Good Evening! I am so glad that you are here. Please find a seat, meet your neighbors, then discuss the following questions:

•Think of a time when school was a good fit for you. Why do you think that was so?

•Now think of a time when school was NOT a good fit. What were the reasons?

Differentiation

The methods by which teachers manage a range of learners in a heterogeneous classroom. In general, all learners are not at the same learning place at the same time. Therefore, differentiation encourages <u>different</u> things happening for <u>different</u> kids at <u>different</u> times.

What is differentiation?

Differentiation is classroom practice that looks eyeball to eyeball with the reality

that kids differ, and the most effective teachers do **whatever it takes** to hook the whole range of kids on learning.

> What is Differentiated Instruction?

It's a way of thinking about the classroom with the goals of honoring each student's learning needs and maximizing each student's learning capacity while developing a solid community of learners.

Tomlinson (2001)

MYTH	REALITY
If you are good in math, you should be accelerated early and quickly.	Research indicates that accelerated students often have gaps in learning, and do not continue with higher levels of math in high school and/or college.

Le	arning Zor	nes
Too Easy	Just Right	Too Hard
•	•	•
•		•
•		•

Kindergarten Counting

Task 1: Find a way to count & show how many people are in our class today. How did you get your answer?

Task 2: Find a way to show how many people are in our class. How many are here today? How many are absent today? How do you know?

Task 3: Find a way to show how many boys are in our class today. How many boys are absent today? How many girls are here today? How many girls are absent today? Prove you are right.

Adding Fractions

Blue Group

Manipulatives such as Cuisinaire rods and fraction circles will be available as a resource for the group. Students use factor trees and lists of multiples to find common denominators. Using this approach, pairs and triplets of fractions are rewritten using common denominators. End by adding several different problem of increasing challenge and length.

Suzie says that adding fractions is like a game: you just need to know the rules. Write game instructions explaining the rules of adding fractions.

Adding Fractions Red Group

Use Venn diagrams to model LCMs. Explain how this process can be used to find common denominators. Use the method on more challenging addition problems.

Write a manual on how to add fractions. It must include why a common denominator is needed, and at least three different ways to find it.

Choices	VS.	Required
content, process, product		no student voice
groups, resources environment		restricted resources
Relevant	VS.	Irrelevant
meaningful		impersonal
connected to learner		out of context
deep understanding		only to pass a test
Engaging	VS.	Passive
emotional, energetic		low interaction
hands on, learner input		lecture seatwork
E	QUALS	
ncreased intrinsic		Increased
MOTIVATION		APATHY & RESENTMENT

7			3+4			16	
-8 + 4	2 + 3	5		5-1	4		9-7
$6^*(3+2)$			6+2			3+9	
30			8			12	
15	6+3	9		8-4	4		3-2
8+ 7			1 + 1			4 - 1	
15			2			3	
6-2	15 + 7	22		18	6*3		8-1
12			4-7			9	

	Worksheet		
Direc	Operations Worksheet Directions: Complete each problem. Show your work as needed.		
هــند	- 4 =	<u>6]12</u> + 11 =	
2)6	+ 2 =	<u>Z]22</u> – 10 =	
31.3	+ 9 =	8) 32 + 20 =	
<u>دا. (ه</u>	5 – 7 =	<u>91.15</u> -4=	
۵۰۱۵	+ S =	10) 48 – 30 4	

MYTH	REALITY
Differentiation is Multiple Intelligences (or learning styles)	Differentiation necessarily addresses readiness, interest & learning profile.
	(Gardner' s work addresses 1/4 th of 1/3 rd of that range.)

Differentiation Using LEARNING PROFILE

- Learning profile refers to how an individual learns best - most efficiently and effectively.
- Teachers and their students may differ in learning profile preferences.

Multiplying by 3 and 6!

- Play **Multiplication Memory card game** (Kinesthetic, interpersonal).
- Make a **picture book of multiplication facts** for 3 and/or 6 (visual/spatial).
- Make up a **song** about (or of) the multiplication facts for 3 and/or 6 (musical).
- Write a diary entry about the 3 and 6 multiplication facts. What are they? How can you remember them? If you forget one, how could you figure it out? (Intrapersonal / verbal linguistic)
- Write a story that involves multiplication by 3 and 6 (verbal linguistic).
- Show as many different models of multiplication by 3 and 6 of which you can think. How is multiplying by 6 related to multiplying by 3? (Logical / Mathematical)

MYTH	REALITY
The way I learned math was good enough for me, it should be good enough for my child.	We need to prepare our students for our ever-changing world. Numerical literacy is essential to succeed.

For What Are We Preparing Our Students?

MYTH	REALITY
Getting the right answer is enough. You don't really understand math.	As the Common Core clearly states, strong mathematicians balance procedural fluency and conceptual understanding.

MYTH	REALITY
There is a right way to do math problems. I can help my students and show them the right algorithm.	Our algorithms are only standard in the US! Other algorithms make connections to future math and reveal understandings.

So, ho	w might I multiply?
Partial Products:	34 X 18
	30 + 4
	X 10 + 8
	32 240 40 300
	612

МҮТН	REALITY
Our students	Students who
have to take	learn the
standardized	content well
tests. They will	and make
be hampered by	connections in
differentiation.	memory
They need to	perform best on
learn	standardized
analytically.	tests.

MYTH	REALITY
You are good at math if you get the right answers.	It is important to get the right answers. It is more important to understand, be able to explain, use many representations, and problem solve.

MYTH	REALITY
You are either born good at math, or you aren't.	There is no math gene! Effort is the difference maker when it comes to success in math.

The Predictive Power of Mindset – Carol Dweck

Fixed

- Success comes from being smart
- Genetics, environment determine what we can do
- Some kids are smart some aren't
- Teachers can't override students' past experiences

•Success comes from effort •With hard work, most students can do most things •Teachers can override students' past experiences •A key role of the teacher is to set high goals, provide high support and ensure student focus—to find the thing that makes school work for a student

Growth

