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Abstract  

Air pollution has been a persistent problem impacting citizens’ health and the environment. 

Therefore, the ability to model, predict, and monitor air quality is relevant and necessary, especially in 

urban cities. This study investigated sixteen years of US air quality data first through an exploratory data 

analysis and then focused on data from the state of California only, building and comparing models for air 

quality forecasting. The exploratory data analysis built up a basic understanding of the dataset and 

identifies general and interesting patterns. Multiple naïve and advanced time series forecasting methods 

were used to provide a comprehensive forecast of the levels of four air pollutants (SO2, NO2, O3, CO).  

 It was found that over the sixteen years, the CO, SO2, and NO2 pollutants had downward trends 

while O3 fluctuated at a high level. There was a 0.67 correlation between NO2 and CO levels in 

California, and these two pollutants were most correlated in the winters and least in the summers. Yearly 

seasonality was observed for each pollutant, with O3 having a seasonal pattern with peaks opposite of the 

rest. Both advanced models of SARIMAX and TBATS fitted well with SARIMAX fitting better for NO2 

and O3, and TBATS fitting better for CO and SO2. The applications, limitations, and future potentials of 

the two models are also discussed. For future research, a plan is to incorporate data of 

meteorological/human-caused parameters from the National Climate Data Center or California 

Transportations to compare the magnitudes of influences and improve the accuracy of the models. 

Predicting air quality and better understanding air pollution are complex yet necessary tasks that require 

sustained attention from scientists around the world for the sake of humanity and environment. 
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1.   Introduction 

Despite the establishment of the United States Environmental Protection Agency (EPA) in 1971 

and its constant effort to combat all types of pollution, air pollution in the United States continues to harm 

the citizens’ health and environment. According to the EPA, air pollution levels in many areas exceed the 

National Ambient Air Quality Standards (NAAQS) established under the authority of the Clean Air Act 

for at least one of the six common pollutants. These six “criteria air pollutants” include SO2, NO2, O3, CO, 

lead, and particulate matter.3  

SO₂ and NO2 are two pungent gases that are associated with increased respiratory symptoms, 

diseases and even premature death. Both can irritate the respiratory pathway and are most dangerous 

towards people with asthma or similar pre-existing conditions. Elevated CO levels outdoors are of 

particular concern for people with some types of heart disease, leading to reduced oxygen to the heart, 

angina (chest pain), and even death. Ground level Ozone (O3) is different from the protective ozone layer 

in the upper atmosphere; it is the main ingredient in “smog” and can lead to numerous respiratory diseases. 

All four of the air pollutants mentioned also affect sensitive vegetations and ecosystems, leading to leaf 

damage and increased susceptibility to diseases.4 This study does not involve lead and particulate matter 

(PM) data, but these air pollutants are also immensely harmful as well. To put this problem of air pollution 

into perspective, it was estimated that between 90,000 to 360,000 deaths per year in the US are linked to 

air pollution and that air pollution-related illnesses cost approximately $37 billion each year in the US, 

with California alone costing $15 billion.5,6 

The main general causes associated with air pollution are the burning of fossil fuels, agriculture, 

exhaust from factories and industries, residential heating, and natural disasters.7 For the western US states 

such as California, there are a few more specific factors such as Asian air pollution emissions, wildfires, 

and methane. Air pollution from China, India and several other Asian countries has wafted across the 

Pacific Ocean over the past years, drastically increasing levels of “smog” in the western states such as 

California, the state the latter half of this study focuses on. In fact, rising Asian emissions contributed to 

as much as 65% of the western US O3 increase from 1980 to 2014. Other factors such as wildfires and 

methane from livestock contributed much less with wildfire emissions supplying less than 10% and 

methane supplying about 15% during these 34 years8,9. In more recent times, California wildfires are 

becoming more threatening. Furthermore, as the most populated state in the US with the fifth largest 

economy in the world, California faces significant sources of air pollution such as automobile traffic and 

industrial pollution. In addition, the local topography in the state and its warm weather trap pollution 

within valley walls, increasing the levels of O3. All of these factors combined put California consistently 
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at the top of the list in the American Lung Association’s State of the Air Reports as the worst air quality 

in the country.10,11 

In the face of increasingly serious air pollution problems, scholars have conducted a substantial 

amount of related research using statistical models and analysis, ARIMA forecasting, Box–Jenkins time 

series models and nonlinear regression.12,13,14,15,16 In many of these previous studies, the levels of air 

pollution are measured through Air Quality Index (AQI), the standard indicator of air quality that allow 

comparison between different pollutants. The ability to accurately forecast the levels of air pollutants 

continues to increase in importance. It has a crucial role in understanding the change in air quality over 

time, measuring the effectiveness of federal and regional environmental policies, and managing air 

quality to protect both human health and the environment.  

The present research investigates sixteen years of US air quality data first through an exploratory 

data analysis and then focuses on air quality data from California, building and comparing models for air 

quality forecasting. The exploratory data analysis includes a brief correlation analysis looking for possible 

correlation patterns between different air pollutants, which is something barely studied before. Multiple 

naïve and advanced time series forecasting methods are used to provide a comprehensive forecast of the 

four pollutants’ levels, allowing comparisons between different methods and more insights to be derived 

from such comparisons.  

 

2.   Statement of Purpose   

This study will investigate US air quality data first, and then narrow down to focus on air quality 

data from California only. As suggested above, California has one of the worst air qualities out of all the 

states. The first half of this study aims to identify patterns within the US air quality data and derive 

insights through an exploratory data analysis, while the second half aims to build models for air quality 

forecasting for the state of California, using and comparing between three naïve methods, an improved 

version of the Seasonal ARIMA model, and a TBATS model that was introduced to R in 2011 and to 

Python in 2019.  

Three Groups of Research Questions:  

1. Preliminary Research: Is the overall US air quality worsening? If so, which air pollutants are to 

blame? Are there any seasonality patterns regarding US air quality and California air quality?  

2. Correlation Analysis: Is there a correlation between the levels of any two of the four air pollutants 

studied? If so, is there a seasonality pattern of the said two correlation levels (tested through 

correlation coefficient)?  

3. Time Series Analysis: What are the trend and seasonal components of each of the four air 

pollutants? What insights can be drawn from them?  
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3.   Materials and Methods 

3.1 Dataset1,2 

The dataset used in this study was scrapped from the US EPA’s Air Data by a creator on Kaggle, 

an online community of data scientists and machine learning practitioners. The creator Brenda So 

gathered information of the four major pollutants (SO2, NO2, O3, CO2) for every day from 2000 to 2016 

and stored the information in a CSV file. There was a total of 28 fields. The four pollutants each had 5 

specific columns, one column being each pollutant’s AQI, which is the measurement of air quality used in 

this study. Observations totaled to over 1.4 million rows.  

 

3.2 Tools 

The programming language used in this study was Python through the Anaconda distribution and 

package management platform. All of the coding was done on Jupyter Notebook, a web-based interactive 

data science environment that acts as an Integrated Development Environment and allows data 

visualizations. Some Python packages involved in this study were Numpy, Matplotlib, Pandas, SciPy, 

statsmodels, pmdarima, and TBATS.  

 

3.3 Data Cleaning  

The dataset contained raw data with unnecessary attributes and null values, aspects that should be 

checked before the exploratory data analysis. First, it was checked that the data columns and entries are 

the expected numbers. Then, columns not relevant to this particular study such as “State Code” and 

“Address” were dropped. Additional statistical estimators and attributes such as “modes” and “duplicates” 

were checked with a custom function. It was then found that about half of the dataset had null or missing 

values for two variables—SO2 and CO AQI. This was because NO2 and O3 AQI values were collected 

four times a day, while SO2 and CO AQI values were collected twice a day. The rows without SO2 and 

CO AQI values were dropped because the study focused on all four AQIs, and this did not disturb the 

dataset’s overall stability, allowing the coding to continue.  

All the attributes were checked once more to achieve greater familiarity with the dataset and 

remove certain confusing aspects. For example, it was found that California had the most data out of the 

whole dataset according to the percentages of data from each state. Also, “The Country of Mexico” was 

dropped from the “states” in the dataset.  

Assuming that the data is drawn from a normal distribution—an assumption made because 

visually the shapes looked relatively normal, the outliers lower or higher than the 5th or 95th percentile 
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respectively can be removed to restrict analysis to the most common portion of data. The distributions 

looked approximately normal, with the CO and SO2 AQI curves looking slightly more skewed to the right 

than the other two curves.  

The last step was to prepare the Pandas data frame for analysis. The date columns were changed 

from strings into a specific, usable format called “datetime.” Year and month columns were created.  

 

3.4 Exploratory Data Analysis  

An exploratory data analysis was conducted to build up basic understanding of the dataset for more 

advanced research as well as answer the preliminary research questions. Data visualizations were key to 

summarizing the main characteristics of this dataset. The medians of each date’s and each year’s 

observations were taken for all four AQIs and first plotted against states, then against time to visualize the 

change of the four AQIs over time. Median, instead of mean, was used as the main point estimator 

throughout this research because it was more resistant to skewness and knowing that CO and SO2 AQI 

distributions were slightly skewed, a more conservative approach was taken. Heatmap pivots with states 

as rows, years as columns, and the four AQIs as values were constructed to summarize the historical, 

regional changes of the US air quality data over time.  

In addition to data visualizations, a correlation analysis was performed to see if there was a possible 

correlation between the levels of any two of the four AQIs, something that may suggest some common 

factors influencing two AQIs at once. A general correlation matrix was first constructed; then, potential 

correlations between CO and NO2, SO2 and NO2 respectively were tested for by further controlling 

elements such as time and/or region. In this study, the region for correlation analysis was restricted to 

California. Graphs were also created to look for patterns of any change of correlation over time, with 

correlation measured through correlation coefficients.  

Potential seasonality (yearly, monthly, and weekly) was also checked for in order to enable time 

series analysis.   

 

3.5 Time Series Analysis  

After an exploratory data analysis, it was decided that the more advanced time series analysis should 

focus only on data from California because it had the most amount of and most complete data over the 16 

years, as well as the most serious air pollution problem. An analysis of the four AQI time series was 

necessary before building forecasting models. Prediction is an expectation for a combination of predictors 

and forecasting is a special type of prediction based on previous values. The data was first resampled to 

have one value only for every day, which is the median of each day’s observations. This way, the four 

AQI data became time series, a sequence where a metric is recorded over a regular, daily interval. After 
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reformatting the data frame to have only four AQI columns and the date column, it was decomposed with 

an additive model to derive insights on each AQI time series’ trend, seasonal, and residual components 

and prepare for a time series forecasting.  

 

3.6 Time Series Forecasting 

 A 15-year train set (2000-2015) and a 1-year test set (2016) were created in order to train a model 

that can eventually predict a year into the future. A custom function was used to directly calculate and 

store accuracy measures such as mean squared errors for each method into a neat data frame. A second 

function was used to plot the 1-year forecasts for each AQI onto the actual values of 2016 to see how 

successful each forecasting method was and derive insights.  

The naïve methods of forecasting were tested first because the most simplistic methods can work 

the best in some scenarios and the results of naïve methods allowed for comparisons with the more 

sophisticated methods later. The three naïve forecasting methods used were the average method in which 

the forecast value is simply the average of past values, the median method in which the forecast value is 

simply the median of the past values, and the seasonal naïve method in which the forecast value is the 

same value as the corresponding value in the last seasonal period.  

Then, two advanced models for time series forecasting were applied and their accuracy measures 

were stored in the same data frame. The first was an improved seasonal version of a commonly used 

statistical model called ARIMA, short for “Auto Regressive Integrated Moving Average.” An ARIMA 

“explains” a given time series based on its own past values i.e., its own lags and the lagged forecast 

errors. It is characterized by 3 terms, p as the order of the “Auto Regressive” (lag) term, q as the order of 

the “Moving Average” (forecast errors) term, and d as the number of differencing required to make the 

time series stationary. A time series is stationary when its values are not a function of time, meaning that 

the statistical properties of the series such as mean, variance, and autocorrelation are constant over time. It 

is necessary to make the time series stationary because linear regression statistical models work best if the 

predictors—lags of the series—are nearly independent. The equation for an ARIMA model is as below:  

 

In words, an ARIMA model is: Predicted = Constant + Linear Combination Lags of Y up to p lags + 

Linear Combination of Lagged forecast errors up to q lags.17  

However, general Seasonal ARIMA (SARIMA) models are not designed to work on data with 

yearly seasonality patterns. Even though the arima( ) function can allow a seasonal period up to m=350 in 

theory, it will usually run out of memory whenever the seasonal period is more than about 200 in practice. 

In order to include a long seasonal period of 365, a possible way is the fourier series approach where the 

seasonal pattern is modelled using Fourier Terms with short-term time series dynamics allowed in the 



 

7                                                                                                                                                              Cao  

                                                                                                                                     

 
error.18 Fourier Terms is based off Joseph Fourier’s idea that adding a certain amount of different sine and 

cosine functions can compose any wave function. The equation is as below:  

 

 

Therefore, the model used in this study was an altered version of SARIMAX (the X representing an 

inclusion of exogenous factors), since it used Fourier Terms as the exogenous factors.   

 The second model used in this study was a newer, rougher, and more flexible model called 

TBATS. Its name includes acronyms for key features: Trigonometric seasonality, Box-Cox 

transformation, ARMA errors, Trend and Seasonal components. This model is developed by De Livera, 

Hyndman, and Snyder. It takes its roots in exponential smoothing methods and considers these various 

alternatives.19, 20 It can be described by the following equations:  

 

 

4.   Results and Discussion 

4.1 Data Visualizations and Patterns 

The median values grouped by each year for the four air pollutant AQIs changed over time (See 

Figure 1 below). O3 AQI fluctuated but remained within the range of 30 to 45 values in the 16 years. NO2 

where Nt is an ARIMA process and K is chosen by minimizing the Akaike information criterion (AIC), 

a mathematical indicator that evaluates how well a model fits the data it was generated from 
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AQI decreased from about 24 values to about 18 values. CO AQI decreased from about 6 values to about 

3 values. SO2 AQI decreased from about 6 values to about 1 value. In a general and national sense, the 

AQIs of CO and SO2 pollutants had clear downward trends and both maintained a small value close to 

zero in around 2008 to 2010. NO2 had been decreasing but seemed to be possibly switching directions in 

2016, something that can be easily confirmed or disproved with additional data from 2016 to 2020. O3 

AQI remained at a high level and had no decreasing trend, which confirmed previous statistics showing 

that O3, along with PM that is not part of this study, is responsible for a large portion of air-pollution 

relevant deaths.  

 

Regarding seasonality, CO, NO2 and O3 AQIs clearly had yearly patterns, while SO2’s yearly 

pattern looked noisier (See Figure 2 below). O3 AQI peaked in July and August likely because O3 is 

produced by chemical reactions involving sunlight and is correlated to traffic volumes, which are often 

highest in the summer. O3’s pattern behaved in the opposite way of CO and NO2. Monthly and weekly 

patterns were also checked. There seemed to be a slight monthly pattern in CO. Other than that, minimal 

monthly and weekly patterns were observed through graphs.  

 

F1. 

F2.  
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Heatmaps below showed the changes of median values of the four air pollutant AQIs in each state 

(See Figures 3-6 below). For example, Florida’s NO2 level decreased from about 23 to about 14 through 

the sixteen years.  

 

 

Using the data of all sixteen years and from every state in the US, it was found that there is a 0.56 

national correlation between NO2 and CO and a 0.31 correlation between NO2 and SO2 (See Figure 7 

below, on the left). It was suspected that the actual correlations between these air pollutant levels (in the 

same region at the same time) are higher than these observed values due to the fact that the data has not 

controlled elements such as time and region. As per the general correlation matrix in Figure 7, the 

correlations between any two other AQI levels are likely not high enough to derive any insights. This is 

confirmed later as even when the data used is from the same month in the same state, none of the other 

correlations raised to 0.30 or above.  

F3. F4. 

F5. F6. 
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It was found that the correlation between NO2 and CO increased from about 0.50 to 0.60 through the 

sixteen years while the correlation between SO2 and NO2 decreased from about 0.34 to 0.27 (See Figure 8 

above, on the right).  

After further restricting the data to those from the state of California, it was found that there was a 

0.67 regional correlation between NO2 and CO (See Figure 9 below, on the left). This correlation 

confirmed a previous study by Stieb et al, saying that the strongest correlation was between NO2 and 

CO.19 It can be caused by CO influencing the oxidation of NO to NO2, or some other common influencing 

factors.  

 

When calculating the correlation coefficient between NO2 and CO2 for each month using data 

restricted to only California, it was found that there seemed to be an interesting pattern (See Figure 10 

above and on the right for a few years of example). The two air pollutant levels are more correlated from 

September to March and less correlated from May to August, with October being the most correlated and 

July being the least correlated. This pattern could possibly be explained by the fact that summer is usually 

the most volatile season with all types of influencers.  

 

F7. F8. 

F9. F10.  
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4.2 Results of Time Series Analysis 

After decomposition, the trend of NO2 AQI decreased from about 23 to 15, O3 AQI increased 

from about 30 to 35, CO AQI decreased from about 4 to 0, and SO2 AQI decreased from about 6 to 4 (See 

Figure 11 below). From the seasonality graph, it could be observed that CO had the lowest seasonal 

pattern amplitude while NO2 and O3 both had high pattern amplitudes. Confirming previous insight, O3's 

seasonal pattern was opposite of the rest. The residuals were relatively high, likely indicating that there 

were quite a few other outside variables/predictors of each exact day (temperature, air humidity, traffic, 

fires, etc) influencing the air quality data other than the extracted general trend and seasonality pattern. 

This was part of the limitation of performing time series analysis and forecasting on air quality data 

because time series are usually based solely on previous values and patterns. All but the CO AQI residual 

seemed completely scattered. There was some fanning in the CO AQI residual plot, likely due to the fact 

that the CO AQI level decreased to about 0 in the last few years, causing all patterns and influences after 

around 2009 to be less prominent.  

 

4.3 Fitting of Naïve Forecasting Models  

Regarding the naïve methods of forecasting, the average and median methods both led to a linear 

line of forecast. They performed very similarly for all AQI time series but SO2’s as SO2’s data 

distribution was the least normal, with a slight skew. According to both the visual depictions (See Figures 

12 and 13 below) and the accuracy measures of Root Mean Squared Error (RMSE) and Mean Absolute 

Error (MSE) (See Figure 17 below), these two methods were clearly unfit for forecasting.  

F11.  
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The seasonal naïve method worked the best out of the three naïve methods according to both the 

plots and the accuracy measures of RMSE and MAE, indicating that the AQI values of the year 2016 

were extremely similar to that of the previous year (See Figure 14 below). This again confirmed the 

seasonality patterns for the AQIs. Though the seasonal naïve method worked the best, its accuracy 

measures for O3 and CO AQI time series were only slightly better than those of the average and median 

methods (See Figure 17 below). The fact that the average and median methods had relatively low errors 

suggests that O3 and CO AQI values have been quite consistent in its past years.  

 

 

4.4 Fitting of Advanced Forecasting Models  

The SARIMAX models fitted well visually overall (See Figure 15 below). A small issue was that 

the model predicted a smaller amplitude than the actual one for NO2 AQI. The accuracy measures 

confirmed that when comparing to the naïve models, the SARIMAX models worked better in every case 

except one, which will be discussed below.  

F12.  

F13.  

F14.  
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The SARIMAX models of NO2 and O3 AQIs yielded higher AIC (definition on Page 7). while 

those of CO and SO2 AQIs yielded much lower AIC, meaning that NO2 and O3 AQIs had worse fits. The 

SARIMAX model of SO2 had insignificant p-values for some of its variables—especially the Fourier 

Term variables—likely because the pattern of SO2 AQI values deviated from the seasonal cycles as the 

values experienced a drop in 2008. All other p-values for the four SARIMAX models were significant.  

According to MAE only, the Seasonal Naive model worked slightly better for SO2 AQI time series 

(See Figure 17 below). However, RMSE didn’t agree with MAE as it showed that the SARIMAX model 

fitted better instead. Since the seasonal naive method completely depended on the last year before the test 

year and SO2 AQI historical values have been very different from its more recent values, it made sense 

that the seasonal naive method worked well for SO2 AQI.  

 

The TBATS models also provided a decent fit with its ability to capture dynamic and complex 

seasonality, meaning that it can account for the slight changes in seasonality patterns (See Figure 16 

below). However, it performed worse than the SARIMAX model for NO2 and O3 AQIs time series as per 

the accuracy measures (See Figure 17 below). The first TBATS round of model used in this study was 

designed for data with both yearly and monthly seasonality, and minimal monthly pattern was observed 

for NO2 and O3 AQIs. It performed better for SO2 and CO AQIs for likely two reasons. First, a slight 

monthly seasonality was observed in CO AQI earlier. This reason might be true for CO AQI, since an 

additional round of TBATS testing (TBATS2 in Figure 17) with only yearly seasonality yielded slightly 

higher errors than the first round. Second, the TBATS model is more flexible and can put more weight on 

values closer in time to the test set of 2016 and thus could perform a better job when there was a drastic 

change in values and patterns sometime within the 16 years.20 This reason is likely true for both SO2 AQI 

and CO AQI, since both experienced a decrease in 2008 and the first performed similarly for both rounds 

of TBATS (TBATS likely picked the same model). For NO2 and O3, the second round of TBATS without 

monthly seasonality performed better than the first round of TBATS with monthly seasonality. A 

limitation to note was that the TBATS model was done through a completely automated manner. As with 

F15.  
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any automated modelling framework, there may be cases where it gives poor results with large residuals. 

It also ran a lot slower and might be crude for complicated processes.20, 21 

 

 

 

 

 

5.   Conclusion and Future Research 

 Predicting the air quality is a complex task due to the dynamic nature, volatility, and variability in 

space and time of air pollutants. Yet it is necessary to keep improving this ability to model, predict, and 

monitor air quality.  

This study worked on a dataset with sixteen years of air quality data of four air pollutants, all 

extracted from the US EPA. In addition to confirming the answers to some preliminary questions, it also 

derived interesting insights about the correlation patterns that could be useful in future research aiming to 

find the most influential factors of air quality that influence the levels of multiple air pollutants at once.  

The insights about correlation were not previously studied and could be potentially useful for supporting 

city administrators in decision making.22 While SARIMAX and TBATS models both performed well in 

fitting, they also helped provide a better understanding of these 16 years of air quality data.  

F16.  

F17.  
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This study certainly had lots of areas of improvements. It could have benefited from more 

research of literature and analysis, yet time for reading previous research and coding of this study was 

lacking due to unfortunate circumstances caused by the Pandemic. However, an extension of this research 

would be pursued by the author in the following summer.  

The dataset was both the center of this study and the core limitation. For future research, data 

closer in time should be included and recent factors, such as 2020’s wildfires, should be taken into 

considerations as well. In California only, there was a total of 10.8 million acres burned from 2011-20, 

with 3.2 million acres burned just in the year 2020 alone, covering cities with an orange haze.23 

This study could have benefited greatly if its dataset incorporated data about other predictors such 

as temperature and traffic levels, possibly from the National Climate Data Center. A future study could 

compare the magnitude of influences of predictors and of previous values and then combine both patterns 

to hopefully greatly improve the accuracy of the models. Another future study could focus on connecting 

the changes in air quality with corresponding environmental laws in order to see “how great of a job” 

humans are doing so far combating air pollution. Nevertheless, this is a long battle that all people—

scientists, politicians, and everyone else—need to face for the sake of humanity and the environment.  
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