PUBLIC SCHOOLS OF EDISON TOWNSHIP

OFFICE OF CURRICULUM AND INSTRUCTION

Physics Honors

Length of Course:	Term
Elective/Required:	Required
Schools:	High School
Eligibility:	Grade 11
Credit Value:	6 Credits
Date Approved:	August 24, 2020

TABLE OF CONTENTS

Statement of Purpose	3
Course Objectives	4
Timeline and Pacing Guide	7
Unit 1: Kinematics	11
Unit 2: Dynamics	17
Unit 3: Circular Motion	24
Unit 4: Gravitation	29
Unit 5: Work and Energy	35
Unit 6: Momentum	39
Unit 7: Oscillations	48
Unit 8: Mechanical Waves and Sounds	54
Unit 9: Geometric Optics	60
Unit 10: Electrostatics	66
Unit 11: DC Circuits	72
Unit 12: Electromagnetism	78

STATEMENT OF PURPOSE

The Honors Physics curriculum is a college preparatory, laboratory based, comprehensive survey of physics that meets local objectives and contributes to the accomplishment of the state and national standards. The program was chosen to complement the flow and sequence of scientific studies from Chemistry. All students will understand that physical science principles, including fundamental ideas about matter, energy, and motion, are powerful conceptual tools for making sense of phenomena in physical, living, and Earth systems science. An overarching goal for learning in physics is to help students see that there are mechanisms of cause and effect in all systems and processes that can be understood through a common set of physical quantities and principles. A lab-based/inquiry physics course is structured so that students actively engage in scientific and engineering practices and experiences provided for students should engage them with fundamental questions about the world and with how scientists have investigated and found answers to those questions. Students should have the opportunity to carry out scientific investigations and engineering design projects related to the disciplinary core ideas in physics. Students will use scientific inquiry to understand science concepts and develop explanations of natural phenomena. The purpose of learning physics is both the understanding of basic concepts and the application of problem solving skills developed during that process.

The curriculum guide was revised/updated by: Robin Connell (EHS) Kruti Singh (EHS)

Coordinated by: Laurie Maier, Science Supervisor EHS/JPS

COURSE OBJECTIVES

By the end of the Honors Physics course, students will be able to:

Motion and Stability: Forces and Interactions

- **(NJSLS/HS-PS2-1)** Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.
- (NJSLS/HS-PS2-2) Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
- **(NJSLS/HS-PS2-3)** Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
- **(NJSLS/HS-PS2-4)** Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.
- (NJSLS/HS-PS2-5) Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

Energy

- (NJSLS/HS-PS3-1) Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
- **(NJSLS/HS-PS3-2)** Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).
- (NJSLS/HS-PS3-3) Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
- (NJSLS/HS-PS3-5) Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Waves And Their Applications In Technologies For Information Transfer

- (NJSLS/HS-PS4-1) Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.
- (NJSLS/HS-PS4-2) Evaluate questions about the advantages of using digital transmission and storage of information.

- **(NJSLS/HS-PS4-3)** Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.
- (NJSLS/HS-PS4-4) Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

Weather and Climate

• (NJSLS/HS-ESS2-4) Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

Engineering Design

• (NJSLS/HS-ETS1-2) Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Earth's Place In The Universe

• (NJSLS/HS-ESS1-4) Use mathematical or computational representations to predict the motion of orbiting objects in the solar system

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2- 4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2) HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

TIMELINE AND PACING GUIDE

Marking Period 1:

Kinematics

reference frames position, displacement average velocity constant acceleration free fall graphical analysis unit analysis

vectors, scalars constant velocity 2D projectile motion relative velocity

Dynamics

force, mass four fundamental forces Newton's Laws of Motion particular forces (weight, normal, tension, drag, friction) 1D and 2D forces at an angle inclined planes

Quarterly Exam 1

Marking Period 2:

Circular Motion kinematics dynamics horizontal circular motion vertical circular motion banked turns

Gravitation

Kepler's Laws of Planetary Motion Universal Gravitation

Work and Energy

work (constant force) work (variable force) mechanical energy energy conversions energy conservation (includes discussion of internal energy) power

Momentum

momentum impulse momentum conservation 1D and 2D

Quarterly Exam 2

Marking Period 3:

Oscillations

simple harmonic motion spring oscillations simple pendulum energy of simple harmonic motion

Mechanical Waves

wave motion mechanical waves wave properties reflection refraction diffraction interference

Sound

characteristics of sound string instruments wind instruments resonance beats

Geometric Optics Ray Model of Light reflection mirrors refraction lenses

Quarterly Exam 3

Marking Period 4:

Electrostatics

electrostatic charge nature of materials Coulomb's Law

Electric Field and Electric Potential

electric field electric potential and electric potential difference electric potential energy

DC Circuits

simple circuits series circuits parallel circuits combination circuits

Electromagnetism

magnetism

magnetic force

magnetic field

magnetic force on...

... charged particle

... current carrying wire

Quarterly Exam 4

(Optional) Special Relativity

Postulates of Special Relativity simultaneity time dilation, length contraction space-time relativistic momentum mass-energy equivalence

Unit 1: Kinematics

4 weeks

TARGETED STATE STANDARDS:

NGSS

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to macroscopic objects moving at non-relativistic speeds.]

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2- 4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Motion is relative to a reference frame

An observer in a particular reference frame can describe the linear motion of an object's center of mass using such quantities as position, displacement, distance, velocity, speed, and acceleration

Displacement, velocity and acceleration are all vector quantities

Displacement is change in position.

Velocity is the rate of change of position with time.

Acceleration is the rate of change of velocity with time.

Changes in each property are expressed by subtracting initial values from final values

$$v = \frac{\Delta x}{\Delta t}$$

$$a = \frac{\Delta V}{\Delta t}$$

A choice of reference frame determines the direction and the magnitude of each of these quantities.

The kinematic equations only apply to constant acceleration situations.

The three kinematic equations describing linear motion with constant acceleration in one and two dimensions are $v = v_0 + a\Delta t$ $x = x_0 + v_0\Delta t + \frac{1}{2}a\Delta t$ 2v $^2 = v_0^2 + 2a\Delta x$

Vectors can be broken into their components and added

Perpendicular vectors are independent of each other

ESSENTIAL QUESTIONS:

How do we define motion? Why is motion relative? How do we model the motion of objects? How do we describe objects in free fall? How is motion in one dimension affected by motion in another dimension?

UNIT ASSESSMENT: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam

Tests and quizzes Laboratory activities and reports

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.B: Types of Interactions	Planning and Carrying Out	Patterns	Use appropriate classroom	Formative Example
Forces at a distance are	Investigations	Empirical evidence is	materials, online and	Assessments:
explained by fields	Plan and conduct an	needed to identify	textbook resources (i.e.	Exit tickets

(gravitational, electric, and	investigation individually and	·	simulations, measurement	-
magnetic) permeating space	collaboratively to produce	5)	tools/instruments/software)	Classwork
hat can transfer energy through	data to serve as the basis for		for presentation,	Homework
space. (HS-PS2- 4),(HS-PS2-5)	evidence, and in the design:	Scale, Proportion,	demonstration, classroom	
	decide on types, how much,	and Quantity	and laboratory activities,	<u>Summative</u>
	and accuracy of data needed	Algebraic thinking is	and problem solving:	Assessments:
	to produce reliable	used to examine		Tests
	measurements and consider	scientific data and	Express the motion of an	Quizzes
	limitations on the precision of	predict the effect of a	object in one and two	Laboratory reports
	the data (e.g., number of	change in one variable	dimensions using multiple	Project
	trials, cost, risk, time), and	on another (e.g., linear	representations (i.e.	Quarterly exam
	refine the design accordingly.			
	(HS-PS2-5)	growth). (HS-ESS1-4)	video analysis, data table,	
			graphical and	
	Analyzing and Interpreting	Cause and Effect	mathematical	
	Data	Systems can be	representations) and	
	Analyze data using tools,	designed to cause a	ranking tasks	
	technologies, and/or models	desired effect (HS-		
	(e.g., computational,	PS2-3)	Design an experimental	
	mathematical) in order to		investigation of the motion	
	make valid and reliable	Systems and System	of an object.	
	scientific claims or determine	Models	-	
	an optimal design solution.	Models (e.g., physical,	Make predictions about the	
	(HS-PS2-1)		motion of a system based	
		computer models) can	on the fact that	
	Using Mathematics and	be used to simulate	acceleration is equal to the	
	Computational Thinking	systems and	change in velocity per unit	
	Use mathematical	interactions-	time, and velocity is equal	
	representations of	including energy,	to the change in position	
	phenomena to describe		per unit time.	
	explanations. (HS-PS2-	information flows—		
	2),(HS-PS2-4)	within and between		
		systems at different		
	Constructing Explanations	scales. (HS-ETS1-4)		
	and Designing Solutions			

Apply scientific ideas to solve	ξ.
a design problem, taking into	
account possible	
unanticipated effects. (HS-	
PS2-3)	
/	
Obtaining, Evaluating, and	
Communicating	
Information	
Communicate scientific and	
technical information (e.g.	
about the process of	
development and the design	
and performance of a	
proposed process or system)	
in multiple formats (including	
orally, graphically, textually,	
and mathematically). (HS-	
PS2-6)	
Science Models, Laws,	
Mechanisms, and Theories	
Explain Natural	
Phenomena	
Theories and laws provide	
explanations in science. (HS-	
PS2- 1),(HS-PS2-4)	
Laws are statements or	
descriptions of the	
relationships among	
observable phenomena. (HS-	-
PS2-1),(HS-PS2-4)	

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	IEP mandates for classified students
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (http://www.physicsclassroom.com/)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 2: Dynamics

TARGETED STATE STANDARDS:

NGSS

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to macroscopic objects moving at non-relativistic speeds.]

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) + (HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

ISA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-S2-2)

3 weeks

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

A system is an object or a collection of objects. Objects are treated as having no internal structure.

Forces are described by vectors

Force diagrams are useful tools for visualizing forces being exerted on a single object and writing the equations that represent a physical situation

A force exerted on an object is always due to the interaction of that object with another object

Newton's First Law and Second Law of Motion: The acceleration of an object interacting with other objects can be predicted by:

 $a = \frac{\Sigma F}{m}$

If an object of interest interacts with several other objects, the net force is the vector sum of the individual forces

Force and acceleration are both vectors, with acceleration in the same direction as the net force.

Newton's Third Law of Motion: If one object exerts a force on a second object, the second object always exerts a force of equal magnitude on the first object in the opposite direction

 $F_{2 \text{ on } 1} = -F_{1 \text{ on } 2}$

Objects and systems have properties of inertial mass and gravitational mass that are experimentally verified to be the same and that satisfy conservation principles.

Inertial mass is the property of an object or a system that determines how its motion changes when it interacts with other objects or systems.

Gravitational mass is the property of an object or a system that determines the strength of the gravitational interaction with other objects or systems.

There are fundamental forces in nature

Gravitational forces are exerted at all scales and dominate at the largest distance and mass scale

Electromagnetic forces are exerted at all scales and can dominate at the human scale

The strong force is exerted at nuclear scales and dominates the interactions of nucleons

Field forces result from interaction of one field on another

Gravitational force describes the interaction of one object that has mass with another object that has mass

A gravitational field *g* at the location of an object with mass *m* causes a gravitational force of magnitude *mg* to be exerted on the object in the direction of the field.

On Earth, this gravitational force is called weight

Contact forces result from interaction of one object touching another object, and they arise from interatomic electric forces. These forces include normal, tension, drag force, and friction

$$|F_{f_s}| \le |\mu_s F_N|$$

$$|F_{f_k}| = |\mu_k F_N|$$

Normal force and friction force are the perpendicular forces of the surface on an object

ESSENTIAL QUESTIONS: How can we change the motion of an object? How do we describe and predict changes in the motion of an object?

UNIT ASSESSMENT: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?)

Quarterly Exam Tests and quizzes Laboratory activities and reports

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.A: Forces and Motion	Planning and Carrying Out	Patterns	Use appropriate classroom	Formative Assessments:
Newton's second law	Investigations	Different patterns may	materials, online and	Exit tickets
accurately predicts changes	Plan and conduct an	be observed at each of	textbook resources (i.e.	Laboratory activities
in the motion of macroscopic	investigation individually and	the scales at which a	simulations, measurement	Classwork
		system is studied and	tools/instruments/software)	Homework
		can provide evidence for	-	
	-	, ,		<u>Summative</u>
	•	•	and laboratory activities,	Assessments:
		PS2-4)	and problem solving:	Tests
	data needed to produce			Quizzes
			Represent forces in	Laboratory reports
magnetic) permeating space		•	Ŭ	Project
0,		•	mathematically using	Quarterly exam
•	, , ,		appropriately labeled	
	<i>,,</i> 5		vectors with magnitude,	
			direction and units during	
			the analysis of a situation.	
	Analyzing and Interpreting	,,		
	Data		Re-express a force	
		•	diagram into a	
	technologies, and/or models	-	mathematical	
			representation, and solve	
	*	/	the mathematical	
	make valid and reliable		representation for the	
		-	acceleration of the object.	
	determine an optimal design		Describe a force as an	
		0 0		
		describing a system, the	interaction between two	

Using Mathematics and	boundaries and initial	objects, and identify both
Computational Thinking	conditions of the system	objects for any force.
Use mathematical	need to be defined. (HS-	
representations of	PS2-2)	Design an experiment for
phenomena to describe		collecting data to
explanations. (HS-PS2-	Systems and System	determine the relationship
2),(HS-PS2-4)	Models	between the net force
	Models (e.g., physical,	exerted on an object, its
Constructing Explanations	mathematical, computer	inertial mass, and its
and Designing Solutions	models) can be used to	acceleration.
Apply scientific ideas to	simulate systems and	
solve a design problem,	interactions— including	Design a plan for collecting
taking into account possible	energy, matter, and	data to measure
unanticipated effects. (HS-	information flows—	gravitational mass and
PS2-3)	within and between	inertial mass and to
	systems at different	distinguish between the
Obtaining, Evaluating, and	scales. (HS-ETS1-4)	two experiments.
Communicating		
Information		Calculate the gravitational
Communicate scientific and		force on an object with
technical information (e.g.		mass <i>m</i> in a gravitational
about the process of		field of strength <i>g</i> in the
development and the design		context of the effects of a
and performance of a		net force on objects and
proposed process or		systems.
system) in multiple formats		
(including orally, graphically,		Analyze a scenario and
textually, and		make claims (develop
mathematically). (HS-PS2-		arguments, justify
6)		assertions) about the
		forces exerted on an object
Science Models, Laws,		by other objects for
Mechanisms, and		different types of forces or
Theories Explain Natural		components of forces.
Phenomena		

Theories and laws provide	Predict the motion of an
explanations in science.	object subject ot forces
(HS-PS2- 1),(HS-PS2-4)	exerted by several objects
	using an application of
Laws are statements or	Newton's Second Law of
descriptions of the	Motion in a variety of
relationships among	physical situations
observable phenomena.	
(HS-PS2-1),(HS-PS2-4)	Express the motion of an
	object in one and two
	dimensions using multiple
	representations (i.e.
	narrative, dot diagram,
	video analysis, data table,
	graphical and
	mathematical
	representations) and
	ranking tasks

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	Instructional Adjustments:
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	IEP mandates for classified students
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (http://www.physicsclassroom.com/)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 3: Circular Motion 1.5 weeks

TARGETED STATE STANDARDS:

NGSS

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to macroscopic objects moving at non-relativistic speeds.]

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) + (HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

For curved and circular motion such as projectiles and orbitals, a system must have a net centripetal force exerted on it perpendicular to the direction of a velocity component toward the center of curvature.

Force and acceleration are both vectors with acceleration in the same direction as the net force

$$a_c = \frac{F_c}{m}$$

Force diagrams are useful tools for visualizing forces being exerted on a single object and writing the equations that represent a physical situation

For uniform circular motion where the velocity is entirely perpendicular to the net centripetal force:

$$a_c = \frac{v^2}{r}$$
 $v = 2\pi r f$ $f = \frac{1}{T}$ $\omega = 2\pi f = \frac{1}{2\pi T}$

ESSENTIAL QUESTIONS:

What causes an object to move in uniform circular motion? Why doesn't Earth "fall into" the Sun? UNIT ASSESSMENT: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and quizzes

Laboratory activities and reports

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.A: Forces and Motion	Planning and Carrying	Patterns	Use appropriate classroom	Formative Assessments:
Newton's second law	Out Investigations	Empirical evidence is	materials, online and	Exit tickets
accurately predicts changes	Plan and conduct an	needed to identify	textbook resources (i.e.	Laboratory activities
in the motion of macroscopic	investigation individually	patterns. (HE-ESS1-5)	simulations, measurement	Classwork
objects. (HS-PS2-1)	and collaboratively to		tools/instruments/software)	Homework
	produce data to serve as	Cause and Effect	for presentation,	
PS2.B: Types of	the basis for evidence, and	Empirical evidence is	demonstration, classroom	<u>Summative</u>
Interactions	in the design: decide on	•	•	Assessments:
Forces at a distance are	types, how much, and		and problem solving:	Tests
explained by fields	accuracy of data needed to	correlation and make	Create and use force	Quizzes
(gravitational, electric, and	produce reliable	claims about specific	diagrams to analyze	Laboratory reports
magnetic) permeating space	measurements and		physical situations to solve	•
that can transfer energy	consider limitations on the		problems with motion	Quarterly exam
through space. (HS-PS2-	precision of the data (e.g.,		qualitatively and	
4),(HS-PS2-5)	number of trials, cost, risk,		quantitatively for horizontal	
	time), and refine the design		circular motion, vertical	
	accordingly. (HS-PS2-5)		circular motion and banked	
			turns.	
	Analyzing and		Everges the motion of an	
	Interpreting Data		Express the motion of an	
	Analyze data using tools,		object using narrative and	

technologies, and/or models	r	mathematical	
(e.g., computational,	r	representations.	
mathematical) in order to			
make valid and reliable	C	Design a plan to collect	
scientific claims or	a	and analyze data for	
determine an optimal design	r	motion from force	
solution. (HS-PS2-1)	r	measurements, and carry	
	c	out an analysis to	
Using Mathematics and	C	determine the relationship	
Computational Thinking	k	petween the net force and	
Use mathematical	t	the vector sum of the	
representations of	i	ndividual forces.	
phenomena to describe			
explanations. (HS-PS2-			
2),(HS-PS2-4)			
Constructing			
Explanations and			
Designing Solutions			
Apply scientific ideas to			
solve a design problem,			
taking into account possible			
unanticipated effects. (HS-			
PS2-3)			
Obtaining, Evaluating,			
and Communicating			
Information			
Communicate scientific and			
technical information (e.g.			
about the process of			
development and the			
design and performance of			
a proposed process or			
system) in multiple formats			

(including orally, graphically,	
textually, and	
mathematically). (HS-PS2-	
6)	
Science Models, Laws,	
Mechanisms, and	
Theories Explain Natural	
Phenomena	
Theories and laws provide	
explanations in science.	
(HS-PS2- 1),(HS-PS2-4)	
Laws are statements or	
descriptions of the	
relationships among	
observable phenomena.	
(HS-PS2-1),(HS-PS2-4)	

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	Instructional Adjustments:
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	IEP mandates for classified students
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 4: Gravitation	1 week
TARGETED STATE STANDARDS:	
NGSS	
NJSLS/HS-ESS1-4: Use mathematical or computational representations to predict the motion of orbiting	g objects in the solar system.

[Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.]

[Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler's Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]

NJSLS/HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation to describe and predict the gravitational forces between objects.

[Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of gravitational fields.] [Assessment Boundary: Assessment is limited to systems with two objects.]

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

A vector field gives, as a function of position (and perhaps time), the value of a physical quantity that is described by a vector. Vector fields are represented by field vectors indicating direction and magnitude

Gravitational forces are exerted at all scales and dominate at the largest distances and mass scales

Gravitational force describes the interaction of one object with mass with another object with mass

The gravitational force is always attractive

The magnitude of force between two spherically symmetric objects of mass m_1 and m_2 is $G(m_1m_2)/r^2$, where r is the center-to-center distance between the objects.

G is the fundamental constant of the gravitational interaction in our universe.

$$F_g = G \frac{M_{source} m_{system}}{r^2} = m_{system} g \qquad G = 6.67 \times 10^{-11} \frac{m^{-3}}{kg \, s^2}$$

In a narrow range of heights above Earth's surface, the local gravitational field, g, is approximately constant.

$$g = \frac{F_g}{m_{system}} = 9.8 \frac{N}{kg}$$
 on Earth's surface $a = g$ if $\Sigma F = F_g$

A gravitational field g at the location of an object with mass m causes a gravitational force of magnitude mg to be exerted on the object in the direction of the field.

On Earth, this gravitational force is called weight

The gravitational field at a point in space is measured by dividing the gravitational force exerted by the field on a test object at that point by the mass of the test object and has the same direction as the force.

The gravitational field caused by a spherically symmetric object with mass is radial and, outside the object, varies as the inverse square of the radial distance from the center of that object.

$$g = G \frac{M_{source}}{r^2}$$

Projectiles and orbitals only have the gravitational force changing their motion, with a component of velocity perpendicular to the gravitational force

Describe the following relevant components in the given mathematical or computational representations of orbital motion: the trajectories of orbiting bodies, including planets, moons, or human-made spacecraft; each of which depicts a revolving body's eccentricity e = f/d, where *f* is the distance between foci of an ellipse, and *d* is the ellipse's major axis length (Kepler's first law of planetary motion).

Given mathematical or computational representations of orbital motion to depict that the square of a revolving body's period of revolution is proportional to the cube of its distance to a gravitational center ($T \ 2 \propto R \ 3$, where T is the orbital period and R is the semimajor axis of the orbit — Kepler's third law of planetary motion).

$$\frac{r^2}{T^3} = \frac{rr^2}{Tr^3}$$
 around the same mass

ESSENTIAL QUESTIONS:

How do we keep track of time? Why do objects orbit around each other in space? Why doesn't Earth "fall into" the Sun? What is "weightlessness"?

UNIT ASSESSMENT: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?)

Quarterly Exam Tests and quizzes Laboratory activities and reports

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
Newton's law of universal gravitation provides the mathematical model to describe and predict the effects of gravitational force between distant objects. (HS-PS2-4) Forces at a distance are explained by fields	(e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1) Using Mathematics and Computational Thinking	Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS- PS2-4) Cause and Effect Empirical evidence is required to differentiate	textbook resources (i.e. simulations, measurement tools/instruments/software) for presentation, demonstration, classroom and laboratory activities, and problem solving: Use Newton's Law of Gravitation to calculate the gravitational force that two objects exert on each other	Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports
through space. (HS-PS2- 4),(HS-PS2-5)		between cause and correlation and make claims about specific causes and effects. (HS- PS2-1) (HS-PS2-5)	contexts other than orbital motion. Calculate the gravitational force on an object with	
Between Energy and Forces When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5)	Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS- PS2-3)	Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined. (HS- PS2-2)	mass <i>m</i> in a gravitational field of strength <i>g</i> in the context of the effects of a net force on objects and systems. Calculate the gravitational field due to an object with mass <i>m</i> , where the field is	

Communicating		a vector directed toward	
Information	t	the center of the object of	
Communicate scientific and	r	mass <i>m</i> .	
technical information (e.g.			
about the process of		Approximate a numerical	
development and the design		value of the gravitational	
and performance of a	f	field (g) near the surface of	
proposed process or	é	an object from its radius	
system) in multiple formats	é	and mass relative to those	
(including orally, graphically,		of Earth or other reference	
textually, and		objects.	
mathematically). (HS-PS2-			
6)			
Science Models, Laws,			
Mechanisms, and			
Theories Explain Natural			
Phenomena			
Theories and laws provide			
explanations in science.			
(HS-PS2- 1),(HS-PS2-4)			
Laws are statements or			
descriptions of the			
relationships among			
observable phenomena.			
(HS-PS2-1),(HS-PS2-4)			

Resources: Essential Materials, Supplementary Materials, Links to Best Practices Textbook: <i>Physics Principles with Applications 7th Edition</i> (Giancoli)	Instructional Adjustments:
Gizmos: <u>https://www.explorelearning.com/</u> Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>) PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>) The Physics Classroom (<u>http://www.physicsclassroom.com/</u>) Twu Physics (<u>https://sites.google.com/site/twuphysicslessons/</u>) Physics textbooks Experimental equipment pertinent to lab activities	Modifications will be made to accommodate IEP mandates for classified students

Unit 5: Work and Energy 2 weeks

TARGETED STATE STANDARDS: NGSS

NJSLS/HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

[Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.]

[Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

NJSLS/HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

NJSLS/HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

[Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.]

[Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

NJSLS/HS-ESS2-4. Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2 4),(HS-PS2-5) HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-2) 4),(HS-PS2-5) HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4) HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4) HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2) HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1) Technology 8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review **Career Ready Practices**

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.
UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

A system is an object or a collection of objects. The objects are treated as having no internal structure.

An interaction can be either a force exerted by objects outside the system or the transfer of some quantity with objects outside the system.

The placement of a boundary between a system and its environment is a decision made by the person considering the situation in order to simplify or otherwise assist in analysis.

Work changes the energy of a system, and both are conserved scalar quantities.

The change in kinetic energy of an object depends on the force exerted on the object and on the displacement of the object during the interval that the force is exerted.

Only the component of the net force exerted on an object parallel or antiparallel to the displacement of the object will increase or decrease the kinetic energy of the object

* A single object can only have kinetic energy

For work done by a constant force: the magnitude of the change in the kinetic energy is the product of the magnitude of the displacement and of the magnitude of the component of force parallel or antiparallel to the displacement

$$Work = F_{\parallel} \cdot \Delta x = F \Delta x \cos \theta = \Delta E$$

The component of the net force exerted on an object perpendicular to the direction of the displacement of the object can change the direction of the motion of the object without changing the kinetic energy of the object. This should include uniform circular motion and projectile motion.

For work done by a variable spring force:

$$Work = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_F^2$$

$$F_{restoring} = -k \Delta x$$

Mechanical Power is the time rate at which work is done or energy is transferred.

$$Power = \frac{\Delta E}{\Delta t} = \frac{work}{\Delta tt} = \Sigma F \cdot v$$

Mechanical energy of a rigid system consists of the sum of kinetic energy and potential energies (gravitational, elastic). Energy of a rigid system consists of the sum of kinetic energy, potential energies and microscopic internal energy. For a rigid system:

Translational kinetic energy:

$KE = \frac{1}{2}mv^2$
Gravitational potential energy:
$\Delta U_{\rm G} = mg\Delta h$
•
Elastic potential energy:
$U_{\rm S} = \frac{1}{2} k x_{\rm F}^2$
For all systems under all circumstances, energy is conserved. For an isolated or closed system, conserved quantities are constant. An
open system is one that exchanges any conserved quantity with its surroundings.
ESSENTIAL QUESTIONS:
How can we change the energy of a system?
How can we analyze motion in terms of energy?
Why is the first hill of a roller coaster always the tallest?
Why haven't humans created a perpetual motion machine?
UNIT ASSESSMENT: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?)
Quarterly Exam
Tests and quizzes
Laboratory activities and reports

Unit 6: Momentum	1 week
TARGETED STATE STANDARDS:	
NGSS	
NJSLS/HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a sy when there is no net force on the system.	ystem of objects is conserved
[Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and th	e qualitative meaning of this
principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in	one dimension.]
NJSLS/HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that min macroscopic object during a collision.	imizes the force on a

[Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Momentum is a conserved vector. A net force on a system yields a change in momentum (impulse) over time

$$\Sigma F = \frac{\Delta p}{\Delta t} = \frac{m\Delta V}{\Delta t} = ma$$
 $p = mV$ $\Sigma p_i + \Delta p = \Sigma p_f$

ESSENTIAL QUESTIONS:

How do we quantify motion? How do airbags help save lives? What happens when objects collide and how can this be mitigated?

UNIT ASSESSMENT: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?)

Quarterly Exam Tests and quizzes Laboratory activities and reports

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2) If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2- 2),(HS-PS2-3) ETS1.A: Defining and Delimiting Engineering Problems Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one	Investigations Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2- 5) Analyzing and Interpreting Data Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal	Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2- 1),(HS-PS2-5) Systems can be designed to cause a desired effect. (HS-PS2-3) Systems and System Models When investigating or describing a system, the boundaries and initial conditions of	materials, online and textbook resources (i.e. simulations, measurement tools/instruments/software) for presentation, demonstration, classroom and laboratory activities, and problem solving: Predict the change in momentum of an object from the average force exerted on the object and the interval of time during which the force is exerted.	Formative Assessments: Exit tickets Laboratory activities Classwork Homework Summative Assessments: Tests Quizzes Laboratory reports Project Quarterly exam

can tell if a given design meets them. (secondary to HS-PS2-3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade- offs) may be needed. (secondary to HS-PS2-3)	mathematical representations of phenomena to describe explanations. (HS-PS2-2),(HS- PS2-4)	appropriatel involving ela one dimensi selection of mathematica on conserva momentum of kinetic en Apply the co- linear mome system of ol an inelastic predict the of energy. Design an e of an applica principle of t of linear mo an outcome experiment principle, an generated b whose unce expressed n evaluate the the predictio outcome. Classify a gi situation as inelastic, jus of conserval	al routines based and restoration ergy. onservation of entum to a closed ojects involved in collision to change in kinetic xperimental test ation of the the conservation mentum, predict of the using the halyze data y that experiment rtainties are numerically, and e match between on and the

F			
		of kinetic energy as the	
		appropriate principles for	
		analyzing an elastic collision,	
		solve for missing variables,	
		and calculate their values.	

			Activities/Strategies	
Concepts	Skills	Progress Indicators	Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS3.A: Definitions of	Planning and Carrying	Systems and System	Use appropriate classroom	Formative
Energy	Out Investigations	Models	materials, online and	Assessments:
Energy is a quantitative	Plan and conduct an	Models can be used to	textbook resources (i.e.	Exit tickets
property of a system that	investigation individually	predict the behavior of a	simulations, measurement	Laboratory activities
depends on the motion and	and collaboratively to	system, but these	tools/instruments/software)	Classwork
interactions of matter and	produce data to serve as	predictions have limited	for presentation,	Homework
radiation within that system.	the basis for evidence, and	precision and reliability	demonstration, classroom	
That there is a single quantity	in the design: decide on	due to the assumptions	and laboratory activities,	<u>Summative</u>
called energy is due to the	types, how much, and	and approximations	and problem solving:	Assessments:
fact that a system's total	accuracy of data needed to	inherent in models.	Define open and closed	Tests
energy is conserved, even as,	produce reliable	(HSPS3-1)	systems for everyday	Quizzes
within the system, energy is	measurements and		situations and apply	Laboratory reports
continually transferred from	consider limitations on the		conservation concepts for	Project
one object to another and	precision of the data (e.g.,	Energy and Matter	energy.	Quarterly exam
between its various possible	number of trials, cost, risk,	Changes of energy and		
forms. (HSPS3-1),(HS-PS3-2)	time), and refine the design	matter in a system can	Make predictions about the	
	accordingly. (HS-PS2-5)	be described in terms of	changes in kinetic energy of	
At the macroscopic scale,		energy and matter flows	an object in a system based	
energy manifests itself in	Developing and Using	into, out of, and within	on considerations of the	
multiple ways, such as in	Models	that system. (HSPS3-3)	direction of the net force on	
motion, sound, light, and	Develop and use a model		the object as the object	
thermal energy. (HSPS3-2)	based on evidence to	Energy cannot be	moves.	
(HS-PS3-3)	illustrate the relationships	created or destroyed—		
	between systems or	only moves between	Use net force and velocity	
These relationships are better	•	•	vectors to determine	
understood at the microscopic			qualitatively whether the	
			kinetic energy of an object	
different manifestations of		systems. (HS-PS3-2)		

energy can be modeled as a	Using Mathematics and		would increase, decrease,
combination of energy	Computational Thinking		or remain unchanged.
associated with the motion of	Create a computational	Connections to	
particles and energy	model or simulation of a	Engineering,	Apply mathematical
associated with the	phenomenon, designed	Technology, and	routines to determine the
configuration (relative position	device, process, or system.	Applications of	change in kinetic energy of
of the particles). In some	(HS-PS3-1)	Science	an object given the forces
cases the relative position		Influence of Science,	exerted on the object and
energy can be thought of as	Constructing	Engineering, and	the displacement of the
stored in fields (which	Explanations and	Technology on Society	object.
mediate interactions between	Designing Solutions	and the Natural World	
particles). This last concept	Design, evaluate, and/or	Modern civilization	Calculate the total energy of
includes radiation, a	refine a solution to a	depends on major	a system and justify the
phenomenon in which energy	complex real-world	technological systems.	mathematical routines used
stored in fields moves across	problem, based on	Engineers continuously	in the calculation of
space. (HS-PS3-2)	scientific knowledge,	modify these	component types of energy
	student-generated sources	technological systems	within the system whose
PS3.B: Conservation of	of evidence, prioritized	by applying scientific	sum is the total energy.
Energy and Energy	criteria, and tradeoff	knowledge and	
Transfer Conservation of	considerations. (HSPS3-3)	engineering design	Predict changes in the total
energy means that the total		practices to increase	energy of a system due to
change of energy in any	Obtaining, Evaluating,	benefits while	changes in position and
system is always equal to the	and Communicating	decreasing costs and	speed of objects or frictional
total energy transferred into	Information	risks. (HS-PS3-3)	interactions within the
or out of the system. (HS-	Communicate scientific and		system.
PS3-1)	technical information (e.g.	Connections to Nature	
	about the process of	of Science Scientific	Make predictions about the
Energy cannot be created or	development and the	•	changes in the mechanical
destroyed, but it can be	design and performance of		energy of a system when a
transported from one place to			component of an external
another and transferred	system) in multiple formats	-	force acts parallel or
between systems. (HS-PS3-	(including orally,		antiparallel to the direction
1),(HS-PS3-4)		•	of the displacement of the
	mathematically). (HS-PS2-		center of mass.
Mathematical expressions,	6)	laws are consistent.	

which quantify how the stored	(HSPS3-1)	Create a representation or	
energy in a system depends		model showing that a single	
on its configuration (e.g.		object can only have kinetic	
relative positions of charged		energy and use information	
particles, compression of a		about that object to	
spring) and how kinetic		calculate its kinetic energy.	
energy depends on mass and			
speed, allow the concept of		Translate between a	
conservation of energy to be		representation of a single	
used to predict and describe		object, which can only have	
system behavior. (HS-PS3-1)		kinetic energy, and a	
		system that includes the	
The availability of energy		object, which may have	
limits what can occur in any		both kinetic and potential	
system. (HS-PS3-1)		energies.	
		Describe and make	
PS3.D: Energy in Chemical		predictions about the	
Processes		internal energy of systems.	
Although energy cannot be			
destroyed, it can be		Design an experiment and	
converted to less useful		analyze graphical data in	
forms—for example, to		which interpretations of the	
thermal energy in the		area under a force-distance	
surrounding environment.		curve are needed to	
(HS-PS3-3),(HS-PS3-4)		determine the work done on	
		or by the object or system.	
ETS1.A: Defining and		Predict and calculate from	
Delimiting Engineering		graphical data the energy	
Problems		transfer to or work done on	
Criteria and constraints also		an object or system from	
include satisfying any		information about a force	
requirements set by society,		exerted on the object or	
such as taking issues of risk		system through a distance.	
•		· · ·	

	Design an experiment to test conservation concepts.	
Resources: Essential Materials, Supplementary Materials, Links to Best Practices Textbook: <i>Physics Principles with Applications 7th Edition</i> (Giancoli) Gizmos: <u>https://www.explorelearning.com/</u> Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>) PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>) The Physics Classroom (<u>http://www.physicsclassroom.com/</u>) Twu Physics (<u>https://sites.google.com/site/twuphysicslessons/</u>) Physics textbooks Experimental equipment pertinent to lab activities	Instructional	I Adjustments: de to accommodate IEP students

Unit 7: Oscillations

TARGETED STATE STANDARDS: NGSS

NJSLS/HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

[Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to macroscopic objects moving at non-relativistic speeds.]

NJSLS/HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. [Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.] [Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.]

NJSLS/HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1) RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and

corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4) HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

1 week

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Simple harmonic motion is the result of a restoring force that is proportional to the displacement from equilibrium

For simple harmonic motion, mechanical energy is constant

 $E = KE + U_{spring}$

$E = \frac{1}{2} \text{ mv}^2 + \frac{1}{2} \text{ kx}^2$ $E = \frac{1}{2} \text{ mv}_{\text{max}}^2 = \frac{1}{2} \text{ kx}_{\text{max}}^2$ Angular frequency of spring oscillation is: $\omega_s = \sqrt{\frac{k}{m}}$ Period of spring oscillation is: $T_s = 2\pi \sqrt{\frac{m}{k}}$ Period of pendulum oscillation is: $T_p = 2\pi \sqrt{\frac{L}{g}}$

ESSENTIAL QUESTIONS:

At what point during a bungee jump will you reach your greatest speed?

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS2.A: Forces and Motion	Analyzing and	Patterns	Predict which properties	Formative Assessments:
Newton's second law	Interpreting Data	Different patterns may	determine the motion of a	Exit tickets
accurately predicts changes	Analyze data using tools,	be observed at each of	simple harmonic oscillator	Laboratory activities
in the motion of macroscopic	technologies, and/or	the scales at which a	and what the dependence	Classwork
objects. (HS-PS2-1)	models (e.g.,	system is studied and		Homework
	computational,	can provide evidence for		
	mathematical) in order to	causality in explanations		<u>Summative</u>
	make valid and reliable		U	Assessments:
	scientific claims or	PS2-4)	data in order to ascertain	Tests
PS3.B: Conservation of	determine an optimal			Quizzes
Energy and Energy	design solution. (HS-PS2-	Cause and Effect	,	Laboratory reports
Transfer	1)	Empirical evidence is		Project
Mathematical expressions,		-	2	Quarterly exam
which quantify how the stored	•	between cause and	restoring force.	
	Computational Thinking	correlation and make	An along the table of the	
on its configuration (e.g.	Use mathematical	•	Analyze data to identify	
relative positions of charged	representations of		qualitative and quantitative	
particles, compression of a	phenomena to describe	PS2- 1),(HS-PS2-5)	relationships between	
spring) and how kinetic	explanations. (HS-PS2-		given values and variables	
energy depends on mass and	2),(ПЗ-РЗ2-4)	Energy and Matter	(i.e. force, displacement,	
speed, allow the concept of conservation of energy to be	Connections to Nature of	0,	acceleration, velocity, period of motion,	
used to predict and describe	Science	only moves between	frequency, spring constant,	
system behavior. (HS-PS3-1)		-	string length, mass)	
	Mechanisms, and	•	associated with objects in	
The availability of energy	-		oscillatory motion and use	
,	-	systems. (HS-PS3-2)		

system. (HS-PS3-1)	Theories and laws provide		those data to determine the	
	-		value of an unknown.	
	•	Models		
			Calculate the expected	
			behavior of a system using	
			the object model (i.e. by	
	•	•		
		predictions have limited	5 5 5	
	•		internal structure) to	
		•	analyze a situation. Then,	
		and approximations	when the model fails, the	
			student can justify the use	
	Developing and Using	, ,	of conservation of energy	
	Models		principles to calculate the	
	Develop and use a model		change in internal energy	
	based on evidence to		due to changes in internal	
	illustrate the relationships		structure because the	
	between systems or		object is actually a system.	
	between components of a			
	system. (HS-PS3-		Calculate changes in	
	2),(HSPS3-5)		kinetic energy and potential	
			energy of a system using	
			information from	
			representations of that	
			system.	

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	IEP mandates for classified students
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 8: Mechanical Waves and Sounds

2 weeks

TARGETED STATE STANDARDS: NGSS

NJSLS/HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. [Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.] [Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.]

NJSLS/HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) + (HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2) HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Waves are a repetitive disturbance which translate energy without translating matter. Transverse waves oscillate perpendicular to the direction of motion and longitudinal waves oscillate parallel to the direction of motion. Waves have an amplitude, period, frequency, wavelength, and wave velocity. The wave source determines the frequency and amplitude. The medium determines the wave speed. Wavelength depends on frequency and velocity.

$$\lambda = \frac{v}{f}$$

Amplitudes add as described by the principle of superposition.

Possible standing waves are called harmonics.

Physics Honors

Sound in terms of transfer of energy and momentum in a medium and relate the concepts to everyday examples. Predict the properties of standing sound waves in open and closed pipes or on strings with fixed or unfixed ends.

Beats arise from combining two sound waves of slightly different frequencies.

ESSENTIAL QUESTIONS:

How can you hear someone on a "can phone"?

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
NJSLS/HS-PS4-1: Use	Analyzing and	Patterns	Use a visual representation	Formative Assessments:
mathematical representations	Interpreting Data	Different patterns may	to construct an explanation	Exit tickets

to support a claim regarding	Analyze data using tools,	be observed at each of	of the distinction between	Laboratory activities
relationships among the	technologies, and/or	the scales at which a	transverse and longitudinal	Classwork
frequency, wavelength, and	models (e.g.,	system is studied and	waves by focusing on the	Homework
speed of waves traveling in	computational,	can provide evidence for	vibration that generates the	
various media.	mathematical) in order to	causality in explanations	wave.	Summative
	make valid and reliable	of phenomena. (HS-		Assessments:
	scientific claims or	PS2-4)	Describe representations	Tests
PS3.B: Conservation of	determine an optimal		of transverse and	Quizzes
Energy and Energy	design solution. (HS-PS2-	Cause and Effect	longitudinal wa∨es.	Laboratory reports
Transfer	1)	Empirical evidence is		Project
Mathematical expressions,		required to differentiate	Describe sound in terms of	Quarterly exam
which quantify how the stored	Using Mathematics and	between cause and	transfer of energy and	
energy in a system depends	Computational Thinking	correlation and make	momentum in a medium	
on its configuration (e.g.	Use mathematical	claims about specific	and relate the concepts to	
relative positions of charged	representations of	causes and effects. (HS-	everyday examples.	
particles, compression of a	phenomena to describe	PS2- 1),(HS-PS2-5)		
spring) and how kinetic	explanations. (HS-PS2-		Use graphical	
energy depends on mass and	2),(HS-PS2-4)	Energy and Matter	representation of a periodic	
speed, allow the concept of		Energy cannot be	mechanical wave to	
conservation of energy to be	Connections to Nature of	created or destroyed—	determine the amplitude of	
used to predict and describe	Science	only moves between	the wave.	
system behavior. (HS-PS3-1)	Science Models, Laws,	one place and another		
	Mechanisms, and	place, between objects	Use a graphical	
	Theories Explain Natural	and/or fields, or between	representation of a periodic	
	Phenomena	systems. (HS-PS3-2)	mechanical	
	Theories and laws provide		wave (position versus time)	
	explanations in science.	Systems and System	to determine the period	
	(HS-PS2- 1),(HS-PS2-4)	Models	and frequency of the wave	
		Models can be used to	and describe how a	
	Laws are statements or	predict the behavior of a	change in	
	descriptions of the	-	the frequency would modify	,
	relationships among		features of the	
	observable phenomena.		representation.	
I	(HS-PS2-1),(HS-PS2-4)	· · ·	Use a visual representation	
		-	of a periodic mechanical	
		and approximations	or a periodic mechanical	

	inherent in models.	wave to determine the	
Developing and Using	(HSPS3-1)	wavelength of the wave	
Models			
Develop and use a model		Use representations of	
based on evidence to		individual pulses and	
illustrate the relationships		construct representations	
between systems or		to model the interaction of	
between components of a		two wave pulses to analyze	
system. (HS-PS3-		the superposition of two	
2),(HSPS3-5)		pulses.	
		Predict properties of	
		standing waves that result	
		from the addition of	
		incident and reflected	
		waves that are confined to	
		a region and have nodes	
		and antinodes.	
		Explain and/or predict	
		qualitatively how the	
		energy carried by a sound	
		wave relates to the	
		amplitude of the wave	
		and/or apply this concept	
		to a real-world example.	
		Calculate wavelengths and	
		frequencies (if given wave	
		speed) of standing waves	
		based on boundary	
		conditions and length of	
		region within which the	
		wave is confined and	
		calculate numerical values	

of wavelengths and
frequencies. Examples
include musical
instruments.

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	IEP mandates for classified students
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 9: Geometric Optics

2 weeks

TARGETED STATE STANDARDS: NGSS

NJSLS/HS-PS4-3: Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. [Clarification Statement: Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, diffraction, and photoelectric effect.] [Assessment Boundary: Assessment does not include using quantum theory.]

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-4),(HS-PS2-5)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2- 4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Reflection and Law of Reflection Image formation from plane mirror, concave mirror, convex mirror Refraction and Snell's Law Image formation from thin concave lens and thin convex lens

ESSENTIAL QUESTIONS:

How tall must a full length mirror be?

Concepts	Skills	Progress Indicators	Activities/Strategies Technology Implementation/ Interdisciplinary	Assessment Check Points
			Connections	
NJSLS/HS-PS4-3: Evaluate	Analyzing and	Patterns	Contrast mechanical and	Formative Assessments
the claims, evidence, and	Interpreting Data	Different patterns may	electromagnetic waves in	Exit tickets
reasoning behind the idea	Analyze data using tools,	be observed at each of	terms of the need for a	Laboratory activities
that electromagnetic radiation	technologies, and/or	the scales at which a	medium in wave	Classwork
can be described either by a	models (e.g.,	system is studied and	propagation.	Homework
wave model or a particle	computational,	can provide evidence for		
model, and that for some	mathematical) in order to	causality in explanations	Make claims using	Summative
situations one model is more	make valid and reliable	of phenomena. (HS-	connections across	Assessments:
useful than the other.	scientific claims or	PS2-4)	concepts about the	Tests
	determine an optimal		behavior of light as the	Quizzes
	design solution. (HS-PS2-	Cause and Effect	wave travels from one	Laboratory reports
	1)	Empirical evidence is	medium into another, as	Project
		required to differentiate	some is transmitted, some	Quarterly exam
	Using Mathematics and	between cause and	is reflected, and some is	
	Computational Thinking	correlation and make	absorbed.	
	Use mathematical	claims about specific		
	representations of	causes and effects. (HS-	Make predictions about the	
	phenomena to describe	PS2- 1),(HS-PS2-5)	locations of object and	
	explanations. (HS-PS2-		image relative to the	
	2),(HS-PS2-4)	Energy and Matter	location of a reflecting	
		Energy cannot be	surface. The prediction	
	Connections to Nature of	created or destroyed—	should be based on the	
	Science	only moves between	model of specular	
	Science Models, Laws,	one place and another	reflection with all angles	
	Mechanisms, and	place, between objects	measured relative to the	
	Theories Explain Natural	and/or fields, or between	normal to the surface.	
	Phenomena	systems. (HS-PS3-2)		
	Theories and laws provide			

explanations in science.	Systems and System	Describe models of light
(HS-PS2- 1),(HS-PS2-4)	Models	traveling across a
	Models can be used to	boundary from one
Laws are statements or	predict the behavior of a	transparent material to
descriptions of the	system, but these	another when the speed of
relationships among	predictions have limited	propagation changes,
observable phenomena.	precision and reliability	causing a change in the
(HS-PS2-1),(HS-PS2-4)	due to the assumptions	path of the light ray at the
	and approximations	boundary of the two media.
	inherent in models.	
Developing and Using	(HSPS3-1)	Plan data collection
Models		strategies as well as
Develop and use a model		perform data analysis and
based on evidence to		evaluation of the evidence
illustrate the relationships		for finding the relationship
between systems or		between the angle of
between components of a		incidence and the angle of
system. (HS-PS3-		refraction for light crossing
2),(HSPS3-5)		boundaries from one
		transparent material to
		another (Snell's law).
		Make claims and
		predictions about path
		changes for light traveling
		across a boundary from
		one transparent material to
		another at non-normal
		angles resulting from
		changes in the speed of
		propagation.
		Plan data collection
		strategies and perform

evaluation of evidence
about the formation of
images due to reflection of
light from curved spherical
mirrors.
Use quantitative and
qualitative representations
and models to analyze
situations and solve
problems about image
formation occurring due to
the reflection of light from
surfaces.
Use quantitative and
qualitative representations
and models to analyze
situations and solve
problems about image
formation occurring due to
the refraction of light
through thin lenses
Plan data collection
strategies, perform data
analysis and evaluation of
evidence, and refine
scientific questions about
the formation of images
due to refraction for thin
lenses.

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	IEP mandates for classified students
PAER Rutgers (http://www.islephysics.net/pt3/)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 10: Electrostatics	2 weeks
TARGETED STATE STANDARDS:	
NGSS	
NJSLS/HS-PS2-4. Use mathematical representations of Newton's Law of Gravitation and Coulomb's	Law to describe and predict the

electrostatic forces between objects.

[Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of electric fields.]

[Assessment Boundary: Assessment is limited to systems with two objects.]

NJSLS/HS-PS3-5. Develop and use a model of two objects interacting through electric fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

[Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.]

[Assessment Boundary: Assessment is limited to systems containing two objects.]

ELA/ Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) + (HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Two different electric charges, which are conventionally referred to as positive charge and negative charge, determine how charged objects interact. Charge is conserved. Electric forces are exerted by electric fields created by changes

$$F_e = k \frac{Q_{source} q_{system}}{\Delta r^2} = E q_{system} \quad \varepsilon_o = 8.85 \ x \ 10^{-12} C^2 / Nm^2 \quad k = 9x 10^9 Nm^2 / C^2 = \frac{1}{4\pi\varepsilon_o}$$

$$U_e = k \frac{Q_{source} q_{system}}{r} = qV \qquad E = \frac{F_e}{q_{system}} = \frac{dV}{dx} = k \frac{Q_{source}}{dr^2} \qquad V = \frac{U_e}{q_{system}}$$

The particles which make up atoms are neutrons with no charge and positive protons in the nucleus, and negative electrons outside the central nucleus.

$$|q_e| = 1.6x10^{-19}$$
 C $m_p = 1.673x10^{-27}$ kg = 938.3x10⁸ eV $m_n = 1.675x10^{-27}$ kg = 939.6x10⁸ eV

Physics Honors

 $m_e = 9.11 \times 10^{-31} \text{ kg} = 5.11 \times 10^5 \text{ eV}$ 1 u = 1.66 x 10⁻²⁷ kg = 931 MeV/c²

An object can either allow the flow of electrons (conductor), not allow the flow of electrons (insulator), or somewhat allow the flow of electrons (semiconductor).

ESSENTIAL QUESTIONS:

What is the fundamental force responsible for most everyday interactions? What are the parallels between gravitational force and electrostatic force? How does one charged particle "know" to attract/repel another? Why do we get electrically shocked?

UNIT ASSESSMENTt: (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and guizzes

Laboratory activities and reports

Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS1.A: Structure and	Analyzing and	Patterns	Make predictions, using the	Formative Assessments:
Properties of Matter	Interpreting Data	Different patterns may	conservation of electric	Exit tickets
The structure and interactions	Analyze data using tools,	be observed at each of	charge, about the sign and	Laboratory activities

of matter at the bulk scale are	technologies, and/or	the scales at which a	relative quantity of net	Classwork
determined by electrical forces	models (e.g.,	system is studied and	charge of objects or	Homework
within and between atoms.	computational,	can provide evidence for	systems after various	
(secondary to HS-PS2-6)	mathematical) in order to	causality in explanations	charging processes,	<u>Summative</u>
	make valid and reliable	of phenomena. (HS-	including conservation of	Assessments:
PS2.B: Types of Interactions	scientific claims or	PS2-4)	charge in simple circuits.	Tests
Coulomb's law provides the	determine an optimal			Quizzes
mathematical model to	design solution. (HS-PS2-	Cause and Effect	Use Coulomb's law	Laboratory reports
describe and predict the effects	1)	Empirical evidence is	qualitatively and	Project
of electrostatic force between		required to differentiate	quantitatively to make	Quarterly exam
distant objects. (HS-PS2-4)	Using Mathematics and	between cause and	predictions about the	
	Computational Thinking	correlation and make	interaction between two	
Forces at a distance are	Use mathematical	claims about specific	electric point charges.	
explained by fields	representations of	causes and effects. (HS-		
(gravitational, electric, and	phenomena to describe	PS2- 1),(HS-PS2-5)	Connect the concepts of	
magnetic) permeating space	explanations. (HS-PS2-		gravitational force and	
that can transfer energy	2),(HS-PS2-4)	Energy and Matter	electric force to compare	
through space. (HS-PS2-		Energy cannot be	similarities and differences	
4),(HS-PS2-5)	Connections to Nature of	created or destroyed—	between the forces.	
	Science	only moves between		
Attraction and repulsion	Science Models, Laws,	one place and another	Describe the electric force	
between electric charges at the	Mechanisms, and	place, between objects	that results from the	
atomic scale explain the	Theories Explain Natural	and/or fields, or between	interaction of several	
structure, properties, and	Phenomena	systems. (HS-PS3-2)	separated point charges	
transformations of matter, as	Theories and laws provide		(generally two to four point	
well as the contact forces	explanations in science.		charges, though more are	
between material objects. (HS-	(HS-PS2- 1),(HS-PS2-4)		permitted in situations of	
PS2-6),(secondary to HS-PS1-			high symmetry) using	
1),(secondary to HS-PS1-3)	Laws are statements or		appropriate mathematics.	
	descriptions of the			
PS3.A: Definitions of Energy	-		Predict the direction and	
	observable phenomena.		the magnitude of the force	
energy stored in a battery or	(HS-PS2-1),(HS-PS2-4)		exerted on an object with	
energy transmitted by electric				
			in an electric field E using	
energy transmitted by electric currents. (secondary to HS-			an electric charge q placed in an electric field E using	

PS2-5)	Developing and Using	the mathematical model of
	Models	the relation between an
PS3.C: Relationship Between	Develop and use a model	electric force and an
Energy and Forces	based on evidence to	electric field.
When two objects interacting	illustrate the relationships	
through a field change relative	between systems or	Calculate any one of the
position, the energy stored in	between components of a	variables—electric force,
the field is changed. (HS-PS3-	system. (HS-PS3-	electric charge, and electric
5)	2),(HSPS3-5)	field—at a point given the
		values and sign or direction
PS3.B: Conservation of		of the other two quantities.
Energy and Energy Transfer		
Mathematical expressions,		
which quantify how the stored		
energy in a system depends on		
its configuration (e.g. relative		
positions of charged particles,		
compression of a spring) and		
how kinetic energy depends on		
mass and speed, allow the		
concept of conservation of		
energy to be used to predict		
and describe system behavior.		
(HS-PS3-1)		
PS3.C: Relationship Between		
Energy and Forces		
When two objects interacting		
through a field change relative		
position, the energy stored in		
the field is changed. (HS-PS3- 5)		

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	IEP mandates for classified students
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 11: DC Circuits

TARGETED STANDARDS:

NGSS

NJSLS/HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.

[Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.]

[Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

2 weeks

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...)

Electric circuits are conductors connecting a voltage source (like a battery or generator) to a resistor which uses that voltage to convert electric energy to another form.

The amount of charge which flows over time is called electric current

$$I = \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$

Current in a circuit is dependent on the voltage provided to the circuit's resistors

$$I = \frac{\Delta V}{R}.$$

Voltage used by resistors is dependent on the current and resistance

 $I = \Delta V/R.$

The electromotive force abbreviated as EMF [ε] is the ideal potential difference provided by a battery if it had no internal resistance.

 $\Delta V_{terminal} = \varepsilon - Ir_{internal}$

Resistance of an object is dependent on the shape and size of the object, along with the resistivity the material it is made from as $R = \rho \frac{l}{4}$. Multiple resistors can be simplified to a single equivalent resistance. $R_{series} = \Sigma$ R $\frac{1}{R_{parallel}} = \Sigma$ $\frac{1}{R}$ Due to conservation of charge, all currents going into a junction must be the same as all currents leaving a junction. This is called Kirchoff's junction rule. $\Sigma I_{in \ iunction} = \Sigma I_{out \ iunction}$ Due to conservation of energy, the sum of all voltages in any loop is zero. This is called Kirchoff's loop rule. $\Delta V_{loop} = 0$ **ESSENTIAL QUESTIONS:** Why does a smartphone charge faster when it isn't being used, but slow when it is? How do the outlets in a house work? How can we use electrical energy? How is electric potential energy distributed throughout a circuit? **UNIT ASSESSMENT:** (What is the evidence (authentic) that students have achieved the targeted standards/unit objectives?) Quarterly Exam Tests and guizzes

Tests and quizzes

Laboratory activities and reports

Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
PS3.A: Definitions of	Using Mathematics and	Systems and System	Apply conservation of	Formative Assessments:
Energy	Computational Thinking	Models	energy concepts to the	Exit tickets

Energy is a quantitative	Create a computational	Models can be used to	design of an experiment	Laboratory activities
	-		C .	Classwork
property of a system that depends on the motion and		•		
•		system, but these	, , , ,	Homework
interactions of matter and			rule in a circuit with only a	Cummenting
radiation within that system.	,		battery and resistors either	
That there is a single quantity		•	in series or in, at most, one	
called energy is due to the		and approximations	pair of parallel branches.	Tests
-	U	inherent in models.		Quizzes
energy is conserved, even as,		(HSPS3-1)		Laboratory reports
within the system, energy is	Communicate scientific and			Project
continually transferred from	technical information (e.g.			Quarterly exam
one object to another and	about the process of		rule) in calculations	
between its various possible	development and the		involving the total electric	
forms. (HSPS3-1),(HS-PS3-2)	design and performance of		potential difference for	
	a proposed process or		complete circuit loops with	
At the macroscopic scale,	system) in multiple formats		only a single battery and	
energy manifests itself in	(including orally,		resistors in series and/or	
multiple ways, such as in	graphically, textually, and		in, at most, one parallel	
motion, sound, light, and	mathematically). (HS-PS2-		branch.	
thermal energy. (HSPS3-2)	6)			
(HS-PS3-3)			Apply conservation of	
	Connections to Nature of		electric charge (Kirchhoff's	
These relationships are better	Science		junction rule) to the	
understood at the microscopic	Science Models, Laws,		comparison of electric	
scale, at which all of the	Mechanisms, and		current in various	
different manifestations of	Theories Explain Natural		segments of an electrical	
energy can be modeled as a	Phenomena		circuit with a single battery	
combination of energy	Theories and laws provide		and resistors in series and	
associated with the motion of	-		in, at most, one parallel	
particles and energy	(HS-PS2- 1),(HS-PS2-4)		branch and predict how	
associated with the			those values would change	
configuration (relative position	Laws are statements or		if configurations of the	
of the particles). In some	descriptions of the		circuit are changed.	
cases the relative position	relationships among		Ŭ	
energy can be thought of as	observable phenomena.			

stored in fields (which	(HS-PS2-1),(HS-PS2-4)		
mediate interactions between			
particles). This last concept			
includes radiation, a			
phenomenon in which energy			
stored in fields moves across			
space. (HS-PS3-2)			
PS3.B: Conservation of			
Energy and Energy			
Transfer			
Conservation of energy			
means that the total change			
of energy in any system is			
always equal to the total			
energy transferred into or out			
of the system. (HS-PS3-1)			
Energy cannot be created or			
destroyed, but it can be			
transported from one place to			
another and transferred			
between systems. (HS-PS3-			
1),(HS-PS3-4)			
Mathematical expressions,			
which quantify how the stored			
energy in a system depends			
on its configuration (e.g.			
relative positions of charged			
particles, compression of a			
spring) and how kinetic			
energy depends on mass and			
speed, allow the concept of			
conservation of energy to be			

used to predict and describe		
system behavior. (HS-PS3-1)		
The availability of energy		
limits what can occur in any		
system. (HS-PS3-1)		
PS3.C: Relationship		
Between		
Energy and Forces		
When two objects interacting		
through a field change		
relative position, the energy		
stored in the field is changed.		
(HS-PS3-5)		

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (https://phet.colorado.edu/en/simulations/category/physics)	IEP mandates for classified students
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (https://sites.google.com/site/twuphysicslessons/)	
Physics textbooks	
Experimental equipment pertinent to lab activities	

Unit 12: Electromagnetism

TARGETED STANDARDS: NGSS

NJSLS/HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

[Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.]

NJSLS/HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

[Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.]

[Assessment Boundary: Assessment is limited to systems containing two objects.]

ELA/Literacy

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)

Mathematics

MP.2 Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

MP.4 Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5) + (HS-PS2-5))

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)

HSA-SSE.B.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)

HSA-CED.A.1 Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)

2 weeks

HSA-CED.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2- 1),(HS-PS2-2)

HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

Technology

8.1.12.A.2 Produce and edit a multi-page digital document for a commercial or professional audience and present it to peers and/or professionals in that related area for review

Career Ready Practices

9.2.12.CAP.4: Evaluate different careers and develop various plans (e.g., costs of public, private, training schools) and timetables for achieving them, including educational/training requirements, costs, loans, and debt repayment.

9.2.12.CAP.5: Assess and modify a personal plan to support current interests and postsecondary plans.

9.2.12.CAP.6: Identify transferable skills in career choices and design alternative career plans based on those skills.

9.2.12.CAP.7: Use online resources to examine licensing, certification, and credentialing requirements at the local, state, and national levels to maintain compliance with industry requirements in areas of career interest.

9.2.12.CAP.13: Analyze how the economic, social, and political conditions of a time period can affect the labor market.

UNIT OBJECTIVES/ENDURING UNDERSTANDINGS: (Students will be able to...

Magnetism

Magnetic fields are created by changing electric fields and exert magnetic force on changing electric fields.

$$\mu_o = 4\pi x \ 10^{-7} Tm/A$$
 $B = \frac{\mu_o I}{2\pi r}$ $F_m = qv \ x \ B$ $F_m = Il \ x \ B$

ESSENTIAL QUESTIONS:

What is the relationship between electricity and magnetism?

Disciplinary Core Ideas	Science and Engineering Practices	Crosscutting Concepts	Activities/Strategies Technology Implementation/ Interdisciplinary Connections	Assessment Check Points
	Planning and Carrying Out	Cause and Effect	Apply mathematical	Formative Assessments:
PS2.B: Types of	Investigations	Empirical evidence is	routines to express the	Exit tickets
Interactions	Plan and conduct an	required to differentiate	force exerted on a moving	Laboratory activities
Forces at a distance are	investigation individually and	between cause and	charged object, or current-	Classwork
explained by fields	collaboratively to produce	correlation and make	carrying wire, by a	Homework
(gravitational, electric, and	data to serve as the basis	claims about specific	magnetic field.	
magnetic) permeating space	for evidence, and in the	causes and effects. (HS-		<u>Summative</u>
that can transfer energy	design: decide on types,	PS2- 1),(HS-PS2-5)	Use right-hand rules to	Assessments:
through space. Magnets or	how much, and accuracy of		analyze a situation	Tests
electric currents cause	data needed to produce		involving a uniform	Quizzes
magnetic fields; electric	reliable measurements and		magnetic field and a	Laboratory reports
5 5 5	consider limitations on the		moving electrically charged	•
•	precision of the data (e.g.,		object to determine the	Quarterly exam
,	number of trials, cost, risk,		direction of the magnetic	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	time), and refine the design		force exerted on the	
	accordingly. (HS-PS2-5)		charged object due to the	
PS3.C: Relationship			magnetic field.	
	Analyzing and Interpreting			
	Data			
When two objects interacting				
•	technologies, and/or models			
relative position, the energy	(e.g., computational,			
	mathematical) in order to			
5 ()	make valid and reliable scientific claims or			
	determine an optimal design			
	solution. (HS-PS2-1)			

Using Mathematics and		
Computational Thinking		
Use mathematical		
representations of		
phenomena to describe		
explanations. (HS-PS2-		
2),(HS-PS2-4)		
Obtaining, Evaluating, and		
Communicating		
Information		
Communicate scientific and		
technical information (e.g.		
about the process of		
development and the design		
and performance of a		
proposed process or		
system) in multiple formats		
(including orally, graphically,		
textually, and		
mathematically). (HS-PS2-		
6)		
Developing and Using		
Models		
Develop and use a model		
based on evidence to		
illustrate the relationships		
between systems or		
between components of a		
system. (HS-PS3-		
2),(HSPS3-5)		

Resources: Essential Materials, Supplementary Materials, Links to Best Practices	
	Instructional Adjustments:
Textbook: Physics Principles with Applications 7th Edition (Giancoli)	
Gizmos: https://www.explorelearning.com/	Modifications will be made to accommodate
Phet online simulations (<u>https://phet.colorado.edu/en/simulations/category/physics</u>)	IEP mandates for classified students
PAER Rutgers (<u>http://www.islephysics.net/pt3/</u>)	
The Physics Classroom (<u>http://www.physicsclassroom.com/</u>)	
Twu Physics (<u>https://sites.google.com/site/twuphysicslessons/</u>)	
Physics textbooks	
Experimental equipment pertinent to lab activities	