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Abstract 

Target drones are smaller versions of military aircraft used to test air defense mechanisms and provide aid 

for manned aircraft during missions. One of the biggest threats to target drones is signal jamming and 

cyber hijacking. Tools like laser rangefinders, ground beacons, and occupancy-grid mappers have been 

used to supplement a GPS navigation system, but these solutions are not viable for target drones. Use of 

an inertial navigation system (INS) for navigation in GPS-denied areas has been suggested, but raw INS 

data is rather inaccurate due to drift error and sensor bias, especially in bodies experiencing large 

magnitudes of acceleration. 

 

This project aimed to test and evaluate the accuracy of applying smoothing filters (Kalman filter, 

Extended Kalman Filter, and Unscented Kalman Filter) to the INS data using an Interactive Multiple 

Model (IMM). The IMM works by establishing x, y, and z drift rates from a series of acceleration and 

velocity inputs over time. These measurements were compared against the flight plan to identify and 

eliminate noisy and biased measurements in a process involving Bayesian statistics. The IMM is adaptive, 

as each estimation model is assigned a probability based on relative confidence that the filter would 

produce an accurate result. Data was collected with an INS on board a DJI Mavic Pro drone, which was 

flown according to pre-planned flight paths. Comparing the calculated trajectories using the INS data and 

a copy run through the IMM showed that using the IMM provided a displacement error reduction of about 

75%. 
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Introduction 

Military Drone Technology 

Target drones are unmanned aerial vehicles (UAVs) built for the purpose of testing air-attack 

defense mechanisms or aiding manned aircraft in aerial missions. Target drones may replicate threat 

aircraft to test air-to-air or surface-to-air defense missiles and ensure that tracking systems are capable of 

identifying and targeting enemy aircraft (Elsayed Ahmed et al., 2015). In addition, US law requires that 

weapons systems demonstrate their lethality (Carter et al., 2011). The drones must have the ability to fly 

autonomously, mimic enemy maneuvers, and at times, carry out operations as if they were manned 

aircraft (Meyer, 2005). In some cases, target drones may be employed as a sort of wingman to larger, 

more expensive, manned fighters that cannot fly into risky situations (Fahlstrom & Gleason, 2012). UAVs 

are used because of their low cost, low potential for human endangerment and low complexity compared 

to traditional manned aircraft (Sharifi-Tehrani et al., 2016). Militaries around the world use target drones 

for testing and defense. Demand for newer and better target drones is abundant, as they play a crucial role 

in air defense (Hammes, 2019). 

 

Target Drone Navigation 

Target drones must possess onboard instrumentation to enable them to function like real aircraft 

or cruise missiles (Tahk et al., 2018). Perhaps the most important of on-board instruments is the 

navigation complex. Autonomous navigation is imperative for target drones, and there are several 

different navigation methods. The NASA AirSTAR software system has been designed for sub-scale 

target drones. It integrates multiple research control laws and anticipates system failures, safeguarding the 

drone against damage (Murch et al., 2009). However, the AirSTAR system requires a safety pilot to 

perform launch and landings, which is disadvantageous assuming the drone will not always engage in 

round-trip flights. Along with general navigation, target drones must also be able to carry out specific 

maneuvers. One of the most common is closing in on a target. An algorithm has been proposed to provide 

proper lateral acceleration commands that make the impact time error converge to zero by the time of 

impact for homing missiles (Tahk et al., 2018). The NASA AirSTAR system and the proposed homing 

algorithm depend on GPS for accurate navigation. However, GPS may be vulnerable to cyber-attacks and 

signal-loss (Hammes, 2019). In urban areas, buildings can block the GPS signal. Research suggests that it 

is necessary for a new means of navigation to replace or at least supplement the GPS-reliant navigation 

systems (Chowdhary et al., 2013). 

Inertial Navigation Systems (INSs) are promising tools for navigation in GPS-denied areas. Loss 

of GPS signal can be caused by atmospheric disturbances, failure of the GPS antenna, electromagnetic 

interference, weather, GPS signal attack, or solar activity (Yao et al., 2016). While the INS is resistant to 
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these, position estimation with information from INS accelerometers and tilt sensors are susceptible to 

error during the double integration process known as dead reckoning. Dead reckoning INS systems for 

mobile robots have been found to have a position drift rate ranging from 1 to 8 cm/s (Barshan & Durrant-

Whyte, 1995). As such, an INS needs information from an absolute position-sensing mechanism. Some 

possibilities for absolute position mechanisms include ground laser trackers (Yang et al., 2020), on-board 

cameras (Chowdhary et al., 2013) (Brunner et al., 2018) (Shi et al., 2018), on-board planar laser range 

finders (Bry et al., 2012), and ground beacons (Barshan & Durrant-Whyte, 1995). However, laser trackers 

require direct line of sight, there aren’t significant landmarks for vision-aided navigation at altitude, and 

radio-based map matching systems such as ground beacons are at risk of jamming for the same reason 

GPS systems are vulnerable. 

 

Error Correction with Filters 

When an INS is integrated as a position sensor, compensation must be made for the cumulative 

error. More accurate state estimations can be obtained using variants of the Bayes Filter. A Bayes Filter 

calculates the probabilities of multiple beliefs to allow a robot to infer its position and orientation. 

Variants including the Kalman Filter (KF), the Extended Kalman Filter (EKF), and the Unscented 

Kalman Filter (UKF) are widely used for trajectory optimization applications. A KF is an optimum 

observer that estimates the states of linear state-space models using a series of inputs over time for open-

loop trajectory optimization. The KF and its variants are the most commonly used filtering techniques to 

integrate an INS as a position sensor. The difference between an EKF and a KF is that an EKF doesn’t 

assume Gaussian noise distribution. Gaussian noise is statistical noise having a probability density 

function equal to that of the normal distribution. When state-space models are nonlinear, noise is not 

always Gaussian, which makes position estimations more complex. The Unscented Kalman Filter (UKF) 

is claimed to be an improved EKF. Both filters use a Gaussian Random Variable (GRV), which is the 

basis of the state distribution. The EKF propagates the GRV through first-order linearization of the non-

linear system. The UKF, on the other hand, propagates the GRV directly through the non-linear system, 

producing estimates accurate to the third order via a Taylor series expansion. This strategy increases 

computational complexity, so instead of propagating the entire GRV, the UKF takes only a sample of the 

distribution. This way, the UKF achieves third-order accuracy while maintaining the same computational 

complexity as the EKF (Wan & van der Merwe, 2000). 

It is currently unclear which of these strategies (or possibly a combination thereof) yields the 

most accurate GPS-free navigation for target drones. This can be tested using an interactive multiple 

model (IMM). 
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Interactive Multiple Model 

The IMM is necessary for position estimation because, as previously mentioned, trajectory 

tracking using just inertial data results in drift error of several centimeters per second. After just 30 

minutes of flight, the position estimate using an INS can be inaccurate by hundreds of meters. Drift error 

in the INS is a result of the integration process of acceleration and velocity. Small error accumulates over 

time, rendering the INS unreliable as a position estimator (Alaoi et al., 2016) 

An IMM runs several filter system models in parallel (Akca & Efe, 2019). These filters are 

adaptive, for each estimation model is assigned a probability based on relative confidence that the filter 

will produce an accurate result. In this way, multiple filters along with weighted combinations can be 

tested at once. The weighted combination strategy allows for the model to iteratively update filter 

weights. Fusion of each of the filter outputs is designed to yield an estimate that isn’t affected by drift 

error.  
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Statement of Purpose  

Research Gap 

Target drones lack an all-weather dead reckoning navigation method for long-range three-

dimensional waypoint navigation that isn’t subject to drift error. Previous studies tested the INS indoors, 

where small displacement and velocity yield very little drift error (Rehbinder & Hu, 2003). INSs have 

been tested outdoors, but they are often mounted on terrestrial robots, which don’t experience as extreme 

periods of acceleration as target drones do (Aghili & Salerno, 2013), (Won, 2010). Algorithms have been 

proposed by Rehbinder & Hu (2003), Aghili & Salerno (2013), Won (2010), Lee et al. (2012) and 

Barshan & Durrant-Whyte (1995) to improve the accuracy of INSs. These algorithms use Kalman Filters, 

Extended Kalman Filters, and Particle Filters to track and adjust trajectory. However, none of these 

navigation methods can operate independently from a GPS or radar. 

 

Research Question 

 Is it possible and reasonable to track the trajectory of a drone using just an INS and an IMM 

localization program? 

 

Engineering Goals  

1. Develop MATLAB code for flight trajectory tracking using data from an inertial measurement 

unit  

2. Develop MATLAB code for an interactive multiple model filter for improved trajectory tracking 

of the drone 

3. Determine through quantitative error analysis the optimal filtering strategy given flight type and 

conditions (trajectory from raw inertial data is treated as the control) 
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Methodology 

Materials 

 Research was conducted using a DJI Mavic Pro drone. The Mavic drone was suitable for this 

project because it has a built-in inertial measurement unit (IMU) from which inertial data can be obtained. 

Microsoft Excel and MATLAB were also used in this project for trajectory plotting and tracking. 

 

Collecting Inertial Data 

 Data were collected from 20 different drone flights. 3 of the 20 flights did not follow the flight 

plan; instead, they consisted of random maneuvers. Each of the 17 planned flights was conducted in the 

same location, 200 feet from the ground, or about 625 feet above sea level. Weather data such as 

temperature, humidity, air pressure, wind speed, gust speed, and wind direction with respect to drone 

orientation were collected to be controlled for during regression analysis. Each flight included 2 turns 

(one right, one left) of about 90 degrees, as well as 2 changes in altitude (one climb, one descent) of about 

30 feet. After each flight, the flight record, containing all the flight data, was converted from a .txt file to 

a .csv using software from Airdata.com. Once in .csv format, the flight records were imported into 

MATLAB for inertial analysis.  

 

Programs for Inertial Data Analysis 

 Four programs were required for proper analysis of the inertial data from the drone flight records. 

The first program integrates data from accelerometer readings to produce x, y, and z position matrices. 

Using acceleration and then velocity measurements, the recursive formula fills in subsequent positions by 

multiplying a higher derivative by a time step. The second program converts latitude/longitude 

coordinates and altitude to rectangular, (x, y, z) coordinates. It was necessary to perform calculations in a 

rectangular frame so displacement could be measured properly. The third program obtains displacement 

readings between the outputs of the first two programs. Error is collected in the form of absolute mean 

displacement, maximum displacement, end displacement as well as mean, max, and end displacement for 

each of the x, y, and z coordinates. The fourth and final program for the raw INS analysis plots 

overlapping trajectories of the positions derived from GPS and INS readings. Figure 1 shows such a plot. 
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Figure 1 

 

 

Interactive Multiple Model Program 

 The IMM created and used for this research runs three Kalman Filter variants: KF, EKF and 

UKF. Each of the three filters contains and runs, in parallel, either two or three prescribed motion models: 

3D constant velocity, 3D constant acceleration, and 3D constant turn for the EKF. Tracking filters like the 

KF and its variants use Bayesian statistics to generate more reliable position estimates. When applying 

Bayesian statistics to a problem of uncertain position, the region is divided into unit cubes. At first, each 

of the units is assigned an equal probability of containing a trajectory waypoint. Then, as each inertial 

measurement is processed, the probabilities are updated. The motion models act as a guide for the 

probability-associating process. This way, noisy and biased measurements are filtered out when the 

program determines that the probability of that being a true maneuver is low enough. The weight of any 

given motion model depends on the nature of the flight trajectory. For example, when the drone 

completes a turn and begins to slow down, the IMM will adjust the motion model weights such that the 

constant acceleration model is trusted more than the constant turn model. The IMM tests each of the three 

base filters as well as a combination thereof in order to maximize accuracy.  
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Results 

Inertial Trajectory Tracking 

 Inertial data from 68 total flight segments were analyzed using the three inertial analysis 

programs. The recursive algorithm successfully tracked the trajectory of the drone, but the position 

outputs were hindered by drift error. The average drift rates along with maximum error are displayed in 

Table 1. Barshan & Durrant-Whyte were the first to use inertial dead reckoning; they found an average 

drift rate of one to eight cm/s. For this project, the observed average drift rates were at the high end of that 

previously determined range. A likely explanation for the higher change in altitude segment average drift 

rate measurement is the volatility of barometric altimeters as altitude sensors. 

Table 1 

Segment 

Type 

Avg Drift 

Rate 

(cm/s) 

Avg X 

Drift Rate 

(cm/s) 

Avg Y 

Drift Rate 

(cm/s) 

Avg Z 

Drift Rate 

(cm/s) 

Max 

Error 

(cm) 

Max X 

Error 

(cm) 

Max Y 

Error 

(cm) 

Max Z 

Error 

(cm) 

Turn 7.96 4.78 5.93 2.03 454.6 237.8 277.3 128.7 

Altitude 9.95 5.12 5.16 6.63 226.6 131.5 138.4 152.17 

 

The inertial analysis programs also tracked error over time. As expected, drift error accumulated 

at a relatively steady rate during the course of the flight, yielding error plots as shown in Figure 2. 

Figure 2 

 

 

There is some deviation in the drift rate, due in large part to random error such as improper 

readings; overall, there is a clear accumulation of error when using the inertial algorithm to track 

trajectory. 
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Filter Performance 

 The IMMs were much better at trajectory tracking, providing error advantages summarized in the 

table below.  

Table 2 

Segment Type Average Percent Error 

Decrease using KF 

IMM 

Average Percent Error 

Decrease using EKF 

IMM 

Average Percent Error 

Decrease using UKF 

IMM 

Turn 56.8964 63.8371 63.2467 

Altitude 53.4317 55.9277 49.4028 

 

For the first few seconds of flight, the IMM adjusted its model weights to capture the 

combination most-suited for the nature of the flight. For example, the flight segment that yielded the data 

shown in Figure 3 was a straight descent segment, so the constant turn (CT) model approaches 0 and the 

constant velocity (CV) model approaches 1. 

Figure 3 

 

 

Because the IMM takes time to converge on the proper model, error is high in the beginning. 

However, error soon decreases and stays low for the remainder of the flight segment. Figure 3 shows a 
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graph of normalized error over time for the Extended Kalman Filter IMM. Normalized error takes into 

account the covariance (uncertainty) of the predicted state and the measurement noise. 

Figure 4 

 

 

The IMM programs also produced true error (displacement) graphs, which can be compared to 

the Figure 2 - INS Error vs. Time graph. Figure 5 shows the graph of distance error using the EKF IMM. 

Error accumulates when using the inertial program, whereas error starts high and quickly drops when 

using an IMM. Maximum error is almost always greater when using an IMM, but the models adjust in 

just a few seconds, making the IMM advantageous. 

Figures 2 and 5 

 

 

A visual comparison of the inertial and IMM trajectory-tracking algorithms can be seen from the 

3D position graphs containing both of the calculated trajectories as well as the true GPS trajectory. Figure 
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6 shows such a comparison. As the inertial trajectory steadily deviates from the true state, the IMM 

trajectory holds to the truth.  

Figure 6 

 

  

Waypoint Frequency Analysis 

This project also tested the effect of waypoint frequency on the performance of the filters. A 

program ran the KF, EKF, and UKF IMMs while varying the time step of filtered predictions and 

corrections. Six frequencies were tested over 12 flight segments for each of the filters. The results from 

the optimal frequency test were taken into account when initializing the final IMM. Figures 7, 8, and 9 on 

the following page show the results of the waypoint frequency test. 

Figures 7, 8, and 9 
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 The intersection of a black line and vertical set of points is the average error advantage for the 

given waypoint frequency used for each iteration of that trial. The black line shows relative increases or 

decreases from trial to trial. While a waypoint frequency of 10 Hz (0.1 second time step in between 

measurements) provides the highest average error advantage over the 3 tracking filters, it comes at the 

cost of computational complexity. Reducing the waypoint frequency to 5 Hz (0.2 second time step) halves 

the required waypoints and only decreases average error advantage by 1.5%. 

 

Regression Analysis of Flight Conditions 

 Before every flight, weather conditions were recorded to be used in a regression analysis. It was 

necessary to determine if specific conditions affected the incidence of sensor bias or drift error. Recorded 

conditions include temperature, pressure, wind speed, gust speed, humidity, and wind direction. For each 
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flight segment, INS error and error advantage for each IMM were plotted against the recorded conditions. 

Microsoft Excel was used to generate least-squares regression lines to fit the data. An !! value close to 1 

demonstrates a strong linear relationship, and a value close to 0 indicates a weak or nonexistent 

correlation. Table 3 summarizes the results. It can be seen that none of the !! values are greater than 0.1, 

indicating that there was no recognizable correlation between any of the weather variables and sensor or 

program performance. As such, no weather standardization adjustments to the final IMM are necessary. 

Table 3 

Flight Condition Temper-

ature (℉) 

Pressure 

(inHg) 

Wind 

Speed 

(mph) 

Gust 

Speed 

(mph) 

Humidity 

(%) 

Head- 

wind  

Bearing 

(°) 

Tail- 

wind  

Bearing 

(°) 

!! for INS Error 0.0208 0.0996 0.0016 0.0712 0.0113 0.0022 0.0281 

!! for KF IMM 

Error Advantage 

0.0001 0.0134 0.0026 0.0164 0.0109 0.0502 0.0771 

!! for EKF IMM 

Error Advantage 

0.0117 0.0269 0.0213 0.0010 0.0100 0.0389 0.0291 

!! for UKF IMM 

Error Advantage 

0.0048 0.0110 0.0226 0.0000 0.0047 0.0018 0.1151 

 

Final IMM 

 The final IMM program is a culmination of the aforementioned analyses of this project. It 

contains 7 different motion models: constant velocity KF, EKF, and UKF, constant acceleration KF, EKF, 

and UKF, and a constant turn EKF. The only inputs for the program are a 3D waypoint trajectory matrix 

and inertial data from the drone. The program first analyzes the inertial data for sensor bias and drift. 

Then, during the IMM prediction and correction loop process, the model iteratively accounts for inertial 

error. The output position matrix is smoothed to get rid of noisy estimates, and the result is the accurate 

trajectory of the drone. Waypoint analysis showed that a waypoint frequency of 5 Hz was ideal for each 

of the 3 filters, and regression analysis showed that weather conditions, even wind, have no significant 

effect on program accuracy.  

 The program performed significantly better than the separate filter IMMs. There was an average 

error reduction of over 75% compared to the inertial trajectory (preliminary IMMs provided an average 

error reduction of about 57%). Furthermore, smoothing of the IMM estimated positions yields a 

reasonable trajectory. Figure 10 shows the effect of smoothing on the trajectory. The smoothing function 

takes a moving average of the position estimates, which removes noise from the estimates and improves 

the accuracy of the trajectory. 
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Figure 10 

 

 

There is a considerable amount of noise in the GPS z axis measurements because they are taken 

with a barometric altimeter. This random variation is excluded when the IMM is smoothed, making the 

IMM z estimates more accurate than those of the GPS.  

Figure 11 

 

 

As expected, the INS trajectory steadily deviates over time due to drift error. Meanwhile, the 

IMM trajectory not only holds to the truth (GPS trajectory) but also improves upon it by not including the 

z axis noise. 
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Discussion 

Summary  

 This research created a program to accurately track the trajectory of a drone in a GPS-denied 

environment. As long as a waypoint flight plan and inertial data are available, the designed IMM will 

determine the position of the drone. The original strategy for GPS-free navigation was by dead-reckoning, 

or integration of inertial data to produce position estimates. This method is unreliable because of the 

accumulation of drift error. The IMM created for this project fixes that problem by applying tracking 

filters that iteratively correct drift error. The program also constructs visual representations of the data, 

including Displacement vs. Time graphs, Normalized Error vs. Time graphs, INS, IMM and GPS 

Trajectory graphs, and Model Probabilities vs. Time graphs. Data used in these graphs come from output 

MATLAB matrices of the program.  

 

Significance 

 This program can be used in the onboard navigation complexes of target drones in case of loss of 

GPS signal. Losing GPS signal is quite common, especially when drones are being used for military 

purposes. Signal jammers are often used to disrupt the GPS of aircraft, and the best solution is frequency 

hopping. However, synchronizing the transmitter and receiver is a major challenge for this strategy, so it 

is necessary for the drone to have a reliable GPS-free navigation method for instances of signal jamming 

or loss. Position accuracy for these drones is of paramount importance. They often fly close to manned 

aircraft to provide protection or in tight formation with other drones. Cole (2019) reported that there were 

over 250 Class II (150-600 kg) and Class III (600+ kg) drone crashes between 2009 and 2018. Safety is a 

big risk when drones are flying in civilian airspace. The program developed in this project will improve 

the safety of target drones, thus decreasing concern over their use. Target drones are incredibly beneficial 

to an air force because they are used for testing and help protect pilots of manned aircraft. It is necessary 

to make target drones safer so they can make the skies safer. 

 

Limitations 

 The major limitation for this project is that inertial data was collected using a DJI Mavic Pro, a 

Class I (less than 150 kg) drone, because there was no access to a legitimate target drone. Target drones 

are almost always Class II and Class III, and bigger, stronger drones will undergo larger magnitudes of 

acceleration. As long as the inertial measurement unit on the drone can capture that acceleration, the 

program should still perform as well as it did in this project. Because the IMM runs 7 different motion 

models, it takes time for the model weights to adjust to fit the nature of the flight. When considering the 

Model Probability graphs (ex. Figure 3), it doesn’t take more than a few seconds for the IMM to converge 



Sendek  

 

16 

on the proper model, which in turn makes the position estimate converge on the truth. So, even for larger 

drones with the capability of maneuvers with more extreme acceleration, as long as the drone isn’t 

changing the nature of the flight (ex. acceleration, constant velocity, turning) over and over every few 

seconds, the IMM will shortly converge on the true position. Additionally, it’s possible that there is 

correlation between weather conditions and sensor accuracy or program performance. This project didn’t 

capture a wide range of weather conditions because all of the flights were performed in the same place at 

the same time of year. Research into the effects of more extreme weather conditions is necessary for the 

improvement of the program this project created. 

 

Future Research 

 This research has the potential to be a useful tool in the aeronautical field. However, the IMM 

program should first be tested in target drones.  

 Beyond that, similar programs can be created that use other estimation filters such as the Alpha-

Beta filter, Cubature Kalman filter, Gaussian-sum filter, or Particle filter. These filters required inputs that 

were not available in this research. Furthermore, fusion of other sensor measurements can be incorporated 

into the program to produce more accurate estimates.  
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