PUBLIC SCHOOLS OF EDISON TOWNSHIP

OFFICE OF CURRICULUM AND INSTRUCTION

AP Physics 1

Length of Course:	Term
Elective/Required:	Elective
Schools:	High Schools
Eligibility:	Grade 11-12
Credit Value:	6 Credits
Date Approved:	September 24, 2018 (Curriculum)
	August 17, 2021 (Credit Value)

TABLE OF CONTENTS

Statement of Purpose	3
Unit 1: Kinematics	8
Unit 2: Dynamics	13
Unit 3: Work and Energy	18
Unit 4: Momentum	31
Unit 5: Circular Motion and Gravitations	39
Unit 6: Rotational Motion	45
Unit 7: Simple Harmonic Motion, Simple Pendulum and Mass Spring Systems	53
Unit 8: Mechanical Waves and Sound	59
Unit 9: Electric Forces and DC Circuits	63

Modifications will be made to accommodate IEP mandates for classified students.

STATEMENT OF PURPOSE

The AP Physics 1 curriculum was written in accordance to College Board requirements. The course is designed to be the equivalent of the first semester college algebra-based physics course.

The course covers Newtonian mechanics (including rotational dynamics and angular momentum); work, energy, and power; and mechanical waves and sound. It will also introduce electric circuits. The course is focused on a series of learning objectives that clarify the knowledge and skills students should demonstrate to qualify for college credit and placement. Each learning objective combines physics content with one or more of seven foundational science practices.

- The student can use representations and models to communicate scientific phenomena and solve scientific problems.
- The student can use mathematics appropriately.
- The student can engage in scientific questioning to extend thinking or to guide investigations within the context of the AP course.
- The student can plan and implement data collection strategies in relation to a particular scientific question.
- The student can perform data analysis and evaluation of evidence.
- The student can work with scientific explanations and theories.
- The student is able to connect and relate knowledge across various scales, concepts and representations in and across domains.)

The curriculum guide was created by: Kruti Singh (EHS) Robin Connell (EHS).

Coordinated by:

Laurie Maier - Supervisor of Science, Edison and JP Stevens High Schools

By the end of the AP Physics 1 course, students will be able to:

- (NJSLS/HS-PS2-1) Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
- (NJSLS/HS-PS2-2) Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
- **(NJSLS/HS-PS2-3)** Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
- (NJSLS/HS-PS2-4) Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
- (NJSLS/HS-PS2-5) Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.
- **(NJSLS/HS-PS2-6)** Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.
- (NJSLS/HS-PS3-1) Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
- (NJSLS/HS-PS3-2) Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).
- (NJSLS/HS-PS3-3) Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
- (NJSLS/HS-PS3-4) Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

Course Objectives (cont.)

- (NJSLS/HS-PS3-5) Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.
- (NJSLS/HS-PS4-1) Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.
- **(NJSLS/HS-PS4-2)** Evaluate questions about the advantages of using a digital transmission and storage of information.

Engineering Design

- (NJSLS/HS-ETS1-1) Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.
- (NJSLS/HS-ETS1-2) Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
- (NJSLS/HS-ETS1-3) Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.
- (NJSLS/HS-ETS1-4) Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem

Timeline

First Quarter Units – 1 & 2

Unit 1: Kinematics

- <u>1D Motion</u> Reference Frames and Displacement Average and Instantaneous Velocity Acceleration Free-Fall Acceleration
- <u>2D Motion</u> Projectile motion
- Unit 2: Dynamics
 - Forces
 Contact Forces
 Field Forces
 Free Body diagrams
 - Newton's 3 Laws
 - 1D Motion
 - 2 D Motion

Second Quarter Units – 3 & 4

Unit 3: Work and Energy

- Work done by Constant Force
- Work done by Varying force
- Kinetic Energy
- Work done by Kinetic Energy
- Potential Energy
- Work done by Potential Energy
- Conservative and Non-Conservative
- Conservation of Mechanical Energy
- Power

Unit 4: Momentum

- Momentum and Its Relation to Force
- Conservation of Momentum
- Collisions and Impulse
- Elastic collisions in One Dimension
- Inelastic Collisions
- Collisions in Two Dimensions

Third Quarter Units- Units 5, 6 & 7

Unit 5: Circular Motion and Gravitations

- Kinematics of Circular Motion
- <u>Dynamics of Circular Motion</u> Horizontal Vertical

Banked Curves

- <u>Planetary Motion</u> Newton's Law of Universal Gravitation Gravity Near the Earth's Surface Satellites and "Weightlessness"
- Kepler's Laws

Unit 6: Rotational Motion

- Rotational Kinematics
- Rolling Motion (Without Slipping
- Rotational Dynamics
- Static Equilibrium
- Rotational Kinetic Energy
- Angular Momentum and Its Conservation

Unit 7: Simple Harmonic Motion, Simple Pendulum and Mass-Spring System

- Simple Harmonic Motion-Springs
- Energy in SHM
- Period and Sinusoidal Nature of SHM
- The Simple Pendulum
- Damped Harmonic Motion

Fourth Quarter Units – Units 8 & 9

Unit 8: Mechanical Waves and Sound

- Properties of Mechanical Waves
- Relationships between medium, frequency, wavelength, speed
- Harmonics, string and wind instruments

Unit 9: Electric Forces and DC Circuits

- Coulomb's Law
- Electric Field
- Resistance
- DC Circuits

Unit of Study: 1 Kinematics	Pacing: 5 weeks			
Essential Questions: How do we describe the motion of objects? How do we create mathematical models that represent the motion of objects and use mathematical models to predict the motion of objects? How is a vector represented and what are some of its applications? How can vectors be manipulated mathematically? How does motion in the vertical direction affect motion in the horizontal direction? What situations require relative motion analysis?				
Big Idea:				
1. Objects and systems have properties such as mass and charge. Systems may have i	internal structure.			
2. Fields existing in space can be used to explain interactions.				
3. The interactions of an object with other objects can be described by forces.				
NGSS Performance Expectations: (Students who demonstrate understanding can:)				
NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion des relationship among the net force on a macroscopic object, its mass, and its acceleration.	scribes the mathematical			
NJSLS/HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down in problems that can be solved through engineering.	nto smaller, more manageable			
NJSLS/HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as environmental impacts.	d criteria and tradeoffs that s possible social, cultural, and			
 Unit Assessment: (What is the evidence (authentic) that students have achieved the targete Quarterly exam labs, activities summative assessments 	ed standards/unit objectives?)			

ELA/ Literacy

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS1-3)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

(HS-LS1-3)SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-2)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)

Math

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-5)

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity.

Student Learning Objectives: (SLO)		Γ	Instructional Actions	1
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Point
 PS2.A: Forces and Motion Given a graph of position or velocity as a function of time, recognize in what time intervals the position, velocity and acceleration of an object are positive, negative, or zero and sketch a graph of each quantity as a function of time. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. 	Analyzing and Interpreting Data • Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in	Cause and Effect • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Systems can be designed to cause a desired effect.	 Velocity of a Nonaccelerating Object What's Your Reaction Time: Initial Velocity of a Popper Toy Horizontally Launched Projectile Challenge Initial Velocity of a Toy Dart Launched at an angle Acceleration Due to Gravity Chapter 2,3 Giancoli textbook problems AP practice problems Interdisciplinary connection problems Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with 	(What is the authentic evidence that students have achieved the targeted standards/unit objectives? Formative, Summative and Performance Based) Formative Assessments Diagnostic pre- and post- assessment, Class Discussion Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts lab reports with teacher feedback. Summative Assessments: Quizzes, Tests. Performance Assessments/Laborato Investigations: Research/Lab Reports

ETS1.A: Defining and Delimiting Engineering Problems • Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design	mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Using Mathematics and Computational Thinking • Use mathematical representations of phenomena to describe explanations. Constructing Explanations and	Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. Connections to Engineering, Technology, and Applications of Science Influence of Science, Engineering, and Technology on Society and the Natural World	
tell if a given design meets them. ETS1.C: Optimizing the Design Solution • Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (tradeoffs) may be needed. ETS1.B: Developing Possible Solutions	 Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. Design a solution to a complex real world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, 	Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology.	
When evaluating solutions, it is important to take	 and tradeoff considerations. Evaluate a 	Laws, Mechanisms, and Theories Explain Natural Phenomena	

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
Links to Best Practices Chapter 2,3 Giancoli Phet labs Cenco AP Labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings

Unit of Study: 2 Dynamics				Pacing: 5 weeks
Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points

1 11/5105 1				
PS2.A: Forces and	Analyzing and	Cause and Effect		
Motion	Interpreting Data	Empirical		
 Newton's second law accurately predicts changes in the motion of macroscopic objects. Represent and describe the two types of forces that a surface can exert on an object - a normal force, and a friction force parallel to the surface and dependent on the normal force and textures of the two surfaces. Use Newton's Second Law along with the mathematical relationship among 	 Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations. 	evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Systems and System Models • When investigating or describing a system, the boundaries and initial conditions of the system need to be defined	 Inertial Mass Atwood's Machine Weight Versus Mass The Friction Coefficient of your block Hooke's Law Terminal Velocity Friction on a Ramp Atwood's Machine Chapter 4 Giancoli textbook problems AP practice problems Interdisciplinary 	Formative Assessments: Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments: Quizzes,
friction force and	Explanations and	Patterns	connection	Tests.
 normal force to predict unknown quantities involving one- dimensional motion with constant velocity and one-dimensional motion with constant acceleration. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Understand and apply the relationship 	 Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. Design a solution to a complex real world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff consideration. Evaluate a solution to a complex real world 	 Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data and predict the effect of a change in one 	 problems Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback. 	Performance Assessments/Laboratory Investigations: Research/Lab Reports

between the net force	problem, based on	variable on	
exerted on an object,	scientific knowledge,	another (e.g.,	
its inertial mass, and its	student- growth vs.	linear	
acceleration to a	exponential growth).	descriptions of	
variety of situations.		the relationships	
PS2.B: Types of		among	
Interactions		observable	
Generated sources of		phenomena.	
Generated sources of evidence, prioritized		Connections to	
criteria, and tradeoff		Engineering,	
considerations		Technology, and	
Using Mathematical and		Applications of	
Computational Thinking		Science	
		Influence of	
 Use computational representations of 		Science	
nbenomena to		Engineering and	
describe explanations.			
		Technology on	
		Society and the	
		Natural World	
		New technologies	
		can have deep	
		impacts on	
		society and the	
		environment,	
		including some	
		that were not	
		anticipated.	
		Analysis of costs	
		and benefits is a	
		Connections to	
		Nature of Science	
		Science wodels,	
		Laws, Mechanisms,	
		and ineories	
		Explain Natural	
		Phenomena	

	 Theories and laws provide explanations in science. Laws are statements or explanations in science. Laws are statements or 	

AP Physics I	17
Resources: Essential Materials, Supplementary Materials, Links to Best Practices Chapter 4 Giancoli Phet labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings
Cenco AP Labs	
Clarification Statement: Examples of data could include tables or gr to a net unbalanced force, such as a falling object, an object rolling	raphs of position or velocity as a function of time for objects subject down a ramp, or a moving object being pulled by a constant force
Assessment Boundary: For Newton's Second Law of Motion Asses speed and non-calculous based problem solving.	sment is limited to macroscopic objects moving at non- relativistic

Unit of Study: Unit 3 – Work and Energy	Pacing: 4 weeks	
Essential Questions: How are humans dependent upon transformations of energy? If you h constant velocity, are you doing work on the object? Why or why not? What factors affect the you determine whether the collision is elastic or inelastic? How is the energy of a system def graphically? What is mechanical energy and what factors affect its conservation?	hold an object while you walk at a e collision of two objects, and how can ined? How is work represented	
 Big Ideas: 3. The interactions of an object with other objects can be described by forces. 4. Interactions between systems can result in changes in those systems. 5. Changes that occur as a result of interactions are constrained by conservation laws. 		
NGSS Performance Expectations: (Students who demonstrate understanding can:)		
NJSLS/HS-PS3-1) Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.		
NJSLS/HS-PS3-2) Develop and use models to illustrate that energy at the macroscopic combination of energy associated with the motions of particles (objects) and energy a of particles (objects).	c scale can be accounted for as a a associated with the relative position	
NJSLS/HS-PS3-3) Design, build, and refine a device that works within given constraint another form of energy.	s to convert one form of energy into	
ELA/Literacy –		
RST.11-12.1 WHST.9-12.7 Cite specific textual evidence to support analysis of science and distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS3-4)	technical texts, attending to important	
WHST.11-12.8 Conduct short as well as more sustained research projects to answer a quest question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize modemonstrating understanding of the subject under investigation. (HS-PS3-3), (HS-PS3-4),(HS-PS	tion (including a self-generated ultiple sources on the subject, S-PS3-5)	

WHST.9-12.9 SL.11-12.5 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience;

integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS3-4),(HS-PS3-5) Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS3-4),(HS-PS3-5)

Mathematics -

MP.2 MP.4 HSN-Q.A.1 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1),(HS-PS3-2),(HS-PS3-5)

HSN-Q.A.2 HSN-Q.A.3 Reason abstractly and quantitatively. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5) Model with mathematics. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5) Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1),(HS-PS3-3) Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1),(HS-PS3-3) Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1),(HS-PS3-3)

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity. CRP12. Work productively in teams while using cultural global competence.

AP Physics I UNIT 3: WORK AND ENERGY

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points

AF FIIYSIUS I		-	-	
 PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS- PS3-1),(HS-PS3-2) At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS- PS3- 2) (HS-PS3-3) These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between 	 Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations. Constructing Explanations and Designing Solutions Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. Design a solution to a complex real world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff 	 Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential 	Activity: Understanding Work – use a variety of everyday situations to develop an understanding of the concepts of work and energy Activity: Angles and Work – utilize everyday situations to develop a method of determining work done at an angle Activity: Types of Energy – develop terminology based on everyday situations to describe different types of energy Activity: Representing Work/Energy – use a variety of methods to represent Work/Energy and the concept of conservation (verbal, pictorial, graphical, mathematical) Class Activity: Conservation of Energy – provide examples of situations where energy is conserved, but due to assumptions it does not remain constant for the system Lab: Determining Power – develop an understanding of what power represents by allowing students to develop a lab in which they determine the power of a	Formative Assessments: Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments : Quizzes, Tests. Performance Assessments/Laboratory Investigations: Research/Lab Reports

AF FIIYSIUS I				
particles). This last concept includes radiation,	considerations.Evaluate a solution	growth). Connections to	system	
a phenomenon in which	to a complex real	Engineering,	Lab: Elastic and Inelastic	
moves across space (HS-	world problem,	Technology, and	Collisions Lab	
PS3-2)	knowledge, student-	Applications of	Textbook: Giancoli	
PS3.B: Conservation of	generated sources	Science	Chapter 6	
Energy and Energy	of evidence,	Influence of Science,	Activity: Individual/Group	
Transfer	and tradeoff	Engineering, and	Problem Solving (textbook,	
Conservation of energy	considerations.	Technology on	AP practice problems,	
means that the total	Using Mathematical	Society and the	problems involving	
change of energy in any	and Computational	Natural World	interdisciplinary	
system is always equal to	Thinking		connections)	
into or out of the system.	Use mathematical or	can have deep		
(HS-PS3-1)	computational	impacts on society		
 Energy cannot be created 	representations of	and the		
or destroyed, but it can be	phenomena to	environment,		
transported from one place	describe	were not		
to another and transferred	explanations.	anticipated. Analysis		
between systems. (HS-		of costs and benefits		
PS3-1),(HS-PS3-4)		is a critical aspect of		
• Mathematical expressions,		decisions about		
which quantify how the				
stored energy in a system		Noture of Science		
configuration (e.g. relative		Solonoo Modelo		
positions of charged		Science Models,		
particles, compression of a		Laws, Mechanisms,		
spring) and how kinetic				
energy depends on mass		Natural Phenomena		
and speed, allow the		 Theories and laws provide explanations 		
energy to be used to		in science		
predict and describe				
system behavior. (HS-		 Laws are statements or 		
PS3-1)		descriptions of the		
The availability of energy		relationships among		
limits what can occur in		observable		
-				

any system. (HS-PS3-1)	phenomena.	
 Uncontrolled systems 		
always evolve toward		
more stable states— that		
is, toward more uniform		
energy distribution (e.g.,		
water nows downnill,		
surrounding environment		
cool down). (HS-PS3-4)		
PS3.C: Relationship		
Between Energy and		
Forces		
When two objects		
interacting through a field		
change relative position,		
the energy stored in the		
Tield is changed. (HS-PS3-		
PS3.D: Energy in Chemical		
Processes		
 Although energy cannot be destroyed, it can be 		
converted to less useful		
forms—for example, to		
thermal energy in the		
ETS1.A: Defining and		
Delimiting Engineering		
Problems		
Criteria and constraints		
also include satisfying any		
requirements set by		
society, such as taking		
into account and they		
should be quantified to the		
extent possible and stated		
in such a way that one can		
tell if a given design meets		

AP Physics I		
them. (secondary to HS- PS3-3)		
,		

Resources: Essential Materials, Supplementary Materials, Links to Best Practices Chapter 6 Giancoli Phet labs Cenco AP Labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings
Clarification Statement: Emphasis is on explaining the meaning of Boundary Clarification Statement: Examples of phenomena at the thermal energy, the energy stored due to position of an object ab plates. Examples of models could include diagrams, drawings, de and quantitative evaluations of devices. Examples of devices cou ovens, and generators. Examples of constraints could include us	of mathematical expressions used in the model.] [Assessment e macroscopic scale could include the conversion of kinetic energy to ove the earth, and the energy stored between two electrically-charged escriptions, and computer simulations. Emphasis is on both qualitative ald include Rube Goldberg devices, wind turbines, solar cells, solar e of renewable energy forms and efficiency.
Assessment Boundary: : Assessment is limited to basic algebraic and to thermal energy, kinetic energy, and/or the energies in grave evaluations is limited to total output for a given input. Assessment students.	c expressions or computations; to systems of two or three components; vitational, magnetic, or electric fields. Assessment for quantitative at is limited to devices constructed with materials provided to

Unit of Study: Unit 3 – Work and Energy	Pacing: 2-3 weeks

Essential Questions: How are humans dependent upon transformations of energy? If you hold an object while you walk at a constant velocity, are you doing work on the object? Why or why not? What factors affect the collision of two objects, and how can you determine whether the collision is elastic or inelastic? How is the energy of a system defined? How is work represented graphically? What is mechanical energy and what factors affect its conservation?

Big Ideas:

- 3. The interactions of an object with other objects can be described by forces.
- 4. Interactions between systems can result in changes in those systems.
- 5. Changes that occur as a result of interactions are constrained by conservation laws.

NGSS Performance Expectations: (Students who demonstrate understanding can:)

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).

HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

ELA/Literacy -

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS3-4)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS3-3), (HS-PS3-4),(HS-PS3-5)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format

for citation. (HS-PS3-4),(HS-PS3-5)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS3-4),(HS-PS3-5)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1),(HS-PS3-2),(HS-PS3-5)

Mathematics -

MP.2 Reason abstractly and quantitatively. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5)

MP.4 Model with mathematics. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1),(HS-PS3-3)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1),(HS-PS3-3)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1),(HS-PS3-3)

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity. CRP12. Work productively in teams while using cultural global competence.

UNIT 3: WORK AND ENERGY

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
 PS3.A: Definitions of Energy Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS- PS3- 1),(HS-PS3-2) At the macroscopic scale, energy manifests itself in multiple ways, such as in 	 Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations. Constructing Explanations and Designing Solutions 	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system 	Activity: Understanding Work – use a variety of everyday situations to develop an understanding of the concepts of work and energy Activity: Angles and Work – utilize everyday situations to develop a method of determining work done at an angle Activity: Types of Energy – develop terminology based on everyday situations to describe different types of energy Activity: Representing Work/Energy – use a variety of methods to represent Work/Energy and the concept of conservation (verbal,	Formative Assessments: Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments: Quizzes, Tests. Performance
 motion, sound, light, and thermal energy. (HS- PS3- 2) (HS-PS3-3) These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy 	 Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. Design a solution to a complex real world problem, based on scientific knowledge, student- generated 	defined. Patterns • Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in	Class Activity: Conservation of Energy – provide examples of situations where energy is conserved, but due to assumptions it does not remain constant for the system Lab: Determining Power –	Assessments/Labor atory Investigations: Research/Lab Reports

AF FIIYSIUS I	
and speed, allow the	Nature of Science
concept of conservation of	Science Models.
energy to be used to predict	Laws Mechanisms
and describe system	and Theories
behavior. (HS-PS3-1)	
 The availability of energy 	Explain Natural
limits what can occur in any	Phenomena
system. (HS-PS3-1)	Theories and
 Uncontrolled systems 	laws provide
always evolve toward more	explanations in
stable states— that is,	science.
toward more uniform	Laws are
energy distribution (e.g.,	statements or
water flows downhill,	descriptions of
objects hotter than their	the relationships
surrounding environment	among
cool down). (HS-PS3-4)	observable
PS3.C: Relationship	phenomena.
Between Energy and	
Forces	
 When two objects 	
interacting through a field	
change relative position.	
the energy stored in the	
field is changed. (HS-PS3-	
5)	
PS3.D: Energy in Chemical	
Processes	
Although energy cannot be	
destroyed it can be	
converted to less useful	
forms—for example, to	
thermal energy in the	
ETS1.A: Defining and	
Delimiting Engineering	
Broblome	
 Uniteria and constraints also include setisfying any 	
requirements set by society	
such as taking issues of rick	
Such as taking issues of lisk	

mitigation into account, and		
they should be quantified to		
the extent possible and		
stated in such a way that		
one can tell if a given		
design meets them.		
(secondary to HS-PS3-3)		

Resources: Essential Materials, Supplementary Materials, Links to Best Practices Chapter 6 Giancoli Phet labs Cenco AP Labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings			
Clarification Statement: Emphasis is on explaining the meaning o	f mathematical expressions used in the model.] [Assessment			
Boundary Clarification Statement: Examples of phenomena at the	e macroscopic scale could include the conversion of kinetic energy to			
thermal energy, the energy stored due to position of an object ab	ove the earth, and the energy stored between two electrically-charged			
plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations. Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.				
Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components;				
and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields. Assessment for quantitative				
evaluations is limited to total output for a given input. Assessmen	t is limited to devices constructed with materials provided to			
students.				

Unit of Study: Unit 4 Momentum	Pacing: 2-3 weeks
Essential Questions:	
 What role does Newton's third law play in the conceptual and mathema 	tical understanding of impulses and momentum?
 How is the impulse and momentum demonstrated by air bags in cars, the landing? 	nick-soled running shoes, and knee bending during a
 How are collisions determined to be elastic or inelastic? 	
 How does a ballistic pendulum demonstrate both the conservation of er 	nergy and momentum?
Big Idea:	
3. The interactions of an object with other objects can be described by forces	
4. Interactions between systems can result in changes in those systems.	Sear Jerre
Changes that occur as a result of interactions are constrained by conservat	ion laws.
NGSS Performance Expectations: (Students who demonstrate understanding	can:)
NJSLS/HS-PS2-2: Use mathematical representations to support the claim that	the total momentum of a system of objects is
conserved when there is no net force on the system.	
NJSLS/HS-PS2-3: Apply scientific and engineering ideas to design, evaluate,	and refine a device that minimizes the force on a
macroscopic object during a collision.	
NJSLS/HS-PS3-2: Develop and use models to illustrate that energy at the mag	croscopic scale can be accounted for as a combination
of energy associated with the motions of particles (objects) and energy associa	ated with the relative position of particles (objects).
NJSLS/HS-PS3-1: Create a computational model to calculate the change in th	e energy of one component in a system when the
change in energy of the other component(s) and energy flows in and out of the	e system are known.
NJSLS/HS-PS3-3: Design, build, and refine a device that works within given or	onstraints to convert one form of energy into another
form of energy.	
NISI S/HS-FTS1-1: Analyze a major global challenge to specify qualitative an	d quantitative criteria and constraints for solutions the
account for societal needs and wants.	

that can be solved through engineering.

ELA/Literacy -

RST.11-12.1 WHST.9-12.7 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS3-4)

WHST.11-12.8 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS3-3), (HS-PS3-4),(HS-PS3-5)

WHST.9-12.9 SL.11-12.5 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS3-4),(HS-PS3-5) Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS3-4),(HS-PS3-5)

Mathematics -

MP.2 MP.4 HSN-Q.A.1 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1),(HS-PS3-2),(HS-PS3-5)

HSN-Q.A.2 HSN-Q.A.3 Reason abstractly and quantitatively. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5) Model with mathematics. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5) Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1),(HS-PS3-3) Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1),(HS-PS3-3) Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1),(HS-PS3-3)

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.

CRP11. Use technology to enhance productivity. CRP12. Work productively in teams while using cultural global competence.

UNIT 4: Momentum

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points

 PS2.A: Forces and Motion Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. Predict the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is 	Using Mathematics and Computational Thinking • Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. • Create a computational model or simulation of a phenomenon, designed device, process, or system. • Use mathematical	 Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Systems can be designed to cause a desired effect. Systems and System Models When investigating or describing a system, the boundaries and 	 Impulse and Momentum Conservation of Momentum in Collisions Conservation of Momentum – Ballistic Pendulum Chapter 7 Giancoli textbook problems AP practice problems Interdisciplinary 	Formative, Summative and Performance Based) Formative Assessments: Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments: Quizzes, Tests. Performance
however, any such change is balanced by changes in the momentum of objects	Use mathematical models and/or computer simulations	the boundaries and initial conditions of the system	 Interdisciplinary connection problems 	Performance Assessments/Laborat

outside the system. **PS2.B:** Types of Interactions

Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields: electric charges or changing magnetic fields cause electric fields.

PS3.A: Definitions of Energy

- Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.
- At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.
- These relationships are • better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy

to predict the effects of a design solution on systems and/or the interactions between systems.

Analyzing and Interpreting Data

 Analyze data using tools, technologies, and/or models (e.g., computational. mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.

Constructing **Explanations and Designing Solutions**

- Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects.
- Design a solution to a complex real world problem, based on scientific knowledge, student-generated sources of evidence. prioritized criteria, and tradeoff considerations.
- Evaluate a solution to a complex real world problem, based on scientific knowledge, student-generated sources of evidence. prioritized criteria, and

Models can be used to
predict the behavior of
a system, but these
predictions have
limited precision and
reliability due to the
assumptions and
approximations
inherent in models.
Models (e.g. physical

Models (e.g., physical, mathematical. computer models) can be used to simulate systems and interactions-including energy, matter, and information flowswithin and between systems at different scales. Energy and Matter

- Changes of energy and matter in a system can be described in terms of energy and matter flows into. out of, and within that system.
- Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems.

Connections to Engineering, Technology, and **Applications of Science** Influence of Science,

Diagnostic preand postassessment, Class Discussions. Worksheets with teacher feedback. Drafts of lab reports with

ory Investigations: Research/Lab Reports teacher feedback.

associated with the tradeoff **Engineering and** considerations. configuration (relative **Technology on Society** position of the particles). In **Developing and Using** and the Natural World some cases the relative Models Modern civilization position energy can be Develop and use a depends on major thought of as stored in fields model based on technological systems. (which mediate interactions evidence to illustrate Engineers between particles). This last the relationships continuously modify concept includes radiation, a between systems or these technological phenomenon in which between components systems by applying energy stored in fields moves of a system. scientific knowledge across space. **Asking Questions and** and engineering **PS3.B:** Conservation of **Defining Problems** design practices to **Energy and Energy Transfer** increase benefits while Analyze complex real- Conservation of energy decreasing costs and world problems by means that the total change risks. specifying criteria and of energy in any system is New technologies can constraints for always equal to the total have deep impacts on successful solutions. energy transferred into or out society and the of the system. environment, including Energy cannot be created or some that were not destroyed, but it can be anticipated. Analysis transported from one place of costs and benefits to another and transferred is a critical aspect of between systems. decisions about Mathematical expressions, technology. which quantify how the **Connections to Nature** stored energy in a system of Science depends on its configuration Scientific Knowledge (e.g. relative positions of Assumes an Order and charged particles. compression of a spring) and **Consistency in Natural** how kinetic energy depends **Systems** on mass and speed, allow Science assumes the the concept of conservation universe is a vast of energy to be used to single system in which predict and describe system basic laws are behavior. constant The availability of energy limits what can occur in any system.

AP Physics I		37
ETS1.A: Defining and		
Delimiting Engineering		
Problems		
Criteria and constraints also		
include satisfying any		
requirements set by society,		
such as taking issues of risk		
mitigation into account, and		
they should be quantified to		
stated in such a way that one		
can tell if a given design		
meets them.		
 Humanity faces major global 		
challenges today, such as		
the need for supplies of		
clean water and food or for		
pollution, which can be		
addressed through		
engineering. These global		
challenges also may have		
manifestations in local		
communities.		
EIS1.C: Optimizing the		
Design Solution		
Criteria may need to be		
broken down into simpler		
systematically and decisions		
about the priority of certain		
criteria over others		
(tradeoffs) may be needed.		
ETS1.B: Developing		
Possible Solutions		
 Both physical models and 		
computers can be used in		
engineering design process		
Computers are useful for a		

variety of purposes, such as		
different ways of solving a		
problem or to see which one		
is most efficient or		
economical; and in making a		
persuasive presentation to a		
client about how a given		
design will meet his or her		
needs.		
• When evaluating solutions, it		
is important to take into		
account a range of		
constraints, including cost,		
safety, reliability, and		
aesthetics, and to consider		
social, cultural, and		
environmental impacts.		

Resources:	Essential	Materials,	Supplementary	Materials,	
Links to Best	Practices				Instructional Adjustments: Medifications, student difficulties
Phet labs	COII				possible misunderstandings
Cenco AP Labs					,

Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle. Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute. Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations. Emphasis is on explaining the meaning of mathematical expressions used in the model. Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency. Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves

traveling through air and water, and seismic waves traveling through the Earth.

Assessment Boundary: Momentum assessment is limited to systems of two macroscopic bodies moving in one dimension. Momentum assessment is limited to qualitative evaluations and/or algebraic manipulations. Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields. Assessment is limited to algebraic relationships and describing those relationships qualitatively.

Unit of Study: 5 Circular Motion and Gravitations	Pacing: 3-4 weeks
Essential Questions: ▼ Why do you stay in your seat on a roller coaster when it goes upsic How is the motion of a falling apple similar to that of the moon in orbit around the Earth? ▼ V a planet to obtain a circular orbit around its host star? ▼ How can Newton's second law of m law of gravitation? ▼ How can the motion of the center of mass of a system be altered?	de down in a vertical loop? ▼ Vhat conditions are necessary for otion be related to the universal
 Big Idea: 1. Objects and systems have properties such as mass and charge. Systems may have inter 2. Fields existing in space can be used to explain interactions. 3. The interactions of an object with other objects can be described by forces 4. Interactions between systems can result in changes in those systems. 	nal structure
NGSS Performance Expectations: (Students who demonstrate understanding can:)	
NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion des relationship among the net force on a macroscopic object, its mass, and its acceleration.	scribes the mathematical
NJSLS/HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation and Co predict the gravitational and electrostatic forces between objects.	ulomb's Law to describe and
NJSLS/HS-ESS1-4: Use mathematical or computational representations to predict the motion system.	n of orbiting objects in the solar
NJSLS/HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down ir problems that can be solved through engineering.	nto smaller, more manageable
NJSLS/HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as environmental impacts.	l criteria and tradeoffs that s possible social, cultural, and

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity.

CRP12. Work productively in teams while using cultural global competence.

UNIT 5: Circular Motion and Gravitation

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points

PS2.A: Forces and	Analyzing and	Cause and Effect	
Motion	Interpreting Data	Empirical	
 Newton's second law accurately predicts changes in the motion of macroscopic objects. Represent and describe the two types of forces that a surface can exert on an object - a normal force, and a friction force parallel to the surface and dependent on the normal force and textures of the two surfaces. Use Newton's Second Law along with the mathematical relationship among friction force and 	 Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. Using Mathematics and Computational Thinking Use mathematical representations of phenomena to describe explanations. Constructing Explanations and Designing Solutions Apply scientific ideas 	evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. Systems and System Models • When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. Patterns • Different	Formative Assessments: Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments: Quizzes, Tests.
 normal force to predict unknown quantities involving one- dimensional motion with constant velocity and one-dimensional motion with constant acceleration. Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation. Understand and apply the relationship 	 Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. Design a solution to a complex real world problem, based on scientific knowledge, student- generated sources of evidence, prioritized criteria, and tradeoff considerations. Evaluate a solution to a complex real world problem, based on 	 Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Scale, Proportion, and Quantity Algebraic thinking is used to examine scientific data 	Performance Assessments/Laboratory Investigations: Research/Lab Reports

between the net force	scientific knowledge,	and predict the	
exerted on an object,	student- generated	effect of a	
its inertial mass, and	sources of evidence,	change in one	
its acceleration to a	prioritized criteria, and	variable on	
variety of situations.	tradeoff	another (e.g.,	
PS2.B: Types of	considerations.	linear growth	
Interactions	Using Mathematical	vs. exponential	
Newton's law of	and Computational	growth).	
	Thinking	Connections to	
and Coulomb's law		Enaineerina.	
provide the	Ose mathematical of acomputational	Technology and	
mathematical models		Applications of	
to describe and	nepresentations of	Applications of	
predict the effects of	describe explanations	Science	
gravitational and		Influence of	
electrostatic forces		Science,	
between distant		Engineering, and	
obiects.		Technology on	
 Forces at a distance 		Seciety and the	
are explained by fields		Society and the	
(gravitational, electric,		Natural World	
and magnetic)		 New 	
permeating space that		technologies	
can transfer energy		can have deep	
through space.		impacts on	
Magnets or electric		society and the	
currents cause		environment,	
magnetic fields;		including some	
electric charges or		that were not	
changing magnetic		anticipated.	
fields cause electric		Analysis of	
fields.		costs and	
 Relate the period. 		benefits is a	
orbital radius and		critical aspect	
speed of an object in		of decisions	
a circular orbit, and		about	
use the model speed		technology.	
= $2\pi R/T$ to predict		Connections to	
unknown quantities.		Nature of Science	
ESS1.B: Earth and		Science Models.	
the Solar		laws	
System Kepler's laws		Land,	

describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system.	 Mechanisms, and Theories Explain Natural Phenomena Theories and laws provide explanations in science. Laws are statements or descriptions of the relationships among observable phenomena. 	

AP Physics I	45
Resources: Essential Materials, Supplementary Materials, Links to Best Practices Chapter5 Giancoli Phet labs Cenco AP Labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings
Clarification Statement: Examples of data could include table subject to a net unbalanced force, such as a falling object, a constant force. Emphasis is on both quantitative and concep Newtonian gravitational laws governing orbital motions, whic	es or graphs of position or velocity as a function of time for objects n object rolling down a ramp, or a moving object being pulled by a tual descriptions of gravitational and electric fields. Emphasis is on th apply to human-made satellites as well as planets and moons.
Assessment Boundary: For Newton's Second Law of Motion objects moving at non- relativistic speed. Mathematical repre- of orbital motions should not deal with more than two bodies	Assessment is limited to one-dimensional motion and to macroscopic esentations for the gravitational attraction of bodies and Kepler's Laws , nor involve calculus.

Unit of Study: Unit 6 – Rotational Motion	Pacing: 1-2 weeks
Essential Questions: Can the kinematics equations be applied to rotating systems? How ca	an Newton's law be applied to rotating
systems? How does a net torque affect the angular momentum of a rotating system?	
Big Ideas:	
3. The interactions of an object with other objects can be described by forces.	
4. Interactions between systems can result in changes in those systems.	
5. Changes that occur as a result of interactions are constrained by conservation laws.	
NGSS Performance Expectations: (Students who demonstrate understanding can:	
NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion de	scribes the mathematical relationship
among the net force on a macroscopic object, its mass, and its acceleration.	
NJSLS/HS-PS2-2: Use mathematical representations to support the claim that the total mon	nentum of a system of objects is
conserved when there is no net force on the system	
NJSLS/HS-PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a d	evice that minimizes the force on a
macroscopic object during a collision.	
NUCLO/UD DOD 4. Orgenta a compartation of grandel to coloridate the share of the second states	
NJSLS/HS-PS3-1: Create a computational model to calculate the change in the energy of or	ne component in a system when the
change in energy of the other component(s) and energy flows in and out of the system are k	nown.
NISIS/US DS2 2: Develop and use models to illustrate that energy at the magrospanic apol	a cap be accounted for as a
NJSLS/HS-FSS-2. Develop and use models to industrate that energy at the matioscopic scal	te call be accounted for as a
combination of energy associated with the motions of particles (objects) and energy associated	led with the relative position of
particles (objects).	
N ISI S/HS-PS3-3: Design, build, and refine a device that works within given constraints to c	onvert one form of energy into another
form of operav	onvert one form of energy into another
Torm of energy.	
NJSLS/HS-FTS1-1: Analyze a major global challenge to specify gualitative and guantitative	criteria and constraints for solutions
that account for societal needs and wants	
NJSLS/HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down i	nto smaller, more manageable
	,

problems that can be solved through engineering.

NJSLS/HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and tradeoffs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

ELA/Literacy -

RST.11-12.1 WHST.9-12.7 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS3-4)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS1-3)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.

(HS-LS1-3)SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-2) WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)

WHST.11-12.8 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS3-3), (HS-PS3-4),(HS-PS3-5)

WHST.9-12.9 SL.11-12.5 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS3-4),(HS-PS3-5) Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS3-4),(HS-PS3-5)

Mathematics -

MP.2 MP.4 HSN-Q.A.1 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1),(HS-PS3-2),(HS-PS3-5)

HSN-Q.A.2 HSN-Q.A.3 Reason abstractly and quantitatively. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5) Model with mathematics. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5) Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1),(HS-PS3-3) Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1),(HS-PS3-3) Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1),(HS-PS3-3)

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity. CRP12. Work productively in teams while using cultural global competence.

UNIT: 6 Rotational Motion

Student Learning Objectives: (SLO)			Instructional Actions	
Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
 PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms. (secondary to HS-PS2- 6) PS2.A: Forces and Motion Newton's second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1) Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2) If a system interacts with objects outside itself, the total momentum of the system can change: 	 Planning and Carrying Planning and carrying out investigations to answer questions or test solutions to problems in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical and empirical models. Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design 	 Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS- PS2-4) Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2- 1),(HS-PS2-5) Systems can be designed to cause a desired effect. (HS- PS2-3) Systems and System Models 	Activity: Understanding Equilibrium and Torque – utilize our understanding of linear dynamics and apply it to rotational situations Activity: Angular Kinematics – utilize our understanding of linear kinematics and apply it to rotational situations Activity: Angular Momentum – utilize our understanding of momentum and apply it to rotational situations Activity: Rotational Energy – utilize our understanding of work/energy and apply it to rotational situations Class Activity: Conservation of Angular Momentum – utilize rotating objects, such as a bicycle wheel, to demonstrate the importance of understanding angular	Formative, Summative and Performance Based) Formative Assessments: Diagnostic pre- and post- assessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments: Quizzes, Tests. Performance Assessments/Laboratory Investigations: Research/Lab Reports

AP Physics I			
 matter, as well as the contact forces between material objects. (HS-PS2-6),(secondary to HS-PS1-1),(secondary to HS-PS1-3) PS3.B: Conservation of Energy and Energy Transfer Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1) Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1),(HS-PS3-4) Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy 	 simulations are created and used based on mathematical models of basic assumptions. Use mathematical representations of phenomena to describe explanations. (HS-PS2- 2),(HS-PS2-4) Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9– 12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student- generated sources of evidence consistent with scientific ideas, principles, and theories. Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3) Obtaining, Evaluating, and Communicating information Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and 	 When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-PS3-4) Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HS- PS3-1) Energy and Matter Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS- PS3-3) Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems. (HS-PS3-2) 	

depends on mass	designs.		
and speed, allow	Communicate scientific		
the concept of	and technical information		
conservation of	(e.g. about the process of		
energy to be used	development and the		
to predict and	design and performance		
describe system	of a proposed process or		
behavior. (HS-	system) in multiple		
PS3-1)	formats (including orally,		
 The availability of 	graphically, textually, and		
energy limits what	mathematically).		
can occur in any			
system. (HS-PS3-			
1)			
Uncontrolled			
systems always			
evolve toward			
more stable			
states— that is,			
uniform operav			
distribution (e.g.			
water flows			
downhill, objects			
hotter than their			
surrounding			
environment cool			
down). (HS-PS3			
PS3.C: Relationship			
Between Energy and			
Forces			
When two objects			
interacting through a			
field change relative			
position, the energy			
stored in the field is			
changed. (HS-PS3-5)			
ETS1.A: Defining and			
Delimiting Engineering			
Problems			
Criteria and constraints			

AP Physics I				
 also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2- 3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS2-3) 				
Resources: Essential Materials, Supplementary Materials Links to Best Practices Chapter 8 Giancoli Phet labs Cenco AP Labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings			
Clarification Statement: Examples of data could include tables	or graphs of position or velocity as a function of time for objects subject			
to a net unbalanced force, such as a falling object, an object rol	ing down a ramp, or a moving object being pulled by a constant force.			
Emphasis is on both quantitative and conceptual descriptions of	gravitational and electric fields. Emphasis is on Newtonian gravitational			
laws governing orbital motions, which apply to human-made sat	ellites as well as planets and moons.			
Assessment Boundary: For Newton's Second Law of Motion Assessment is limited to one-dimensional motion and to macroscopic				
objects moving at non- relativistic speed. Mathematical represent	ntations for the gravitational attraction of bodies and Kepler's Laws of			

53

orbital motions should not deal with more than two bodies, nor involve calculus.

Unit of Study: Unit 7 – Simple Harmonic Motion, Simple Pendulum and Mass-Spring Systems	Pacing: 4 weeks	
Essential Questions: What is a simple harmonic oscillator? What factors a spring and for a simple pendulum? How does the back-and-forth motion of a	ffect the period of oscillation for a mass oscillating on a box on a spring mirror the motion of a pendulum?	
Big Ideas: 3. The interactions of an object with other objects can be described by forces 5. Changes that occur as a result of interactions are constrained by conserva	s. ation laws.	
NGSS Performance Expectations: (Students who demonstrate understa	nding can:	
NJSLS/HS-PS2-1 Analyze data to support the claim that Newton's second la among the net force on a macroscopic object, its mass, and its acceleration.	aw of motion describes the mathematical relationship	
NJSLS/HS-PS2-3 Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.		
NJSLS/HS-PS3-1 Create a computational model to calculate the change in the change in the change in energy of the other component(s) and energy flows in and out of the other component (s) and energy flows in an other	ne energy of one component in a system when the ne system are known.	
NJSLS/HS-PS3-2 Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).		
ELA/Literacy –		
RST.11-12.1 Cite specific textual evidence to support analysis of science an author makes and to any gaps or inconsistencies in the account. (HS-PS3-4)	d technical texts, attending to important distinctions the	
WHST.9-12.7 Conduct short as well as more sustained research projects to a or solve a problem; narrow or broaden the inquiry when appropriate; synthesi understanding of the subject under investigation. (HS-PS3-3), (HS-PS3-4),(H	answer a question (including a self-generated question) ize multiple sources on the subject, demonstrating IS-PS3-5)	

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS3-4),(HS-PS3-5)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS3-4),(HS-PS3-5)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1),(HS-PS3-2),(HS-PS3-5)

Mathematics -

MP.2 Reason abstractly and quantitatively. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5)

MP.4 Model with mathematics. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1),(HS-PS3-3)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1),(HS-PS3-3)

Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1),(HS-PS3-3)

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity. CRP12. Work productively in teams while using cultural global competence.

Unit 7: Simple Harmonic Motion, Simple Pendulum and Mass-Spring Systems

Disciplinary Core Ideas	Science and Engineering	Crosscutting Concepts	Activities/Strategies	Assessment Check
	Practices		Technology Implementation/ Interdisciplinary Connections	Points

PS2.A: Forces and Motion

- Newton's second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1)
- Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2)

PS3.B: Conservation of Energy and Energy Transfer

- Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1)
- Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1),(HS-PS3-4)

Planning and Carrying Out Investigations

- Planning and carrying out investigations to answer questions or test solutions to problems in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical and empirical models.
 - Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5)

Analyzing and Interpreting Data

- Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.
- Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1)

Cause and Effect

- Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS3-5)
- Systems and System Models
 - When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-PS3-4)
 Models can be used to predict the behavior of a
 - predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HS- PS3-1)

Energy and Matter

- Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS- PS3-3)
 Energy cannot be
- Energy cannot be created or destroyed—

Activity: Simple Harmonic Formative, Oscillator Summative and Performance Based) Activity: Pendulum Formative Assessments: Textbook: Giancoli Diagnostic pre- and Chapter 11 post- assessment. Class Discussions, Activity: Individual/Group Worksheets with Problem Solving (textbook teacher feedback.

AP practice problems, problems involving interdisciplinary connections)

> teacher feedback. Summative Assessments: Quizzes, Tests. Performance Assessments/La

Drafts of lab reports

feedback. Drafts of

lab reports with

with teacher

boratory

Investigations: Research/Lab Reports 57

- Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1)
- The availability of energy limits what can occur in any system. (HS-PS3-1)
- Uncontrolled systems always evolve toward more stable states— that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). (HS-PS3-4)

Using Mathematics and Computational Thinking

- Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
- Use mathematical representations of phenomena to describe explanations. (HS-PS2-2),(HS-PS2-4)

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student- generated sources of evidence consistent with scientific ideas, principles, and theories.
- Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3)

	 Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, we have been been been been been been been be			
	 Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). 			
Resources : Essential Mate Links to Best Practices Chapter 11 Giancoli Phet labs Cenco AP Labs	erials, Supplementary Materials,	Instructional Adjustmen possible misunderstanding	ts: Modifications, stude gs	nt difficulties,
Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force. Emphasis is on both quantitative and conceptual descriptions of gravitational and electric fields. Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.				
Assessment Boundary: For Newton's Second Law of Motion Assessment is limited to one-dimensional motion and to macroscopic objects moving at non- relativistic speed. Mathematical representations for the gravitational attraction of bodies and Kepler's Laws of orbital motions should not deal with more than two bodies, nor involve calculus.				

Unit of Study: Unit 8 – Mechanical Waves and Sound	Pacing: 1 week

Essential Questions: How are velocity, frequency, and wavelength used to describe a wave? What factors affect how a wave is reflected? How is it possible for two waves to occupy the same space at the same time? What conditions are necessary to form a standing wave?

Big Ideas:

6. Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical model for the description of other phenomena.

NGSS Performance Expectations: (Students who demonstrate understanding can:

NJSLS/HS-PS4-1 Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

Technology

8.1.12.A.5 Create a report from a relational database consisting of at least two tables and describe the process, and explain the report results.

Career Ready Practices

CRP8. Utilize critical thinking to make sense of problems and persevere in solving them. CRP11. Use technology to enhance productivity.

CRP12. Work productively in teams while using cultural global competence.

Unit 8: Mechanical Waves and Sound

Disciplinary Core Ideas	Science and Crosscut Engineering Concepts Practices	Crosscutting Concepts	Activities/Strategies	Assessment Check
		•	Technology Implementation/ Interdisciplinary Connections	Points

PS4.A: Wave Properties

- The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)
- Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory Using Mathematics and and sent over long distances as a series of wave pulses. (HS-PS4-2),(HS- PS4-5)
- From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)

Asking Questions and Defining Problems

- Asking questions and defining problems in grades 9-12 builds from grades K-8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
- Evaluate questions that challenge • the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HS-PS4-2)

Computational Thinking

- Mathematical and computational thinking at the 9-12 level builds on K-8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
- Use mathematical representations ٠ of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1)

Cause and Effect

Empirical evidence is Finding the speed of sound in Air (Tuning required to differentiate between Forks and Open at one end tube) cause and correlation and make claims about specific Practice: Harmonics WS causes and effects. (HS-PS4-1)

Activity: Slinky Lab

- Relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS4-4)
- Systems can be designed to cause a desired effect. (HS-PS4-5)

Formative, Summative and Performance Based) Formative Assessments: Diagnostic pre- and postassessment, Class Discussions, Worksheets with teacher feedback, Drafts of lab reports with teacher feedback, Drafts of lab reports with teacher feedback. Summative Assessments: Quizzes. Tests. Performance

Assessments/Labora

tory Investigations:

Research/Lab Reports

1 11951051			
	Engaging in Argument from	Systems and System	
	Evidence	Models	
	 Engaging in argument from 	 Models (e.g., 	
	evidence in 9–12 builds on K–8	physical,	
	experiences and progresses to	mathematical,	
	using appropriate and sufficient	computer models)	
	evidence and scientific reasoning	can be used to	
	to defend and critique claims and	simulate systems	
	explanations about natural and	and interactions-	
	designed worlds. Arguments may	including energy,	
	also come from current scientific or	matter, and	
	historical episodes in science.	information flows-	
	• Evaluate the claims, evidence, and	within and between	
	reasoning behind currently	systems at different	
	accepted explanations or solutions	scales. (HS-PS4-3)	
	to determine the merits of	Stability and Change	
	arguments. (HS-PS4-3)	Systems can be	
	Obtaining, Evaluating, and	designed for greater	
	Communicating Information	or lesser stability.	
	 Obtaining, evaluating, and 	(HS-PS4-2)	
	communicating information in 9–12		
	builds on K–8 and progresses to		
	evaluating the validity and reliability	,	
	of the claims, methods, and		
	designs.		
	Evaluate the validity and reliability		
	of multiple claims that appear in		
	scientific and technical texts or		
	media reports, verifying the data		
	when possible. (HS-PS4-4)		
	 Communicate technical information 		
	or ideas (e.g. about phenomena		
	and/or the process of development		
	and the design and performance of		
	a proposed process or system) in		
	multiple formats (including orally,		
	graphically, textually, and		
	mathematically). (HS-PS4-5)		

AP Physics I				
Resources : Essential Materials, Supplementary Materials, Links to Best Practices Chapter 12 Giancoli Phet labs Cenco AP Labs	Instructional Adjustments: Modifications, student difficulties, possible misunderstandings			
Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through the earth.				
Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.				

Unit of Study: Unit 9 – Electric Forces and DC Circuits (Resistors Only)	Pacing: 1 week				
Essential Questions: What is the cause of static electricity? How are electric forces similar to gravitational forces? How does an					
electric circuit demonstrate conservation of charge? What factors affect the resistance of a w	ire?				
 Big Ideas: 1. Objects and systems have properties such as mass and charge. Systems may have intern 3. The interactions of an object with other objects can be described by forces. 4. Interactions between systems can result in changes in those systems. 5. Changes that occur as a result of interactions are constrained by conservation laws. 	nal structure.				
NGSS Performance Expectations: (Students who demonstrate understanding can:					
NJSLS/HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Co gravitational and electrostatic forces between objects.	oulomb's Law to describe and predict the				
ELA/Literacy –					
WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and rese	earch. (HS-PS2-1),(HS-PS2-5)				
Mathematics –					
MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)					
MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)					

Unit 9: Electric Forces and DC Circuits

Disciplinary Core	Science and Engineering Practices	J Crosscut	Activities/Strategies	Assessment Check
		Concepts	Technology Implementation/ Interdisciplinary Connections	Points

Activity: Coulomb's PS1.A: Structure and Formative, Summative Planning and Carrying Out Patterns and Performance Law **Properties of Matter** Investigations Different patterns may • Activity: Ohm's Law Based) be observed at each of Planning and carrying out The structure and • Activity: Simplifying Formative the scales at which a interactions of matter at investigations to answer questions circuits – Series and system is studied and Assessments: the bulk scale are or test solutions to problems in 9-Parallel can provide evidence for Diagnostic pre- and determined by electrical 12 builds on K-8 experiences and _ab: Determining causality in explanations post- assessment, forces within and between progresses to include Resistance of phenomena. (HS-Class Discussions, atoms. (secondary to HSinvestigations that provide Textbook: Giancoli PS2-4) Worksheets with PS2-6) evidence for and test conceptual, Chapter 16, Chapter Cause and Effect teacher feedback. PS2.B: Types of mathematical, physical and 18 and Chapter 19 Drafts of lab reports empirical models. Interactions • Empirical evidence is Activity: required to differentiate with teacher feedback. Plan and conduct an investigation Newton's law of universal Individual/Group individually and collaboratively to Drafts of lab reports between cause and gravitation and Coulomb's Problem Solving with teacher feedback. produce data to serve as the correlation and make (textbook, AP practice law provide the basis for evidence, and in the claims about specific Summative mathematical models to problems, problems causes and effects. (HSdesign: decide on types, how Assessments: describe and predict the involving much, and accuracy of data PS2-1),(HS-PS2-5) Quizzes, Tests. effects of gravitational and interdisciplinary needed to produce reliable • Systems can be Performance electrostatic forces connections) measurements and consider designed to cause a between distant objects. Assessments/ limitations on the precision of the desired effect. (HS-PS2-(HS-PS2-4) Laboratory data (e.g., number of trials, cost, 3) Forces at a distance are Investigations: risk, time), and refine the design Systems and System explained by fields accordingly. (HS-PS2-5) Research/Lab Reports Models (gravitational, electric, and Analyzing and Interpreting Data magnetic) permeating When investigating or • Analyzing data in 9-12 builds on space that can transfer describing a system, the K-8 and progresses to introducing energy through space. boundaries and initial more detailed statistical analysis, Magnets or electric conditions of the system the comparison of data sets for currents cause magnetic need to be defined. (HSconsistency, and the use of fields; electric charges or PS2-2) models to generate and analyze changing magnetic fields data. cause electric fields. (HS-Analyze data using tools, • PS2-4),(HS-PS2-5) technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1)

 Attraction and repulsion between electric charges at the atomic scale explain the structure, properties, and transformations of matter, as well as the contact forces between material objects. (HS-PS2-6),(secondary to HS-PS1-1),(secondary to HS-PS1-3)

PS3.A: Definitions of Energy

 Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary to HS-PS2-5)

ETS1.A: Defining and Delimiting Engineering Problems

 Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3)

Using Mathematics and Computational Thinking

- Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
- Use mathematical representations of phenomena to describe explanations. (HS-PS2-2),(HS-PS2-4)

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent studentgenerated sources of evidence consistent with scientific ideas, principles, and theories.
- Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3)

Structure and Function

 Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-PS2-6)

AP Physics I						
ETS1.C: Optimizing the	Obtaining, Evaluating, and	d				
Design Solution	Communicating Information	on				l
 Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS- PS2-3) 	 Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs Communicate scientific and technical information (e.g. about the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). 					
Resources: Essential Mater	ials, Supplementary					
Materials, Links to Best Prac	tices					
Chapter 16-18 Giancoli		Instructional Adjustments: Modifications, student difficulties, possible				
Phet labs		misunderstandings				
Cenco AP Labs						
Clarification Statement: Emphasis is on both quantitative and concentual descriptions of gravitational and electric fields:						
		ve anu c	conceptual descriptions of gr			
Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships gualitatively.						
	eeee eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee					