A. Linear Functions and Models

- 1. Midpoint formula
- 2. Distance formula
- 3. Linear functions
 - a. definition
 - b. graphs
 - c. slopes
- 4. Linear models writing equations for lines
- 5. Solving systems algebraically and demonstrate graphically
 - a. two x two
 - b. three x three

B. Polynomial Functions and Models

- 1. Polynomial operations
- 2. Factoring review
- 3. Quadratic functions
 - a. definition
 - b. evaluating quadratic functions
 - c. graphs of quadratic functions
- 4. Solving quadratic equations
 - a. real and complex solutions using the discriminant
 - b. solving by factoring
 - c. solving by using the quadratic formula
 - d. solving by completing the square
 - e. using substitution to solve equations in quadratic form
 - f. solving by using graphing technology
 - g. writing equations from zeros
- 5. Modeling data with quadratic equations
- 6. Polynomial equations
 - a. rational root theorem
 - b. graphic solution
- 7. Complex numbers
 - a. definition
 - b. simplifying square roots of negative numbers
 - c. operations with complex numbers
 - 1) addition
 - 2) subtraction
 - 3) multiplication
 - 4) division

C. Equations and Inequalities

1. Logic underlying the solving of inequalities

- 2. Solving one and two variable inequalities with technology
- 3. Test point method to solve one and two variable inequalities
- 4. Solving one and two variable quadratic inequalities
- 5. Solving absolute value equations and inequalities
- 6. Solving systems of inequalities
 - a. linear
 - b. non-linear
- 7. Linear programming
- 8. Interval notation

D. Operations with Functions

- 1. Graphing functions
 - a. definition of a function and function notation
 - b. using graphing technology
- 2. Features of functions
 - a. domain and range
 - b. one-to-one functions
 - c. evaluating for specific values
 - d. zeros
 - e. symmetry even or odd functions
 - f. periodicity
 - g. intervals
 - i) positive / negative
 - ii) increasing / decreasing
 - iii) concave up / concave down
- 3. Analyzing classes of functions, including their graphs
 - a. polynomial functions
 - b. exponential functions
 - c. logarithmic functions
 - d. power functions
 - e. rational functions
 - f. absolute value functions
 - g. greatest integer function
- 4. Transformations and graphs of functions
 - a. translations of parent graphs
 - b. scale changes of parent graphs
 - c. writing functions given transformations
- 5. Inverses of functions
 - a. graphs of functions and their inverses and noting they are reflection images over y = x
 - b. proofs that two functions are inverses
 - c. writing an inverse function/equation

- 6. Arithmetic operations on functions
 - a. addition of functions
 - b. subtraction of functions
 - c. multiplication of functions
 - d. division of functions
- 7. Composition of functions
- 8. Graphing the sum and difference of functions using addition and subtraction of ordinates

E. Power, Exponential, and Logarithmic Functions and Models

- 1. Nth root functions
 - a. definition
 - b. radical notation and rational exponent notation
 - c. evaluating nth roots
 - d. graphs of nth root functions
- 2. Power functions
 - a. evaluating $b^{m/n}$ for b>o
 - b. integer power functions
 - c. rational power functions
 - d. graphs of power functions
- 3. Exponential functions
 - a. definition
 - b. evaluating exponential functions
 - c. graphs of exponential functions
- 4. Logarithmic functions
 - a. definition
 - b. evaluating logarithmic functions
 - c. natural logarithmic functions
 - d. common logarithmic functions
 - e. properties of logarithms
 - f. graphs of logarithmic functions
- 5. Solving exponential equations
- 6. Solving logarithmic equations
- 7. Modeling data
 - a. with power functions
 - b. with exponential functions
 - c. with logarithmic functions
 - d. choosing the most appropriate model for a given set of data

F. Quadratic Relations

- 1. Circle
 - a. distance definition
 - b. equation in standard form
 - c. identify
 - 1) center
 - 2) radius
 - d. semicircles
 - e. graph equations and inequalities
- 2. Ellipse
 - a. distance definition
 - b. equation in "h-k" form
 - c. identify
 - 1) major/minor axes
 - 2) vertices/intercepts
 - d. graph equations and inequalities
- 3. Parabola
 - a. distance definition
 - b. equation in standard form
 - c. identify
 - 1) vertex
 - 2) axis of symmetry
 - 3) focus
 - 4) directrix
 - d. graph equations and inequalities
- 4. Hyperbola
 - a. distance definition
 - b. equation in "h-k" form
 - c. identify
 - 1) vertices
 - 2) major axis
 - 3) foci
 - 4) asymptotes
 - d. graph equation and inequalities
- 5. Translation in the plan
- 6. Solving systems of equations and inequalities
 - a. quadratic-linear
 - b. quadratic-quadratic
- 7. Analytic geometry proofs (as time permits)