MATH 8 | Pri | Priority Standard 1: Operations with Rational and Irrational Numbers | | | | |-----|--|--|--|--| | 0 | Little or no evidence of understanding of Rational and Irrational Numbers | | | | | 1 | Distinguish a rational number from an irrational number with help | | | | | | Identify decimals expansions of rational and irrational numbers with help | | | | | | Place irrational numbers on a number line with help | | | | | 2 | Identify rational numbers | | | | | | Identify decimals expansions of rational and irrational numbers. | | | | | | Place irrational numbers on a number line | | | | | | • Perform radical addition/subtraction with like terms only ($2\sqrt{6} + 6\sqrt{6}$) | | | | | 3 | Know that real numbers are either rational or irrational | | | | | | Understand that all numbers can be represented as a decimal and explain what distinguishes an | | | | | | irrational number from a rational number | | | | | | Convert a decimal expansion, which repeats eventually, into a rational number | | | | | | Compare, order and place irrational numbers on a number line | | | | | | Understand that a truncated expansion of an irrational number is an estimation and find | | | | | | increasingly more accurate placement of an irrational number on a number line | | | | | | • Simplify radicals (ie $\sqrt{12}$ $\sqrt{3}$, $\sqrt{8}$, $\sqrt{16}$, $\sqrt{27}$ $\sqrt{3}$) | | | | | | • Perform radical operations and collect like terms (ie $\sqrt{6}$ ($\sqrt{15}$ + $\sqrt{6}$), $\sqrt{27}$ - $\sqrt{12}$, $2\sqrt{6}$ + $6\sqrt{6}$) | | | | | 4 | Justify why a number is rational or irrational | | | | | | Explain the characteristics of rational and irrational numbers' decimal expansions | | | | | | Justify the process of converting a decimal expansion, which repeats eventually, into a rational | | | | | | number | | | | | | Justify placement, comparison and order of irrational numbers on a number line | | | | | | Estimate values of irrational numbers in decimals and explain why is it possible to find | | | | | | increasingly more accurate estimations | | | | | | • Explain radical operations and collect like terms (ie $\sqrt{6}$ ($\sqrt{15} + \sqrt{6}$), $\sqrt{27} - \sqrt{12}$, $2\sqrt{6} + 6\sqrt{6}$) | | | | | Pri | Priority Standard 2: Proportional Reasoning | | | |-----|---|--|--| | 0 | Little or no understanding of proportional and linear relationships | | | | 1 | With help, identify whether a relationship is linear or proportional | | | | | Identify the slope of a linear equation with help or inconsistently | | | | | Identify the y-intercept | | | | 2 | Identify whether a relationship is linear or proportional | | | | | Identify the slope of a linear equation from various representations | | | | | Identify the y-intercept | | | | | Recognize that the slope is the same between any two points on a line | | | | 3 | Explain the differences and similarities of linear and proportional relationships | | | | | • Identify the slope of a linear equation from various representations and understand the slope as | | | | | the unit rate in a proportional relationship | | | | | Identify the y-intercept and explains its meaning in a given context | | | | | Explain why the slope is the same between any two points on a line using similar right triangle | | | | 4 | Explain the differences and similarities of linear and proportional relationships | | | | | • Identify the slope of a linear equation from various representations and understand the slope as | | | | | the unit rate in a proportional relationship | | | | | Explain the meaning of a y-intercept in context from a variety of representations | | | • Justify why the slope is the same between any two points on a line using similar right triangle | Dei | Priority Standard #3: Simplify Expressions and Solve Equations | | | | | |-----|--|--|--|--|--| | 0 | | | | | | | 1 | Identify linear slope and y-intercept from an equation in the form y = mx+b | | | | | | | Solve linear equations and inequalities in one variable with limited accuracy | | | | | | | With help, identify whether there are zero, one or infinite solutions | | | | | | | Distinguish between linear and non-linear functions given a graph | | | | | | | Construct scatter plots | | | | | | 2 | Compare linear relationships using slope and y-intercept from the same representation | | | | | | | (equation, table, graph, context, etc.) | | | | | | | Solve linear equations and inequalities in one variable | | | | | | | Identify whether there are zero, one or infinite solutions | | | | | | | Distinguish between linear and non-linear functions given their algebraic expression or a graph | | | | | | | Identify the slope of a linear function | | | | | | | Identify an equation in the form y = mx + b as linear | | | | | | | Understand a line as a relationship between two quantitative variables | | | | | | | Construct scatter plots and draw the line of best fit | | | | | | | Use the trend line to make predictions | | | | | | 3 | Compare linear relationships using slope and y-intercept from a variety of representations | | | | | | | (equation, table, graph, context, etc.) | | | | | | | Solve linear equations and inequalities in one variable and explain the solution pathway | | | | | | | Identify whether there are zero, one or infinite solutions and explain why this is the case | | | | | | | Distinguish between linear and non-linear functions given their algebraic expression, a table, or | | | | | | | a graph and understand that relationships with a constant rate of change are linear | | | | | | | • Understand the slope of a linear function as a constant rate of change, whose graph is a straight | | | | | | | line | | | | | | | • Understand that every linear function can be written in the form y = mx + b | | | | | | | Construct a linear equation from multiple representations | | | | | | | • Construct scatter plots and use the graph to describe the relationship between two variables, | | | | | | | including constructing the equation for the line of best fit | | | | | | | • Use the trend line to make predictions and understand what the rate and y-intercept represent | | | | | | 4 | • Compare linear characteristics of linear functions from a variety of representations (equation, | | | | | | | table, graph, context, etc.) and explain why the comparisons are valid Solve linear equations and inequalities in one variable and explain the solution pathway and | | | | | | | Solve linear equations and inequalities in one variable and explain the solution pathway and make connections between the solution and various representations | | | | | | | Identify whether there are zero, one or infinite solutions and explain why this is the case | | | | | | | • Explain the distinction between linear and non-linear functions given their algebraic expression, | | | | | | | a table, or a graph and understand that relationships with a constant rate of change are linear | | | | | | | Understand the slope of a linear function as a constant rate of change, whose graph is a straight | | | | | | | line | | | | | | | Explain why every linear function can be written in the form y = mx + b | | | | | | | Understand a line as a relationship between two quantitative variables | | | | | | | Construct a linear equation from multiple representations and make connections between | | | | | | | representations | | | | | | | 1 | | | | | - Construct scatter plots and use the graph to describe the relationship between two variables, including constructing the equation for the line of best fit - Use the trend line to make predictions and understand what the rate and y-intercept represent | Pri | Priority Standard 4: Represent and Analyze Relationships | | | | | |-----|--|--|--|--|--| | 0 | Italic for subtext Georgia 11 pt | | | | | | 1 | Find the solution to small square roots Simplify square roots with support | | | | | | | Use the Pythagorean Theorem to find missing side lengths in triangles with support or with errors | | | | | | 2 | Find the solution to small square roots Simplify square roots with errors Perform operations with square roots with limited accuracy Use the Pythagorean Theorem to find missing side lengths in triangles | | | | | | | Find the distance between two points on a coordinate plane by applying the Pythagorean Theorem with support | | | | | | 3 | Understand the solution to small square roots Simplify square roots Perform operations with square roots Use the Pythagorean Theorem to find missing side lengths in triangles including 2- and 3-D real world problems Explore proofs of the Pythagorean Theorem Know the converse of the Pythagorean Theorem Find the distance between two points on a coordinate plane by applying the Pythagorean Theorem | | | | | | 4 | Explain the solution to small square roots and make connections to real world problems Explain the process of simplifying square roots and why simplifying does not change the value Perform operations with square roots and explain how the process generates an equivalent expression Use the Pythagorean Theorem to find missing side lengths in triangles including 2- and 3-D real world problems and justify the solution pathway Understand and explain proofs of the Pythagorean Theorem and its converse Use the structure of the coordinate plane and the Pythagorean Theorem to find the distance between two points and justify the solution pathway | | | | |