a mechanism Combine CAD parts in an assembly drawing Use CAD drawings to manufacture 3-D Printed parts Design a set of controls and outline a control program for their project

Assessments:	Design book: Document where daily ideas and contributions to the project are recorded Research report on a mechanical system or control system student wants to use on their mechanism CAD drawing of their piece in assembly with other working pieces
Teacher Resources:	Mechanical Project building kit. Computers with AutoDesk Inventor. Tools for fabricating parts. 3-D printer

	Unit Title	Programing using sensors and motors	Length of Unit	4-5 weeks
--	------------	-------------------------------------	----------------	-----------

Inquiry Questions (Engaging & Debatable)	 How should the mechanism move to gain the objective the quickest? How can sensor feedback be used to help control the movements of the robot?
Standards*	HS-ETS1-4
Unit Strands &	Project Management
Concepts	 Engineering Research Device Programming
Key Vocabulary	Input, Output, Open Loop Control, Closed Loop Control, PID Control Loop, Voltage, Current, Resistance

Unit Title	Programing using sensors and motors	Length of Unit	4-5 weeks

Critical Content: My students will Know	Key Skills: My students will be able to (Do)
 Computer Language needed to create control program How information is Input and output to a remote mechanism How electrical power is distributed to run a complex mechanism. 	 Program their mechanism using the level of computer language appropriate to their abilities (there are many levels ranging from a web based block style to Professional Software APIs) Wire their mechanism Explain how power is distributed throughout the mechanism Use the information from sensors to help control how their mechanism works

Assessments:	Design book: Document where daily ideas and contributions to the project are recorded Wire their mechanism Each student will create a program that can run the mechanism
Teacher Resources:	Computers with internet access to online programming tools and wifi. Wifi control system for projects.

Unit Title	Re-Engineer: continuous improvement	Length of Unit	3-4 weeks

Inquiry Questions (Engaging & Debatable)	How can we optimize our design?
Standards*	HS-ETS1-3, HS-ETS1-4
Unit Strands & Concepts	 Design Optimization Engineering Research Device programming
Key Vocabulary	Optimization, Re-Engineering, Project Integration, Design Process

Unit Title	Re-Engineer: continuous improvement	Length of Unit	3-4 weeks

Critical Content: My students will Know	Key Skills: My students will be able to (Do)
 How to evaluate their solution to the challenge. How to learn from their mistakes and improve their mechanism 	 Build and repair their project Debug their software Revise their ideas and their project to make it better. Present and explain the function of their project.

Assessments:	Design book: Document where daily ideas and contributions to the project are recorded Each student will document an improvement or redesign for their mechanism
Teacher Resources:	Computers with internet access to online programming tools and wifi. Wifi control system for the project. Tools, 3-D printer.