Finding Chaos During a Pandemic: Studying Pendulum Motion



• Sara Earnest, mentored by

Professor D. Lathrop, Ph.D. UMD Nonlinear Dynamics Lab

![](_page_1_Picture_0.jpeg)

der gradvate

Student

### The Internship's Structure

- I was one of five high school researchers chosen to intern in Dr. Lathrop's Nonlinear Dynamics Lab this summer.
- The internships began in June, however, because of the pandemic all meetings were over zoom.
- Chaos is a part of nonlinear dynamics, which Dr. Lathrop's lab studies mainly using a scale model of Earth's core called the "3-meter experiment".

What is chaos theory? Why do we care?

#### What is Chaos?

- states of dynamical systems with apparent randomness
- actually governed by deterministic laws

#### And Chaotic Motion?

• behavior so unpredictable it appears random

#### Why do we care?

 In fields of robotics and engineering, understanding chaos theory allows for devising predictive models for machine learning, instead of relying on trial and error learning systems.

# My Project: Overview

- To construct a magnetized pendulum (the magnetization making the system nonlinear), record and graph its swings, and find pockets of chaotic motion
   The pendulum was equipped with two Arduinos
- One I programed to run a linear servo motor at the top of the pendulum to it in motion and combat friction; and a second I programed to collect data from each swing.
- I graphed the data collected through the Arduino (using <u>Matlab</u>), I then analyzed it for chaos.

#### **Research Timeline**

#### JUNE

constructed basic
pendulum design
(no magnets)
Started on python
code to extract data
bought and
programmed
arduinos

#### JULY

replaced python
code with RealTerm
(program to extract
data for you)
constructed a
forcing with a servo
motor to combat
friction
ran test trials of the
pendulum without
chaos
plotted all data in
matlab

## AUGUST

switched out
current servo motor
for a better one.
changed design
slightly
added the magnets
to the system,
making it chaotic
collected data of
the now-chaotic
pendulum and
plotted it with
MatLab
Identified chaotic
motion within data

![](_page_5_Picture_0.jpeg)

## **Constructing the Pendulum**

- Using home supplies, I constructed my pendulum from my dog's grooming stand.
- I placed one strong magnet atop the pendulum and a repelling magnet directly below.
- I used Legos and electrical tape to attach the Arduino and servo motor to the pendulum's top.

## Tools and Terms: Arduino

- Two components:
  - hardware constituting a programmable microcontroller (circuit board)
  - Software: IDE (Integrated Development Environment) on your computer to write and upload code to the physical board
- One Arduino was placed atop the pendulum and programed to run the linear servo motor in order to keep the pendulum in motion.
- A second Arduino with motion shield was the weight of the pendulum and recorded data from its motion

9-Axes Motion Shield (used as accelerometer and magnetometer)

![](_page_6_Picture_7.jpeg)

## In the Beginning

- The original plan was to first construct a simple pendulum with an arduino and 9-axes sensor shield as the weight.
  - I would then write a python code to extract the data so I could analyze it

![](_page_7_Picture_3.jpeg)

(left and below) The very first setup– a simple pendulum

![](_page_7_Picture_5.jpeg)

![](_page_7_Figure_6.jpeg)

#### Midway Through

• I tested the setup by taking data of the simple pendulum swing and plotting it in Matlab

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

**From left to right:** Data plotted in Matlab (z-axis acceleration plotted against zaxis gravitational acceleration on left, x-axis acceleration plotted against time on the right.)

### A New Design and the Home Stretch!

- Magnetized the pendulum in two places, the magnets repelling each other
  - This would be the cause of the chaotic motion
- Added a servo motor to keep the system from decaying due to friction
- Took and plotted graphs with MatLab, looking for chaos

![](_page_9_Picture_5.jpeg)

![](_page_9_Picture_6.jpeg)

## Finding Chaos and Graphing it

![](_page_10_Figure_1.jpeg)

Graph of x-axis acceleration versus y-axis acceleration (and closeup), data points 400 through 820

> Graph of time versus x-axis acceleration (and closeup)

#### There Were Challenges:

- Making sure the servo motor drives the pendulum at a constant but low amplitude (timing)
- Getting the servo Arduino and the data collection Arduino to run at the same time out of different ports

#### I Made Mistakes:

- Intially I wasted time with the Python code, eventually switched to RealTerm
- Struggled with the design when adding in the servo motor/second arduino

```
J Prompt - python
       am Files\Python37\Lib\pyserial-3.4>python
      3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:57:15) [MSC v.1915 64 bit
      help", "copyright", "credits" or "license" for more information.
    import serial
    import time
    # set up serial line
   ser = serial.Serial('COM3', 11520)
>>> time.sleep(2)
>>> # read and record data
 .. data =[]
                        # empty list to store data
>>> for i in range(300):
       b = ser.readline()
                                # read a byte string
       string n = b.decode()
                                # decode byte string into Unicode
       string = string n.rstrip
                                        # remove \n and \r
       flt = float(string)
       print(flt)
       data.append(flt)
       time.sleep(0.1)
       ser.close()
   # show data
       for line in data:
       print(line)
  File "<stdin>", line 12
   print(line)
      ationError: expected an indented block
        for line in data:
         tdin>", line 1
            in data:
                  unexpected indent
                              (above) my original python code I ended
                              up discarding
```

#### Procedures Learned

- 1. Programming an Arduino
- 2. Using MatLab to plot graphs and analyze data
- **3.** Recognizing, graphing, and comprehending pockets of chaotic motion in data
- **4.** Mathematical concepts used to detect and record chaotic motion.
- **5.** Engineering research involves a lot of trial and error.
- **6.** Asking for help is essential to successful engineering designs.

# Thank you!!