

Curriculum, Instruction & Assessment 1260 NW Waterhouse Avenue | Beaverton, Oregon 97006 503-356-4500 | BSD-State-Assessments@beaverton.k12.or.us www.beaverton.k12.or.us

Grade 8 Achievement Level Descriptors

For descriptions of the skills and sample test questions in each performance area, please visit <u>https://or.startingsmarter.org/</u>

Performance Level and Description Scale Score Range Level 4 A student performing at Level 4 demonstrates a thorough ability to: • read closely and analytically to comprehend texts of unusually high complexity and use textual evidence to demonstrate complex critical thinking. Scale Score: • produce compelling, well-supported writing for a diverse range of purposes and audiences. 2668 and • critically interpret and use information delivered orally or audio-visually. above • use research/inquiry methods to gather, analyze and integrate relevant information from multiple sources to produce an exploration of a topic. Level 3 A student performing at Level 3 demonstrates an adequate ability to: • read closely and analytically to comprehend texts of moderate to high complexity and use textual evidence to Scale Score: demonstrate critical thinking. 2567 - 2667 • produce effective and well-grounded writing for a range of purposes and audiences. • accurately interpret and use information delivered orally or audio-visually. • use research/inquiry methods to gather, analyze and integrate relevant information from multiple sources to produce an exploration of a topic. Level 2 A student performing at Level 2 demonstrates a partial ability to: · comprehend texts of moderate complexity and use partial text evidence to demonstrate critical thinking Scale Score: • produce writing for a range of purposes and audiences. 2487 - 2566 • interpret or use information delivered orally or audio-visually. • use research/inquiry methods to gather, analyze and integrate relevant information from multiple sources to produce an exploration of a topic. Level 1 A student performing at Level 1 demonstrates a minimal ability to: comprehend texts of low complexity and uses minimal textual evidence to demonstrate thinking. Scale Score: • produce writing for a range of purposes and audiences. 2486 and • interpret or use information delivered orally or audio-visually. below • use research/inquiry methods to gather relevant information from multiple sources to produce an exploration of a topic.

English Language Arts/Literacy

Belong. Believe. Achieve.

Mathematics

A student performing at Level 4 is able to:
 Interpret and carry out mathematical procedures with high precision and fluency.
• Make sense of a range of complex and unfamiliar problems in pure and applied mathematics with no scaffolding.
Thoroughly apply mathematical concepts.
• Analyze and interpret the context of an unfamiliar situation for problems of increasing complexity.
Construct chains of logic about abstract concepts autonomously.
A student performing at Level 3 is able to:
 Interpret and carry out mathematical procedures with adequate precision and fluency.
• Make sense of and persevere in solving a range of unfamiliar problems in pure and applied mathematics with a
limited degree of scaffolding.
• Adequately explain and apply mathematical concepts. Use stated assumptions, definitions and previous results to
identify and repair a flawed argument.
• Reason abstractly and quantitatively to analyze complex, real-world scenarios. Construct and use mathematical
models and appropriate tools to accurately solve problems.
A student performing at Level 2 is able to:
 Interpret and carry out mathematical procedures with partial precision and fluency.
• Make sense of and solve familiar problems in pure and applied mathematics with a moderate degree of
scaffolding.
• Partially explain and apply mathematical concepts. Find and identify the flaw in an argument.
• Analyze familiar real-world scenarios, and use mathematical models and given tools to partially interpret and solve
basic problems.
A student performing at Level 1 is able to:
 Interpret and carry out mathematical procedures with minimal precision and fluency.
• Make sense of and solve simple and familiar problems in pure and applied mathematics with a high degree of
scaffolding.
• Minimally explain and apply mathematical concepts. Construct arguments using concrete referents such as objects, drawings, diagrams, and actions
drawings, diagrams, and actions.Identify familiar real-world scenarios, and use simple mathematical models and given tools to solve basic problems.

Science

Description
Student can synthesize the application of science and engineering practices, core ideas, and cross-cutting
concepts to local and global phenomena, becoming community members who are critical consumers of scientific
information capable of engaging in scientific argumentation from evidence on track for post high school college
and career readiness. Middle School science assessments include topics such as: properties and states of matter,
chemical reactions, gravitational, electrical, and magnetic forces in the natural world, energy, waves and their
applications in technologies, solar system models, Earth and human activity, weather and climate, plate tectonics,
natural hazards, natural resources, plant and animals, ecosystems, cycles of matter and energy, and heredity
Student can demonstrate the application of science and engineering practices, core ideas, and cross-cutting
concepts to local and global phenomena, becoming community members who are critical consumers of scientific
information on track for post high school college and career readiness. Middle School science assessments
include topics such as: properties and states of matter, chemical reactions, gravitational, electrical, and magnetic
forces in the natural world, energy, waves and their applications in technologies, solar system models, Earth and
human activity, weather and climate, plate tectonics, natural hazards, natural resources, plant and animals,
ecosystems, cycles of matter and energy, and heredity.
Student can demonstrate some application of science and engineering practices, knowledge of core ideas, and
understanding of cross-cutting concepts tied to local and global phenomena. Middle School science assessments
include topics such as: properties and states of matter, chemical reactions, gravitational, electrical, and magnetic
forces in the natural world, energy, waves and their applications in technologies, solar system models, Earth and
human activity, weather and climate, plate tectonics, natural hazards, natural resources, plant and animals,
ecosystems, cycles of matter and energy, and heredity.
Student demonstrates minimal application of science and engineering practices, knowledge of core ideas, and
understanding of cross-cutting concepts tied to local and global phenomena. Middle School science assessments
include topics such as: properties and states of matter, chemical reactions, gravitational, electrical, and magnetic
forces in the natural world, energy, waves and their applications in technologies, solar system models, Earth and
human activity, weather and climate, plate tectonics, natural hazards, natural resources, plant and animals, ecosystems, cycles of matter and energy, and heredity.

*Achievement of level 3 or higher demonstrates proficiency on the OSAS Science Assessment.

Belong. Believe. Achieve.

Additional Information:

- Oregon Department of Education website concerning Statewide Assessment
 <u>https://www.oregon.gov/ode/educator-resources/assessment/Pages/Statewide-Assessments.aspx</u>
- Oregon Statewide Assessment System Design and Purpose
 <u>https://www.oregon.gov/ode/educator-resources/assessment/Documents/OSAS_One-Pager.pdf</u>
- Why State Testing Matters
 https://www.oregon.gov/ode/educator-resources/assessment/Documents/FamilyFlyer_English.pdf
- Oregon Department of Education website concerning Statewide Assessment
 <u>https://www.oregon.gov/ode/educator-resources/assessment/Pages/Statewide-Assessments.aspx</u>
- Sample Test Scoring Guides for ELA
 <u>https://osasportal.org/resources/student-and-families/sample-test-scoring-guides-for-ela</u>
- Sample Test Scoring Guides for Math https://osasportal.org/resources/student-and-families/sample-test-scoring-guides-for-math
- Sample Test Scoring Guides for Science <u>https://osasportal.org/resources/student-and-families/sample-test-scoring-guides-for-science</u>

Belong. Believe. Achieve.