What Is Calculus?

We begin to answer this question by saying that calculus is the reformulation
of elementary mathematics through the use of a limit process. If limit processes
are unfamiliar to you, then this answer is, at least for now, somewhat less
than illuminating. From an elementary point of view, we may think of calculus
as a “limit machine” that generates new formulas from old. Actually, the
study of calculus involves three distinct stages of mathematics: precalculus
mathematics (the length of a line segment, the area of a recangle, and so
forth), the limit process, and new calculus formulations (derivatives, integrals,
and so forth).

PRECALCULUS LIMIT
MATHEMATICS |~ | PROCESS |~ | CAHCULUS

Some students try to learn calculus as if it were simply a collection of
new formulas. This is unfortunate. When students reduce calculus to the
memorization of differentiation and integration formulas, they miss a great
deal of understanding, self-confidence, and satisfaction.

On the following two pages we have listed some familiar precalculus
concepts coupled with their more powerful calculus versions. Throughout this
text, our goal is to show you how precalculus formulas and techniques are
used as building blocks to produce the more general calculus formulas and
techniques. Don’t worry if you are unfamiliar with some of the “old formulas”
listed on the following two pages—we will be reviewing all of them.

As you proceed through this text, we suggest that you come back to this
discussion repeatedly. Try to keep track of where you are relative to the three
stages involved in the study of calculus. For example, the first three chapters
break down as follows: precalculus (Chapter 1), the limit process (Chapter
2), and new calculus formulas (Chapter 3). This cycle is repeated many times
on a smaller scale throughout the text. We wish you well in your venture into
calculus.

Xix
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The Ferris wheel was designed by the
American mechanical engineer George
Ferris (1859-1896). The first and largest
Ferris wheel was built for the World’s
Columbian Exposition in Chicago in 1893,
and later used at the World’s Fair in

St. Louis in 1904. It had a diameter of
250 feet, and each of its 36 cars could
hold 60 passengers.

Height of a Ferris Wheel Car

A Ferris wheel with a radius of 50 feet rotates at a constant rate of
4 revolutions per minute. If the center of the Ferris wheel is considered
to be the origin, then each car travels around the circle given by

X2+ y? = 502

where x and y are measured in feet. The height of a car located at
the point (x, y) is given by

h=50+y
where y is related to the angle 6 by the equation
y = 50 sin 0

as shown in the accompanying figure. Since the wheel makes 4 rev-
olutions per minute (with one revolution corresponding to 277 radians),
it follows that

0= 4Q2mt = 8t

where ¢ is measured in minutes. Thus, as a function of time, the
height of a car on the Ferris wheel is given by

h =350+ 50sin 87z. Height above ground is

h = 50 + 50 sin 8.

——— e ——

y = 50 sin 8

X

Ground

See Exercise 76, Section 1.6.

Chapter Overview

This first chapter contains a review of basic algebra,
analytic geometry, and trigonometry. The more famil-
iar you are with the material in this chapter, the more
successful you will be in calculus.

Section 1.1 reviews the properties of the real
numbers and the real number line. The next two sec-
tions review the fundamental concepts of plane ana-
lytic geometry, the Cartesian plane, and graphs of
equations in two variables.

Section 1.4 discusses the slope of a line—this
concept is critical in calculus. This section begins by
showing how the slope of a line is related to the
average rate of change of one variable with respect
to another.

The concept of a function is also critical in
calculus, and we review several fundamental ideas
related to functions in Section 1.5. For instance, this
section reviews the graphs of such basic functions as

fo) =x flx) = x2
fx) =3 f(

Il
<
ﬁ

1

fo =1x]  f

Familiarity with the graphs of these functions will
help you in later chapters.

Finally, Section 1.6 contains a brief review of
trigonometry.



The Cartesian Plane and
Functions

1.1 Real Numbers and the Real Line

Real numbers = The real line = Order and inequalities = Absolute value = Distance on the real line = Intervals on the
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In this first chapter we will lay the foundation for studying calculus. We
assume that you have a good working knowledge of basic algebra. This is
essential for the study of calculus.

The real line

To represent the set of real numbers we use a coordinate system called the
real line or x-axis (Figure 1.1). The real number corresponding to a particular
point on the real line is called the coordinate of the point. As Figure 1.1
shows, it is customary to identify those points whose coordinates are integers.

The point on the real line corresponding to zero is called the origin and
is denoted by 0. The positive direction (to the right) is denoted by an arrow-
head and indicates the direction of increasing values of x. Numbers to the
right of the origin are positive; numbers to the left of the origin are negative.
We use the term nonnegative to describe a number that is either positive or
zero. Similarly, the term nonpositive is used to describe a number that is
either negative or zero.

Each point on the real line corresponds to one and only one real number,
and each real number corresponds to one and only one point on the real line.
This type of relationship is called a one-to-one correspondence.

Each of the four points in Figure 1.2 corresponds to a real number that
can be expressed as the ratio of two integers. (Note that 4.5 = % and

—-2.6 = —152) We call such numbers rational. Rational numbers can be rep-
resented either by terminating decimals such as% = 0.4, or by repeating deci-
mals such as% =0.333...=03.

Real numbers that are not rational are called irrational. They cannot be
represented as terminating or repeating decimals. To represent an irrational
number, we usually resort to a decimal approximation. For example, V2 =
1.4142135623, o =~ 3.1415926535, and e ~ 2.7182818284. (See Figure
1.3)
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Order and inequalities

One important property of real numbers is that they are ordered.

DEFINITION OF ORDER
ON THE REAL LINE

If a and b are real numbers, then a is less than b if b — a is positive. We denote
this order by the inequality

a<b.

The symbol a < b means that a is less than or equal to b. The statement b is
greater than a is equivalent to saying a is less than b.

a b
+ & & x

—i 0 1 2
a < b if and only if a lies to the left of b.

FIGURE 1.4

Geometrically, a < b if and only if a lies to the left of b on the real line.
(See Figure 1.4.) For example, 1 < 2 because 1 lies to the left of 2 on the
real line.

The following properties are often used to work with inequalities. Similar
properties are obtained if < is replaced by = and > is replaced by =.

THEOREM 1.1
PROPERTIES OF INEQUALITIES

. Hfa<bandb<c,thena <c.
.Ifa<bandc<d,thena +c<b +d.

. If a < b and k is any real number, thena + k < b + k.
. Ifa<band k>0, then ak < bk.

. Ifa < b and k < 0, then ak > bk.

L N

REMARK Note that we reverse the inequality when we multiply by a negative
number. For example, if x < 3, then —4x > —12. This principle also applies to
division by a negative number. Thus, if —2x > 4, then x < —2.

When three real numbers a, b, and c are ordered such that a < b and
b < ¢, we say that b is between a and ¢ and we write a < b < c.

Occasionally it is convenient to use set notation to describe coliections
of real numbers. A set is a collection of elements. For example, the two
major sets we have been discussing are the set of real numbers and the set
of points on the real line. Often, we will restrict our interest to a subset of
one of these two sets, in which case it is convenient to use set notation of
the form

x: condition on_x}.
,__/4&_1 \

The set of all x such that a certain condition is true

For example, we can describe the set of positive real numbers as {x: 0 < x}.
The union of two sets A and B is the set of elements that are members of A
or B or both. This union is denoted by A U B. The intersection of two sets
A and B is the set of elements that are members of A and B. This intersection
is denoted by A N B. Two sets are called disjoint if they have no elements
in common.
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The most common sets we work with are subsets of the real line called
intervals. For example, the open interval (a, b) = {x: a < x < b} is the set
of all real numbers greater than a and less than b, where a and b are called
the endpoints of the interval. Note that the endpoints are not included in an
open interval. Intervals that include their endpoints are called closed and ar
denoted by [a, b] = {x: @ = x < b}. The nine basic types of intervals on thc
real line are shown in Table 1.1. The first four are called bounded intervals
and the remaining five are called unbounded intervals.

Interval notation Set notation Graph
4 \
Open interval (a, b) {x:a <x < b} C 7
a b
. [ 1
Closed interval [a, b] {x:a=x=b} [ ]
b
. [ )
Half-open intervals [a, b) a=sx<b} T 7
a b
(a, b xa<x=b} ( }
a b
Infinite intervals (—, a] {x:x<a} < ] }
a b
(=%, a) rx<a} ) :
a b
(b, =) {x: b < x} 5 ( >
a b
[b s 00) {x b= x} : { >
a b
(—0, ©) {x: x is a real number} ; ;
a b

REMARK  We use the symbols o and — to refer to positive and negative infinity.
These symbols do not denote real numbers; they merely enable us to describe
unbounded conditions more concisely. For instance, the interval [b, %) is unbounded
to the right since it includes all real numbers that are greater than or equal to b.

EXAMPLE 1 Intervals on the real line

Describe the intervals on the real line that correspond to the temperature
ranges (in degrees Celsius) for water in the following two states.
(a) liquid (b) gas
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SOLUTION

( \
C i j ; 7 . . -
0 25 50 75 100 (a) Since water is in a liquid state at temperatures greater than 0° and less

than 100°, we have the interval
(a) Temperature range of water

(in degrees Celsius) 0, 100) = {x: 0 < - < 100}

as shown in Figure 1.5(a).

(b) Since water is in a gaseous state (steam) at temperatures greater than or
equal to 100°, we have the interval

—

0 100 200 300 400

(b) Temperature range of steam
(in degrees Celsius) [100, ») = {x: 100 < x}

FIGURE 1.5 as shown in Figure 1.5(b). —
In calculus we are frequently asked to solve inequalities involving variable
expressions such as 2x — 5 < 7. We say that a is a solution of this inequality

if the inequality is true when a is substituted for x. The set of all values of
x that satisfy the inequality is called the solution set of the inequality.

EXAMPLE 2 Solving an inequality

Find the solution set of the inequality 2x — 5 < 7.

SOLUTION

Using the properties in Theorem 1.1, we have
2x — 5<7
2x —5+5<7+5 Add 5 to both sides
2x < 12

%(Zx) < %(12) Multiply both sides by 3
x < 6.

Thus, the interval representing the solution is (—°, 6). s |

fx=020-5=-5<7 REMARK In Example 2, all five inequalities listed as steps in the solution have the

same solution set and are called equivalent.
Ifx=525-5=5<17.

Once you have solved an inequality, check some x-values in your solution
interval to see whether they satisfy the original inequality. You also might
check some values outside your solution interval to verify that they do not
satisfy the inequality. For example, Figure 1.6 shows that when x = 0 or
FIGURE 16 x = 5 the inequality is satisfied, but when x = 7 the inequality is not satisfied.

-l PO
- ) g

) x
1 01 2 3 4 56

}
8
fx=720-5=9>17.

I

EXAMPLE 3 Finding the intersection of two solution sets

Find the intersection of the solution sets of the inequalities

-3=2-5x and 2 — 5x = 12.
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SOLUTION

We could solve both inequalities and then find the intersection of the resulting
solution sets. However, since the expression 2 ~ 5x occurs on the left side
of one inequality and the right side of the other, it is convenient to work with
both inequalities at the same time.

-3= 2-5x =12
-3-2=2-5x-2=<12-2 Subtract 2
-5= —5x =10
:—g = —__55x = 1—05 Divide by —5 and reverse the inequality
1= x = -2

Thus, the interval representing the solution is [—2, 1], as shown in Figure
1.7. ca

The inequalities in Examples 2 and 3 involve first-degree polynomials.
For inequalities involving polynomials of higher degree we use the fact that
a polynomial can change signs only at its real zeros (a zero of a polynomial
is a number at which the value of the polynomial is zero). Between two
consecutive real zeros a polynomial must be entirely positive or entirely
negative. This means that when the real zeros of a polynomial are put in
order, they divide the real line into test intervals in which the polynomial
has no sign changes. That is, if a polynomial has the factored form

G=r)x—r) = r), n<rnp<n<-o-<r,
then the test intervals are

(=%, 1)), (r1, 15 - - s (Fyeys ), and (1, ).
For example, the polynomial

2 —x—6=(x—3)x+2)

can change signs only at x = —2 and x = 3.

EXAMPLE 4  Solving an inequality involving a quadratic

Find the solution set of the inequality x2 < x + 6.

SOLUTION
2<x+6 Given
xX-x—-6<0 Polynomial form
x=—3)x+2)<0 Factor
Thus, the polynomial x> — x — 6 has x = —2 and x = 3 as its zeros, and

we can solve the inequality by testing the sign of x2 — x — 6 in each of the
following open intervals.

(=%, -2), (=2,3), @(B,%
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Choose x = —3.
x=3)x+2>0

Choose x = 4
x—=3)x+. >0

et —x
-3 -2 -1 0 1 2 3 4
Choose x = 0.

x=-3)x+2)<0

FIGURE 1.8

To test an interval, we choose an arbitrary number in the interval and compute
the sign of each factor of x2 — x — 6. For example, for any x in the open
interval (—o, —2), the factors (x — 3) and (x + 2) are both negative. Con-
sequently, the product (of two negative numbers) is positive and the inequal-
ity is not satisfied in the interval (—o, —2). We suggest that you use the
testing format shown in Figure 1.8. Since the inequality (x — 3)(x + 2) <0
is satisfied only for values of x in the center interval, we conclude that the
solution set is the open interval (-2, 3).

Absolute value and distance

The absolute value of a real number a is denoted by |a| and is defined as
follows.

DEFINITION OF ABSOLUTE VALUE

_ . — I
If a is a real number, then the absolute value of g is

lai={ a, ifa=0
—-a, ifa<O.

The absolute value of a number can never be negative. For example, leta =
—4. Then, since —4 < 0, we have

la| = |—4| = —(—4) = 4.

Remember that the symbol —a does not necessarily mean that —a is negative.
Theorems 1.2 and 1.3 contain some useful properties of absolute value.

I ]

THEOREM 1.2 If a and b are real numbers and nis a positive integer, then the following properties
OPERATIONS WITH are true.
ABSOLUTE VALUE 1a - lal

1. |ab] = |a||b] 2. b =rb‘l,b#=0

3. la| = Va2 4. |a®| = |a|”

REMARK You are asked to prove these properties in Exercises 67-71.
THEOREM 1.3 If a and b are real numbers and k is positive, then the following properties are
INEQUALITIES AND true. ; ,
ABSOLUTE VALUE

1. —la] =a=]a|

2. lal =kifandonly if ~k=a =k

3. k=|a|ifandonlyifk<aora= —k
4. Triangle Inequality: |a + b| < |a| + |b|

Properties 2 and 3 are also true if < is replaced by <.
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We give a proof of Property 4 and leave the proofs of the first three properties
as exercises (see Exercises 72-74). Using Property 1, we have —|a| < a <
|a| and —|b| = b < |b|. Adding these two inequalities produces

~(la| + [b) =a + b =|a] + |b].
Now, by Property 2 (using k = |a| + |b]), we can conclude that
la + b| < |a| + |b]|.

EXAMPLE 5 Solving an inequality involving an absolute value

Sketch the solution set of |[x — 3| = 2.

SOLUTION

Using Property 2 of Theorem 1.3, we have
2= x-3 =2

—2+3=x-3+3=2+3
1= x =5.

Thus, the solution set is the closed interval [1, 5], as shown in Figure 1.9.
E s |

EXAMPLE 6 A two-interval solution set

Find the solution set of 3 < |x + 2.

SOLUTION

Using Property 3 of Theorem 1.3, we have

P e - ~ fa}
3<x+2 of X+ 2<-3

1<x or x < -5,

Thus, the solution set consists of the union of the disjoint intervals (—, —5)
and (1, ), as shown in Figure 1.10. =

Examples 5 and 6 illustrate the general results shown in Figure 1.11.
Note that if d > 0, the solution set for the inequality |x — a| < d consists
of a single interval, while the solution set for the inequality |x — a| = d
consists of two disjoint intervals.

d d d d
—r " —t——
— e —
a—d a a+d a—d +d
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The distance between two points a and b on the real line is given by
d=l|a-b|

The directed distance from a to b is b — a and the directed distance from
b to ais a — b, as shown in Figure 1.12.

Distance between Directed distance Directed distance
a and b from a to b from b to a

» . X »
a b a b a b

a = o

FIGURE 1.12

EXAMPLE 7 Distance on the real line

(a) The distance between —3 and 4 is given by

Distance = 7 14— (=3 =171=7 or |-3 —4|=|-7|=1.
> (See Figure 1.13.)
4321 01205 408 (b) The directed distance from —3 to 4 is 4 — (=3) = 7.
FIGURE 1.13 (¢) The directed distance from 4 to —3is =3 — 4 = —7. =/

To find the midpoint of an interval with endpoints a and b, we simply
find the average value of a and b. That is,

a+b
7

midpoint of interval (a, b) =

To show that this is the midpoint, you need only show that (a + b)/2 is
equidistant from a and b.

EXERCISES for Section 1.1

In Exercises 1—10, determine whether the real number in Exercises 11-14, express the repeating decimal as
is rational or irrational. a ratio of integers using the following procedure. Let
x=0.6363....Then 100x = 63.6363 . . . . Subtracting

1. 0.7 2. —3678 the first equation from the second produces 99x = 63
3,3;_’ 4.3V2-1 orx=§=1.
a5 2 11. 0.3636 12. 0.318T8
5. 4.345 6. = 13. 0.297297 14. 0.99009900
Ve4 . 0.81778177
*7. 564 8. 0.8177 15. Given a < b, determine which of the following are
9. 4% 10. (V2)? true.
8 ' @a+2<b+2 (b) 56 < 5a
1 1
—_ > -— —_ _
*A blue number indicates that a detailed solution can be ©35-a>5-b @ a < b

found in the Study and Solutions Guide. e) (@—b)b—a)>0 (f) a®2 < b?
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16. ForA ={x:0<x},B={x-2=<x=2},and C = 37 2x+ 1| <5 38. 3x+1|=4
{x: x < 1}, find the indicated interval. 2
@@ AUB ®) ANB 39. l—gx <1 40. |9 — 2x| < 1
) BNC @AucC 4., x2=2 -2 42, x*~x=<0
@ ANBNC 3. x2+x—-1=<5 4. 2x2+1<9x -3
In Exercises 17 and 18, complete the table by filling in In Exercises 45—48, find the directed distance from a
the appropriate interval notation, set notation, and to b, the directed distance from b to 4, and the distance
graph on the real line. between a and b.
17. a=-1 b=3
45 t + + + t + t X
-2 -1 0 1 2 3 4
Interval Set
notation notation Graph a=-} b=2
e R e e
-2 -1 0
(=, —4] 47. (a) a = 126,b =15
(b) a= —126,b = —75
(r3=x=1) 48. () a =934, b = —5.65
16 112
(-1,7) ®a=73.b==3
18. In Exercises 49-52, find the midpoint of the given
interval.
Interval | Set a= -1 b 3 3
notation | notation Graph 49. ; — T x
-2 -1 0 1 2 3 4
—t—f——
98 99 100 101 102 a=-5 b= _%
i L & 1 d ] i i
{x: 10 < x} 50. T T T T LI T x
-6 =5 -4 -3 -2 -1 0
(V2,8]
51. (a) [7, 21] (b) [8.6, 11.4]
l<x=% 52. (a) [—6.85, 9.35] () [—4.6, —1.3]

In Exercises 53—58, use absolute values to define each

In Exercises 19—44, solve the inequality and graph the interval (or pair of intervals) on the real line.
solution on the real line.

a=f—2 b?2
19. x—5=7 20. 2x >3 53. _; T — 0 1 ! —x
21, 4x +1<2x 2. 2x+7<3 ! 3
23.2x—1=0 24. 3x+1=2x+2 -3 bo3
25, -4<2x—-3<4 2. 0=x+3<5 " ‘f‘] T
. . H T T T T T Lr
27.%x>x+1 28. —1<—§<1 ~4-3-2-1 0 1 2 3 4
x X 1 a=0 b=4
Py Py . > - i TR e
29.5+3>5 30. x> 55, et
x X -2-1 0 1 2 3 4 5 6
3. x| <1 2.5-3>5
x =3 x a =20 b=24
33. 2'25 il P 56, ——+————+— ———x
35 x—a|<b 36. |x+2|<5 18 19 20 21 22 23 24 25 26
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57. (a) All numbers that are at most 10 units from 12.
(b) All numbers that are at least 10 units from 12.
58. (a) y is at most 2 units from a.
(b) y is less than & units from c.

59. The balance in an account after ¢ years is given by
A=P+ Prt

where P dollars is the initial investment and r is the
simple interest rate (in decimal form). In order for an
investment of $1000 to attain a balance that is greater
than $1250 in two years, what should the interest rate
be?

60. In the manufacture and sale of a certain product, the
revenue for selling x units is

R = 115.95x
and the cost of producing x units is
C = 95x + 750.

In order for a profit to be realized, R must be greater
than C. For what values of x will this product return a
profit?

A utility company has a fleet of vans. The annual oper-
ating cost of each van is estimated to be

61

.

C = 0.32m + 2300

where C is measured in dollars and m is measured in
miles. If the company wants the annual operating cost
of each van to be less than $10,000, then m must be
less than what value?

62. The heights, h, of two-thirds of the members of a cer-
tain population satisfy the inequality

|h — 68.5

<
3]

where h is measured in inches. Determine the interval
on the real line in which these heights lie.

1.2 The Cartesian Plane

63. To determine if a coin is fair (has an equal probability
of landing tails up or heads up), an experimenter tosses
it 100 times and records the number of heads, x.
Through statistic " theory, the coin is declared unfair
if

x — 50

’ = 1.645.

For what values of x will the coin be declared unfair?
64. The estimated daily production, p, at a refinery is given
by

|p — 2,250,000| < 125,000

where p is measured in barrels of oil. Determine the
high and low production levels.

In Exercises 65 and 66, determine which of the two
given real numbers is greater.

355 22

65. (a) worm (b) 7ror—7—
224 144 73 6427
66. @ 151 97 ®) 31 7132

In Exercises 67—74, prove the given property.

67. |ab| = lallt
68. |a — b| = |b — a| [Hint: Use Exercise 67 and the
fact that (@ — b) = (—1)(b — a).]

al _ lal
69. b —lbl,b¢0
70. |a| = Va2
7. |a*| = |a|",n=1,2,3,...

72. —|a| = a =|d|
73. la| < kifandonly if ~k = a <k, k> 0.
74. k< |a|ifand only if k =aora = —k, k> 0.

The Cartesian plane = The Distance Formula = The Midpoint Formula = Equations of circles = Completing the square

Just as real numbers can be represented by points on the real line, we can
represent ordered pairs of real numbers by points in a plane. An ordered
pair (x, y) of real numbers has x as its first member and y as its second
member. The model for representing ordered pairs is called the rectangular
coordinate system, or the Cartesian plane. It is developed by considering
two real lines intersecting at right angles (Figure 1.14).

The horizontal real line is usually called the x-axis, and the vertical real
line is usually called the y-axis. Their point of intersection is called the origin.
The two axes divide the plane into four parts called quadrants.



b

Pythagorean Theorem:
a + bt =¢?

FIGURE 1.16

)

|)’2 -

[xy = x4

Distance Between Two Points

FIGURE 1.17
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y-axis
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o X
—4=3=2— 1
Quadrant T T Quadrant IV (=2,7=73 2
The Cartesian Plane ’ 4
FIGURE 1.14 FIGURE 1.15

We identify each point in the plane by an ordered pair (x, y) of real
numbers x and y, called coordinates of the point. The number x represents
the directed distance from the y-axis to the point, and y represents the directed
distance from the x-axis to the point (Figure 1.14). For the point (x, y), the
first coordinate is called the x-coordinate or abscissa, and the second coor-
dinate is called the y-coordinate or ordinate. For example, Figure 1.15 shows
the location of the points (—1, 2), (3, 4), (0, 0), (3, 0), and (—2, —3) in the
Cartesian plane.

REMARK Note that we use an ordered pair (a, b) to denote either a point in the
plane or an open interval on the real line. As the nature of the problem clarifies whether
a point in the plane or an open interval is being discussed, there should be no confusion.

The Distance and Midpoint Formulas

Section 1.1 defined the distance between two points x; and x, on the real
line. We will now find the distance between two points in the plane. Recall
from the Pythagorean Theorem that, for a right triangle with hypotenuse ¢
and sides a and b, we have the relationship a> + b> = ¢2. Conversely, if
a* + b? = ¢?, then the triangle is a right triangle (Figure 1.16).

Suppose we want to determine the distance d between the two points
(x;, yy) and (x,, y,) in the plane. With these two points, a right triangle can
be formed, as shown in Figure 1.17. The length of the vertical side of the
triangle is |y, — y;|. Similarly, the length of the horizontal side is |x, — x;].
By the Pythagorean Theorem, it follows that

d? =[x, — x,[* + [y =

d=Vix, = x,? + |y, =y~

Replacing |x, — x;[? and |y, — y;|* by the equivalent expressions (x, — x;)?
and (y, — y,)%, we obtain

d= \[(xz - x])2 + (¥, — y1)2.

We choose the positive square root for d because the distance berween two
points is not a directed distance. We have therefore established the following
theorem.
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THEOREM 1.4
DISTANCE FORMULA

The distance d between the points (x;, y;) and (x,, y,) in the plane is given by
d= \/(xz = x)?* + (v, — y)2

(C))

FIGURE 1.18

EXAMPLE 1 Finding the distance between two points

Find the distance between the points (—2, 1) and (3, 4).

SOLUTION

Applying the Distance Formula, we have
d=V[3 - (2P + (@4 - 1)
= VGP + OF
=V25+9
= V34 = 5.83.

EXAMPLE 2 Verifying a right triangle

Plot the points (2, 1), (4, 0), and (5, 7) and use the Distance Formula to

show that the three points form the vertices of a right triangle.

SOLUTION

Figure 1.18 shows the triangle formed by the three points. Moreover, the

three sides of the triangle have the following lengths.

d=VE-22+7-12=V9+36=V45
h=VE -2+ @ DP=Vii1=V5
d=VE -4+ (7 -02=V1+49=V50

Since dj2 + dy> = 45 + 5 = 50 = ds?, we can apply the Pythagorean

Theorem to conclude that the triangle must be a right triangle.

The formula for the midpoint of a line segment in the plane is similar to
that for an interval on the real line. The proof is left as an exercise (see

Exercise 63).

THEOREM 1.5
MIDPOINT FORMULA

The midpoint of the line segment joining the points (x;, y;) and (x5, y,) is
(xl tx ot )’2)

2 2
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EXAMPLE 3  Finding the midpoint of a line segment

Find the midpoint of the line segment joining the points (=5, —3) and
©, 3).

SOLUTION

By the Midpoint Formula, the midpoint is

-5+9 -3+3
< ) )—(2,0)-

(See Figure 1.19.)

=

3
@ _9/
s 4 i 6 9
-3
=5, -3)

FIGURE 1.19 =

EXAMPLE 4  Finding points at a specified distance from a given point

Find x so that the distance between (x, 3) and (2, —1) is 5.

SOLUTION

Using the Distance Formula, we have
d=5=V{x-22+3+1)
25=0x2~4x+4)+ 16
0=x>—-4x-5
0=(x—95kx+1).

Therefore, x = 5 or x = —1, and we conclude that there are two solutions.
That is, both of the points (5, 3) and (—1, 3) lie 5 units from the point
(2, —1), as shown in Figure 1.20.

Each point of the
form (x, 3) lies on
this horizontal line.
-1,3)};, G, 3)
Yy
AN 7/
N o/
Vi 4
AN N /
1 N ¥/
t Pt 4—t—t x
-1 12,3 4 5
_1 —d
@2, -1

FIGURE 1.20 =
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Circles

One straightforward application of the Distance Formula is in developing an
equation for a circle in the plane.

DEFINITION OF A CIRCLE
IN THE PLANE

Let (h, k) be a point in the plane and let r > 0. The set of all points (x, y) such
that 7 is the distance between (h, k) and (x, y) is called a circle. The point (%, k)
is the center of the circle, and r is the radius (see Figure 1.21).

Center: (h, k)
Radius: r

&, y)

x  FIGURE 1.21

We can use the Distance Formula to write an equation for the circle with
center (h, k) and radius r as

Il

[distance between (h, k) and (x, ¥)] = r
Vi —hm2+ (- k2 =r

By squaring both sides of this equation, we obtain the standard form of the
equation of a circle, as indicated in the following theorem.

THEOREM 1.6
STANDARD FORM OF THE
EQUATION OF A CIRCLE

The point (x, y) lies on the circle of radius r and center (A, k) if and only if
x—h?+(y—kF=r2

It follows from Theorem 1.6 that the standard form of the equation of a
circle with center at the origin, (k, k) = (0, 0), is

X2+ y2=r

If r = 1, then the graph of this equation is called the unit circle.

EXAMPLE 5 Finding the equation of a circle

The point (3, 4) lies on a circle whose center is at (—1, 2), as shown in
Figure 1.22. Find an equation for the circle.



G+ D2+ @y -22=2

FIGURE 1.22

T
-4 -3 -2 -1

(rifro-2t=1

FIGURE 1.23

Section 1.2 / The Cartesian Plane 15

SOLUTION

The radius of the circle is the distance between (—1, 2) and (3, 4). Thus,
r=VB - (—DF + @ -2 = V16 + 4 = V20.
Therefore, the standard form of the equation of this circle is
[x = (=D + (y = 2% = (V20)?
(x+ 1?2+ (y — 2% =20. (=]

By squaring and simplifying, the equation (x — k)2 + (y — k)> = r? can
be written in the following general form of the equation of a circle.

A2+ A2+ Cx+Dy+F=0, A#0
To convert such an equation to the standard form
C—h*+O-k=p
we use a process called completing the square. If p > 0, then the graph of

the equation is a circle. If p = 0, then the graph is the single point (h, k).
Finally, if p < 0, then the equation has no graph.

EXAMPLE 6 Completing the square

Sketch the graph of the circle whose general equation is

4x% + 4y? 4+ 20x — 16y + 37 = 0.

SOLUTION

To complete the square, first divide by 4 so that the coefficients of x? and y?
are both 1.

4x2 + 4y2 +20x — 16y + 37 =0 General form
x2+y2+5x__4y+¥=0 Divide by 4
) X _ 37
@2+5x+ )+ O*P—4y+ = ——4— Group terms
(x2+5x+?)+(y2—4}’+4)=“¥+24§+4 qu(Lr:rpelebtifthe
A adding%and

(half)? (half)? 4 to both sides

|
—

2
(x + g) + (y— 2?2 = Standard form
Note that we complete the square by adding the square of half the coefficient
of x and the square of half the coefficient of y to both sides of the equation.
Therefore, the circle is centered at —%, 2), and its radius is 1, as shown
in Figure 1.23. —
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We have now introduced some fundamental concepts of analytic geom-
etry. Because these concepts are in common use today, it is easy to overlook
their revolutionary character. At the time analytic geometry was being devel-
oped by Pierre de Fermat (1601-1655) and René Descartes (1596—1650), the
two major branches of mathematics—geometry and algebra—were largely
independent of each other. Circles belonged to geometry and equations
belonged to algebra. The coordination of the points on a circle and the solutions
of an equation belongs to what is now called analytic geometry. It is important
to become skilled in analytic geometry so that you may move easily between
geometry and algebra. For instance, in Example 5, we are given a geometric
description of a circle and are asked to find an algebraic equation for the
circle. Thus, we are moving from geometry to algebra. Similarly, in Example
6 we are given an algebraic equation and asked to sketch a geometric picture.
In this case, we are moving from algebra to geometry. These two examples
illustrate the two most common problems in analytic geometry.

1. Given a graph, find its equation.

Geometry |—| Algebra

2. Given an equation, find its graph.

Algebra |—| Geometry

In the next two sections, we will look more closely at these two types of
problems.

René Descartes

EXERCISES for Section 1.2

In Exercises 1—6, (a) plot the points, (b) find the dis-
tance between the points, and (c) find the midpoint of
the line segment joining the points.

1. 2, 1), 4,5 2. (-3,2),3, -2
! 3 ANCRY
s (p1) (575 e G -3 G
5.(1,V3), (-1, 1 6. (=2,0), 0, V2)
In Exercises 7—10, show that the given points form the

vertices of the indicated polygon. (A rhombus is a quad-
rilateral whose sides are all of the same length.)

Vertices Figure
7. 4,0, 2, D, (-1, =5) Right triangle
8. (1,-3),3,2),(-2,4 Isosceles triangle
9. (0,0),(1,2),2,1),3,3) Rhombus
10. (0, 1), 3,7), 4, 4), (1, —2)  Parallelogram

In Exercises 11—14, use the Distance Formula to deter-
mine whether the given points are collinear (lie on the
same line).

11. (0, —4), (2,0), (3, 2)
12. (0, 4), (7, —6), (=5, 11)
13. (-2, 1), (-1, 0), (2, —2)
14. (-1, 1,3,3),5,5)

In Exercises 15 and 16, find x so that the distance
between the points is 5.

15. (0, 0), (x, —4) 16. 2, - 1), (x, 2)

In Exercises 17 and 18, find y so that the distance
between the points is 8.

17. (0, 0), 3, y) 18. 5,1, 5, »)



In Exercises 19 and 20, find the relationship between

x and y so that (x, y) is equidistant from the two given
points.

19. 4, -1), (-2, 3) 20. <3, g), (=7, -1

21. Use the Midpoint Formula to find the three points that
divide the line segment joining (x;, y;) and (x,, y,) into
four equal parts.

22. Use the result of Exercise 21 to find the points that
divide the line segment joining the given points into
four equal parts.

(@ (1, -2), 4 -1 (®) (=2, =3), (0,0

In Exercises 23 and 24, complete the square for each
expression.

23. (a) x% + 5x
24. (a) 4x2 — 4x — 39

(b) x2+8x+7
(b) 5x2 + x

In Exercises 25—30, match the given equation with its
graph. [Graphs are labeled (a)—(f).]

25, x2+y2=1
26. x— 1)+ (y—-3?2=4
27. x — 12+ y2=0

1\2 32 1
28. (x+§> +(y—z) —Z

29, (x+ 32+ (y— 1?2 =16
30, 2+ (y—12=1
(a) y b v

LT
P
N—L
=
(3]
k]
H

© y @
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In Exercises 31-40, write the equation of the specified
circle in general form.

31. Center: (0, 0); radius: 3

32. Center: (0, 0); radius: 5

33. Center: (2, —1); radius: 4

34. Center: (—4, 3); radius: 3

35. Center: (—1, 2); point on circle: (0, 0)

36. Center: (3, —2); point on circle: (—1, 1)
37. Endpoints of diameter: (2, 5), (4, —1)

38. Endpoints of diameter: (1, 1), (—1, —1)
39. Points on circle: (0, 0), (0, 8), (6, 0)

40. Points on circle: (1, —1), (2, —2), (0, —2)

In Exercises 41—48, write the given equation (of a cir-
cle) in standard form and sketch its graph.

41. x2+y2-2x+6y+6=0

2. x2+y2-2x+6y—-15=0

43. x2+3y2-2x+6y+10=0

4. 3x2 +3y2-6y—1=0

45. 2x2 4+ 22 - 2x -2y —-3=0
46. 4x2 + 4y2 —4x+ 2y - 1=0
47. 16x2 + 16y2 + 16x + 40y —7=0
48. x2+y2—4x+2y+3=0

49. Find an equation for the path of a communications
satellite in a circular orbit 22,000 miles above the earth.
(Assume that the radius of the earth is 4000 miles.)

50. Find the equation of the circle passing through the
points (1, 2), (—1, 2), and (2, 1).

51. Find the equation of the circle passing through the
points (4, 3), (=2, —5), and (5, 2).

52. Find the equations of the circles passing through the
points (4, 1) and (6, 3) and having radius V10.

In Exercises 53—56, sketch the set of all points satis-
fying the given inequality.

53. x2+y2—4x+2y+1=0
54, X2+ y2—-4x+2y+1>0
55. x+ 32+ (y—-12<9

12
56. (x—1)2+< —§> > 1
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§57. Prove that

<2x1 +x, 2y, + y2>
37 3

is one of the points of trisection of the line segment
joining (x;, y;) and (x,, y,). Also, find the midpoint of

the line segment joining

(211 +x 2y + )’2)
3 ’ 3

and (x,, y,) to find the second point of trisection.

58. Use the results of Exercise 57 to find the points of
trisection of the line segment joining the following

points.

(@ (1, =2)and (4, 1)  (b) (-2, —3) and (0, 0)

1.3 Graphs of Equations

59.

61.

62.

63.

Prove that the line segments joining the midpoints of
the opposite sides of a quadrilateral bisect each other.

. Prove that the midpoint of the hypotenuse of a right

triangle is equidistant from each of the three vertices.
Prove that an angle inscribed in a semicircle is a right
angle.

Prove that the perpendicular bisector of a chord of a
circle passes through the center of the circle.

Prove the Midpoint Formula (Theorem 1.5).

The graph of an equation = Point-plotting method = Intercepts of a graph = Symmetry of a graph = Points of intersection =

Mathematical models

TABLE 1.2
x|o|1]2] 3| 4
yl7(4]1|-2]|-5

y

8\l’(o, 7

6 -

2+

(2,

JNLD y=T7 -3

9]

T
2
—2

—4+

f—t—1 x
4 6 8
3, —2)

4, -5

Solution points
of y=7-— 3x

FIGURE 1.24

Using a graph to show how two quantities are related is common. News
magazines frequently show graphs that compare the gross national product
or the unemployment rate to the time of year. Industries and businesses use
graphs to report their monthly production and sales statistics. The value of
such graphs is that they provide a geometric picture of the way one quantity
changes with respect to another.

Frequently a relationship between two quantities is expressed as an equa-
tion. For instance, degrees on the Fahrenheit scale are related to degrees on
the Celsius scale by the equation F = %C + 32. In this section we introduce
a basic procedure for sketching the graph of such an equation.

The graph of an equation

Aoiatinn o

=7 TF oy = D and v = 1 +ha
11 A ~ aiu )/ - 1, uiv uquauuu 10

Consider the cquation 3x + y = 7.
satisfied and we call the point (2, 1) a solution point of the equation. Of
course, there are other solution points, such as (1, 4) and (0, 7). We can
construct a table of values for x and y by choosing arbitrary values for x and
determining the corresponding values for y. To determine the values for y, it
is convenient to write the equation in the form

y=17-— 3x.

Thus, (0, 7), (1, 4), (2, 1), (3, —2), and (4, —5) are all solution points of
the equation 3x + y = 7, as shown in Table 1.2. Actually, there are infinitely
many solution points of this equation, and the set of all such points is called
the graph of the equation, as shown in Figure 1.24.

REMARK Even though we refer to the sketch shown in Figure 1.24 as the graph
of y = 7 — 3x, it really represents only a portion of the graph. The entire graph
would extend beyond the page.
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DEFINITION OF THE GRAPH OF
AN EQUATION IN TWO VARIABLES

The graph of an equation involving two variables x and y is the set of all points
in the plane that are solution points of the equation.

EXAMPLE 1 The point-plotting method

Sketch the graph of the equation y = x? — 2.
SOLUTION

First, we make a table of values (Table 1.3) by choosing several convenient
values of x and calculating the corresponding values of y = x? — 2. Next,
we locate these points in the plane, as in Figure 1.25(a). Finally, we connect
the points by a smooth curve, as shown in Figure 1.25(b). This particular
graph is called a parabola. It is one of the conic sections we will study in
Chapter 10.

TABLE 1.3

x| =21 -1} 0] 123

y| 2| -1 2| -1|2|7

y y
7+ o 74
i ) 6
5+ 54
4+ 44
3+ 3

-2,2

22,0 w22 24

T T T Ll 1 T :‘; 4 l f; é T
) 4 -3 —
-1, -1 4 -
( )e 0(1’ N \
0, -2t
(b) Connect points with
a smooth curve.

(a) Plot several points.

FIGURE 1.25 =

We call this method of sketching a graph the point-plotting method. It

consists of three basic steps.

1. Make up a table of several solution points of the equation.
2. Plot these points in the plane.
3. Connect the points with a smooth curve.
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FIGURE 1.26

No x-intercept
One y-intercept

FIGURE 1.28

In later chapters, we will discuss more sophisticated graphing techniques.
In the meantime, when using the point-plotting method, we must plot a
sufficient number of points to reveal the basic shape of the graph. With too
few solution points, we can grossly misrepresent the graph of a given equation.
For instance, how would you connect the four points shown in Figure 1.26?
Without additional points or more information about the equation, any one
of the three graphs shown in Figure 1.27 would be reasonable.

N NS

FIGURE 1.27

Two types of solution points that are especially useful are those having
zero as either their x- or y-coordinate. Such points are called intercepts,
because they are the points at which the graph intersects the x- or y-axis.
Specifically, the point (a, 0) is called an x-intercept of the graph of an equation
if it is a solution point of the equation. Such points can be found by letting
y be zero and solving the equation for x. Similarly, the point (0, b) is called
a y-intercept of the graph of an equation if it is a solution point of the
equation. Such points can be found by letting x be zero and solving the
equation for y.

REMARK Some texts denote the x-intercept as the x-coordinate of the point (a, 0)
rather than the point itself. Unless it is necessary to make a distinction, we will use
the term intercept to mean either the point or the coordinate.

It is possible for a graph to have no intercepts, or it might have several.
For instance, consider the four graphs shown in Figure 1.28.

%
. O
|

Three x-intercepts One x-intercept )
One y-intercept Two y-intercepts No intercepts
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EXAMPLE 2 Finding x- and y-intercepts

Find the x- and y-intercepts for the graphs of the following equations.
(@y=x>—4x () y*—-3=x

y SOLUTION
y=x — 4 ‘3‘ + (a) Lety = 0. Then, 0 = x(x? — 4) has solutions x = 0 and x = *2.
1 x-intercepts: (0, 0), (2, 0), (=2, 0)
Cc2of 1 0. 0) |2 0 Let x = 0. Then y = 0.
T ; . y-intercept: (0, 0)
/ :;; (See Figure 1.29.)
54 (b) Lety = 0. Then —3 = x.
4+ x-intercept: (—3, 0)
Tntercepts - Letx = 0. Then y?> — 3 = 0 has solutions y = +V/3.
FIGURE 1.29 y-intercepts: (0, V3), (0, —V3) e |

EXAMPLE 3  Sketching the graph of an equation

Sketch the graph of the equation x? + 4y? = 16.
SOLUTION

Sometimes it helps to rewrite an equation before calculating solution points.
For example, if we rewrite the equation x + 4y% = 16 as

x=xV16 — 42 = x2V4 —y?

then we can easily determine several solution points by choosing values
for y and calculating the corresponding values for x. (Note that x =
+2V4 — y2 is defined only when |y| = 2.) By plotting these points and
connecting them with a smooth curve, we create the graph shown in Figure
1.30. This particular graph is called an ellipse. It is one of the conic sections
we will study in Chapter 10.

y

4

2V3, 1) _—4—_ V3 1)
(-4, 0) //ﬁ h\ @ 0)
ﬂt&j
-2V3, -1) V3, -1)

210, -2)

FIGURE 1.30 X+ 4y? =16 =
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FIGURE 1.31

Symmetry of a graph

The graphs shown in Figures 1.25(b) and 1.30 are said to be symmetric with
respect to the y-axis. This means that if the Cartesian plane were folded along
the y-axis, the portion of the graph to the left of the y-axis would coincide
with the portion to the right of the y-axis. Another way to describe this
symmetry is to say that the graph is a reflection of itself with respect to the
y-axis. Symmetry with respect to the x-axis can be described similarly.
Knowing that a graph has symmetry before attempting to sketch it is
helpful because then we need only half as many solution points as we would
otherwise. We define three basic types of symmetry, as shown in Figure 1.31.

y ¥ y

(x,_ »)

% Dy = — % ) A (x ) -
z | — |
\/ ) : ! ' i
\(x,—y) 7

(=x, =y)

y-Axis symmetry x-Axis symmetry Origin symmetry

DEFINITION OF SYMMETRY

A graph is said to be symmetric with respect to the y-axis if, whenever (x, y) is
a point on the graph, (—x, ) is also a point on the graph.

A graph is said to be symmetric with respect to the x-axis if, whenever (x, y) is
a point on the graph, (x, —y) is also a point on the graph.

A graph is said to be symmetric with respect to the origin if, whenever (x, y)
is a point on the graph, (—x, —y) is also a point on the graph.

REMARK Note that a graph is symmetric with respect to the origin if a rotation of
180° (about the origin) leaves the graph unchanged.

Suppose we apply the definition of symmetry to the graph of the equation
shown in Figure 1.25(b).

y=x%>-2 Given equation
y=(—x?-2 Replace x by —x

y=x>-2 Equivalent equation

Since substituting —x for x produces an equivalent equation, it follows that
if (x, y) is a solution point of the given equation, then (—x, y) must also be
a solution point. Therefore, the graph of y = x? — 2 is symmetric with respect
to the y-axis.

A similar test can be made for symmetry with respect to the x-axis or
the origin. These three tests are summarized as follows.
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TESTS FOR SYMMETRY

1. The graph of an equation in x and y is symmetric with respect to the y-axis if
replacing x by —x yields an equivalent equation.

2. The graph of an equation in x and y is symmetric with respect to the x-axis if
replacing y by —y yields an equivalent equation.

3. The graph of an equation in x and y is symmetric with respect to the origin if
replacing x by —x and y by —y yields an equivalent equation.

y=2u>—x

1+ (1, 1)

-1, -D)f -1+

-

Origin Symmetry
FIGURE 1.32

N CAP)

First, plot the points above
the x-axis, then use symmetry
to complete the graph.

FIGURE 133

EXAMPLE 4 Testing for origin symmetry

Show that the graph of y = 2x3 — x is symmetric with respect to the origin.

SOLUTION

We apply the test for origin symmetry as follows.
y=2x3—-x Given equation
-y =2(—x)° - (—x) Replace x by —x and y by —y
-y =—2x>+x
y=2x3—x Equivalent equation
Since the replacement produces an equivalent equation, we conclude that the

graph of y = 2x3 — x is symmetric with respect to the origin, as shown in
Figure 1.32. |

EXAMPLE 5 Using symmetry to sketch a graph

Sketch the graph of x — y2 = 1.
SOLUTION

The graph is symmetric with respect to the x-axis since replacing y by —y
yields

x= (=1
x—yr=1.
This means that the graph below the x-axis is a mirror image of the graph

above the x-axis. Hence, we first sketch the graph above the x-axis and then
reflect it to obtain the entire graph, as shown in Figure 1.33. |

Points of intersection

Since each point of a graph is a solution point of its corresponding equation,
a point of intersection of two graphs is simply a solution point that satisfies
both equations. Moreover, the points of intersection of two graphs can be
found by solving the equations simultaneously.
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x—y=1

Two Points of Intersection

FIGURE 1.34

EXAMPLE 6 Finding points of intersection

Find all points of intersection of the graphs of

¥2—y=3 and x—y=1.

SOLUTION

It is helpful to begin by making a sketch of each equation on the same
coordinate plane, as shown in Figure 1.34. Having done this, it appears that
the two graphs have two points of intersection. To find these two points, we
proceed as follows.

y=x2-3 Solve first equation for y
y=x-—1 Solve second equation for y
2-3=x-1 Equate y-values
X-x—-2=0
=2+ 1)=0 Solve for x

The corresponding values of y are obtained by substituting x = 2 and x =
—1 into either of the original equations. For instance, if we choose the equation
y = x — 1, then the values of y are 1 and —2, respectively. Therefore, the
two points of intersection are (2, 1) and (—1, —2). —

Mathematical models

In applications we frequently use equations to form mathematical models
of real-world phenomena. In developing a mathematical model to represent
actual data, we strive for two (often conflicting) goals: accuracy and simplicity.
That is, we want the model to be simple enough to be workable, yet accurate
enough to produce meaningful results. Our next example describes a typical
mathematical model.

EXAMPLE 7 A mathematical model

The median income (between 1955 and 1985) for married couples in the
United States is given in Table 1.4. A mathematical model* for these data is
given by

y = 0.033286:2 — 0.130718¢ + 5.05716

where y represents the median income in thousands of dollars and # represents
the year, with ¢ = 0 corresponding to 1955. Using a graph, compare the data
with the model and use the model to predict the median income for 1990.

*This model was developed using a procedure called the method of least squares. For
a discussion of this method, see Section 14.9, Exercise 21.
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Model:
y = 0.033286t% — 0.130718¢ + 5.05716

FIGURE 1.35

EXERCISES for Section 1.3
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TABLE 1.4
Year 1955 | 1960 | 1965 | 1970 | 1975 | 1980 | 1985
Income
(in 1000s) | 4.6 5.9 7.3 10.5 | 14.9 | 23.1 | 31.1

SOLUTION

Table 1.5 and Figure 1.35 compare the values given by the model with the
actual values.

TABLE 1.5
t 0 5 10 | 15 20 25 30
y 5115271106 | 158 | 22.6 | 31.1
Actual
(income) | 4.6 | 5.9 | 7.3} 10.5 | 149 | 23.1 | 31.1

To predict the median income for 1990, we let + = 35 and calculate y as
follows.

y = 0.033286(35%) — 0.130718(35) + 5.05716 = 41.3
Thus, we estimate that the 1990 median income will be $41,300. [ oo |

In Exercises 1—6, match the given equation with its © v @)

graph. [Graphs are labeled (a)—(f).]

l.y=x-2 2.y

3.y=x2+2x 4. y =

5.y=4-2x% 6. y=
(a) y o (b)
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In Exercises 7—16, find the intercepts.

T.y=2x-3 8. y=(x—-Dx-13)
9. y=x2+x-2 10. y2 = x3 — 4x
11. y = x?V9 — x? 12. xy = 4
x—1 x2 + 3x
13. y = e Xt
YT 2 Wy =Gy

15. x2y = x2 +4y =0 16. y =2x — Vx? + 1

In Exercises 17—26, check for symmetry with respect
to both axes and to the origin.

17. y=x2-2 18. y =x*—x2+3
19, x2y —x2 + 4y =10 20. x2y —x2—4y =0
21. y2 = 53 — 4x 22, xy? = -10

23. y=x3+x 24, xy =1

25,y = ad 26.y=x>+x-3

x2+1

In Exercises 27—46, sketch the graph of each equation.
Identify the intercepts and test for symmetry.

27.y =x 28. y=x—2
29. y=x+3 30. y=2x—-3
31.y=-3x+2 32.y=—%x+2
1

33.y=§x—4 3. y=x2+3
35.y=1-x? 36. y =222+ x
37.y = —2x2+x + 1 38. y=x3-1
39, y=x3+2 40. y = V9 — x?
41. x2 + 4y? = 42, 9x? +y2 =
43. y = (x + 2)? 4. x=y> -4
45.y=% 46. y = 2x*

In Exercises 47—56, find the points of intersection of
the graphs of the equations; check your results.

47. x +y=2,2x—y=1

48. 2x — 3y =13,5x+ 3y =1

49. x+y=73x -2y =11

50. x2+y2=252x+y=10

51. x2+ y2=5,x—y=1

52. 2+y=4,2x—y=1
53.y=xy=x

54. y=x*—-2x2+1,y=1-x?

55. y=x’—22+x—1,y=—-x2+3x—1
56. x=3-yLy=x—1

In Exercises 57 and 58, find the sales necessary to break

even (R = C) for the given cost C of x units and the
given revenue R obtained by selling x units.

57. C = 8650x + 250,000 58. C = 5.5Vx + 10,000
R = 9950x R = 3.29x

In Exercises 59—62, determine whether the points lie
on the graph of the given equation.

59, Equation: 2x —y — * =

Points: (1, 2), (1, —1), (4, 5)
60. Equation: x + y2 =

Points: (1, —V3), (% —1>, @ %)
61. Equation: x2y — x2 + 4y =0

, 1 1
Points: (1, §>’ <2, 5), (=1, -2
62. Equation: x2 — xy + 4y = 3

Points: (0, 2), (—2, -—%), (3, —6)

63. For what values of k does the graph of y = kx? pass
through the given point?
(@ 1,4 ® (=2, 1
(©) 0,0 @ (=1, -1

64. For what values of k does the graph of y? = 4kx pass
through the given point?
(@ 1,1 ® 2,4
(©) 0,0 @ 3,3

65. The Consumer Price Index (CPI) for selected years is
given in the following table.

Year | 1970 | 1975 1980 | 1985 1987

CPI | 116.3 | 161.2 | 246.8 | 322.2 | 333.9

A mathematical model for the CPI during this time
period is

y =012+ 11.9: + 111.4

where y represents the CPI and ¢ represents the year,
with 7 = 0 corresponding to 1970.
(a) Use a graph to compare the CPI with the model.
(b) Use the model to predict the CPI for 1995.

66. From the model in Exercise 65, we obtain the model

1000

V= 1o+ 1114

where V represents the purchasing power of the dollar
(in terms of constant 1967 dollars) and ¢ represents the
year, with ¢ = 0 corresponding to 1970. Use the model
to complete the following table.

t {0510 15|20 ] 25




67. The farm population in the United States as a per-
centage of the total population for selected years is
given in the following table.

Year 1950 | 1960 | 1970 | 1980 | 1985

Percentage | 153 | 8.7 | 4.8 |27 |22

A mathematical model for these data is given by

1000

YT T+ 27

where y represents the percéntage and ¢ represents the

year, with ¢ = 0 corresponding to 1950.

(a) Use a graph to compare the actual percentage with
that given by the model.

(b) Use the model to predict the farm percentage of
the population in 1995.

68. The average number of acres per farm in the United
States for selected years is given in the following table.

Year 1950 | 1960 | 1970 | 1980 | 1985

Number
of acres | 213 297 374 427 446

1.4 Lines in the Plane
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A mathematical model for these data is given by
y = —0.08#2 + 9.69¢ + 211.79

where y represents the average acreage and ¢ represents

the year, with ¢ = O corresponding to 1950.

(a) Use a graph to compare the actual number of acres
per farm with that given by the model.

(b) Use the model to predict the average number of
acres per farm in the United States in 1995.

In Exercises 69 and 70, use a computer or graphics
calculator to sketch the graph of the equation and find
its intercepts.

1

69. y=E(x5—6x4+9x3+ 32)
5

70.y—xz—+7—1

71. Prove that if a graph is symmetric with respect to the
x-axis and to the y-axis, then it is symmetric with
respect to the origin. Give an example to show that the
converse is not true.

72. Prove that if a graph is symmetric with respect to one
axis and the origin, then it is symmetric with respect
to the other axis also.

The slope of a line = Equations of lines = Sketching the graph of a line = Parallel lines = Perpendicular lines

In Chapter 3, you will see that one of the primary problems in calculus is
measuring (instantaneous) rates of change. In this section, we discuss the
noncalculus version of this problem—measuring an average rate of change.
We begin with an example.

Consider an automobile that is traveling at a constant rate on a straight

1

highway. At 2:00 p.M. the car has iraveied 20 wiles fiom a particular city,
and at 4:00 p.M. the car has traveled 132 miles, as shown in Figure 1.36.
How fast is the car traveling?

2:00 pM. 4:00 pM.

20 miles 132 miles

i B ; i
FIGURE 1.36 0 20 40 60 80 100 120

To measure the rate in miles per hour, we divide the distance traveled

by the elapsed time.

i i 132 - 20 112
rate (mph) = distance (miles) _

= —— = 56 mph

time (hours) 4 -2 2
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s = 56t — 92

140 -+
120+

80
60 +
40+
20+

I

|

!

X, X,

Ay =y, -y, = change.iny
Ax = x, — x; = change in x
FIGURE 1.38
I

If we let s be the distance from the city in miles and ¢.be the time in h
then the distance is related to the time by the linear equation

s = 56t — 92, 2=t=4.

The graph of the equation s = 56+ — 92 is a line (in this text, we us
term line to mean straight line), as shown in Figure 1.37. For every uni
t increases, the distance s increases 56 units. Mathematically, we say
this line has a slope of 56.

The slope of a line

By the slope of a (nonvertical) line, we mean the number of units a line -
(or falls) vertically for each unit of horizontal change from left to right.
instance, consider the two points (x;, y;) and (x,, y,) on the line in Fi
1.38. As we move from left to right along this line, a vertical chang
Ay = y, — y; units corresponds to a horizontal change of Ax = x, -
units. (A is the Greek uppercase letter delta, and the symbols Ay and A
read “delta y” and “delta x.”’) We use the ratio of Ay to Ax to define the s
of a line as follows.

DEFINITION OF THE
SLOPE OF A LINE

The slope m of a nonvertical line passing through the points (x,, y;) and (3, ¥.
is

REMARK Note that

)’z“)’1=“()’1_}’2)=}’1_)’2
Nn-x —m—x) XX

Hence, it does not matter in which order we subtract as long as we are consisten
both “subtracted coordinates” come from the same point.

EXAMPLE 1 The slope of a line passing through two points

(a) The slope of the line containing (-2, 0) and (3, 1) is
1-0 1 1

"3 (=) T 3+2 5

(b) The slope of the line containing (-1, 2) and (2, 2) is
_2-2 = 0_
T2—-(-1) 3

m 0.
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(c) The slope of the line containing (0, 4) and (1, —1) is

m=_L1"4_5_ 4
1-0 1
(d) We do not define the slope of the vertical line containing (3, 4) and
3, 1).
(See Figure 1.39.)
y y y y
©, 4) , 3,4
. m =5 ;M= 0 3 3
3 3 3 \ =5 3
{ ) cL2l e 1 \ : o
(_2’ 0 /// \
X X X X
- - - 4 - 4
' (1 ~1)
If m is positive, If m is zero, the If m is negative, If the line is vertical,
the line rises. line is horizontal. the line falls . the slope is undefined.
FIGURE 1.39

(%, ¥,%)

Any two points on a line can be
used to determine its slope.

REMARK Note that we do not define the slope of a vertical line.

It is important to realize that any two points on a nonvertical line can be
used to calculate its slope. This can be verified from the similar triangles
shown in Figure 1.40. (See Exercise 77.) (Recall that the ratios of corre-
sponding sides of similar triangles are equal.)

x Equations of lines

If we know the slope of a line and one point on the line, how can we determine
the equation of the line? Figure 1.40 leads us to the answer to this question.
If (x;, y;) is a point lying on a line of slope m and (x, y) is any other point
on the line, then

FIGURE 1.40
Yy~ _ m.
X — X
This equation, involving the two variables x and y, can be rewritten in the
form
y =y = mx = xp)
which is called the point-slope equation of a line.
THEOREM 1.7 The equation of the line with slope m passing through the point (x,, y) is given
POINT-SLOPE EQUATION by
OF A LINE

Y~y = mx - x).
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y-intercept

FIGURE 1.41

(4, 600.8)

(2, 560.2)

Sales in billions of dollars
¥4
3
I3
1

(1, 539.9)

$530 1
7
| 1 2 3 4
Quarter
Total U.S. Sales in 1978
FIGURE 1.42

EXAMPLE 2 The point-slope equation of a line

Find an equation of the line that has a slope of 3 and passes through the j
(1, =2).

SOLUTION
y =y = mx — x;) Point-slope form
y—(=2)=3x—-1
y+2=3x—-3
y=3x-35

(See Figure 1.41.)

EXAMPLE 3  An application: total U.S. sales

The total U.S. sales (including inventories) during the first two quartes
1978 were 539.9 and 560.2 billion dollars, respectively. Assuming a Ii,
growth pattern, estimate the total sales during the fourth quarter of 197

SOLUTION

Referring to Figure 1.42, we let (1, 539.9) and (2, 560.2) be two point
the line representing total U.S. sales. We let x represent the quarter a:
represent the sales in billions of dollars. The slope of the line passing thrc
these two points is

560.2 — 539.9
m=————=

5 20.3.

Thus, the equation of the line is
y =y = mx — xp)
y — 539.9 =20.3(x — 1)
y=203x— 1)+ 5399
y = 20.3x + 519.6.

Now, using this linear model, we estimate the fourth quarter sales (x = ¢
be

y = (20.3)(4) + 519.6 = 600.8 billion dollars.

(In this particular case, the estimate proves to be quite good. The actual fo
quarter sales in 1978 were 600.5 billion dollars.)

REMARK The estimation method illustrated in Example 3 is called Jjpear ext
olation. Note that the estimated point does not lie between the twg given pc
When the estimated point lies between the two given points, we ca]] the proce
linear interpolation.
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Sketching the graph of a line

In Section 1.2, we mentioned that many problems in analytic geometry can
be classified in two basic categories: (1) Given a graph, what is its equation?
and (2) Given an equation, what is its graph? The point-slope equation of a
line fits in the first category. However, this form is not particularly useful for
solving problems in the second category. The form that is best suited to
sketching the graph of a line is called the slope-intercept form for the equation
of a line.

THEOREM 1.8
THE SLOPE-INTERCEPT
EQUATION OF A LINE

The graph of the equation
y=mx+b

is a line having a slope of m and a y-intercept at (0, b).

©, D
/Ax =1
e x

(a) m = 2, line rises.

FIGURE 1.43

(b) m = 0, line is horizontal.

EXAMPLE 4  Sketching lines in the plane

Sketch the graphs of the following linear equations.
@y=2x+1 ®y=2 (©3¥Iy+x—-6=0

SOLUTION

(a) Since b = 1, the y-intercept occurs at (0, 1), and since the slope is m =
2, we know that this line rises 2 units for each unit it moves to the right.
(See Figure 1.43(a).) :

(b) Since b = 2, the y-intercept occurs at (0, 2), and since the slope is m =
0, we know that the line is horizontal. That is, it doesn’t rise or fall.
(See Figure 1.43(b).)

(c) We begin by writing the equation in slope-intercept form.

3y+x—-6=0
3y=-x+6
i
= —=x+
y 3% 2
Thus, the y-intercept occurs at (0, 2) and the slope is m = —%. This

means that the line falls 1 unit for every 3 units it moves to the right.
(See Figure 1.43(c).)

(©) m = -3 line falls.
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Since the slope of a vertical line is not defined, its equation cannot be
written in the slope-intercept form. However, the equation of any line can
be written in the general form

Ax+By+C=0

where A and B are not both zero. For instance, the vertical line given by
x = a can be represented by the general form x — ¢ = 0. We summarize
the five most common forms of equations of lines in the following list.

4. Point-slope fbnn

5. Slope-intercept form:

Parallel and perpendicular lines

The slope of a line is a convenient tool for determining whether two lines
are parallel or perpendicular. This is seen in the following two theorems.

THEOREM 1.9
PARALLEL LINES

Two distinct nonvertical lines are parallel if and only if their slopes are equal.

THEOREM 1.10
PERPENDICULAR LINES

Two nonvertical lines are perpendicular if and only if their slopes are related by
the following equation.
1

m; = ——
my

es of perpendicular lines are
E:lgagsg reciprocals of each other.

We will prove only one direction of the theorem and leave the other direction
as an exercise (see Exercise 78). Let us assume that we are given two non-
vertical perpendicular lines L, and L, with slopes m, and m,. For simplicity’s
sake let these two lines intersect at the origin, as shown in Figure 1.44. The
vertical line x = 1 will intersect L; and L, at the respective points (1, ;)
and (1, m,). Since the triangle formed by these two points and the origin is
a right triangle, we can apply the Pythagorean Theorem and conclude that

distance between )2 <distance between )2 _ ( distance between \?
(0, 0) and (1, m,) (0, 0) and (1, m,) (1, my) and (1, my))

FIGURE 1.44



Section 1.4 / Lines in the Plane

Using the Distance Formula, we have
VT mER + (VI + m2R = (VO + (my — mp)?)?
1 -m?+ 1+ m?=(m —m)?
2+ m? + my?

I

mlz - 2m1m2 + m22

2 = —-2mm,
1
-—— =m.
my

33

EXAMPLE 5 Finding parallel and perpendicular lines

Find an equation for the line that passes through the point (2, —1) and is

(a) parallel to the line 2x — 3y = 5
(b) perpendicular to the line 2x — 3y = 5.

SOLUTION

Writing the equation 2x — 3y = 5 in slope-intercept form, we have

2 5
y= §x - §
y
\ 2% -3y =5 Therefore, the given line has a slope of m = %
2

3x+2y =4
1+ // of the form

2 .
y— (1= §(x - 2)
3y + 1) =2x-2)
2x — 3y =1T.
FIGURE 1.45 (See Figure 1.45.) (Note the similarity to the original equation.)

(a) The line through (2, —1) that is parallel to the given line has an equation

(b) Using the negative reciprocal of the slope of the given line, we find the

slope of a line perpendicular to the given line to be —-%. Therefore, the

line through the point (2, —1) that is perpendicular to the given line has

the equation

3
y= (=D =-56-2)
2y + )= =3(x — 2)
3x + 2y = 4.
(See Figure 1.45.)
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EXERCISES for Section 1.4

In Exercises 1—6, estimate the slope of the given line
from its graph.

1. 7 2. 7

- N WA L
W R Oy

1234567 172 3 4567

3. 7 4. 7
7 7
6 6
5 5
4
3 3
2 2 , .
1234567 12345 6\
5. 7 6. 7
7 7
6 | 6 /
51 5
4 |- 4 fo
3k 3 /
2} = ; 2 4
N 1//
x 7

123\567 1234567

In Exercises 7—12, plot the given pair of points and find
the slope of the line passing through them.

7. 3, -4), 5. 2) 8. (=2, 1), 4, —3)
9. (% z), ©,2) 10. 2. 1), 2, 5)

73\ /5 1
11 (1,2), (=24 12. (g’z)’ (Z’ _Z>

In Exercises 13—16, use the given point on the line and
the slope of the line to find three additional points that
the line passes through. (The solution is not unique.)

Point  Slope Point Slope
3.2, m=0 14. (-3, 4 m undefined
’ m=-3 16. (-2,-2) m=2

15. 1,7

X

In Exercises 17—20, find the slope and y-intercept (if
possible) of the line specified by the given equation.

17. x + 5y = 20
19. x =4

18. 6x — 5y = 15
20. y = —1

In Exercises 21-26, find an equation for the line that
passes through the given points, and sketch the graph
of the line.

21. (2, 1), (0, =3)
23. (0,0), (-1, 3)

25. (1, —2), (3, —2)

22. (-3, -4),1,4
24. (-3,6),(1,2)

73 5 1
26 (g’ z>’ (z’ ‘z)

In Exercises 27—32, find an equation of the line that
passes through the given point and has the indicated
slope. Sketch the line.

Point Slope Point Slope
27. (0, 3) m= % 28. (—1,2) m undefined
2 3
29. (0, 0) m=3 30. (—2,4) m= -z
31. 0,2 m=4 32. (0,4 m=0

33. Find an equation of the vertical line with x-intercept
at 3.

34. Show that the line with intercepts (a, 0) and (0, b) has
the following equation.

+

=1, a#0,b#0

QIR
Sl

In Exercises 35—40, use the result of Exercise 34 to
write an equation of the indicated line.

35. x-intercept: (2, 0)
y-intercept: (0, 3)

36. x-intercept: (—3, 0)
y-intercept: (0, 4)

1 2
37. x-intercept: (—g, 0) 38. x-intercept: (—5, O)
. 2
y-intercept: (O, —§) y-intercept: (0, —2)
39. Point on line: (1, 2) 40.
x-intercept: (a, 0)
y-intercept: (0, a)
(a +0)

Point on line: (=3, 4)
x-intercept: (a, 0)
y-intercept: (0, a)
(a+0)



In Exercises 41-—46, write an equation of the line
through the given point (a) parallel to the given line and
(b) perpendicular to the given line.

Point Line
41. 2, 1) 4x —2y =3
42. (=3,2) x+ y=17
7 3
43. (§’1> Sx +3y =0
4. (-6, 4 3x +4y =7
45. (2, 5) x=4
46. (—1,0) y=-3

In Exercises 47—52, sketch the graph of the equation.
47. y = -3
49.2x—y—-3=0
5.y = —2x + 1

48. x =4
50. x+2y+6=0
52. y—1=3(x+4)

In Exercises 53 and 54, find an equation of the line
determined by the points of intersection of the graphs
of the parabolas.

53. y =x? 54, y= x> —-4x+3
y =4x — x? y=-x>+2x+3

In Exercises 55 and 56, determine whether the three

given points are collinear (lie on the same straight line).

55. (=2, 1), (1,0, (2, -2

56. (0, 4), (7, —=6), (=5, 11)

In Exercises 57—60, refer to the triangle in the accom-

panying figure. y
k
)
A
FIGURE FOR 57-60 -a,0) ! (a, 0)

57. Find the coordinates of the point of intersection of the
perpendicular bisectors of the sides.

58. Find the coordinates of the point of intersection of the
medians.

59, Find the coordinates of the point of intersection of the
altitudes.

60. Show that the points of intersection of Exercises 57,
58, and 59 are collinear.

61. Find an equation of the line giving the relationship
between the temperature in degrees Celsius C and
degrees Fahrenheit F. Use the fact that water freezes
at 0° Celsius (32° Fahrenheit) and boils at 100° Celsius
(212° Fahrenheit).

Section 1.4 / Lines in the Plane 35

62, Use the result of Exercise 61 to complete the following
table.

C -10° | 10° 177°

F |l 68° | 90°

63. A company reimburses its sales representatives $95 per
day for lodging and meals plus 25¢ per mile driven.
Write a linear equation giving the daily cost C to the
company in terms of x, the number of miles driven.

64. A manufacturing company pays its assembly line work-
ers $9.50 per hour plus an additional piecework rate of
$0.75 per unit produced. Find a linear equation for the
hourly wages W in terms of x, the number of units
produced per hour.

65. A small business purchases a piece of equipment for
$875. After 5 years the equipment will be obsolete and
have no value. Write a linear equation giving the value
y of the equipment during the 5 years it will be used.
(Let ¢ represent the time in years.)

66. A company constructs a warehouse for $825,000. It
has an estimated useful life of 25 years, after which its
value is expected to be $75,000. Use straight-line
depreciation to write a linear equation giving the value
y of the warehouse during its 25 years of useful life.
(Let ¢ represent the time in years.)

67. A real estate office handles an apartment complex with
50 units. When the rent is $380 per month, all 50 units
are occupied. However, when the rent is $425, the
average number of occupied units drops to 47. Assume
that the relationship between the monthly rent p and
the demand x is linear. (Note: Here we use the term
demand to refer to the number of occupied units.)

(a) Write a linear equation giving the quantity de-
manded x in terms of the rent p.

(b) (Linear extrapolation) Use this equation to predict
the number of units occupied it the rent is raised
to $455.

(c) (Linear interpolation) Predict the number of units
occupied if the rent is lowered to $395.

68. The number of subscribers to cable TV for the years
1980 and 1986 were 16 million and 37.5 million,
respectively. Assume that the relationship between the
year ¢t and the number of subscribers y is linear.

(a) Write the equation giving the number of subscribers
y in terms of ¢. (Let r = O represent 1980.)

(b) [Linear extrapolation] Use this equation to esti-
mate the number of subscribers in 1990.

(c) [Linear interpolation] Estimate the number of sub-
scribers in 1985.

(d) What information is given by the slope of the line
in part (a)?
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In Exercises 69—74, find the distance between the given
point and line (or two lines) using the following formula
for the distance between the point (x, y,) and the line
Ax + By + C = 0. '

lel + By, + C‘

69.
70.
71.
72.
73.
74.

75.

VA? + B?

Point: (0, 0); line: 4x + 3y = 10
Point: (2, 3); line: 4x + 3y = 10
Point: (=2, 1); line:x —y —2 =0
Point: (6, 2); line: x = —1

Lines:x +y=1,x+y =35
Lines: 3x — 4y = 1, 3x — 4y = 10

Prove that the diagonals of a rhombus intersect at right
angles.

1.5 Functions

76.

71.

78.

Prove that the figure formed by connecting consecutive
midpoints of the sides of any quadrilateral is a
parallelogram.

Prove that if the points (x;, y;) and (x,, y,) lie on the
same line as (x;*, y;*) and (x,*, y,*), then

L J—
Y2 »n*
X* = x*

2" N
X = X

Assume x; # x, and x,* # x;*.

Complete the proof of Theorem 1.10. That is, prove
that if the slopes of two nonvertical lines are negative
reciprocals of each other, then the lines are
perpendicular.

Definition of function = Function notation = The graph of a function = Transformations of graphs = Classifications of
functions = Combinations of functions

Many common relationships involve two variables in such a way that the

value of one of the variabl

es depends on the value of the other. For exainpie,

the sales tax on an item depends on its selling price. The distance an object
moves in a given time depends on its speed.

Consider the relationship between the area of a circle and its radius. This
relationship can be expressed by the equation A = 772, where the value of

FIGURE 1.46

A depends on the choice of r. We refer to A as the dependent variable and
to r as the independent variable.

Of particular interest are relationships such that to every value of the
independent variable there corresponds one and only one value of the depen-
dent variable. We call this type of correspondernce a function.

DEFINITION OF A FUNCTION

A function f from a set X into a set Y is a correspondence that assigns to each

element x in X exactly one element y in Y. We call y the image of x under f and
denote it by f(x). The domain of fis the set X, and the range consists of all images
of elements in X. (See Figure 1.46.)

If to each value in its range there corresponds exactly one value in its domain, the
function is said to be one-to-one. Moreover, if the range of f consists of all of ¥,
then the function is said to be onto.
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In the first twelve chapters of this text, we work with functions whose
domains and ranges are sets of real numbers. We call such functions real-
valued functions of a real variable. Other types of functions will be intro-
duced in Chapters 13-16.

Functions can be specified in a variety of ways. We will, however,
concentrate primarily on functions that are given by equations involving the
dependent and independent variables. To evaluate a function described by an
equation, we generally isolate the dependent variable on the left side of the
equation. For instance, the equation x + 2y = 1, written as '

describes y as a function of x, and we can denote this function as

1—-x
7

fx) =

This function notation has the advantage of clearly identifying the depen-
dent variable as f(x) while at the same time telling us that x is the independent
variable and that the function itself will be called “f.” The symbol f(x) is read
“f of x.” The f(x) notation also allows us to be less wordy. Instead of asking,
“What is the value of y that corresponds to x = 3?” we can ask, “What is
f(3)?” In general, to denote the value of the dependent variable when x = a,
we use the symbol f(a). For example, the value of f when x = 3 is
1-3) -2
fO=—F—==

In an equation that defines a function, the role of the variable x is simply
that of a placeholder. For instance, the function given by

fx) =2x> —4x + 1

-1.

can be described by the form
FO 2P —40) +1

where parentheses are used instead of x. Therefore, to evaluate f(—2), we
simply place —2 in each set of parentheses.

f(=2)=2(-2 —4(-2)+1=24+8+1=17
REMARK Although we generally use f as a convenient function name and x as the

independent variable, we also can use other symbols. For instance, the following
equations all define the same function.

fO=x2—4x+7 fO=2-4+7 gs)=s—4ds+7

EXAMPLE 1 Evaluating a function

For the function f defined by f(x) = x2 + 7, evaluate the following.

fix + Ax) — f(x)
Ax ’

(@ fGa) ® fE-1 (0 Ax # 0
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SOLUTION
(@) fGa) = (30)2 + 7 Replace x with 3a
=94+ 7
b fG—-1)=(®- 12+ 7 Replace x with b — 1
=0 —-2b+1+7
=b>—2b+8
© fx+ Ax) — f&) _ [x + A2+ 71— x2+ 7]
Ax Ax
_ x2 + 2xAx + (Ax)>+ 7 —x2 -7
Ax
_ 2xAx + (Ax)?
Ax
_ Ax(2x + Ax)
Ax
= 2x + Ax ca

REMARK The ratio in Example 1(c) is called a difference quotient and has a special
significance in calculus. We will say more about this in Chapter 3.

The domain of a function may be described explicitly, or it may be
described implicitly by an equation used to define the function. (The implied
domain is the set of all real numbers for which the equation is defined.) For
example, the function given by

f(x)=x21__4, 4=x=35

has an explicitly defined domain given by {x: 4 =< x =< 5}. On the other hand,
the function given by

1
g(x)=x2_4

has an implied domain which is the set {x: x # *2}. Another common type
of implied domain is that used to avoid even roots of negative numbers. For
example, the function given by

o) = Vx + 2

has the implied domain {x: x = —2}.

EXAMPLE 2 Finding the domain and range of a function

Determine the domain and range for the function of x defined by

f =Vx -1



<

Range:y = 0
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SOLUTION

Since Vx — 1 is not defined for x — 1 < 0 (that is, for x < 1), we must
have x = 1. Therefore, the comain is the interval [1, ).
To find the range, we observe that f(x) = Vx — 1 is never negative.

FIGURE 1.47

Moreover, as x takes on the various values in the domain, f(x) takes on all

3
nonnegative values and we find the range to be the interval [0, ).

The graph of the function is shown in Figure 1.47. —

EXAMPLE 3 A function defined by more than one equation

Determine the domain and range for the function of x given by

1 —x, ifx <1

fo) = {\/x —1, ifx=1.

o=l
N
; SOLUTION
2
<
&~ Since f is defined for x < 1 and x = 1, the domain of the function is the
X entire set of real numbers.
{ Domain; all real x > On the portion of the domain for which x = 1, the function behaves as
N Y in Example 2. For x < 1, the value of 1 — x is positive, and therefore the
FIGURE 1.48 range of the function is the interval [0, «). (See Figure 1.48.) -
REMARK Note that the function given in Example 2 is one-to-one whereas the
function given in Example 3 is not one-to-one.
The graph of a function
y v =f() As you study this section, remember that the graph of the function y = f(x)
consists of all points (x, f(x)) as shown in Figure 1.49, where
|
': f® x = the directed distance from the y-axis
‘ U . f(x) = the directed distance from the x-axis.
The Graph of a Function Since, by the definition of a function, there is exactly one y-value for
FIGURE 1.49 each x-value, it follows that a vertical line can intersect the graph of a function

of x at most once. This observation provides us with a convenient visual test
for functions. For example, in part (a) of Figure 1.50, we see that the graph
does not define y as a function of x since a vertical line intersects the graph
twice.

y

14

x ~J

-2+

I
i
!
|
|
|
|
|
|

-3-214]
(a) Not a function of x (b) A function of x (¢) A function of x
FIGURE 1.50 Vertical Line Test for Functions
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Figure 1.51 shows the graphs of six basic functions. You need to know

these graphs well.

2+ 44
14 34
t t } t x 2
-2 -1 1 2 2
T f=x T T = x
-2+ } t t t x
-2 —1 1 2
(a) Identity function (b)
y fo = |« y
f@) = Vx
2 2
1 1
t } + x t t } } x
T 1 2 3 -2 -1 i 1 2

(d) Square root function

FIGURE 1.51

(e) Absolute value function

1 2
T ofw =
.—.2 .
(©)
y
12T
fx) = :
1 e
E
—1 -
®

Function notation lends itself well to describing transformations of graphs
in the plane. Some families of graphs all have the same basic shape. For
example, consider the graph of y = x2, as shown in Figure 1.52. Now compare

this graph to those shown in Figure 1.53.

Il i i
T

-2 -1 1

Original Graph
FIGURE 1.52



(a) Vertical shift upward
FIGURE 1.53

musrommns (c > m
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" Ofiginal guph:

- Reflectmn (about the x-axis):

1+ y = x2
} 1 } 1 x
-3 -2 -1 1
y=(x+2)?

(b) Horizontal shift to the left

(c) Reflection

Each of the graphs in Figure 1.53 is a transformation of the graph of
y = x2. The three basic types of transformations illustrated by these graphs
are (1) vertical shifts, (2) horizontal shifts, and (3) reflections.

e

Horizontal shift ¢ units to the rlght' y=flx—o

Horizontal shift ¢ units to the left: ~ y = f(x + ¢)

~ Vertical shift ¢ units downward:  y = f(x) — ¢

Vertical shift ¢ units upward: y=f@x +c
y=—f®

Leonhard Euler

Classifications and combinations of functions

The modern notion of a function is derived from the efforts of many seven-
teenth- and eighteenth-century mathematicians. Of particular note was Leon-
hard Euler (1707—1783), to whom we are indebted for the function notation
¥ = f(x). By thc cad of the cightcenth century, mathematicians and scientists
had concluded that most real-world phenomena can be represented by math-
ematical models taken from a basic collection of functions called elementary
functions. Elementary functions are divided into three categories: (1) alge-
braic, (2) trigonometric, and (3) logarithmic and exponential. We will review
the trigonometric functions in Section 1.6 and introduce the remaining ele-
mentary functions in Chapter 6.

The most common type of algebraic function is a polynomial function

f=ax"+a,_ x" '+ - +ax®+ax+ay, a,*0
where the positive integer n is the degree of the polynomial function. The
numbers g; are called coefficients, with g, the leading coefficient and a, the
constant term of the polynomial function. It is common practice to use
subscript notation for coefficients of general polynomial functions, but for
polynomial functions of low degree we often use the following simpler forms.
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Zeroth degree:  f(x) = a Constant function
First degree: fxX)=ax+b
Second degree: f(x) = ax®> + bx + ¢

Third degree:  f(x) = ax®> + bx* + cx + d

Linear function
Quadratic function
Cubic function

Although the graph of a polynomial function can have several turns,
eventually the graph will rise or fall without bound as x moves to the right
or left. Whether the graph of

FX) = ax" + a, X"+ -+ apx? + ax + ag

eventually rises or falls can be determined by the function’s degree (odd or
even) and by the leading coefficient a,, as indicated in Figure 1.54. Note that
the dashed portions of the graphs indicate that the leading coefficient test
determines only the right and left behavior of the graph.

Graphs of polynomial functions of even degree

a,>0

y
[ |
Vigovd
Vi \

\ v
Upto Upto
lef right
FIGURE 1.54

a, <0 a,>0 a, <0

y y y
4 \ Up to
Up to / \ left
\ right / \
Y > / A
\ N L v v

I Down \ Down to ! Down =~ Down to®
I toleft \ right I toleft right \
y * x * X ‘ x

Graphs of polynomial functions of odd degree

Leading Coefficient Test for Polynomial Functions

Just as a rational number can be written as the quotient of two integers,
a rational function can be written as the quotient of two polynomials. Spe-
cifically, a function f is rational if it has the form

px)
x) ===, q)+0

fo =255 4w
where p(x) and g(x) are polynomials.

Polynomial functions and rational functions are two examples of a larger
class of functions called algebraic functions. An algebraic function is one
that can be expressed as a finite number of sums, differences, multiples,
quotients, and radicals involving x". For example, the following functions
are algebraic.

1

f&x) = Vx +1 and gx) =x+ 55—

Vx + 1
Functions that are not algebraic are called transcendental. For instance, the
trigonometric functions discussed in Section 1.6 are transcendental.

Two functions can be combined in various ways to create new functions.

For example, if
fx)=2x—-3 and g =x2+1

we can form the following functions.
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f(x)+g(x)=(2x—3)+(x2+1)=x2+2x-—2 Sum
fx) —gx)=02x —3) — 2+ 1)=-x2+2x—4 Difference
Fgx) = 2x — 3)x? + 1) = 2x* — 3x2 + 2x — 3 Product
f&) _ 2x — 3 )
g(x) T2 1 Quotient

We can combine two functions in yet another way to form what is called
a composite function.

DEFINITION OF COMPOSITE
FUNCTION

Let f and g be functions. The function given by (f° g)(x) = f(g(x)) is called the
composite of f with g. The domain of f © g is the set of all x in the domain of g
such that g(x) is in the domain of f.

It is important to realize that the composite of f with g may not be equal
to the composite of g with f. This is illustrated in the following example.

EXAMPLE 4 Composition of functions

Given f(x) = 2x — 3 and g(x) = x> + 1, find fe gand g ° f.

SOLUTION

Since f(x) = 2x — 3, we have
(fo)) =fgx) =2(gx) =3 =22+ 1) —-3=2x*—1
and since g(x) = x* + 1, we have
(go ) = g(f®) = (fx)* + 1 = 2x — 3)2 + 1 = 4x? — 12x + 10,
Note that (f° g)(x) # (g ° f)(®). —

In Section 1.3, we defined an x-intercept of a graph to be a point (a, 0)
at which the graph crosses the x-axis. If the graph represents a function f,
then the number a is called a zero of f. In other words, the zeros of a func-
tion f are the solutions of the equation f(x) = 0. For example, the function
f(x) = x — 4 has a zero at x = 4 because f(4) = 0.

In Section 1.3 we also discussed different types of symmetry. In the
terminology of functions, we say that a function is even if its graph is sym-
metric with respect to the y-axis, and a function is odd if its graph is symmetric
with respect to the origin. Thus, the symmetry tests in Section 1.3 yield the
following test for even and odd functions.

THEOREM 1.11
TEST FOR EVEN AND
0DD FUNCTIONS

The function y = f(x) is even if f(—x) = f(x).
The function y = f(x) is odd if f(—x) = —f().
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f0) = 2* = x

(b) Even function

FIGURE 1.55

EXERCISES for Section 1.5

REMARK Except for such trivial cases as the constant function f(x) = 0, the graph
of a function cannot have symmetry with respect to the x-axis because it then would
fail the vertical line test for the graph of a function.

EXAMPLE 5 Even and odd functions

Determine whether the following functions are even, odd, or neither. In each
case find the zeros of the function.

(@ f=x>-x (b gkx) =x%+1

SOLUTION

(a) This function is odd since
fEn =P - (0= -2 +x= -G -3 = —fO).
The zeros of f are found as follows.

x3

-x=0 Let f(x) = 0
2= =xx—Dx+1)=0 Factor
x=0,1, -1 Zeros of f
(b) This function is even since
g—x) = (=x?+1=x2+1= g).
It has no zeros since x2 + 1 is positive for all x. (See Figure 1.55.)
=

REMARK Each of the functions in Example 5 is either even or odd. However, some
functions such as
f=x2+x+1

are neither even nor odd.

1. Given f(x) = 2x — 3, find the following.

4. Given f(x) = 1/ VX, find the following.

(@ f(0) ®) f(=3) 1
© 1) @ fex - 1) @ 7@ ® 1(3)
2. Given f(x) = x2 — 2x + 2, find the following. © fix + Ax) (@ f@&x + Ax) — f(x)
1 _ 5. Given f(x) = |x|/x, find the following.
@ 1(3) ®) A0 @ Q) ) £(-2)
© f© @) f&x + Ax) © f&x?» @ f&x-1
3. Given f(x) = Vx + 3, find the following. 6. Given f(x) = |x| + 4, find the following.
(@ f(=2) (b) f(6) @ f2) ®) f(=2)
(©) f© d flx + Ax) @© f&x?» @ f&x + Ax) — f(x)



7. Given f(x) = x2 — x + 1, find

f2+ Ax) - f(2)
Ax '

8. Given f(x) = 1/x, find

fQA + Ax) = (1)
Ax ’

9. Given f(x) = x3, find
f&x + Ax) — f(x)

Ax
10. Given f(x) = 3x — 1, find
J&x) = fQ)
x—1 -
11. Given f(x) = 1/Vx — 1, find
J&x) — f2)
x—=2

12. Given f(x) = x3 — x, find
f&x) = fQ1)

x—1

In Exercises 13—-22, find the domain and range of the
given function, and sketch its graph.

13, fx) = 4 — x 4. f(x) = %
15. f(x) = 4 — x2 16. g(x) = ;
17. h(x) = Vx = 1 '1s.f(x)—%3+2

19. f(x) = V9 — x? 20. h(x) = V25 — x2
21. fx) = |x - 2| 22. f(x) = |—"—|

In Exercises 23—28, use the vertical line test to deter-
mine whether y is a function of x.

24.y=x3-1

23. y =x?

-2 -1 12
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26. x2+y2=9

In Exercises 29—-36, determine whether y is a function
of x.

29, x2+y2=4 30. x = y?

3. x2+y=4 R.x+y2=4
33.2x+3y=4 3. x2+y2-4 =0
35, y2=x2-1 36, x2y —x2+4y=0

37. Use the graph of f(x) = V'x to sketch the graph of each
of the following.

@y=Vx+2 ) y=—-Vx
©)y=Vx—2 dy=Vx+3
©y=Vx—-4 ) y=2Vx

38. Use the graph of f(x) = 1/x to sketch the graph of
each of the following.

1 1
(a)y=;—1 (b)y=m

1 1
©@y=:"7 @y=-3

4 1
@y=7 ) y=-1+2

39, Use the graph of f(x) = x2 to determine a formula for
the indicated function.
@ (®)

y 6+
5L
4
3
9
14

y
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40. Use the graph of f(x) = |x| to determine a formula for
the indicated function.

(@) y (b) y

)
w
1
o -
1
— e
—
o~
m/

-8 =6 —4 -2

41. Given f(x) = Vx and g(x) = x> — 1, find the fol-

lowing.

@) f(g(1) (b) g(f(1)
(©) g(f(0)) (d) f(g(—4)
(e) flgx) £) g(fx)

42. Givenf(x) = 1/xand g(x) = x2 — 1, find the following.
(@) f(g(2)) (b) g(f(2)

os35))  0dl)

(e) g(f) (f) fletx)

In Exercises 43—46, find the composite functions
(f° g and (g of). What is the domain of each function?
Are the two composite functions equal?

43, f(x) = x2, gkx) = Vix
4. f) = x2, g = Vx

45, f)y=x+1, gx) = i
46. fx) =x2 -1, gkx) =x

In Exercises 47-50, find the (real) zeros of the given
function.

47. fx) =x* -9 48. f(x) = x> — x
4 b
49.f(x)=;—3—1+;—:—2 50.f(x)=a+;

In Exercises 51—54, determine whether the function is
even, odd, or neither.

52. f(x) = Vx

51. f(x) = 4 — &7
54. f(x) = 4x — x?

53, f(x) = x(4 — x?)
55. Show that the following function is odd.

F) = g X+ s+ ax® oagx
56. Show that the following function is even.

f(x) = ax?" F agupx? 2+ s+ ax? + ag

57. Show that the product of two even (or two odd) func-

tions is even. )
58. Show that the product of an odd function and an even

function is odd.

In Exercises 59—-62, express the indicated values as
functions of x.

59. Randr

61. handp

63. A rectangle has a perimeter of 100 feet (see figure).
Express the area A of the rectangle as a function of x.

o] v 4o Amalaca den o dia
64. A rancher has 200 feet of fchAlls 1o CiiCiG8C tWo adja-

cent rectangular corrals (see figure). Express the area
A of the enclosures as a function of x.

X

FIGURE FOR 63 FIGURE FOR 64

65. An open box is to be made from a square piece of
material 12 inches on a side, by cutting equal squares
from each corner and turning up the sides (see figure).
Express the volume V as a function of x.

66. A rectangle is bounded by the x-axis and the semicircle
¥y = V25 — x? (see figure). Write the area A of the
rectangle as a function of x.



67.

68.

-,-fl——..-.‘.--———T_
i :
. |
«, : i y = V25 — x?
0
. : 1 y
!
1
i | 3
! , i x, y)
g L I
S i k '!:' «1{—"74” ka X
v T 1 T T hd
x 12 — 2x X -5-3-111 3 5

FIGURE FOR 65 FIGURE FOR 66

A rectangular package with square cross sections has
a combined length and girth (perimeter of a cross sec-
tion) of 108 inches. Express the volume V as a function
of x (see figure).

A closed box with a square base of side x has a surface
area of 100 square feet (see figure). Express the volume
V of the box as a function of x.

FIGURE FOR 67 FIGURE FOR 68

1.6 Review of Trigonometric Functions
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69.

70.

A man is in a boat 2 miles from the nearest point on
the coast. He is to go to a point @, 3 miles down the
coast and 1 mile inland (see figure). He can row at 2
mph and walk at 4 mph. Express the total time T of
the trip as a function of x.

The portion of the vertical line through the point (x, 0)
that lies between the x-axis and the graph of y = Vx
is revolved about the x-axis. Express the area A of the
resulting disk as a function of x (see figure).

y y=\/;

® 0)

FIGURE FOR 69

FIGURE FOR 70

In Exercises 71 and 72, use a computer or graphics

calculator to (a) sketch the graph of £, (b) find the zeros
of £, and (c) determine the domain of f.

71.

fx) =xV9 — x?

72. fx) = Z(ﬂ'xz + g)

Angles and degree measure = Radian measure = The trigonometric functions = Evaluation of trigonometric functions =
Solving trigonometric equations = Graphs of trigonometric functions

FIGURE 1.56

Standard Position of an Angle

The concept of an angle is central to the study of trigonometry. As shown in
Figure 1.56, an angle has three parts: an initial ray, a terminal ray, and a
vertex (the point of intersection of the two rays). We say that an angle is in
standard position if its initial ray coincides with the positive x-axis and its
vertex is at the origin. We assume that you are familiar with the degree
measure of an angle.* It is common practice to use 6 (the Greek lowercase
letter theta) to represent both an angle and its measure. We classify angles
between 0° and 90° as acute and angles between 90° and 180° as obtuse,
Positive angles are measured counterclockwise, beginning with the initial ray,

*For a more complete review of trigonometry, see Algebra and Trigonometry, 2nd
edition, by Larson and Hostetler (Lexington, Mass., D. C. Heath and Company,

1989).
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Negative angles are measured clockwise. For instance, Figure 1.57 shows an
angle whose measure is —45°. We cannot assign a measure to an angle merely
by knowing where its initial and terminal rays are located. To measure an
angle, we must also know how the terminal ray was revolved. For example,
Figure 1.57 shows that the angle measuring —45° has the same terminal ray
as the angle measuring 315°. We call such angles coterminal.

An angle that is larger than 360° is one whose terminal ray has revolved
more than one full revolution counterclockwise. Figure 1.58 shows an angle
measuring more than 360°. Similarly, we can generate angles whose measure
is less than —360° by revolving a terminal ray more than one full revolution
clockwise.

Coterminal Angles
FIGURE 1.57 FIGURE 1.58

Radian measure

A second way to measure angles is by radian measure. To assign a radian
measure to an angle 6, we consider 6 to be the central angle of a circular
sector of radius 1, as shown in Figure 1.59. The radian measure of 6 is
then defined to be the length of the arc of this sector. Recall that the total
circumference of a circle is 27rr. Thus, the circumference of a unit circle
(that is, of radius 1) is simply 277, and we may conclude that the radian
measure of an angle measuring 360° is 2. In other words, 360° = 2 radians.

Using radian measure, we have a simple formula for the length s of a
circular arc of radius r, as shown in Figure 1.60.

arclength = s = rf 6 measured in radians

The arc

length of the
sector is the
radian measure
of 6.

Unit Circle Circle of Radius r

FIGURE 1.59 FIGURE 1.60
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FIGURE 1.61 Radian and Degree Measure for Several Common Angles

It is helpful to memorize the conversions of the common angles pictured
in Figure 1.61. For other angles, you can use one of the following conversion

rules.
- CONVERSION RULES ~ 180° = mr radians | ,
' T -  Degrees [_> Radians Radians [ > Degrees
1° = —1—18% radians 1 radian = k1‘8kO

EXAMPLE 1 Conversions between degrees and radians

(a) 40° = (40 geg)<1;’0r;2/g) = 293 radians
(b) —270° = (=270 @eé)(%%) = —%’—T radians

T dians = (=T 180 deg) _ _ g0
(©) 2radlans—-( 2;&6)( Wﬁd) 90

9 . _ (97 180 deg\ _ ..o
(d) 2 radians = (2 ;ad)( w;ad’) = 810 [

The trigonometric functions

There are two common approaches to the study of trigonometry. In one, the
trigonometric functions are defined as ratios of two sides of a right triangle.
In the other, these functions are defined in terms of a point on the terminal
side of an angle in standard position. The first approach is generally used in
surveying, navigation, and astronomy, where a typical problem involves a
fixed triangle having three of its six parts (sides and angles) known and three
to be determined. The second approach is normally used in physics, elec-
tronics, and biology, where the periodic nature of the trigonometric functions
is emphasized. We define the six trigonometric functions, sine, cosine, tan-
gent, cotangent, secant, and cosecant (abbreviated as sin, cos, etc.), from
both viewpoints, as follows.
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DEFINITION OF THE SIX : Right triangle definitions, where 0 < 8 < /2. (Refer to Figure 1.62.)

TRIGONOMETRIC FUNCTIONS . b
: sin @ = BB oo g = B
hyp opp.
= adj. £y
cos 6 = fyp. sec 6 adi,
tan 6 = °—P¥ cot 0 = adj.
adj. : opp.

Circular function definitions, where 0 is any angle. (Refer to Figure 1.63.)

sin0=z csc0=z
r y
cos()==:\E scc(:?=r
r x
tzmé)=Z c;ot0=Z
x y

The following formulas are direct consequences of the definitions.

1 _ 1
csc()—sino seCO—COSG COto_tanG
Adjacent tan 0 = sin 6 cot 6 = C(.)S o
cos 6 sin 6
FIGURE 1.62 .
Furthermore, since
2 2 2 2 2
Y . _(y x\° _x“+y° re_
wy Lr=VETy sm20+00520—<;>+<7)— Z = =1
VI < m we can readily obtain the Pythagorean Identity
— sin? @ + cos?2 0 = 1.
\j Note that we use sin? 0 to mean (sin )2. Additional trigonometric identities
are listed next. (¢ is the Greek letter phi.)
FIGURE 1.63
TRIGONGMETRIC 'IBENTITQ‘ES - : kuthqurgaig identities: o : Reduction, formulas:
! Ty sin2 @+ cos? =1 , sin (=) = —sin 6

tan? 6+ 1 = sec® @ L o cos(=8)= cosf

co? 0+ 1=csc?d i  tan(-6)=—tanf ;
oo e . sin@=-sin(@—m
Sum or difference of two angles: ca ~cos = —cos (6 — m
sin (6 % ¢) = sin fcos ¢ * cos fsin ¢ tanf= tan(6- 7

. cos (6 = ¢) = cos B cos ¢ F sin Osin ¢ ‘ :

S + tan '
n (0= ¢) = tan 6 n ¢

1 ¥ tan ftan ¢



 law df'Cpsines,,' .

o ;;;rDbu‘b/‘ie }ingle formulas .

ﬂ:“cOSZB 2c0520~—1-—1-231n23

- ‘_Law of Cosmes ~
Vaz B+~ 2bccosA
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Half angle formulas

m2 9 = -(1 - cos 29)

= cos” 6 — sin? ‘
- 6 o c932 0 = 5(1 +\ cos 2(9)“;, .

FIGURE 1.64

REMARK All angles in the remainder of this text are measured in radians unless
stated otherwise. For example, when we write sin 3, we mean the sine of three radians,
and when we write sin 3°, we mean the sine of three degrees.

Evaluation of trigonometric functions

There are two common methods of evaluating trigonometric functions:
(1) decimal approximations with a calculator (or a table of trigonometric
values) and (2) exact evaluations using trigonometric identities and formulas
from geometry. We demonstrate the second method first.

EXAMPLE 2 Evaluating trigonometric functions

Evaluate the sine, cosine, and tangent of /3.
SOLUTION

We begin by drawing the angle 8 = /3 in the standard position, as shown
in Figure 1.64. Then, since 60° = /3 radians, we obtain an equilateral
triangle with sides of length 1 and 6 as one of its angles Since the altitude
of this triangle bisects its base, we know that x = 5. Now, using the Pythag-
orean Theorem, we have

Thus,
m_y_V32_V3
SmF=LYT 1T 2
m_x_1/2_1
CS3=7771 ~2
m_y_N32_
tn 3 = =7 V3 =
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The degree and radian measures of several common angles are given in

45° Table 1.6, along with the corresponding values of the sine, cosine, and
V2 tangent. (See Figure 1.65.)
1
TABLE 1.6  Common First Quadrant Angles
45°
- L Degrees | 0 | 30° | 45° | 60° | 90°
. m w m ks
y Radians | 0 6 7 3 )
/
! V3
/ 30°\ , sing |0 % ? - |1
// \/§
/ V3| V2|l
/ 60° - |5 |3
L n cos 6 1 5 5 > 0
FIGURE 1.65 a6 |0 ? 1| V3 | undefined
1 The quadrant signs of the various trigonometric functions are shown in
Quadrant I Quadrant T Figure 1.66. To extend the use of Table 1.6 to angles in quadrants other' than
sin 0: + sin 0: + the first quadrant, we can use the concept of a reference angle (see Figure
cos 6: — cos 6: + 1.67), with the appropriate quadrant sign.
tan 6: — tan 6: +
Quadrant I
X
OQuadrant I Guadsant IV Reference X | /-\\
uadrant uadrant angle “ & g S
sin 6: — sin 6: — \ : ﬁ“\
cos 6: — cos 0: + \ . Reference
tan 6: + tan 6: — - angle
FIGURE 1.66 Quadrant IIT Quadrant IV

FIGURE 1.67

Reference angle: 7 — 6 Reference angle: 6 — m  Reference angle: 27 — 6

For instance, the reference angle for 37/4 is /4, and since the sine is
positive in the second quadrant, we can write
sing—q* +sin = = \—/——2—
4 4 2
Similarly, since the reference angle for 330° is 30°, and the tangent is negative
in the fourth quadrant, we can write
V3

—tan 30° = ——.

tan 330° = 3

EXAMPLE 3 Trigonometric identities and calculators

(a) Using the reduction formula sin (—60) = —sin 6, we have

S m\_ . om_ V3
sSin 3— Sln3— 2.
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(b) Using the reciprocal formula sec 6 = 1 /cos 6, we have

oL 1 _
sec 60° = T 560° 1/2

2.
(¢) Using a calculator, we have
cos (1.2) = 0.3624.

Remember that 1.2 is given in radian measure; consequently, your cal-
culator must be set in radian mode. 3

Solving trigonometric equations

In Examples 2 and 3, we looked at techniques for evaluating trigonometric
functions for given values of 6. In the next two examples, we look at the
reverse problem. That is, if we are given the value of a trigonometric function,
how can we solve for 6? For example, consider the equation

sin § = 0.

We know 6 = 0 is one solution. But this is not the only solution. Any one
of the following values of 6 are also solutions.

.., =3m 2mw, —m, 0, m, 2m, 3m, . ..

We can write this infinite solution set as {n7: n is an integer}.

EXAMPLE 4 Solving a trigonometric equation

Solve for 6 in the following equation.

. V3
sin 6 = -5

SOLUTION

To solve the equation, we make two observations: the sine is negative in
Quadrants III and IV and sin (7/3) = V3/2. By combining these two
observations, we conclude that we are seeking values of 6 in the third and
fourth quadrants that have a reference angle of 7/3. In the interval [0, 27],
the two angles fitting these criteria are

0=7r+7§7=4?77 and 0=277—%T=577T.

Finally, we can add 2a1 to either of these angles to obtain the solution set
6= %ﬂ + 2nm, nis an integer

or
6= ks + 2nm, nis an integer. [ e |

3
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FIGURE 1.68

EXAMPLE 5 Solving a trigonometric equation

Solve the following equation for 6.

cos260=2-3sinh, 0=<60=2~w

SOLUTION

Using the double angle identity cos 26 = 1 — 2 sin? 6, we obtain the following
polynomial (in sin 6).
1—2sin?@=2—3sin6
0=2sin>?@—3sin 0+ 1
0= (2sin § — I)(sin 6 — 1)

If2sin @ — 1 =0, we have sin = 1/2 and 6 = 7/6 or 6 = 57%/6. If
sin 6 — 1 = 0, we have sin § = 1 and = 7/2. Thus, for 0 < 6 < 2,
there are three solutions to the given equation.

T Sw T

56”2

Graphs of trigonometric functions

To sketch the graph of a trigonometric function in the xy-coordinate system,
we usually use the variable x in place of 6. Moreover, when we write y =
sin x or y = cos x, we understand that x can have any real value and we
evaluate the functions as if x were representing the radian measure of an
angle.

REMARK  This is not the same use of x as that given in the definition of the six
trigonometric functions. Generally, the context of a problem will distinguish clearly
between these two uses of x.

One of the first things we notice about the graphs of all six trigonometric
functions is that they are periodic. We call a function f periodic if there exists
a nonzero number p such that

fx + p) = f(x)

for all x in the domain of f. The smallest such positive value of p is called
the period of f. Both the sine and cosine functions have a period of 27, and
by plotting several values in the interval 0 < x < 27, we obtain the graphs
shown in Figure 1.68.

Maximum Minimum Maximum Minimum Maximum

f !
1%‘ 3m
2
} + 4 x T x
g v'rr L;\:/i‘l_'r 27
-1 2 -1 2 2

y = sin x y = cos x

7“-
A\
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Domain: all x # (21 — 1)%
Range: (—co, ®)

y Period: =
Domain: all reals Domain: all reals
¥ Range: [-1,1] ¥ Range: [-1, 1] | : | |
Period: 2w Period: 2w 3T | |
o2+ [ | |
1 i b | I |
[ S o A | I
: A , ' | ! | [
T T ﬁ' / e T 3 _1_r‘ Ve /o I m [f27 I
/ 2 2 2 2 21 [+ 12 12 |
1 —-1 I | I |
1 -2 | |
y = sin x Yy = cos x } ~—-3'! : :
y = tan x
T
Domain: all x # nw Domain: all x # 2n — 1)5 Domain: all x # nw
Range: (— 0, —1] and [1, ) e em — Range: (— o0, )
Period: 27 Range: (oo ~land (1. =) Period: 7
y y y
| | | | | 1 1 | ! |
: 3 | 1 3Tt i | | } 3 || :
4 | | | | | |
| 2 | I 1T /0 | | i 2T I i
I T+ | 3T | | | | | 14+ \z | 3r |
| 2 2] T DO O 1 i 1 %
} } x ¢ } } ;
o T 127 i |z m o = [ [ =
| T %o I Tl 2 12 P2 oz Tt ! !
I 4 | | [ | | ! 41 | |
| 2 I | 172 | | | ! 2 ! !
| - — | | =34+ 1 | | ! + -3 ! !
| 1 1 1 | 1 I | 1 |
yEOCXT in x YT SE LT s x y_cmx—tanx
FIGURE 1.69 Graphs of the Six Trigonometric Functions

Note in Figure 1.68 that the maximum value of sin x is 1 and the minimum
value is — 1. Figure 1.69 shows the graphs of all six trigonometric functions.
Familiarity with these six basic graphs will serve as a valuable aid in sketching
the graphs of more complicated trigonometric functions.

The graph of the function y = a sin bx oscillates between —a and a and
hence has an amplitude of |a|. Furthermore, since bx = 0 when x = 0 and
bx = 2 when x = 27/b, we may conclude that the function y = a sin bx
has a period of 277/|b|. Table 1.7 summarizes the amplitudes and periods for
some general types of trigonometric functions.

TABLE 1.7
Function Period | Amplitude
2
y=asinbx or y=acosbx |—bl’|’ la|
y=atanbx or y = acotbx ‘—Z‘ not applicable
27 .
y=asecbx or y=acscbhbx m not applicable




56  Chapter 1 / The Cartesian Plane and Functions

EXAMPLE 6 Sketching the graph of a trigonometric function

Sketch the graph of f(x) = 3 cos 2x.

SOLUTION

The graph of f(x) = 3 cos 2x has the following characteristics.
amplitude: 3 period: 27# =7

Using the basic shape of the graph of the cosine function, we sketch one
period of the function on the interval [0, 7], using the following pattern.

maximum: (0, 3) minimum: (%T s —3) maximum: (7, 3)

Then, by continuing this pattern, we sketch several cycles of the graph as
shown in Figure 1.70.

y f(x) =3 cos 2x
340, 3) -
I
T ! Amplitude = 3
tr |
i l i i X
i ITI ﬁ o7 !
—1 2 : 2
ol |
2 I
—3 -
Period = 7
FIGURE 1.70 —

The discussion of horizontal shifts, vertical shifts, and reflections given
in the previous section can be applied to the graphs of trigonometric functions.
For instance, Figure 1.71 shows three different shifted graphs of sine

functions.
y y
6 . 7
5 fx = sm(x + 5) f(x) =2 + sin x
4
3 T 3T
e 8
X + T X
-2 . -2
y = sin x y = sin x
Horizontal shift to the left Vertical shift upward Horizontal and vertical shift

FIGURE 1.71
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In Exercises 1 and 2, determine two coterminal angles
(one positive and one negative) for the given angle. Give
your answers in degrees.

1. ()

2. @ 6 = 300°

In Exercises 3 and 4, determine two coterminal angles
(one positive and one negative) for the given angle. Give
your answers in radians.

3@ ,_m ®) g i

9 3

In Exercises 5 and 6, express the given angle in radian
measure as a multiple of .

5. (a) 30° (b) 150°
(c) 315° (@ 120°
6. (a) —20° (b) —240°
(c) —270° @ 144°

In Exercises 7 and 8, express the given angle in degree
measure.

7
7. @ ® %5
T ™

(c —E @ 9

7 11
8. @ % ®) —55
11 34

9. Let r represent the radius of a circle, 6 the central angle
(measured in radians), and s the length of the arc sub-
tended by the angle. Use the relationship 6 = s/r to
complete the following table.

r| 8ft 15in | 85 cm

s | 12 ft 96 in | 8642 mi
37 27
i} 1.6 e 4 3

10. The minute hand on a clock is 3} inches long (see
figure). Through what distance does the tip of the min-
ute hand move in 25 minutes?

‘11. A man bends his elbow through 75°. The distance from

his elbow to the tip of his index finger is 182 inches
(see figure).

(a) Find the radian measure of this angle.

(b) Find the distance the tip of the index finger moves.

FIGURE FOR 10

FIGURE FOR 11

12. A tractor tire 5 feet in diameter is partially filled with
a liquid ballast for additional traction. To check the air
pressure, the tractor operator rotates the tire until the
valve stem is at the top so that the liquid will not enter
the gauge. On a given occasion, the operator notes that
the tire must be rotated 80° to have the stem in the
proper position.

(a) Find the radian measure of this rotation.
(b) How far must the tractor be moved to get the valve
stem in the proper position?
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In Exercises 13 and 14, determine all six trigonometric
functions for the given angle 6.

13. (a) ¥ ()
e
- S— i X
4<
— .
8, —15)
14. (a) y
}
%3‘;
(=12, -5) ‘

In Exercises 15 and 16, determine the quadrant in
which 6 lies.

15. sin # < 0 and cos § <0
16. sin 8 > 0 and cos § < 0

In Exercises 17—-22, find the indicated trigonometric
function from the given one. (Assume 0 < 9 < #/2.)

17. Given sin 6 = l, 18. Given sin 6 = %,

2

find csc 6. find tan 6.
3 1
2 1 6
[’}
4 1
19. Given cos 6 = 5 20. Given sec § = ?3,
find cot 6. find cot 6.
13
6
5

21. Given cot § = -1—5 22. Given tan 0 = 1,

8’ 2
find sec 6. find sin 6.

LS~
<

15 2

In Exercises 23—26, evaluate the sine, cosine, and tan-
gent of the given angle without using a calculator.

23. (a) 60° (b) 2?”
T S
© 3 @
% @ -% () 150°
w m
© -3 @ 3
25. (a) 225° (b) —225°
(c) 300° (d) 330°
26. (a) 750° {b) 510°
107 177
© 3 @5

In Exercises 27—30, use a calculator to evaluate the
given trigonometric function to four significant digits.

27. (a) sin 10° (b) csc 10°
28. (a) sec 225° (b) sec 135°

T 107
29. (a) tan 9 (b) tan—9—

30. (a) cot (1.35) (b) tan (1.35)

in Exercises 31—-34, find two values of  corresponding
to the given function. List the measure of 6 in radians
(0 = 6 < 2%). Do not use a calculator.

V3 Va

31. (a) cos 8 = - (b) cos 6 = -
32. (a) sec =2 (b) sec 8 = =2

33. (@) tan 6 = 1 (b) cot 6 = —V3

. V3 , V3

34.(a)sm0=7 (b)sm0=—7

In Exercises 35—42, solve the given equation for 6
(0 = 6 < 2m). For some of the equations, you should
use the trigonometric identities listed in this section.

35. 2sin2 9 =1 36. tan? § = 3

37. tan? § — tan 0 = 0 38. 2cos2 0~ cos 8 =1
39. sec Ocsc = 2csc 0 40. sin 6 = cos 6

41. cos? @ + sin 9 = 1 42, cos (6/2) —cos 6 =1



In Exercises 43—46, solve for x, y, or r as indicated.

43. Solve for y. 44. Solve for x.

45. Solve for x. 46. Solve for r.

47. A 20-foot ladder leaning against the side of a house
makes a 75° angle with the ground (see figure). How
far up the side of the house does the ladder reach?

48. A biologist wants to know the width w of a river in
order to set instruments properly to study the pollutants
in the water. From point A, the biologist walks down-
stream 100 feet and sights point C to determine that
6 = 50° (see figure). How wide is the river?

C
™
N
| AN
1N
wi \
] N\
i o
Al 500/

100 ft

FIGURE FOR 48

FIGURE FOR 47
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49. From a 150-foot observation tower on the coast, a Coast
Guard officer sights a boat in difficulty. The angle of
depression of the boat is 4° (see figure). How far is the
boat from the shoreline?

FIGURE FOR 49

50. A ramp 17% feet long rises to a loading platform that
is 3% feet off the ground (see figure). Find the angle
that the ramp makes with the ground.

FIGURE FOR 50

In Exercises 51-56, determine the period and ampli-
tude of the given function.

b)y= 1 sin 7x

51. (a) y = 2 sin 2x 2

v3 ES
2
53. y = —2sin 10x 54, y = %cos —33
. 2 X
55. y = 3 sin 4mmx 56. y = 308 1o
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In Exercises 57—60, find the period of the given

function.
57. y = 5 tan 2x 58. y = 7 tan 27x
59. y = sec 5x 60. y = csc 4x

In Exercises 61—74, sketch the graph of the given

function.

61. y=sin§ 62. y = 2 cos 2x

63. y = —2 sin 6x 64. y = cos 2mx
65.y=—sin-2? 66. y = 2 tan x

67. y = csc% 68. y = tan 2x

69. y = 2 sec 2x 70. y = csc 2mx

1. y = sin (x + ) 72. y = cos (x—?)

73.

75.

76.

77.

y =1+ cos x-Z 74.y=1+sin<x+lr>
2 2
For a person at rest, the rate of air intake v (in liters

per second) during a respiratory cycle is

. mt
v = 0.85 sin 3
where ¢ is the time in seconds. Inhalation occurs when
v > 0, and exhalation occurs when v < 0.
(a) Find the time for one full respiratory cycle.
(b) Find the number of cycles per minute.
(c) Sketch the graph of v as a function of ¢.
In the application at the beginning of this chapter, we
developed the model

h = 50 + 50 sin 87t

for the height (in feet) of a Ferris wheel car, where ¢
is measured in minutes. (The Ferris wheel has a radius
of 50 feet.) This model yields a height of 50 feet when
t = 0. Alter the model so that the height of the car is
0 feet when ¢t = 0.

When tuning a piano, a technician strikes a tuning fork
for the A above middle C, which creates a sound (a
type of wave motion) that can be approximated by

y = 0.001 sin 8807

where y is measured in inches and ¢ is the time in
seconds.

(a) What is the period p of this function?

(b) What is the frequency f of this note (f = 1/p)?
(c) Sketch the graph of this function.

&=

HHH

Hi

78. The function

P = IOO—ZOCOSSTm

approximates the blood pressure P in millimeters of
mercury at time ¢ in seconds for a person at rest.

(a) Find the period of the function.

(b) Find the number of heartbeats per minute.

(c) Sketch the graph of the pressure function.

In Exercises 79 and 80, use a computer or graphics
calculator to sketch the graph of the given functions on
the same coordinate axes where x is in the interval
[0, 2].

79. (@) y = %sin X

4 1
b y= —-(sin mx + 3 sin 37rx)

Use a computer or graphics calculator to sketch the
functions f(x) = x sin x and g(x) = x cos x + sin x
on the same coordinate axes where x is in the interval
[0, 7). The zero of g(x) corresponds to what point on
the graph of f(x)?

82, Sales S, in thousands of units, of a seasonal product is
given by

S =583 + 32.5 cos %’

where ¢ is the time in months (with # = 1 corresponding
to January and ¢ = 12 corresponding to December).
Use a computer or graphics calculator to sketch the
graph of S and determine the months when sales exceed
75,000 units.



REVIEW EXERCISES for Chapter 1

Review Exercises for Chapter 1 61

In Exercises 1—4, sketch the interval(s) defined by the
given inequality.

1. |x-2|=3 2. 13x-2|=0
1

3.4<(x+ 32 4. — <1

|x]

In Exercises 5 and 6, find the midpoint of the given
interval.

7 10 3
[ 1] 6. [-1.]
7. Find the midpoints of the sides of the triangle whose
vertices are (1, 4) (=3, 2), and (5, 0).
8. Find the vertices of the triangle whose sides have mid-
points (0, 2), (1, —1), and (2, 1).

In Exercises 9—12, determine the radius and center of
the given circle and sketch its graph.

9. x2+y2+6x—2y+1=0
10. 4x2 + 4y? — 4x + 8y = 11

1. x2+y2+6x—-2y+10=0
12. x2—6x+y2+8 =0

13. Determine the value of ¢ so that the given circle has a
radius of 2.

x2—6x+y?+8 =c

14. Find an equation in x and y such that the distance
between (x, y) and (—2, 0) is twice the distance between
(x, y) and (3, 1).

15. Find an equation for the circle whose center is (1, 2)
and whose radius is 3. Then determine whether the
following points are inside, outside, or on the circle.
(@ (1, 5) () (0, 0)
© (-2, 1) @ (0, 4)

16. Find an equation for the circle whose center is (2, 1)
and whose radius is 2. Then determine whether the
following points are inside, outside, or on the circle.
(@ (1, D (®) 4,2
(© O, 1 @ @G, 1

In Exercises 17—20, sketch the graph of the given
equation.

—x + 3 1
17. y = —— 18. y

2
19.y=7—6x—x° 20. y = 6x — x?

Il
—
+

|

In Exercises 21 and 22, determine whether the given
points lie on the same straight line.

21. (-1,3),(2,9),@3, 1)
22. (2, 5), (4, 10), (6, 20)

In Exercises 23—26, use the slope and y-intercept to
sketch the graph of the given line.

23. 4x — 2y =6

1 5
25. —§x+gy— 1

24. 0.02x + 0.15y = 0.25
26. 51x + 17y = 102

27. Find equations of the lines passing through (-2, 4)
and having the following characteristics.
(a) Slope of %
(b) Parallel to the line 5x — 3y = 3
(c) Passing through the origin
(d) Parallel to the y-axis

28. Find equations of the lines passing through (1, 3) and
having the following characteristics.
(a) Slope of —%
(b) Perpendicular to the linex + y =0
(c) Passing through the point (2, 4)
(d) Parallel to the x-axis

29. The midpoint of a line segment is (—1, 4). If one end
of the line segment is (2, 3), find the other end.

30. Find the point that is equidistant from (0, 0), (2, 3),
and (3, —2).

In Exercises 31 and 32, find the point(s) of intersection
of the graphs of the given equations.

31. 3x —4y=8,x+y=5
R.x—y+1=0,y—-x2=7

In Exercises 33—38, find a formula for the given func-
tion and find the domain.

33. The value v of a farm at $850 per acre, with buildings,
livestock, and equipment worth $300,000, is a function
of the number of acres a.

34. The value v of wheat at $3.25 per bushel is a function
of the number of bushels b.

35. The surface area s of a cube is a function of the length
of an edge x.

36. The surface area s of a sphere is a function of the
radius r.

37. The distance d traveled by a car at a speed of 45 miles
per hour is a function of the time traveled ¢.
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38. The area a of an equilateral triangle is a function of
the length of one of its sides x.

39. The sum of two positive numbers is 500. Let one of
the numbers be x, and express th: product P of the two
numbers as a function of x.

40. The product of two positive numbers is 120. Let one
of the numbers be x, and express the sum of the two
numbers as a function of x.

In Exercises 41—46, sketch the graph of the given equa-
tion and use the vertical line test to determine whether
the equation expresses y as a function of x.

41 x> -y =0 42, 2+ 4?2 =16
43. x — y2 = 4. x*-y2+1=0
45. y = x2 - 2x 46. y = 36 — x?
47. Given f(x) = 1 — x? and g(x) = 2x + 1, find the
following.
(@) f&x) + g(x) () fx) — gx)
f(x)
(© fx)gx) @ 200
(&) flgx) ® g(f&x)
48. Given f(x) = 2x — 3 and g(x) = Vx + 1, find the
following.
(@) f(x) + gx) (®) flx) — gx)
f&x)
(©) f(x)g(x) (@) 200
(e) fgk)) ) g(f&x)

49. Consider a plane flying at a constant rate on a direct
route between two cities. The distance s (in miles) it
has traveled in ¢ hours is given by s = 560¢.

(a) Sketch the graph of this equation for ¢ = 0.

(b) What information is given by the slope of the line?

50. Find an equation of the line that bisects the acute angle
formed by the lines y = V3x and y=2.

51. Sales representatives for a certain company are required
to use their own cars for transportation. The cost to the
company is $150 per day for lodging and meals, plus
$0.30 per mile driven. Write a linear equation express-
ing the daily cost C to the company in terms of x, the
number of miles driven.

52. A contractor purchases a piece of equipment for
$36,500 that uses an average of $9.25 per hour for fuel
and maintenance. The equipment operator is paid
$13.50 per hour, and customers are charged $30 per
hour.

(a) Write an equation for the cost C of operating this
equipment ¢ hours.’

(b) Write an equation for the revenue R derivéd from
t hours of use.

(c) Find the break-even point for this equipment by
finding the time at which R = C.

In Exercises 53 and 54, use a calculator to evaluate the
given trigonometric function to four significant digits.

53. (a) tan 240°
(c) sin (—0.65)

54. (a) sin 5.63
(c) csc 150°

(b) cot 210°

(d) sec 3.1

(b) csc 2.62
(d) cos (—110°

In Exercises 55—58, find two values of § corresponding
to the given function. List 6 in degrees (0 = 6 < 360°)
and radians (0 < 6 < 2m).

55. sin 6 = — 56. csc 6 = V2

58. tan 6 = _ L

§7. cos 6 = — V3

| -
|<|U~)

In Exercises 59—64, solve the given triangle for the
indicated side and/or angle.

59. 60.

63. 64.




65. A 6-foot person standing 12 feet from a streetlight casts
an 8-foot shadow (see figure). What is the height of
the streetlight?

66. A guy wire is stretched from a broadcasting tower at
a point 200 feet above the ground to an anchor 125 feet
from the base of the tower (see figure). How long is

the wire?
Mz
- c
200
6
12 8 125
FIGURE FOR 65 FIGURE FOR 66

In Exercises 67—74, sketch a graph showing two periods
for the given function.

67. f(x) = 2 sin 335 68. f(x) = %cos g
69. f(x) = cos <2x - g) 70. f(x) = —sin (2x + g)

. f(x) = tan = 72. f(x) = csc 2x

2
73. f(x) = sec ( x - ’Z’) 74. f(x) = cot 3x

Review Exercises for Chapter 1~ 63

75. The monthly sales S in thousands of units of a seasonal
product are approximated by

S = 74.50 + 43.75 sin %’

where ¢ is the time in months with r = 1 corresponding
to January. Sketch the graph of this sales function over
one year.

76. A company that produces a seasonal product forecasts
monthly sales over the next two years to be

S =231+ 0442t + 4.3 sin 1’6—’

where S is measured in thousands of units and ¢ is the
time in months with ¢ = 1 representing January 1989.
Predict the sales for the following months.

(a) February 1989 (b) February 1990

(c) September 1989 (d) September 1990



On construction sites, otherwise harmless
objects such as metal bolts can be life-
threatening hazards. If a metal bolt is
dropped from the hundredth floor of a
skyscraper (approximately 1000 feet above
ground), its velocity at ground level will be
about 250 feet/second.

Velocity of a Free-Falling Object

A classic problem in calculus concerns the velocity of a free-falling
object. For instance, consider an object that is dropped from a height
of 25 feet above the earth’s surface. We let s(z) represent the height
(in feet) of the object at time ¢ (measured in seconds). Assuming that
the only force acting on the object is that due to gravity, and neglecting
air resistance, the height is given by the position function

1
s(t) = igz‘2 + vot + 54

where g = —32 ft/sec? is the acceleration due to gravity, vy = 0 is
the initial velocity, and s, = 25 is the initial height. Thus, for this
object, the position function is

s(t) = —16¢2 + 25,

Suppose we want to determine the velocity of the object at time

= 1 second. When ¢ = 1, the height is s(1) = 9 feet and its aver-

age velocity during the time interval [0; 1] is (9 — 25)/(1 — 0) =

—16 ft/sec. Similarly, the average velocity during the time interval
[0.5, 1] is

s(1) —5(0.5) _ 9 — 21
1—-05 0.5

= =24 ft/sec.

In general, the average velocity during the time interval [z, 1]
is [s(1) — s()]/(1 — 1). To find the instantaneous velocity when
t = 1, we let ¢ approach 1 and evaluate the resulting limit.

s = S(0) _ L9 = (~161 + 25)
v = lim == -1 1 -1
. 16(:2— 1)
= lim —=

t—>1 1—1

_ i 166+ D= 1)
T

= lin‘ll —16(t + 1)
t—
= —32 ft/sec
See Exercises 45 and 46, Section 2.3.

Chapter Overview

The concept of the limit of a function is the primary
idea that distinguishes calculus from algebra and ana-
lytic geometry. Section 2.1 begins with a brief dis-
cussion of the way a limit will be used later (in
Chapter 3) to solve the tangent line problem. The
section then gives an informal description of the idea
of the limit

lim f(x) = L.

This is followed by a theoretical definition—the so-
called “g-6 definition.”

Section 2.2 discusses properties of limits. In this
section it is important that you become familiar with
several types of functions whose limits are easily
found. For instance, the limit of f(x) = x2 as x
approaches 2 is simply f(2) = 4. Then, in Section
2.3, we use the properties discussed in Section 2.2
to find limits that are not so straightforward.

Section 2.4 introduces the notion of continuity.
Informally, when we say that a function f is contin-
uous on an interval (a, b), we mean that the graph
of f has no holes, gaps, or jumps on the interval.

The last section in the chapter discusses infinite
limits and vertical asymptotes. (Limits at infinity and
horizontal asymptotes are discussed later in the text,
in Section 4.5.)
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The domain of f(x) = In x is (0, «) by definition. Moreover, the function
is continuous since it is differentiable. It is increasing since its derivative
f'x) = 1/x is positive for x > 0, as shown in Figure 6.3. It is concave
downward since f"(x) = —1/x? is negative. We leave the proof that f is one-
to-one as an exercise (see Exercise 80). Since f is continuous, we can see by
verifying the following limits that its range is the entire real line.

lim Inx = — and limlnx =
x_)o X—>0c

Verification of these two limits is given in Appendix A.

By using the definition of the natural logarithmic function, we are able
to prove some important properties involving operations with natural loga-
rithms. If you are already familiar with logarithms, you will recognize that
these properties are characteristic of all logarithms.

THEOREM 6.2
LOGARITHMIC PROPERTIES

If a and b are positive numbers and 7 is rational, then the following properties are
true.

1.In(1)=0 2. In(ab) =Ina+Inb
3. In(@ =nlna 4, ln<§)=lna—lnb

PROOF

We have already discussed the first property. The proof of the second property
follows from the fact that two antiderivatives of the same function differ at
most by a constant. From the Second Fundamental Theorem of Calculus and
the definition of the natural logarithmic function, we know that

d 1
E[lnx] =5

Thus, we consider the two derivatives

d a 1 d _
a[ln(ax)]-;~)—c and dx[lna+lnx]—0+

1_1
X X
Since In (ax) and (In @ + In x) are both antiderivatives of 1/x, they must
differ at most by a constant

In(ax) =Ina+Inx + C.

By letting x = 1, we see that C = 0. The third property can be proved
similarly by comparing the derivatives of In (x”) and » In x. Finally, using
the second and third properties, we prove the fourth property:

In @ =lnfad N =ha+h@G")=Ina—-Inb
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EXAMPLE 1  Expanding logarithmic expressions

FIGURE 6.4

(a) In 19—0 =Inl0—-In9 Property 4

b)) InV3x+2=1InGBx + 22 = %ln Bx +2) Property 3

(©) ln%=ln(6x)—ln5=ln6+lnx—ln5 Properties 2 and 4
2 + 3)? ) N 3

@ InS5—"—=Inx>+ 32— In@xVx2+1)
V2t 1

=2Inx2+3) — [Inx + In (x2 + D3
=2In@?+3)—Inx—In @2+ N3

=21n(x2+3)—1nx—%1n\(x2+ 1)

The number e

It is likely that you have previously studied logarithms in an algebra course.
There, without the benefit of calculus, logarithms would have been defined
in terms of a base number. For example, common logarithms have a base of

10 because log;y 10 = 1. (We will say more about this in Section 6.5.)

To define the base for the natural logarithm, we use the fact that the
natural logarithmic function is continuous, one-to-one, and has a range of
(—¢e, ). Hence, there must be a unique real number x such that In x = 1,
as shown in Figure 6.4. We denote this number by the letter e. It can be

shown that e is irrational and has the following decimal approximation.

e =~ 2.71828182846

DEFINITION OF e

The letter e denotes the positive real number such that

lne=fldt=1.
1t

S

FIGURE 6.5

Once we know that In e = 1, we can use logarithmic properties to evaluate
the natural logarithm of several other numbers. For example, by using the

property

In(e®) =nlne=n()=n

we can evaluate In (e”) for various powers of n, as shown in Table 6.1 and

Figure 6.5.
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EXAMPLE 5 Logarithmic differentiation

Find the derivative of

_ -2
V2 +1

SOLUTION

We begin by taking the natural logarithm of both sides of the equation. Then

we apply logarithmic properties and differentiate implicitly. Finally, we solve
for y'.

(x — 2)?

Iny =In—F——=

Y Vx? + 1

Iny=2In(x—2)— 1 In (x2 + 1) Loéarithmic properties
2

Take In of both sides

y' 1 1 2x . .

;- = 2 P 2 - 5 x2_+‘1‘ Differentiate
T x-2 x24+1

) 2 x ,
=yx—2—x2+1 Solve for y
_ G2 A+ 2x 2 Substitute fo
TVE 1 la - 26T+ D I
(x==2)(x2+2x+2) .
(x2 T 1)3/2 Simplify o |

Since the natural logarithm is undefined for negative numbers, we often
encounter expressions of the form In |u|. The following theorem tells us that
we can differentiate functions of the form y = In |u| as if the absolute value
sign were not present.

ﬁ

THEOREM 6.4 If u is a differentiable function of x such that u # 0, then
DERIVATIVE INVOLVING J o
ABSOLUTE VALUE o [In |u]] = o

PROOF  If 4 > 0, then |u| = u, and the result follows from Theorem 6.3. If » < 0,
then |u| = —u, and we have

d —_
-% [In |ull = — [n (-] = t"; = ”;
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EXAMPLE 6 Derivative involving absolute value

Find the derivative of f(x) = In |cos x|.

SOLUTION

Using Theorem 6.4, we let u = cos x and write

'

d u _ —sinx _
d—x[ln|cosx|] =" cosx = “tanx. =
EXAMPLE 7 Finding relative extrema
y Locate the relative extrema of y = In (x2 + 2x + 3).

y=In@E?*+ 2x + 3)

SOLUTION

+2

/ Differentiating y, we obtain
W_l ﬁiX = &
dx  x*+2x+ 3"

Relative minimum

Now, since dy/dx = 0 when x = —1, we apply the First Derivative Test and
conclude that the point (—1, In 2) is a relative minimum. Since there are no

other critical points, we conclude that this is the only relative extremum. (See

FIGURE 6.6 Figure 6.6.)

EXERCISES for Section 6.1

=

In Exercises 1—6, sketch the graph of the function.

1. fx) =31Inx
3. f(x) = In2x
5. f) =In(x — 1)

2. fx) = —2Inx
4. f(x) = In |x]|
6. gx) =2+ Inx

In Exercises 7 and 8, use the properties of logarithms
to approximate the indicated logarithm given that
In 2 = 0.6931 and In 3 = 1.0986.

7. @ In6 ®) 1n§
(c) In 81 (@ In V3

8. (a) In 0.25. - (b) In24
© In V12 @ In 7—12

In Exercises 9—18, use the properties of logarithms
to write each expression as a sum, difference, or multiple
of logarithms.

2

9. In 3 10. In (xyz)
11. In ? 12. nVa -1
13. In V23 14. ln%

15. In (xzx; 1>3 16. In 3¢
17. In z(z — 1)? 18. ln1

e

In Exercises 19—24, write each expression as a loga-
rithm of a single quantity.

19. n(x—2)—In(x+2)
20. 3lnx+2Iny—4Inz

21. %[2 In(x+3)+Inx —Inx2-— 1)
22. 2[lnx—In(x+ 1) —In(x— 1)
23. 21n3-—%1n(x2+ 1
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24. %[m 2+ -G+ —In@- 1]

In Exercises 25—28, find the slope of the tangent line
to the given logarithmic function at the point (1, 0).

25. y =Inx3

26. y = Inx%?

4

3

2

1

T S e s s
o 23456
Y7 ()
28. y = Inx'?

In Exercises 29—54, find dy/dx.

29. y = Inx?
31. y = In Vx* — 4x
33. y = (Inx)*

35. y=In(xVx2—1)

30. y=In(x2 +3)
32. y=In(1 — x*?
M.y=xhx

X
36.y—ln(x+1>

X In x
37.y——n<x—2—+—1) 38.y———x—
In x _
3. y= ey 40. y = In (In x)
-1
= 2 = -——-x
41. y = In (In x9) 2.y =I5
43. y=1In ii: 4. y=InVx2-4
V4 + 2
45.y=ln(—‘}—i> 46. y = In (x + V4 + x?)
x
VAt 1
M1.y="" G+ Va2 ED
—\/x2+4_11 <2+\/x2+4)
48. y = 22 zn o
49, y = In |sin x| 50. y = In |sec x|
cos x
Stl.y=In|——7 52. y = In |sec x + tan x|
cosx — 1
—1 4+ sinx _ —
53.y=lnm- 54. y=In V1 + sin°x

In Exercises 55-60, find dy/dx using logarithmic
differentiation.

55,y =xVx2 -1
56. y = Vix — Dx — 2)(x — 3)
_xX*V3x -2 _Q/Fﬁ
57.y—————(x_1)2 58. y = -1
Cx(x = 1) G+ DHx+2)
.y = Vx + 1 60'y_(x—l)(x—2>

In Exercises 61 and 62, show that the given function
is a solution to the differential equation.

Function Differential equation

6l. y=2Inx+3
62. y=xInx — 4x

xy"+y =0
x+y-—xy'=0

In Exercises 63 and 64, find dy/dx by using implicit
differentiation.

63. x2—3Iny+y2=10
64. Inxy + 5x = 30

In Exercises 65 and 66, find an equation of the tangent
line to the graph of the equation at the given point.

Equation Point
65. y=3x2—Inx 1,3)
66. x2+In(x+ 1) +y2= ©,2)

In Exercises 67—72, find any relative extrema and
inflection points, and sketch the graph of the function.

2

67.y=%—lnx 68. y=x—Inx

1
69. y=xlnx 70. y=—¥
71.y=-—x' 72. y=x*Inx
In x

In Exercises 73 and 74, use Newton’s Method to approx-
imate, to three decimal places, the x-coordinate of the
point of intersection of the graphs of the two equations.

73. y =Inux, y=-x
74. y = Inx, y=3-—-x

75. Apply the Mean Value Theorem to the function f(x) =
In x on the closed interval [1, e]. Find the value of ¢
in the open interval (1, e) such that

O
o =202
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76. Use Simpson’s Rule with n = 4 to show that

2.71 2.81
f —dt<1<j —dt.
1t 1t

Then use this given inequality to show that
In27<Ilne<In28

and therefore 2.7 < e < 2.8.
77. Show that

In x”

fo=—
is a decreasing function for x > ¢ and n > 0.

78. A person walking along a dock drags a boat by a 10-
foot rope. The boat travels along a path known as a
tractrix (see figure). The equation of this path is

10 + V100 — x?
y= 10 In (——‘———x—-‘——x—> - V100 — x2.
‘What is the slope of this path at the following x-values?
(@ x=10 b)x=35

10 - \
Tractrix
\

t N\
N\
| S e x
5 10 FIGURE FOR 78

79. There are 25 prime numbers less than 100. The Prime
Number Theorem states that if p(x) is the num-
ber of primes less than x, then the ratio of p(x) to
x/(In x) approaches 1 as x approaches infinity. Com-
pute x/(In x) for x = 1000, x = 1,000,000, and
x = 1,000,000,000. Then compute the ratio of p(x) to
x/(In x) given that p(1000) = 168, p(10°) = 78,498,
and p(10°) = 50,847,478.

80. Prove that the natural logarithmic function is one-to-
one.

=] In Exercises 81 and 82, show that f = g by using a

computer to sketch the graph of f and g on the same
coordinate axes. (Assume x > 0.)

2

81. f(x) = lnxz

gx)=2mnx—1In4
82. f(x) =In Vx(x2 + 1)

glx) = %[lnx + In (x2 + 1)]

= In Exercises 83 and 84, use a computer or calculator
and Simpson’s Rule with n = 10 to approximate the

integral

[t
1t
and compare the result with In x for the specified value

of x.

83. x=3 84. x = 8.7

6.2 The Natural Logarithmic Function and Integration

Log Rule for integration = Intasrals of triconamatric
0g Rule Tor integration ntegrals of trigonometnc

-

inctions » The <iy basic tricon
1ctions ne siy hasic trigo

nometric integrals

In the previous section we defined the natural logarithmic function as an
antiderivative of the function y = 1/x. With this definition, we are able to
integrate several important functions that were not covered by previous inte-
gration rules. Specifically, the differentiation rules

d 1
— 1 == and
2 LI |x[]

X

d u'
e (n |ul] = "

produce the following integration formulas.

THEOREM 6.5
L0G RULE FOR INTEGRATION

Let u be a differentiable function of x.

1 1
1.f;dx=lnlx(+C 2.f;du=ln|u|+C




a -I-lnx)2
1. f x2—2

IS.J dx

Vx+1
x2+2x+3

17. Jx3+3x2+9x

19. J'x2/3(1 + xl/S) dx

21'J1+1\/?cdx
23.f\/-\/f dx
el

x(x
7 [

29. fcsc 2x dx

31. fcos (1 —x)dx

1. J‘secxtanxdx
secx — 1

cos ¢
3. jl + smt
37. f(cscx — sin x) dx

39, Jl—coso
6 — sin 6

12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

3.

36.

38.

40.

Section 6.2 / The Natural Logarithmic Function and Integration 341

Ty -1
Jox-kldx
[
x + 1)?
x+3
Jx2+6x+7abc
2
J’(lnx) i
x
1
Jxln(xz)dx

1—de
1+ Vx

fivae
fu?wﬁ

f tan Sx dx

x
j sec 2 dx
tan® 2x
f sec 2x
sin x
1+ cosx

j (sec t + tan t) dt

f sin? x — cos? x

Cos x

dx

_;( (csc 20 — cot 26)> do

In Exercises 41—44, show the equivalence of the given

pair of formulas.

41. ftanxdx= ~In |cos x| + C

J'tanxdx=ln.secx| +C

42. jcotxdx= In|sinx| + C

fcotxdx= —In|csc x| + C

43. fsecxdx=ln|secx+tanx| + C

fsecxdx= —In |sec x — tanx| + C

44. fcscxdx= —lnlcscx+cotx| +C

fcscxdx=lnlcscx—cotx| +C

In Exercises 45 and 46, find the area of the indicated

region.
2+
45, y = 14 46, y =212
X
y y
5...’.
4 —~
3_...
2,_
1+
o 123456
5
47. A population of bacteria is changing at the rate of

48.

49.

50.

dP _ 3000
dr 1+ 0.250

where ¢ is the time in days. Assuming that the initial
population (when # = 0) is 1000, write an equation that
gives the population at any time ¢, and then find the
population when ¢ = 3 days.

Find the time required for an object to cool from 300°
to 250° if that time is given by

;= 10 1 dT.
In2 Jaso T — 100

Find the average value of the function

f&x) =

= | m=

on the interval 1 = x =.35.
The demand equation for a product is given by

90,000
T 400 + 3x°

Find the average price p on the interval 40 =< x < 50.
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6.3 Inverse Functions

Inverse functions = Existence of an inverse function = Derivative of an inverse function

When we introduced the notion of a composite function in Section 1.5, we
noted that composition is not commutative. That is, it is not necessarily true
that f(g(x)) and g(f(x)) are equal. We now look at a special case for which
composition is commutative—when f and g are inverses of each other.

DEFINITION OF INVERSE A function g is the inverse of the function f if
FUNCTION f(gx)) = x for each x in the domain of g
and
g(fx)) = x for each x in the domain of f.

We denote g by £~ (read “f inverse”).

REMARK  Although the notation used to denote an inverse function resembles
exponential notation, it is a different use of —1 as a superscript. That is, in general,

i # 1/fR).

Here are some important observations about this definition.

1. If g is the inverse of £, then f is also the inverse of g.

2. The domain of f~! is equal to the range of f (and vice versa), as indicated
Domain of f = Range of g in Figure 6.8.
Domain of g = Range of f 3. A function need not possess an inverse, but if it does, the inverse is

FIGURE 6.8 unique. (See Exercise 57.)

To understand the concept of an inverse function, it is helpful to think
of 1 as undoing what has been done by f. For example, subtraction can be
used to undo addition, and division can be used to undo multiplication. Use
the definition of an inverse function to check the following inverses.

l.f@)=x+c¢ and flx)=x-c¢

2. f(0) = ex and [l =1

- c*+0
c

EXAMPLE 1  Verifying inverse functions

Show that the following functions are inverses of each other.

fo=2 -1 and g = ot

SOLUTION

“First, note that both composite functions exist, since the domain and range
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of both f and g consist of the set of all real numbers. The composite of f with
g is given by

3
faen = 2] ~ 1= o)~ =a -1

The composite of g with f'is given by

sty = JEEZDIL sy

Since f(g(x)) = g(f(x)) = x, we conclude that f and g are inverses of each
other. (See Figure 6.9). e

In Figure 6.9 the graphs of f and f~! appear to be mirror images of each
other with respect to the line y = x. We say that the graph of f ™! is a reflection
of the graph of f in the line y = x. This idea is generalized in the following
theorem.

gx) = \3/x ; !

X

RGRE 69 [ ] fw=2-1
THEOREM 6.7 The graph of f contains the point (a, b) if and only if the graph of f~! contains
REFLECTIVE PROPERTY the point (b, a).

OF INVERSE FUNCTIONS

The graph of f~' is a reflection of the
graph of f in the line y = x.

If (a, b) is on the graph of f, then f(a) = b and we have
7o) = f7(fa) = a.

Thus, (b, a) is on the graph of f~!, as shown in Figure 6.10. A similar
argument will prove the theorem in the other direction.

FIGURE 6.10
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Not every function has an inverse, and Theorem 6.7 suggests a graphical
test for those that do. It is called the horizontal line test for an inverse
function, and it follows directly from the vertical line test for functions together
with the reflective propc ty of the graphs of f and f~!. The test states that a
function f has an inverse if and only if every horizontal line intersects the
graph of f at most once. The following theorem formally states why the
horizontal line test is valid. (Recall from Section 4.3 that a function is strictly
monotonic if it is either increasing on its entire domain or decreasing on its
entire domain.)

THEOREM 6.8
THE EXISTENCE OF AN
INVERSE FUNCTION

1. A function possesses an inverse if and only if it is one-to-one.
2. If fis strictly monotonic on its entire domain, then it is one-to-one and, hence,
possesses an inverse.

PROOF

FIGURE 6.12

We leave the proof of the first part as an exercise (see Exercise 59). To prove
the second part, recall from Section 1.5 that f is one-to-one if for x,, x, in
its domain

fa) = f) > x = x.

The contrapositive of this implication is logically equivalent and it states that

x1Fx > f) # flxy).

Now, choose x; and x, in the given interval. If x; # x,, and since f is strictly
monotonic, it follows that either f(x;) < f(x,) or f(x;) > f(x,). In either case,
f(x1) # f(x,). Thus, fis one-to-one on the interval.

EXAMPLE 2 The existence of an inverse

Determine which of the following functions has an inverse.

@ fx)=x>+x—-1 ® f)=x3—x+1

SOLUTION

(a) From the graph of f given in Figure 6.11 it appears that f is increasing
over its entire domain. To verify this, we note that the derivative,
f'(x) = 3x2 + 1, is positive for all real values of x. Therefore, fis strictly
monotonic and it must have an inverse.

(b) From the graph given in Figure 6.12 we can see that the function does
not pass the horizontal line test. In other words, it is not one-to-one. For
instance, f has the same value when x = —1, 0, and 1.

f(=D = f(1) = f0) =1 Not one-to-one

Therefore, by Theorem 6.8, f does not have an inverse. —
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REMARK Often it is easier to prove that a function has an inverse than to find the
inverse. For instance, it would be difficult algebraically to determine the inverse of
the function in Example 2(a).

GUIDELINES FOR FINDING THE
INVERSE OF A FUNCTION

[

. Use Theorem 6.8 to determine whether the function given by y = f(x) has an
inverse.

2. Solve for x as a function of y: x = g(y) = f}(y).

. Define the domain of £~ to be the range of f.

4, Verify that f(f~'(x)) = x and f1(f(x)) = x.

w

20

FIGURE 6.13

To avoid the confusion that could arise from using y as the independent
variable for f71, it is customary to write ™! as a function of x simply by
interchanging the variables x and y after solving for x. This is illustrated in
the next example.

EXAMPLE 3 Finding the inverse of a function

Find the inverse of the function given by f(x) = V2x — 3.

SOLUTION

By Theorem 6.8, this function has an inverse because it is increasing on its
entire domain, as shown in Figure 6.13. To find an equation for this inverse,
we let y = f(x) and solve for x in terms of y.

V2x —3 =y Lety = f(x)
2x — 3 =y?
y2 + 3
X =75 Solve for x
2
243
£ =

Since the range of f is [0, ), we define this interval to be the domain of
1. Finally, using x as the independent variable, we have

2
x*+3
f _l(x) = 7’ 0=unx. Determine domain | e |

REMARK Remember that any letter can be used to represent the independent vari-
able. Thus,

_ 243 _ _x2+3 B 2 +3
=" s f==—5—, and f ="

all represent the same function.
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Theorem 6.8 is useful in the following type of problem. Suppose you
are given a function that is not one-to-one on its domain. By restricting the
domain to an interval on which the function is strictly monotonic, you can
conclude that the new function is one-to-one on the restricted domain. The

next example illustrates this procedure.

EXAMPLE 4 Finding an interval on which a function is one-to-one

Show that the sine function, f(x) = sin x, is not one-to-one on the entire real
line. Then show that [—m/2, /2] is the largest interval, centered at the

origin, for which f is strictly monotonic.

SOLUTION
y —
! ! It is clear that f is not one-to-one, since many different x-values yield the
| ! (g 1) same y-value. For instance, sin (0) = 0 = sin (7). Moreover, f is increasing
‘\\ e | on the open interval (—#/2, 7/2), since its derivative
! .
§ i \%\ x f'(x) = cos x
| |
“ie X is positive there. Finally, since the left and right endpoints correspond to
<—g, - 1) | f0) = sin x relative extrema of the sine, we can conclude that fis increasing on the closed
interval [~ /2, /2] and that in any larger interval the function would not
FIGURE 6.14 be strictly monotonic. (See Figure 6.14.)
The next two theorems discuss the derivative of an inverse function. The
reasonableness of Theorem 6.9 follows from the reflective property of inverse
functions as shown in Figure 6.10, and a formal proof of the theorem is given
in Appendix A. )
THEOREM 6.9 Let f be a function that possesses an inverse.
SIOF':'TEI:E'IIHAQ'I‘IBTY OF 1. If f is continuous on its domain, then f~! is continuous on its domain.
INVERSE FUNCTIONS 2. If f is increasing on its domain, then f~! is increasing on its domain.

3. If f is decreasing on its domain, then f~! is decreasing on its domain.

4. If f is differentiable at ¢ and f'(c) # O, then ! is differentiable at f(c).
THEOREM 6.10 If f is differentiable on its domain and possesses an inverse function g, then the
THE DERIVATIVE OF AN derivative of g is given by

INVERSE FUNCTION |
g (x) = Feo) f(gx) # 0.




35. fx) =Inx 36. f(x) = 3xVx + 1

-2 -

In Exercises 37—42, use the derivative to determine
whether the given function is strictly monotonic on its
entire domain and therefore has an inverse.

3x

2
40. f(x) = x* —6x> + 12x
2. fx)=Inx-3)

37. f) = (x+aP + b 38. f(x) = cos

x4
39. f(x) = o 2x2
4. fx)=2-x—x°

In Exercises 43—48, show that f is strictly monotonic
on the given interval and therefore has an inverse on
that interval.

Function Interval
43. f(x) = (x — 4)? [4, )
4. f(x) = |x + 2| [-2, »)
8. 1) = ©, %)
46. f(x) = tan x (—g —’2—7)
47. f(x) = cos x [0, =]

48. f(x) = secx

bule

In Exercises 49—52, show that the slopes of the graphs
of fand f~! are reciprocals at the given points.

Functions Point
.3 <l l)
49, f(x) =x 28
e 11
f l(x) - \/; (8’ 2)
50. f(x) =3 — 4x a1, -1
fw =2 -1, 1)
51 f) = Vx— 4 G, 1)
i@ =22+ 4 (1,5

(13
)

1
52, f(x) = 17 22

f“(x) _ Il - x
x
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In Exercises 53 and 54, the derivative of the function
has the same sign for all x in its domain, but the function
is not one-to-one. Explain why.

53. f(x) = tan x 54. f(x) = x—zi_z

In Exercises 55 and 56, find the inverse function of f
over the specified interval. Use a computer or graphics
calculator to sketch the graph of fand f~! on the same
coordinate axes and observe that the graph of f~! is a
reflection of the graph of fin the liney = x.

Function Interval

§5. f) = 5y (2,2
0 = x2—4 ’

56. f(x) =2 — x% ©, 10)

57. Prove that if a function has an inverse, then the inverse
is unique.

58. Prove that if f has an inverse, then (f™)7! = f.

59. Prove that a function has an inverse if and only if it is
one-to-one.

60. Prove that if f and g are one-to-one functions, then

(fo ) ') = (g7 o f H).
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6.4 Exponential Functions: Differentiation and Integration

The natural exponential function = Differentiation = Integration

In Section 6.1 we saw that the function f(x) = In x is increasing on its entire

-1 = X
y T@=e domain, and hence it has an inverse f~!. Moreover, from the domain and
range of f, we can conclude that the domain of f~! is the set of all reals, and
T the range is the set of positive reals, as shown in Figure 6.16. Thus, for any
2+ real number x,
1
_/ / FF@) = In (f 1) = x. x is any real number
~2 ‘i_l 1/t 2 3 We also know that if x happens to be rational, then
24 fw) =mnx In(e*) =xlne = x(1) = x. x is a rational number

Since the natural logarithmic function is one-to-one, we conclude that FAE))

FIGURE 6.16 and e* agree for rational values of x. Because of this agreement, we extend
the definition of e* to cover all real numbers.
DEFINITION OF THE NATURAL The inverse of the natural logarithmic function f(x) = In x is called the natural
EXPONENTIAL FUNCTION exponential function and is denoted by
i) = e
That is,

y=¢* ifandonlyif x=1Iny.

We summarize the inverse relationship between the natural logarithmic
function and the natural exponential function as follows.

In (e*) = x and el x = x Inverse relationships

These two properties are useful in solving equations involving exponential
and logarithmic functions, as demonstrated in the following example.

EXAMPLE 1 Solving exponential and logarithmic equations

Solve for x in the following equations.

(@) 7 = e**! b In@2x-3)=5
SOLUTION

(a) We can convert from exponential form to logarithmic form by taking the
natural log of both sides of the exponential equation.

7= > In7=In(e*Y) C> h7=x+1

Thus, x = —1 + In 7 = 0.946.
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(b) To convert from logarithmic form to exponential form, we apply the
exponential function to both sides of the logarithmic equation.

InQRx—3)=5 [_> @I =¢ > 2x-3=¢

Thus, x = 3(¢5 + 3) = 75.707. =

The familiar rules for operating with rational exponents can be extended
to the natural exponential function, as indicated in the following theorem.

THEOREM 6.11
OPERATIONS WITH EXPONENTIAL
FUNCTIONS

Let a and b be any real numbers. Then the following properties are true.

ea
1. e%?b = go*b 2. 3= ed b 3. (e9)? = e

“
<
I
a
)

FIGURE 6.17

We prove Property 1 and leave the proofs of the other two properties as
exercises (see Exercises 87 and 88).

In (e%?) = In (¢9) + In (¢?) = a + b = In (¢**D)

Thus, since the natural log function is one-to-one, we conclude that
aeb — ea+b.

In Section 6.3, we saw that an inverse function f~! shares many properties
with £. Thus, the natural exponential function inherits the following properties
from the natural logarithmic function. (See Figure 6.17.)

R ]
PROPERTIES OF THE NATURAL 1. The domain of f(x) = e* is (—%, %), and the range is (0, ®).
EXPONENTIAL FUNCTION 2. The function f(x) = e* is continuous, increasing. and one-to-one on its entire
~ domain.
3. The graph of f(x) = e* is concave upward on its entire domain.
4. lim e* = 0 and lim e* = ®
Derivative of the natural exponential function
One of the most intriguing (and useful) characteristics of the natural expo-
nential function is that if is its own derivative. In other words, it is a solution
to the equation y' = y. This result is stated in the next theorem.
—
THEOREM 6.12 Let u be a differentiable function of x.
THE DERIVATIVE OF THE NATURAL P d du
EXPONENTIAL FUNCTION 1L Sl =e 2. Sl =

dx
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PROOF  Let f(x) = In x and g(x) = ¢*. Then f'(x) = 1/x, and by Theorem 6.10 we
have

e =Ly == L
p ax 8 @) fen /ey ¢

The derivative of e* follows from the Chain Rule.

REMARK  We can interpret this theorem geometrically by saying that the slope of
the graph of f(x) = e* at any point (x, e*) is equal to the y-coordinate of the point.

EXAMPLE 2 Differentiating exponential functions

d
(a) dix[er_l] = Eue" = De2x~1 u=2x-1
d_ _ du 3\ _ 3e 3
(b) 7 le 3 = e = (p)e = 2 u= —% [
EXAMPLE 3 Locating relative extrema
y Find the relative extrema of f(x) = xe*.
3+ SOLUTION
fo) = xet 2 The derivative of f is given by
It f'x) = x() + eX(1) Product Rule
3 2 . = e+ D).
——— : ' ) . o
1, —e 1) Now, since e* is never zero, the derivative is zero only when x = —1.
Relative: minimun:] T Moreover, by the First Derivative Test, we can determine that this corre-

sponds to a relative minimum, as shown in Figure 6.18. Since the derivative
FIGURE 6.18 f'(x) = e*(x + 1) is defined for all x, there are no other critical points.
e |

EXAMPLE 4  The normal probability density function

Show that the normal probability density function

e—x2/2

1
f(x)_\/2—7'7

has points of inflection when x = =*1.
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y

y = e* cos(e’) T
1 i

FIGURE 620 (@

EXERCISES for Section 6.4

®) © =

In Exercises 1—4, write the logarithmic equation as an
exponential equation and vice versa.

1. (a) & = (b) 2 =7.389 . ..
2. (a) e2=0.1353 . .. (b) e7! = 0.3679 . ..
3.@ In2=06931... (b)In84=2128...
4. (a) In0.5= —-0.6931 ...

®)Inl1=0

In Exercises 5—8, solve for x.

5. () enx=4 (b) lIne* =3
6. (a) e 2x =12 by lne*=20
7. (@ Inx =2 (b) e* =4
8. (@ Inx2=10 (b) e =

In Exercises 9—12, sketch the graph of the given
function.

1
9. y=¢"* 10. y = Ee"

11. y = e 12. y = 2

In Exercises 13—16, show that the given functions are
inverses of each other by sketching their graphs on the
same coordinate system.

13. f() = €%, g(x) = In Vx

14. f(x) = e*?, gx) = In x*

15. f)=e*— L, gx) =In(x + 1)
16. fy =L g =1+ Inx

In Exercises 17 and 18, compare the given number to
the natural number e.

271,801 299
17. (a) W
1

1 1
18. (a)1+1+§+g+52

11 o111 i
—_— — —_— — _+__
1+ 1+ 5+ e+ 50" 20" 720 T 5040

In Exercises 19 and 20, find the slope of the tangent
line to the given exponential function at the point
0, 1).

19. (a) y = &

20. (a) y = &** () y

//
©, D

In Exercises 21-42, find dy/dx.

21, y = ¥ 2. y=¢€"~
23,y = e 2x*¥ 24, y=e"
25. y = V* 26. y = x%7*
27.y = (" + &)} 28, y = ¢ ¥

> 1+ e
29. y = In (e¥) 30. y=1In <l—e)‘)

2
= 2x —
3.y =In(l + &) Ry= s
X + -X
33.y= ¢ 2e 34y=xex_ex
35. y = x2%* — 2xe* + 2e*
ex — e"X

36. y = 2
37.y=e*Inx 38.y=eInx
39. y = e*(sin x + cos x) 40, y = e~

41. y = tan® (¢ 42.y=Ine*
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In Exercises 43 and 44, use implicit differentiation to
find dy/dx.

43. xe? - Ox+3y=0 44 e¥ +x2—-y2=10

In Exercises 45 and 46, show that the function y = f(x)
is a solution of the given differential equation.

45. y = ¢*(cos V2x + sin V2x)
Y =2y +3y=0

46. y = ¢*(3 cos 2x — 4 sin 2x)
Y =2 +5=0

In Exercises 47—52, find the extrema and the points of
inflection (if any exist), and sketch the graph of the
function.

1 2 er — e
= —(x*/2) = -~
4. ) = e 48. f(x) 5
X + -X
49. f(x) = 6—2—6 50. f(x) = xe™*

51. f(x) = x2
52, f(x) = =2 + €34 — 2%)

53. Find an equation of the line normal to the graph of
y=e*at (0, 1).

54. Find the point on the graph of y = ¢™* where the normal
line to the curve will pass through the origin.

55. Find the area of the largest rectangle that can be
inscribed under the curve y = ¢™*" in the first and second
quadrants.

56. Find, to three decimal places, the value of x such that
e * = x. [Use Newton’s Method.]

In Exercises 57—76, evaluate the integral.
1 2

57. f e™2% dx 58. J; el ™* dx
0

2
59, f 2 = DeX 31 gx 60, f x2e* dx
0

e* er
o i @ [
\/Q 2
63. | xe*” dx 64. J; xe~ @72 dx
3 eB/x
65. f ;Z—dx 66. f(e" — e™™)2 dx
1

er + e™*

X —X
67. J'eX\/l o dx 68. fe—-—e—dx

e+ e 2e* — 27
69. J';x__"e_-;dx 70. J'(ex + e—x)de

5 — e* e + 2e* + 1
71- f ezx dx 72' f e* dx

73. f &sin ™ cos x dx 74. f e'an 2x gec? D x dx

75. f e * tan (e™*) dx 76. f In (e271) dx

In Exercises 77—80, find the area of the region bounded
by the graphs of the equations.

77.y =€, y=0,x=0,x =5
8. y=e*y=0,x=a,x=b
79.y=xe@? y=0,x=0,x=V2
80.y=e2+2,y=0,x=0,x=2

81. Given ¢* = 1 for x = 0, it follows that

j e’dtzf 1 dt.
0 0

Perform this integration to derive the inequality e* =
1+ xforx=0.

82. Integrate each term of the following inequalities in a
manner similar to that of Exercise 81 to obtain each
succeeding inequality for x = 0. Then evaluate both
sides of each inequality when x = 1.

(@ e*=1+x
X2
b)es=1+x+—

2
JER—
XE +_ —_
(c) e 1+ x 2+6
x2 x3 x4
XZ + _ —_— —_—
d) e 1 Jc+2+6+24

In Exercises 83 and 84, find a function f that satisfies
the given conditions.

8. /') = 3" + e,
fO = 1.f/ @ =0

84. f"(x) = sin x + €2*,

| R |
fO = 7.70) =3

. Given the function

2

fO) = 1o
use a computer or graphics calculator to (a) sketch the
graph of f, (b) find any horizontal asymptotes, and
(c) find lir% f(x) (if it exists).

. The disglacement from equilibrium of a mass oscillat-
ing on the end of a spring suspended from the ceiling
is given by y = 1.56¢79?% cos 4.9t where y is the
displacement in feet and 7 is the time in seconds. Use
a computer or graphics calculator to sketch the graph
of the displacement function on the interval [0, 10] and
find the time past which the displacement does not

exceed 3 inches from equilibrium.
a

e
87. Prove that 5= e?7b,

88. Prove that (e%)? = e,
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6.5 Bases Other Than e and Applications

Bases other than e = Differentiation and integration = Power Rule for real exponents = Applications

The base of the natural exponential function is e. Using the third property in
Theorem 6.11, we now assign a meaning to the exponential function y = a*.

DEFINITION OF EXPONENTIAL
FUNCTION TO BASE a

If a is a positive real number (a # 1) and x is any real number, then f(x)= a* is
given by

f(x) = g* = (eln a)x = e(ln a)x'

We call f the exponential function to the base a.

REMARK These functions obey the usual laws of exponents. For example, a*a” =
ax+y.

We can give a similar definition for logarithmic functions to other bases.

DEFINITION OF LOGARITHMIC
FUNCTION TO BASE a

If a is a positive real number (¢ # 1) and x is any positive real number, then
fx) = log, x is given by

1
fx) =log,x = na Inx.

We call f the logarithmic function to the base a.

Logarithmic functions to the base a have properties similar to those of
the natural logarithmic function given in Theorem 6.2. For instance, the
following properties are valid.

log,1 =0
log, xy = log, x + log, y

loga-;f = log, x — log, y

log, x" = nlog, x

From the definition of the exponential and logarithmic functions to a base
a, it follows that f(x) = a* and g(x) = log, x are inverse functions of each
other. Thus,

a8 = x  and  log, a* = x.

Moreover,

y=a* if and only if  x = log, y.
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The logarithmic function to the base 10 is called the common logarithmic
function. Thus, for common logarithms, we have y = 10* if and only if

x = logo -

EXAMPLE 1 Bases other than e

Solve for x in the following equations.

1
(@ 3 =755 (b) logyx = —4

SOLUTION

(a) Applying the logarithmic function to the base 3 to both sides produces

log; 3* = log, 51,7 = log; 373

x = -3
(b) We solve for x as follows.
log, x = —4
2log2x — 2—4
1 _ 1
YT 16 =

Differentiation and integration

To differentiate exponential and logarithmic functions to other bases, you have
three options: (1) use the definition of a* and log, x and differentiate using
the rules for the natural exponential and logarithmic functions, (2) use log-
arithmic differentiation, or (3) use the following differentiation rules for bases
other than e.

THEOREM 6.14 Let a be a positive real number (a # 1) and let u be a differentiable function
DERIVATIVES FOR BASES of x.
OTHER THAN ¢
1. dix[a"] = (In a)a* ; 2. %[a“] = (In a)a* %
d 1 d 1 du
3 g0t = (In &)x 4 gellogaul = (In a)u dx

g —

PROOF By definition, a* = e ®*. Therefore, we can prove the first property by
letting u = (In a)x and differentiating with base e to obtain

dix[a"] = %[e(’“ D] = e“% = ¢ 9% (In @) = (In a)a*.
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(c) When ¢ = 10,

1.25

Y= Tv o020 e

(d) Finally, taking the limit as ¢ approaches infinity, we have
i 1.25 _ 125
T+ 025 % 1+0

(See Figure 6.21.)

=125¢.

y= 125

o5k 1+ 0.25¢7 0%
1.00 4

P

T L

N N A N f e L
§ 12345 78 910
s |

FIGURE 6.21

EXERCISES for Section 6.5

In Exercises 1—4, write the logarithmic equation as an
exponential equation and vice versa.

1
1. (a) 2° =8 (®) 371 = 3
2. (@) 277 =9 (b) 1634 =8
3. (a) logyp0.01 = =2 () loggs 8 — =3
1
4. (a) log; 5= 2 (b) 49'2 =7

In Exercises 5—10, solve for x (or b).
(b) logu 0.1 = x

5. (a) logje 1000 = x
' (b) logs 25 = x

1
. (a) log, & =x

6

7. (a) logzsx = —1 (b) log, x = —4

8. (a) log, 27 = 3 (b) log, 125 = 3

9. (a) x2—x=1logs25 (b) 3x +5 =log, 64
10. (a) log; x + log; x—-—2)=1

(b) logo (x +3) — logjox =1

In Exercises 11—14, sketch the graph of the given

function.
11. y = 3% 12, y = 371
13,y = (%) 4. y =2¢

In Exercises 15 and 16, show that the given functions
are inverses of each other by sketching their graphs on
the same coordinate system.

15. f(x) = 4%, gx

) = log, x
16. f(x) = 3%, gx) =1

ogs X

In Exercises 17—28, find dy/dx.

17. y = 4 18. y = 2%

19. y = 5572 20. y = x(773%

21, y = x22% 22, y = 2¥37*

23. y = logz x 24. y = logyo 2x

25. y = log, = 2. y = log, 2!
-)’”ngx_l .y = logs 2

2
27. y = logs Vx* = 1 28,y = 1og10x
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In Exercises 29—32, use logarithmic differentiation to

find dy/dx.
29. y = x¥* 30. y = x*71
3.y = (x — 2)**! 32.y=(1+xV*

In Exercises 33—38, evaluate the given integral.

33.

3s.

37.
39.

40.

41.

42.

43,

4.

45,

46.

f 3% dx 34. f 47" dx
2 0
f_l 2% dx 36. f-z (3 -5 dx
f x5~ dx 38. f (3 — 070 dx
Find the area of the region bounded by the graphs of

y=3%y=0,x=0,and x = 3.
Show that

In2
logy 2 = n10°

Find the amount of time necessary for P dollars to
double if it is compounded continuously at 73 percent
interest. Find the time necessary for it to triple.

Find the amount of time necessary for P dollars to
double if it is compounded continuously at 9 percent
interest. Find the time necessary for it to triple.
Complete the accompanying table to demonstrate that
e can also be defined as

lirg+ (1 + x)V=,

x 11071 | 1072 | 107* | 10°¢

1+ x>

Complete the accompanying table to find the time ¢
necessary for P dollars to double if interest is com-
pounded continuously at the rate r.

r|2% | 4% | 6% | 8% | 10% | 12%

t

If $1000 is invested at 74 percent interest, find the
amount after 10 years if interest is compounded

(a) annually (b) semiannually
(c) quarterly (d) monthly
(e) daily (f) continuously

If $2500 is invested at 12 percent interest, find the
amount after 20 years if interest is compounded

(a) annually (b) semiannually

(c) quarterly (d) monthly

(e) daily (f) continuously

47.

48.

49.

50.

51.

52.

The yield V (in millions of cubic feet per acre) for a
stand of timber at age # is given by

V= 6_7e(—48.1)/t

where ¢ is measured in years.

(a) Find the limiting volume of wood per acre as ¢
approaches infinity.

(b) Find the rate at which the yield is changing when
t = 20 and ¢t = 60 years.

The average typing speed (in the number of words per

minute) after # weeks of lessons is given by

157

N = T 5200w

(a) Find the limiting number of words per minute as
approaches infinity.

(b) Find the rate at which typing speed is changing
when ¢ = 5 and ¢ = 25 weeks.

In a group project in learning theory, a mathematical

model for the proportion P of correct responses after n

trials was found to be

0.83
P = 1+ e—OAZn'

(a) Find the limiting proportion of correct responses
as n approaches infinity.

(b) Find the rate at which P is changing after n = 3
and n = 10 trials.

A lake is stocked with 500 fish, and their population

increases according to the logistics curve

10,000

L T

where ¢ is measured in months. At what rate is the fish
population changing at the end of 1 month and at the
end of 10 months? After how many months is the pop-
ulation increasing most rapidly? (See figure.)

10000+ ———— == —m—
8,000 -~
6,000 +
4,000+
2,000 +

Population (p)

] i
T

s
T T
2 4 6 8

FIGURE FOR 50

-ttt
10 12 14 16 18 20 22 24

Time in months (¢)

Consider a deposit of $100 placed in an account for 20
years at r% compounded continuously. Use a compu-
ter or graphics calculator to sketch the graphs on the
same coordinate axes of the amount in the account if
@ r=6%, (b)r=9%, and (c) r = 12%.

Repeat Exercise 51 for an account that earns interest
for 50 years.
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6.7 Inverse Trigonometric Functions and Differentiation

Inverse trigonometric functions = Derivatives of inverse trigonometric functions = Review of basic differentiation formulas

y = sin x
Domain: [~7/2, 7/2]
Range: -1, 1]

7!

AN

—

SIEk
[SIE R
/]

FIGURE 6.26

X

This section begins with a rather startling statement: None of the six basic
trigonometric functions has an inverse. This statement is true because all six
trigonometric functions are periodic, and hence not one-to-one. In this section
we will examine these six functions to see whether we can redefine their
domains in such a way that they will have inverses on the restricted domains.

For example, in Section 6.3, we demonstrated that the sine function is
increasing (and therefore is one-to-one) on the interval [—7/2, 7/2], as shown
in Figure 6.26. On this interval we define the inverse of the restricted sine
function to be

y = arcsin x if and only if siny = x

where =1 < x = 1 and —7/2 =< arcsin x = /2.

Under suitable restrictions, each of the six trigonometric functions is one-
to-one and so possesses an inverse, as indicated in the following definition.
(The term iff is used to represent the phrase “if and only if.”)

DEFINITION OF INVERSE
TRIGONOMETRIC FUNCTIONS

Function Domain Range
y =arcsinx iff siny = x -1=x =1 —gSysq—;
y = arccos x iff cosy = x -1= x =1 Osy=snw
. T T
y = arctan x iff tany = x —o < x <® _§<y<_i
y = arccot x iff coty = x -0 < x <> 0<y<m
y = arcsec x iff secy = x x| =1 OSysﬂ,yatg
y = arcesc x iff cscy = x x| = 1 —;sys—g,y¢0

REMARK The term arcsin x is read as the “inverse sine of x” or sometimes
the “angle whose sine is x.” An alternate notation for the inverse sine function is
in~1

sin™! x.

The graphs of these six inverse functions are shown in Figure 6.27 on
page 372. (Compare these to the graphs of the six trigonometric functions
given in Section 1.6.) .
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Domain: [—1, 1] Domain: (—9o0, —1] and [1, %) Domain: (—o, ©)
Range: [-w/2, w/2] Range: [—#/2, 0) and (0, 7/2) Range: (—u/2, w/2)
y y y
m
Tl _ Tl 2
2 2 \ -
+ } X T i } } X 4 | + + X
-1 1 -2 -1 1 2 -2 -1 1 2
\ g
—_—— T ———L T e
2 2
y = arcsin x y = arccsc x y = arctan x
Domain: [~1, 1] Domain: (=, —1] and [1, %) Domain: (—o0, o0)
Range: [0, 7] Range: [0, #w/2) and (/2, 7] Range: (0, )
y y ¥

|
|
]
T
ol 3
i
[ 3
I
1
I
|
|
|
i
i
I
/ |
(SIE} }
|
|
|
|
|
I
|
|
1

y = arccos x y = arcsec x y = arccot x

FIGURE 6.27

When evaluating inverse trigonometric functions, remember that they
denote angles in radian measure.

EXAMPLE 1 Evaluating inverse trigonometric functions

Evaluate the following.

(a) arcsin (—-%) (b) arccos 0
(c) arctan V3 (d) arcsin (0.3)
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SOLUTION

() By definition, y = arcsin (—%) implies that sin y = —%. In the interval

[—m/2, w/2], we choose y = — /6. Therefore,

~ <_1 __T
arcsin { =5 ) = —¢.
(b) By definition, y = arccos 0 implies that cos y = 0. In the interval
[0, 7], we choose y = /2. Therefore,

ko
arccos 0 = .
2

(c) By definition, y = arctan V3 implies that tan y = V3. In the interval
(—/2, m/2), we choose y = 7/3. Therefore,

arctan V3 = g

(d) By using a calculator set in radian mode, we obtain

arcsin (0.3) = 0.3047. —

Inverse functions possess the properties
fUT@) =x  and NG = x

When applying these properties to inverse trigonometric functions, remember
that the trigonometric functions possess inverses only in restricted domains.
For x-values outside these domains, these two properties do not hold. For
example,

arcsin (sin 71) = arcsin 0 = 0 # 7.

INVERSE PROPERTIES

F-1=<x=1land —n/2 <y= w/2, then
sin (arcsin x) = x and  arcsin (siny) = y.
If —m/2 <y < 7/2, then .
~ tan (arctan x) = x and ' arctan (tany) = y.
Klx]=1and0=y< w/20r /2 <y =< m, then

sec (arcsec x) = X and arcsec (sec y) = y.

REMARK  Similar properties hold for the other three inverse trigonometric functions.

Notice how we use one of these inverse properties to solve the equation
in the next example.
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EXAMPLE 2  Solving an equation

Solve for x in the equation arctan 2x — 3) = 7/4.

SOLUTION
arctan (2x — 3) = g
tan [arctan 2x — 3)] = tan%r
2x—3=1

There are some important types of problems in calculus in which we
evaluate expressions like sec (arctan x). To solve this type of problem, it helps
to use right triangles, as demonstrated in the next example.

EXAMPLE 3  Using right triangles

(a) Given y = arcsin x, where 0 <y < 7/2, find cos y.

. (b) Given y = arcsec (V/5/2), find tan y.
X
SOLUTION
y ————
Vi< 2 (a) Since y is the angle whose sine is x, we form a right triangle having an
y = arcsin x acute angle y = arcsin x, as shown in Figure 6.28. Therefore,
FIGURE. 6.28 cos y = cos (arcsin x) cosy = %
=V1 — x2
Vs 1 It can also be shown that for —7/2 <y = 0, y = arcsin x implies
cosy — V1 — x2
’ (b) Since y is the angle whose secant is V'5/2, we can sketch this angle as
2 N part of a triangle, as shown in Figure 6.29. Therefore,
y = arcsec —= \/g opp.
tan y = tan | arcsec -—2— tany = .
FIGURE 6.29 adj.
1
= 5 . =

Derivatives of inverse trigonometric functions

In Section 6.1 we saw that the derivative of the transcendental function
f(x) = In x is the algebraic function f'(x) = 1/x. We will now see that the
derivatives of the inverse trigonometric functions also are algebraic, even
though the inverse trigonometric functions are themselves transcendental.
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EXERCISES for Section 6.7

In Exercises 1-10, evaluate the given expression.

1. arcsin 1

2 2. arcsin 0
3. arccos% 4, arccos 0
5. arctan T3 6. arccot (—1)
7. arcesc V2 8. arcsin (—0.39)
9. arcsec 1.269 10. arctan (—3)

In Exercises 11—16, evaluate the given expression with-
out a calculator. [Hint: Make a sketch of a right triangle,
as illustrated in Example 3.1

11. (a) sin (arcsin %) (b) cos 2 arcsin )

2
13. (a) sin (arctan %) (b) sec <arcsin ‘-;)
14. (a) tan (arccot 2) (b) cos (arcsec V3)

15. (a) cot [arcsin (—-%)] (b) csc [arctan (—%)]
3 (5
16. (a) sec [arctan (—g)] (b) tan [arcsm <_3)]

In Exercises 17—26, write the given expression in alge-
braic form.

12. (a) tan (arccos -\/—E) (b) cos (arcsm —)

17. tan (arctan x) 18. sin (arccos x)
19. cos (arcsin 2x) 20. sec (arctan 3x)
21. sin (arcsec x) 22. cos (arccot x)
23. tan <arcsec %) 24. sec [arcsin (x — 1)]
25 < tan s ) 26. cos (arcsin - h)
. arctan —= .
csc v p

In Exercises 27 and 28, fill in the blank.

9 .
27. arctan _ = arcsin )

V36 — x?

28. arcsin 6 = arccos ( )

In Exercises 29 and 30, verify each identity.
1
29, (a) arccsc x = arcsin ot |x| =1

1
(b) arccot x = arctan > >0

30. (a) arcsin (—x) = —arcsin x, |x| < 1
(b) arccos (—x) = a — arccos x, |x| = 1

In Exercises 31-34, sketch the graph of the function.

31. f(x) = arcsin (x — 1) 32. f(x) = arctan x + ’—27

33. f(x) = arcsec 2x 34. fx) = arccos%

In Exercises 35—38, solve the given equation for x.

35. arcsin 3x — #) = % 36. arctan 2x = —1

37. arcsin V2x = arccos Vax

38. arccos x = arcsec x

In Exercises 39-58, find the derivative of the given
function.

39. f(x) = arcsin 2x 40. f(x) = arcsin x?

41. f(x) = 2 arcsin (x — 1) 42, f(x) = arccos Vi
43. f(x) =3 arccos% 44. f(x) = arctan Vx
45, f(x) = arctan 5x

1
47. f(x) = arccos o

46. f(x) = x arctan x
48. f(x) = arcsec 2x

49. f(x) = arcsin x + arccos x
50. f(x) = arcsec x + arccsc x
51. h(t) = sin (arccos t)

Vet

53. f(1) = \/Lgarctan T

2. g(t) = tan (arcsin ?)

1 +
54. f(x) = %(5 lni — } — arctan x)

x+1

1/1
55. f(x) = §<§1n o
56. f(x) = %(x\/l — x2 + arcsin x)
57. f(x) = x arcsinx + V1 — x?

58. f(x) = x arctan 2x — ‘l‘ln (1 + 4x?)

+ arctan x)

In Exercises 59 and 60, find the point of inflection of
the graph of the given function.

59. f(x) = arcsin x 60. f(x) = arccot 2x

In Exercises 61 and 62, find any relative extrema of the
given function.

61. f(x) = arcsec x — x 62. f(x) = arcsin x — 2x



380 Chapter 6 / Logarithmic, Exponential, and Other Transcendental Functions

In Exercises 63 and 64, find the point of intersection
of the graphs of the given functions.

63. y = arccos x, y = arctan x
64. y = arcsin x, y = arccos x

65. A small boat is being pulled toward a dock that is 10

rate of 1.5 feet per second. Find the rate at which the

d u'
—-[arcsec u] = ——eex
© glareseeul =T E =
(© 2 farccos 1) = ——4—
—-[arccos u] = ——=
dx 1 - u2
d _y!
(d) E[arccot ul = 1—;72‘
feet above the water. The rope is being pulled in at a ) d ] —u'
e) —-larcesc u] = ———==
¢ e |ulVuz — 1

angle the rope makes with the horizontal is changing

when 20 feet of rope is out.

66. An observer is standing 300 feet from the point at which
a balloon is released. The balloon rises at a rate of 5

68. Show that the function

f(x) = arcsin (x

_ 2) — 2 arcsin —\/j
2 2

feet per second. How fast is the angle of elevation of

the observer’s line of sight increasing when the balloon

is 100 feet high?

is constant for 0 = x < 4.

67. Verify the following differentiation formulas.

’

d
(a) E[arctan u] = T+2

&8MWNHMWMMMmemﬁM%MMMMCMM&%H&MM&

Integrals involving inverse trigonometric functions = Completing the square = Review of basic integration formulas

The derivatives of the six inverse trigonometric functions occur in three pairs.
In each pair the derivative of one function is the negative of the other. For
example,

i[ in x] = —l— and i[arccos x] = ——1~—
e arcsin x Vioo e 5-

When listing the antiderivative that corresponds to each of the inverse trig-
onometric functions, we need use only one member from each pair. For
example, we choose to use arcsin x as the antiderivative of 1/V'1 — x2, rather
than —arccos x. The next theorem gives one antiderivative formula for each
of the three pairs.

1—x

THEOREM 6.19
INTEGRALS INVOLVING INVERSE
TRIGONOMETRIC FUNCTIONS

Let u be a differentiable function of x, and let ¢ > 0.

f nd —arcsinu+C
'\/aZ_.MZ a

du larctan—+C
a+u a
du 1 |u
= —arcsec — + C
ju\/uz—a2 a

PROOF

We prove the first formula and leave the remaining proofs as an exercise (see
Exercise 52). Let y = arcsin (#/a). Then

. —_1—— u—/ _ u _ u'
Y V1 — (u/a)2<a> aV@a* - )/ Vi - u?
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71. Repeat Exercise 70, if the equation for the catenary is
given by

x
y=acosh;, -b=x=b

where a is measured in feet and the distance between
the towers is 2b feet.

72. A barn is 100 feet long and 40 feet wide (see figure).
A cross section of the roof is the inverted catenary

X
20°

y = 31 — 20 cosh

FIGURE FOR 72

REVIEW EXERCISES for Chapter 6

Review Exercises for Chapter 6 399

Find the number of cubic feet of storage space in the
barn.

73. In the Chapter 6 Application, we introduced the fol-
lowing equation for the catenary for the Gateway Arch,

X

y = 757.71 — 127.71 cosh 2771

Show that the height of the Gateway Arch is the same
as the distance between its two legs.

74. Use the formula given in Exercise 73 to find the arc
length of the Gateway Arch.

In Exercises 75—79, verify the given derivative formula.
75 i[tanh 1 = sech?
. ax X] = secn“ x

d
76. — [sech x] = —sech x tanh x
dx
I S
xt—1
1
Vx2 + 1

d -1
79. —[sech™! x] = ——=—
e

d
= -1 4] =
71. 7 [cosh™! x]

78. %[sinh‘l x] =

In Exercises 1—6, (a) find the inverse of the given func-
tion, (b) sketch the graphs of f(x) and f ~(x) on the same
axes, and (c) verify that f~1[f(x)] = fIf"1(®)] = x.

[

1.f(x)=%x—3 Cfl)y=5x-7

3 fix) = Vx+1 4. fx) =x3 +2
5. f@)=x2—-5x=20 6 fx®)=Vx+tl

In Exercises 7 and 8, the function does not have an
inverse. Give a restriction on the domain so that the
restricted function has an inverse, and then find the
inverse.

7. f() = 2x — 472 8. f(x) = |x - 2|
In Exercises 9—12, solve the given equation for x.

9, enx=3 10 nx +In(x —3) =0
11. logz x + logs (x — 1) —logs (x —2) =2
12. log, 125 =3

In Exercises 13—40, find dy/dx.

13. y=In Vx l4.y=ln%
15. y = xVinx 16. y = In [x(x? — 2)?3]

17.ylnx +y¢2=0 18. In(x +y) =x

1 a
19. y-—p[ln(a+bx)+a+bx:|
1
20.y=?[a+bx—aln(a+bx)]
+ b
M.y= Lt
a x

22. y = - + ; In x
= —x2 = ———ex

23. y=In(e™) 24, y ln1+ex
25. y = x%* 26. y = e
27y = Ve + % 28. y = x2x*1
29, y = 3*71 30. y = (4e)*

2
31. ye* + xe¥ = xy 32.y= %

1

33. cos x% = xe” M.y = Eesm 2x
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35. y = tan (arcsin x) 36. y = arctan (x2 — 1)

1
37. y = x arcsec x 38.y= 5 arctan e2x
39. y = x(arcsin x)? — 2x + V1 — x2 arcsin x
40. y = Vx? 4—2arcse~,2,0<x<z

41. Find the derivative of each of the following, given that
a is constant.
(@ y==x°
©y=x

42. Show that

(b) y=a*
dy=a*

y = e*(a cos 3x + b sin 3x)

satisfies the differential equation y” — 2y’ + 10y = 0.

In Exercises 43—70, evaluate the integral.

i x
43.f7x_2dx 44J ldx
sin x
4. J'1+cosx 46.
47.fx +3dx 4. J x +
x 2x +
1
50. f L2
/3
Sl.f sec 0.do SZJ tan(—-—x)dx
0
) el/x
53. fxe"h dx 54, f
e4x_62x+1 621"'6‘ 2x
SS.Ide 56. fe“+e"
58. j X2 dx

x—1

—x%2 - - -
59.J'xe dx 60'f3x2—6x—1dx

61. fl—fr_z—_zdx 62. f%i/")dx
63. J;;—_g—é_—fxdx 64. f3+25xz4x
65. fﬁi’f 66. fm—_t_—x—zdx
67. f l?j_—;idx 68. —ar___lc“_“;

69. E%%ZQ 70. %dx

In Exercises 71 and 72, sketch the graph of the region
whose area is given by the integral and find the area.

1
ox + 1

73
71.." tan x dx 72. dx
0

In Exercises 73 and 74, find the area of the region
bounded by the graphs of the equations.

73.y=xe"‘2,y=0,x=0,x=4
74. y =3¢, y=0,x=0,x =4

In Exercises 75 and 76, use Simpson’s Rule to approx-
imate the definite integral.

1
75. f e de,n =
0

1
76. L e dx,n=4

77. A deposit of $500 earns interest at the rate of 5 percent
compounded continuously. Find its value after each of
the following time periods.

(a) 1 year
(b) 10 years
(c) 100 years

78. A deposit earns interest at the rate of r percent com-
pounded continuously and doubles in value in 10 years.
Find r.

79. How large a deposit, at 7 percent interest compounded
continuously, must be made to obtain a balance of
$10,000 in 15 years?

80. A deposit of $2500 is made in a savings account at an
annual interest rate of 12 percent compounded contin-
uously. Find the average balance in this account during
the first five years.

81. A population is growing continuously at the rate of
21 percent per year. Find the time necessary for the
population to (a) double and (b) triple in size.

82. Under ideal conditions, air pressure decreases contin-
uously with height above sea level at a rate proportional
to the pressure at that height. If the barometer reads 30
inches at sea level and 15 inches at 18,000 feet, find
the barometric pressure at 35,000 feet.

In Exercises 83 and 84, use the following model! for
human memory.

p(t) = 80705 + 20

where p(¢) is the percentage retained after r weeks (see
figure).

83. At what rate is information being retained after (a) 1
week and (b) 2 weeks?

84. Find the average percentage retained during (a) the first
2 weeks and (b) the second 2 weeks.



