## MATH 8

| Pri | Priority Standard 1: Operations with Rational and Irrational Numbers                                                                                     |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0   | Little or no evidence of understanding of Rational and Irrational Numbers                                                                                |  |  |  |
| 1   | Distinguish a rational number from an irrational number with help                                                                                        |  |  |  |
|     | Identify decimals expansions of rational and irrational numbers with help                                                                                |  |  |  |
|     | Place irrational numbers on a number line with help                                                                                                      |  |  |  |
| 2   | Identify rational numbers                                                                                                                                |  |  |  |
|     | <ul> <li>Identify decimals expansions of rational and irrational numbers.</li> </ul>                                                                     |  |  |  |
|     | Place irrational numbers on a number line                                                                                                                |  |  |  |
|     | • Perform radical addition/subtraction with like terms only ( $2\sqrt{6} + 6\sqrt{6}$ )                                                                  |  |  |  |
| 3   | Know that real numbers are either rational or irrational                                                                                                 |  |  |  |
|     | Understand that all numbers can be represented as a decimal and explain what distinguishes an                                                            |  |  |  |
|     | irrational number from a rational number                                                                                                                 |  |  |  |
|     | Convert a decimal expansion, which repeats eventually, into a rational number                                                                            |  |  |  |
|     | Compare, order and place irrational numbers on a number line                                                                                             |  |  |  |
|     | Understand that a truncated expansion of an irrational number is an estimation and find                                                                  |  |  |  |
|     | increasingly more accurate placement of an irrational number on a number line                                                                            |  |  |  |
|     | • Simplify radicals (ie $\sqrt{12}$ $\sqrt{3}$ , $\sqrt{8}$ , $\sqrt{16}$ , $\sqrt{27}$ $\sqrt{3}$ )                                                     |  |  |  |
|     | • Perform radical operations and collect like terms (ie $\sqrt{6}$ ( $\sqrt{15}$ + $\sqrt{6}$ ), $\sqrt{27}$ - $\sqrt{12}$ , $2\sqrt{6}$ + $6\sqrt{6}$ ) |  |  |  |
| 4   | Justify why a number is rational or irrational                                                                                                           |  |  |  |
|     | Explain the characteristics of rational and irrational numbers' decimal expansions                                                                       |  |  |  |
|     | Justify the process of converting a decimal expansion, which repeats eventually, into a rational                                                         |  |  |  |
|     | number                                                                                                                                                   |  |  |  |
|     | <ul> <li>Justify placement, comparison and order of irrational numbers on a number line</li> </ul>                                                       |  |  |  |
|     | <ul> <li>Estimate values of irrational numbers in decimals and explain why is it possible to find</li> </ul>                                             |  |  |  |
|     | increasingly more accurate estimations                                                                                                                   |  |  |  |
|     | • Explain radical operations and collect like terms (ie $\sqrt{6}$ ( $\sqrt{15} + \sqrt{6}$ ), $\sqrt{27} - \sqrt{12}$ , $2\sqrt{6} + 6\sqrt{6}$ )       |  |  |  |

| Pri | Priority Standard 2: Proportional Reasoning                                                                         |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------|--|--|
| 0   | Little or no understanding of proportional and linear relationships                                                 |  |  |
| 1   | With help, identify whether a relationship is linear or proportional                                                |  |  |
|     | Identify the slope of a linear equation with help or inconsistently                                                 |  |  |
|     | Identify the y-intercept                                                                                            |  |  |
| 2   | Identify whether a relationship is linear or proportional                                                           |  |  |
|     | <ul> <li>Identify the slope of a linear equation from various representations</li> </ul>                            |  |  |
|     | Identify the y-intercept                                                                                            |  |  |
|     | Recognize that the slope is the same between any two points on a line                                               |  |  |
| 3   | <ul> <li>Explain the differences and similarities of linear and proportional relationships</li> </ul>               |  |  |
|     | • Identify the slope of a linear equation from various representations and understand the slope as                  |  |  |
|     | the unit rate in a proportional relationship                                                                        |  |  |
|     | <ul> <li>Identify the y-intercept and explains its meaning in a given context</li> </ul>                            |  |  |
|     | <ul> <li>Explain why the slope is the same between any two points on a line using similar right triangle</li> </ul> |  |  |
| 4   | <ul> <li>Explain the differences and similarities of linear and proportional relationships</li> </ul>               |  |  |
|     | • Identify the slope of a linear equation from various representations and understand the slope as                  |  |  |
|     | the unit rate in a proportional relationship                                                                        |  |  |
|     | <ul> <li>Explain the meaning of a y-intercept in context from a variety of representations</li> </ul>               |  |  |



• Justify why the slope is the same between any two points on a line using similar right triangle

| Dei | Priority Standard #3: Simplify Expressions and Solve Equations                                                                                                                                   |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0   |                                                                                                                                                                                                  |  |  |  |  |
| 1   | Identify linear slope and y-intercept from an equation in the form y = mx+b                                                                                                                      |  |  |  |  |
|     | <ul> <li>Solve linear equations and inequalities in one variable with limited accuracy</li> </ul>                                                                                                |  |  |  |  |
|     | With help, identify whether there are zero, one or infinite solutions                                                                                                                            |  |  |  |  |
|     | Distinguish between linear and non-linear functions given a graph                                                                                                                                |  |  |  |  |
|     | Construct scatter plots                                                                                                                                                                          |  |  |  |  |
| 2   | Compare linear relationships using slope and y-intercept from the same representation                                                                                                            |  |  |  |  |
|     | (equation, table, graph, context, etc.)                                                                                                                                                          |  |  |  |  |
|     | Solve linear equations and inequalities in one variable                                                                                                                                          |  |  |  |  |
|     | Identify whether there are zero, one or infinite solutions                                                                                                                                       |  |  |  |  |
|     | Distinguish between linear and non-linear functions given their algebraic expression or a graph                                                                                                  |  |  |  |  |
|     | Identify the slope of a linear function                                                                                                                                                          |  |  |  |  |
|     | <ul> <li>Identify an equation in the form y = mx + b as linear</li> </ul>                                                                                                                        |  |  |  |  |
|     | <ul> <li>Understand a line as a relationship between two quantitative variables</li> </ul>                                                                                                       |  |  |  |  |
|     | Construct scatter plots and draw the line of best fit                                                                                                                                            |  |  |  |  |
|     | Use the trend line to make predictions                                                                                                                                                           |  |  |  |  |
| 3   | Compare linear relationships using slope and y-intercept from a variety of representations                                                                                                       |  |  |  |  |
|     | (equation, table, graph, context, etc.)                                                                                                                                                          |  |  |  |  |
|     | <ul> <li>Solve linear equations and inequalities in one variable and explain the solution pathway</li> </ul>                                                                                     |  |  |  |  |
|     | Identify whether there are zero, one or infinite solutions and explain why this is the case                                                                                                      |  |  |  |  |
|     | Distinguish between linear and non-linear functions given their algebraic expression, a table, or                                                                                                |  |  |  |  |
|     | a graph and understand that relationships with a constant rate of change are linear                                                                                                              |  |  |  |  |
|     | • Understand the slope of a linear function as a constant rate of change, whose graph is a straight                                                                                              |  |  |  |  |
|     | line                                                                                                                                                                                             |  |  |  |  |
|     | • Understand that every linear function can be written in the form y = mx + b                                                                                                                    |  |  |  |  |
|     | Construct a linear equation from multiple representations                                                                                                                                        |  |  |  |  |
|     | • Construct scatter plots and use the graph to describe the relationship between two variables,                                                                                                  |  |  |  |  |
|     | including constructing the equation for the line of best fit                                                                                                                                     |  |  |  |  |
|     | • Use the trend line to make predictions and understand what the rate and y-intercept represent                                                                                                  |  |  |  |  |
| 4   | • Compare linear characteristics of linear functions from a variety of representations (equation,                                                                                                |  |  |  |  |
|     | <ul> <li>table, graph, context, etc.) and explain why the comparisons are valid</li> <li>Solve linear equations and inequalities in one variable and explain the solution pathway and</li> </ul> |  |  |  |  |
|     | Solve linear equations and inequalities in one variable and explain the solution pathway and make connections between the solution and various representations                                   |  |  |  |  |
|     | <ul> <li>Identify whether there are zero, one or infinite solutions and explain why this is the case</li> </ul>                                                                                  |  |  |  |  |
|     | • Explain the distinction between linear and non-linear functions given their algebraic expression,                                                                                              |  |  |  |  |
|     | a table, or a graph and understand that relationships with a constant rate of change are linear                                                                                                  |  |  |  |  |
|     | Understand the slope of a linear function as a constant rate of change, whose graph is a straight                                                                                                |  |  |  |  |
|     | line                                                                                                                                                                                             |  |  |  |  |
|     | <ul> <li>Explain why every linear function can be written in the form y = mx + b</li> </ul>                                                                                                      |  |  |  |  |
|     | Understand a line as a relationship between two quantitative variables                                                                                                                           |  |  |  |  |
|     | Construct a linear equation from multiple representations and make connections between                                                                                                           |  |  |  |  |
|     | representations                                                                                                                                                                                  |  |  |  |  |
|     | 1                                                                                                                                                                                                |  |  |  |  |



- Construct scatter plots and use the graph to describe the relationship between two variables, including constructing the equation for the line of best fit
- Use the trend line to make predictions and understand what the rate and y-intercept represent

| Pri | Priority Standard 4: Represent and Analyze Relationships                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0   | Italic for subtext Georgia 11 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 1   | <ul> <li>Find the solution to small square roots</li> <li>Simplify square roots with support</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|     | Use the Pythagorean Theorem to find missing side lengths in triangles with support or with errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 2   | <ul> <li>Find the solution to small square roots</li> <li>Simplify square roots with errors</li> <li>Perform operations with square roots with limited accuracy</li> <li>Use the Pythagorean Theorem to find missing side lengths in triangles</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|     | Find the distance between two points on a coordinate plane by applying the Pythagorean     Theorem with support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 3   | <ul> <li>Understand the solution to small square roots</li> <li>Simplify square roots</li> <li>Perform operations with square roots</li> <li>Use the Pythagorean Theorem to find missing side lengths in triangles including 2- and 3-D real world problems</li> <li>Explore proofs of the Pythagorean Theorem</li> <li>Know the converse of the Pythagorean Theorem</li> <li>Find the distance between two points on a coordinate plane by applying the Pythagorean Theorem</li> </ul>                                                                                                                                                                                                                                            |  |  |  |  |
| 4   | <ul> <li>Explain the solution to small square roots and make connections to real world problems</li> <li>Explain the process of simplifying square roots and why simplifying does not change the value</li> <li>Perform operations with square roots and explain how the process generates an equivalent expression</li> <li>Use the Pythagorean Theorem to find missing side lengths in triangles including 2- and 3-D real world problems and justify the solution pathway</li> <li>Understand and explain proofs of the Pythagorean Theorem and its converse</li> <li>Use the structure of the coordinate plane and the Pythagorean Theorem to find the distance between two points and justify the solution pathway</li> </ul> |  |  |  |  |

