Big Idea: Systems of matter and energy are present around Earth and across space. Interactions within and between these systems produce observable and predictable patterns—night and day, seasons, tides, weather and climate.

Investigation Questions	NGSS/ PA Core Standards	Objectives/ Lab Activities	Key Vocabulary	Reading Wonders Connection
LESSON 1:	S5.A.1.1.2: Explain how observations and/or experimental	Begin building an	• Galaxy	Unit 3: Week 3; Finding
Earth's Place in Space	results are used to support inferences and claims about an	age-appropriate	 Gravity 	patterns in nature.
	investigation or relationship (e.g., make a claim based on	understanding about Earth's	Model	
What do we know about	information on a graph). (Lessons 1-4)	roles in space systems.	 Planet 	Unit 5: Week 4: How can
Earth and Space Systems?	S6.A.1.1.2: Use evidence to support inferences and claims		 Revolution 	scientific change over
	about an investigation or relationship (e.g., common usage	Compare the sizes of the	Scale Model	time? When is a Planet not
Can I describe planets in	of simple machines). (Lessons 1-4)	planets in our solar system and	 Solar System 	a Planet? "New Moon"
our Solar System?	S5.A.1.1.3 Describe how explanations, predictions, and	the distances of those planets	• Star	
	models are developed using evidence (Lesson 1-4).	from the Sun and from each	• Sun	
How do the sun, earth, and	S6.A.1.1.3: Predict the outcome of an experiment based on	other.	 System 	
moon make a system?	previously collected data. (Lessons 1-4)		Universe	
	S5.A.2.1.2 Describe relationships between variables through	Explain how the pull of gravity		
	interpretation of data and observations (i.e., make	impacts Earth's shape and path		
	predictions for the outcome of a controlled experiment using	around the Sun.		
	data tables and graphs). (Lessons 1-4)			
	S5.A.3.1.1: Make predictions based on patterns in natural	Construct an argument to		
	systems (e.g., phases of the Moon, time [day, month, and	support concepts related to		
	year], weather, seasons). (Lessons 1-4)	gravity.		
	S5.A.3.2.1: Describe how models are used to better			
LESSON 2: Stars	understand the relationships in natural systems (e.g., water	Use a model to investigate	 Axis 	
	cycle, Sun-Earth-Moon system, ecosystems, observe and	the apparent brightness of	 Constellation 	
What can I learn from the	draw a diagram to show the effects of flowing water in a	stars.	 Daytime 	
brightness of a star?	watershed). (Lessons 1-4)		 Nighttime 	
	3.1.5.B6: Developing and Using Models; Engaging in	Construct an argument to	 Rotation 	
Can patterns in the	Argument From Evidence CCC: Cause and Effect; Scale,	compare the apparent	Shadow	
nighttime sky tell me	Proportion, and quantity; Systems and System Models	brightness of stars.		
more about Earth?	(Lesson 1 ONLY)			
	\$4.D.3.1.1: Describe motions of the Sun - Earth - Moon	Investigate patterns in the		
	system. (Lesson 2-3)	nighttime sky to describe		

Can patterns in the daytime tell me more about Earth?	 S4.D.3.1.2: Explain how the motion of the Sun - Earth - Moon system relates to time (e.g., days, months, years) .(Lessons 2-3) S5.D.3.1.1: Describe the patterns of Earth's rotation and revolution in relation to the Sun and Moon (i.e., solar eclipse, phases of the Moon, and time). (Lessons 2-3) S5.A.2.2.1: Describe the appropriate use of instruments and scales to accurately measure time, mass, distance, volume, and temperature safely under a variety of conditions (e.g., use a thermometer to observe and compare the interaction of food coloring in water at different temperatures). (Lessons 2 & 4) 3.1.5.B6: Developing and Using Models; Analyzing and 	patterns in the rotation and revolution of Earth. Describe the rotation and revolution of Earth by investigating patterns in the daytime and nighttime skies. Collect and analyze data to provide evidence for the Sun's apparent movement across the sky.		
LESSON 3: Sun, Earth, and Moon	Interpreting Data; Engaging in Argument From Evidence CCC: Patterns; Scale, Proportion, and Quantity (Lessons 2 ONLY)	Construct models to demonstrate the connections in the Sun-Earth-Moon	EquatorHemisphereMoon	
How do the Sun, Earth, and Moon interact?	S4.D.3.1.3: Describe the causes of seasonal change as they relate to the revolution of Earth and the tilt of Earth's axis. (Lesson 3 ONLY)	system. Model how Earth's revolution	Moon PhaseNeap TideSeason	
How does the Moon appear to change?	S4.D.3.1.3: Describe the causes of seasonal change as they relate to the revolution of Earth and the tilt of Earth's axis. (Lesson 3 ONLY)	contributes to seasons. Graph and analyze data to	 Spring Tide Tide Waning 	
How can the Moon affect patterns on Earth?	3.3.5.B1: Provide evidence that the earth revolves around (orbits) the sun in a year's time and that the earth rotates on its axis once approximately every 24 hours. (Lesson 3	provide evidence for seasonal changes in daylight.	• Waxing	
	 ONLY) S5.C.2.1.2: Describe how heat energy is usually a byproduct of an energy transformation. (Lesson 3 ONLY) S5.A.1.1.1, S6.A.1.1.1: Explain how certain questions can be answered through scientific inquiry and/or technological 	Construct a model of the phases of the Moon based on the movement of the Moon around Earth and the location of the Sun.		
	design (e.g., investigate to find out if all clay or foil boats designs react the same when filled with paperclips). (Lesson 3 ONLY)	Identify patterns, such as Moon phases and tides, to provide evidence for the interaction of		
	3.1.5.B6: Developing and Using Models; Analyzing and Interpreting Data; Engaging in Argument From Evidence CCC: Patterns; Scale, Proportion, and Quantity (Lesson 3 ONLY)	the Earth-Moon system.		

LESSON 4: Earth's Systems	S4.D.1.2.3: Recognize ways that humans benefit from the use of water resources (e.g., agriculture, energy, recreation). (Lesson 4 ONLY)	Identify Earth's major systems and the characteristics of each.	 Atmosphere Biosphere Condensation
How do Earth's systems interact?	S4.D.1.3.1: Describe types of freshwater and saltwater bodies (e.g., lakes, rivers, wetlands, oceans). (Lesson 4 ONLY)	Create a model to describe how Earth's systems interact.	 Evaporation Geosphere Glacier
Can I model and graph the distribution of Earth's water?	 S4.D.1.3.2: Explain how water goes through phase changes (i.e., evaporation, condensation, freezing, and melting). (Lesson 4 ONLY) S5.C.1.2.1: Describe how water changes from one state to another. (Lesson 4 ONLY) S4.C.1.1.1: Use physical properties [e.g., mass, shape, size, volume, color, texture, magnetism, state (i.e., solid, liquid, 	Use a model and create a graph to illustrate the distribution of water on Earth.	 Groundwater Hydrosphere Infiltration Precipitation Runoff Water Cycle
LESSON 5: Protecting Earth's Systems	and gas), conductivity (i.e., electrical and heat)] to describe matter. (Lesson 4 ONLY) 3.4.5.D3: Determine if the human use of a product or system	Describe how people affect Earth's systems and how people work to protect them.	 Environment natural resource (All vocabulary
How can communities use science to protect Earth's resources and environments?	creates positive or negative results. (Lesson 5 ONLY) 3.1.5.B6: Constructing Explanations and Designing Solutions; Obtaining, Evaluating, and Communicating Information CCC: Patterns; Cause and Effect; Scale, Proportion, and Quantity; Systems and System Models	Discuss ways that communities use science ideas and knowledge to help protect Earth's resources and	from previous lessons)
What have we learned about Earth and Space Systems?	(Lesson 5 ONLY)	environments. Review unit content by developing questions to assess peers.	

Big Idea: Matter makes up everything around us, but students may struggle to understand this given that they cannot see certain types of matter, like gases, and that they may not recognize when matter is a mixture or a solution.						
Investigation Questions	NGSS/ PA Core Standards	Objectives/ Lab Activities	Key Vocabulary	Reading Wonders Connection		
LESSON 1: Matter All Around Us Why does Matter matter? Can you find an object's mass and calculate its volume? How can you prove that gases have mass and volume?	 S5.C.1.1.2: Differentiate between volume and mass. (Lesson 1 only) S5.A.2.2.1: Describe the appropriate use of instruments and scales to accurately measure time, mass, distance, volume, and temperature safely under a variety of conditions (e.g., use a thermometer to observe and compare the interaction of food coloring in water at different temperatures). (Lesson 1 only) 3.1.5.B6: Analyzing and Interpreting Data; Using Mathematics and Computational Thinking; Engaging in Argument From Evidence CCC: Cause and Effect; Scale, Proportion, and Quantity (Lesson 1 only) 3.2.4.A1: Identify and classify objects based on their observable and measurable physical properties. Compare and contrast solids, liquids, and gases based on their properties. (Lessons 1-3) S4.C.1.1.1: Use physical properties [e.g., mass, shape, ended to the second contrast solids.) 	Develop a working definition of the term "matter." Make observations to differentiate between solids, liquids, and gases. Construct an argument about the properties of each state of matter. Determine the best method for determining the mass and volume of objects. Analyze data to prove that matter takes up space and has mass.	 Gas Liquid Mass Matter Solid Volume 	Unit 1: Week 4: Investigate a solution to determine how well it performs under likely conditions.		
LESSON 2: Energy and States of Matter How do particles of matter behave? Are evaporation and condensation observable? Is matter conserved when it changes states?	size, volume, color, texture, magnetism, state (i.e., solid, liquid, and gas), conductivity (i.e., electrical and heat)] to describe matter. (Lessons 1-3) S4.C.1.1.2: Categorize/group objects using physical characteristics. (Lessons 1-3) S5.A.2.2.2: Explain how technology extends and enhances human abilities for specific purposes (e.g., use hand lens to examine crystals in evaporating dishes; use graduated cylinders to measure the amount of water used in a controlled plant experiment). (Lessons 1, 2, & 4) 3.2.4.A2: Demonstrate that materials are composed of parts that are too small to be seen without magnification. (Lesson 2)	Make observations to gather evidence that the movement of and attraction between particles change as energy is added to matter. Develop a model to explain the movement of particles in each state of matter. Identify phase changes as physical properties of matter,	 Boiling Point Condensation Density Evaporation Freezing Point Melting Point 			

				1
	3.2.4.A3: Demonstrate the conservation of mass during	specifically using evaporation		
	physical changes such as melting or freezing. (Lesson 2)	and condensation.		
	3.2.5.A1: Describe how water can be changed from one			
	state to another by adding or taking away heat. (Lesson 2)	Use data to graph quantities		
	S5.C.1.2.1: Describe how water changes from one state to	and provide support for		
	another. (Lesson 2)	concepts related to matter		
	3.1.5.B6: Developing and Using Models; Using	conservation.		
	Mathematics and Computational Thinking; Engaging in			
	Argument From Evidence CCC: Cause and Effect; Scale,	Develop a scenario to		
	Proportion, and Quantity (Lesson 2)	describe matter conservation.		
LESSON 3: Physical	S5.A.2.1.2: Describe relationships between variables	Identify additional physical	 Buoyancy 	
Properties of Matter	through interpretation of data and observations (i.e., make	properties of matter, including	Density	
	predictions for the outcome of a controlled experiment	buoyancy, hardness,	Hardness	
How can I use physical	using data tables and graphs). (Lessons 2, 3)	magnetism, and viscosity.	 Magnetism 	
properties to identify objects?	S5.C.1.1.1: Identify characteristic properties of matter that		 Physical Property 	
	are independent of mass and volume. (Lesson 3)	Plan an investigation for	 Viscosity 	
How do properties of liquids	3.1.5.B6: Planning and Carrying Out Investigations;	testing buoyancy, hardness,		
vary?	Analyzing and Interpreting Data; Engaging in Argument	and magnetism, and use		
	From Evidence CCC: Cause and Effect (Lesson 3)	collected data to make		
	S5.A.1.1.2: Explain how observations and/or experimental	connections between a		
	results are used to support inferences and claims about an	material and its uses.		
	investigation or relationship (e.g., make a claim based on			
	information on a graph). (Lessons 3-5)	Determine the density of a		
	S6.A.1.1.2: Use evidence to support inferences and claims	liquid by testing the rate at		
	about an investigation or relationship (e.g., common usage	which it flows.		
	of simple machines). (Lesson 3-6)			
	S5.A.1.1.3: Describe how explanations, predictions, and	Define "density" by making		
	models are developed using evidence. (Lessons 3-6)	connections to the behavior of		
	3.1.5.B6: Planning and Carrying Out Investigations;	matter particles.		
	Analyzing and Interpreting Data; Using Mathematics and			
	Computational Thinking CCC: Cause and Effect; Scale,			
	Proportion, and Quantity (Lesson 4)			
	S5.A.1.1.1, S6.A.1.1.1: Explain how certain guestions can			
	be answered through scientific inquiry and/or technological			
	design (e.g., investigate to find out if all clay or foil boats			
	designs react the same when filled with paperclips).			
	(Lessons 4, 6)			
		1		

LESSON 4: Making	S5.A.3.2.1: Describe how models are used to better	Use measurements to provide	Dissolve
Mixtures and Solutions	understand the relationships in natural systems (e.g., water	evidence that matter is	• Filter
	cycle, Sun-Earth- Moon system, ecosystems, observe and	conserved when it is mixed.	Mesh
How can you separate a	draw a diagram to show the effects of flowing water in a		Mixture
mixture of solids?	watershed). (Lesson 4-6)	Identify the connection	Separate
	3.2.4.A4: Recognize that combining two or more	between mixtures and	Sieve
What will results when two	substances may make new materials with different	solutions.	Solubility
substances are mixed?	properties (Lesson 5)		Solute
	S5.C.1.2.2: Identify differences between chemical and	Compare the behaviors of	Solution
Can a mixture be separated	physical changes of matter. (Lesson 5)	solids and liquids when they	Solvent
into its original materials?	S5.A.3.1.1: Make predictions based on patterns in natural	are mixed.	
	systems (e.g., phases of the Moon, time [day, month, and		
	year], weather, seasons). (Lesson 5)	Understand solubility as a	
	3.1.5.B6: Engaging in Argument From Evidence CCC:	property used to describe	
	Cause and Effect; Scale, Proportion, and Quantity (Lesson	matter.	
	5)		
	S6.A.1.1.3: Predict the outcome of an experiment based	Plan an investigation to	
	on previously collected data. (Lessons 5, 6)	separate mixtures based on	
	3.4.5.C2: Describe how design, as a dynamic process of	their properties.	
LESSON 5: Physical and	steps, can be performed in different sequences and	Distinguish between physical	Chemical Change
Chemical Changes	repeated. (Lesson 6)	and chemical changes using	Constant
	3.4.5.D1: Identify ways to improve a design solution.	evidence.	Physical Change
What evidence indicates a	(Lesson 6)		
chemical change?	3.1.5.B6: Asking Questions and Defining problems;	Provide evidence that mixing	
	Developing and Using Models; Planning and Carrying Out	substances results in physical	
How is evidence of chemical	Investigations CCC: Cause and Effect; Scale, Proportion,	or chemical changes.	
changes observable?	and Quantity (Lesson 6)		
		Observe chemical reactions to	
		draw conclusions about	
		identity changes.	
		Demonstrate that the total	
		mass of materials mixed	
		together will not change	
		regardless of chemical or	
		physical changes.	

LESSON 6: Separating	Identify methods to separate	•	Filtration (All	Unit 4: Week 4: Investigate the qualities
Matter	mixtures based on the		vocabulary from	of a healthy ecosystem.
	properties of the matter in the		previous lessons)	
How is contaminated water	mixture.			
cleaned?				
	Plan, build, test, and evaluate			
How does a filtration system	a model of a water purification			
remove contaminants from	system.			
water?				
	Self-assess comprehension of			
How can our water filtration	unit content.			
system be optimized?				
	Develop a quiz about the			
What have we learned about	content from the unit.			
Matter?				

Unit Title: Matter and Energy in Ecosystems: April / May (MP 4)

Big Idea: Ecosystems on Earth contain diverse forms of life and have unique needs to sustain these life-forms. An ecosystem is composed habitats, each made up of biotic and abiotic factors.

Investigation Questions	NGSS/ PA Core Standards	Objectives/ Lab Activities	Key Vocabulary	Reading Wonders Connection
LESSON 1: Biotic and Abiotic Factors What are biotic and abiotic factors? Why are plants important in an Ecosystem? What do plants need to grow?	 3.1.5.A2: Describe how life on earth depends on energy from the sun. (Lessons 1-3) 3.1.6.A2: Describe how energy derived from the sun is used by plants to produce sugars (photosynthesis)and is transferred within a food chain from producers (plants) to consumers to decomposers. (Lessons 1-3) 4.4.5.C.: Investigate the factors influencing plant and animal growth. (e.g., soil, water, nutrients, and light) (Lessons 1-3) S4.A.3.1.3: Categorize the parts of an ecosystem as either living or nonliving and describe their roles in the system. (Lessons 1-4) S4.B.1.1.1: Identify life processes of living things (e.g., growth, digestion, respiration). (Lesson 1 ONLY) S4.B.1.3: Describe basic needs of plants and animals (e.g., air, water, food). (Lessons 1-3) S4.C.1.1.2: Categorize/group objects using physical characteristics. (Lesson 1 ONLY) 	Differentiate between biotic and abiotic factors. Identify different habitats as part of an ecosystem. Develop a model of the plant life cycle. Explain the importance of the Sun in photosynthesis. Plan an investigation using a control and variables to determine what plants need to grow.	 Abiotic Factor Biotic Factor Control Ecosystem Energy Environment Germination Habitat Leaf Photosynthesis Pollination Region Reproduction Root Seed Seed Seem Variable 	Unit 6: Week 3: Adaptations. How are living things adapted to their environment?
LESSON 2: Independence of Biotic Factors How do animal depend on plants? What's in my owl pellet?	 S4.A.1.3.1: Observe and record change by using time and measurement. (Lesson 1 ONLY) S5.A.1.1.2: Explain how observations and/or experimental results are used to support inferences and claims about an investigation or relationship (e.g., make a claim based on information on a graph). (Lessons 1, 4, 5) S6.A.1.1.2: Use evidence to support inferences and claims about an investigation or relationship (e.g., common usage of simple machines). (Lessons 1, 4, 5) S5.A.1.1.3: Describe how explanations, predictions, and models are developed using evidence. (Lessons 1, 4, 5) S6.A.1.1.3: Predict the outcome of an experiment based on previously collected data. (Lessons 1 & 6) S5.A.2.1.1: Design a simple, controlled experiment (fair test) identifying the independent and dependent variables, how the dependent variable will be measured and which variables will be held constant (e.g., relate the effect of variables [mass, release height, length of string] to number of swings of a pendulum, investigate the relationships 	Define "interdependence" and provide examples of interdependence that are related to ecosystems. Develop a food chain model to demonstrate the flow of energy in a specific habitat. Use owl pellets to draw conclusions about an owl's diet. Construct a food pyramid to illustrate energy transfers from the Sun to a tertiary consumer.	 Consumer Dissect Food Chain Food Pyramid Interdependence Owl Pellet Primary Consumer Producer Secondary Consumer Tertiary Consumer 	Unit 3: Week 2: Explain how the food for any kind of animal can be traced back to plants."Plants with a Purpose"

LESSON 3: Energy Flow in an Ecosystem What can we conclude from Food Webs? How does competition affect an Ecosystem?	between variables in paper airplane designs). (Lessons 1 & 6) S5.A.2.1.2: Describe relationships between variables through interpretation of data and observations (i.e., make predictions for the outcome of a controlled experiment using data tables and graphs). (Lessons 1-5) S4.A.2.1.3: Observe a natural phenomenon (e.g., weather changes, length of daylight/night, movement of shadows, animal migrations, growth of plants), record observations, and then make a prediction based on those observations. (Lessons 1-5) S5.A.3.1.1: Make predictions based on patterns in natural systems (e.g., phases of the Moon, time [day, month, and year], weather, seasons). (Lessons 1-5) 3.1.5.B6: Developing and Using Models; Engaging in	Construct food webs to explain the cycling of energy in an ecosystem. Identify how biotic factors use energy. Describe the effects of competition on the transfer of energy in an ecosystem. Make predictions about the effects of removing a biotic factor from a habitat.	 Bacteria Competition Decomposer Food Web Fungi Organic Predator Prey 	Unit 2: Week 3: How do we investigate questions about nature? <i>Thomas</i> <i>Moran, Landscape Painter</i>
LESSON 4: Interactions on Earth What are the four spheres of Earth? Why is the Water Cycle important? What is an Ecocolumn?	Argument From Evidence CCC: Cause and Effect; Energy and Matter; System and System Models (Lesson 1 ONLY) S4.A.3.1.2: Explain a relationship between the living and nonliving components in a system (e.g., food web, terrarium). (Lessons 2-4) S5.B.3.1.2: Describe the relationships between organisms in different food webs. (Lessons 2 & 3) S4.C.2.1.1: Identify energy forms, energy transfer, and energy examples (e.g., light, heat, electrical). (lessons 2 & 3) S4.C.2.1.2: Describe the flow of energy through an object or system (e.g., feeling radiant heat from a light bulb, eating food to get energy, using a battery to light a bulb or run a fan). (Lessons 2 & 3) S5.C.2.1.2: Describe the appropriate use of instruments and scales to accurately measure time, mass, distance, volume, and temperature safely under a variety of conditions (e.g., use a thermometer to observe and compare the interaction of food coloring in water at different temperatures). (Lesson 2 ONLY) S5.A.2.2: Explain how technology extends and enhances human abilities for specific purposes (e.g., use hand lens to examine crystals in evaporating dishes; use graduated cylinders to measure the amount of water used in a controlled plant experiment). (Lesson 2 ONLY) 3.1.5.B6: Developing and Using Models; Analyzing and Interpreting Data; Engaging in Argument From Evidence	Recognize the biotic and abiotic factors that make up the atmosphere, biosphere, geosphere, and hydrosphere Make a claim about the interactions between the four spheres of Earth. Use the water cycle as a model to describe the interdependence of Earth's spheres. Construct an ecocolumn to model an ecosystem that contains terrestrial and aquatic habitats. Analyze and draw conclusions about the cycling of energy in an ecosystem that includes terrestrial and aquatic habitats.	 Atmosphere Biosphere Condensation Evaporation Geosphere Hydrosphere Precipitation Runoff Water Cycle 	Unit 5: Week 3: Our Changing Earth. What changes in the environment affect living things?

LESSON 5: Human Impact	CCC: Patterns; Cause and Effect; Energy and Matter	Identify human needs and	Agriculture Deferentation	Unit 5: Week 5: Scientific Viewpoints.
	(Lesson 2 ONLY)	human actions used to meet	Deforestation	How do natural events and human
How do humans impact	S4.A.1.3.4: Explain what happens to a living organism	those needs.	Fossil Fuel	activities affect the environment?
Ecosystems?	when its food supply, access to water, shelter, or space is		Pollution	
	changed (e.g., it might die, migrate, change behavior, eat	Use readings to investigate	 Technology 	
How do humans disrupt	something else) (Lessons 3, 5, 6)	human impact, and draw		
natural cycles?	S5.B.3.1.1: Describe the roles of producers, consumers,	conclusions about the effect of		
	and decomposers within a local ecosystem. (Lesson 3	human behaviors on the		
Can we model the effects of	ONLY)	cycling of energy in an		
human impact?	S5.C.2.1.1: Describe how energy exists in many forms	ecosystem.		
	(e.g., electrical, mechanical, chemical, heat, light, sound)			
	and can be transformed within a system. (Lesson 3 ONLY)	Analyze images for evidence		
	S4.D.1.1.3: Describe the composition of soil as weathered	of human impact.		
	rock and decomposed organic remains. (Lesson 3 & 4)			
	S5.A.3.2.1: Describe how models are used to better	Make connections between		
	understand the relationships in natural systems (e.g., water	human impact and the water		
	cycle, Sun-Earth- Moon system, ecosystems, observe and	cycle.		
	draw a diagram to show the effects of flowing water in a	,		
	watershed). (Lessons 3, 4, 6)	Simulate water pollution by		
	3.1.5.B6: Developing and Using Models; Analyzing and	using ecocolumns to draw		
	Interpreting Data; Constructing Explanations and Designing	conclusions about the effects		
	Solutions; Engaging in Argument From Evidence CCC:	of pollution on an ecosystem.		
	Patterns; Cause and Effect; Energy and Matter (Lesson 3			
LESSON 6: Protecting the	ONLY)	Analyze patterns of human	 All vocabulary 	
Ecosystem	S4.A.3.1.1: Categorize systems as either natural or	behavior to identify negative	from previous	
Loodyotein	human-made (e.g., ballpoint pens, simple electrical circuits,	effects on the ecosystem.	lessons	
Can we develop solutions to	plant anatomy, water cycle). (Lesson 4 ONLY)	cheels on the coosystem.	10330113	
decrease human impact?	S4.C.1.1: Use physical properties [e.g., mass, shape,	Develop and organize		
decrease numan impact:	size, volume, color, texture, magnetism, state (i.e., solid,	potential solutions to decrease		
Can I communicate solutions	liquid, and gas), conductivity (i.e., electrical and heat)] to	harmful human impact.		
for human impact?	describe matter. (Lesson 4 ONLY)	namitu numan impact.		
for numan impact?	3.1.5.B6: Developing and Using Models; Analyzing and	Present ideas to classmates		
	Interpreting Data; Engaging in Argument From Evidence	and evaluate the effectiveness		
	CCC: Cause and Effect; Energy and Matter; System and	of solutions.		
	System Models (Lesson 4 ONLY)	or solutions.		
	S4.A.1.3.5: Provide examples, predict, or describe how			
	everyday human activities (e.g., solid waste production,			
	food production and consumption, transportation, water			
	consumption, energy production and use) may change the			
	environment. (Lesson 5 & 6)			
	S5.B.2.1.4: Identify changes in environmental conditions			
	that can affect the survival of populations and entire			
	species. (Lesson 5 & 6)			
	S5.A.1.1.1, S6.A.1.1.1: Explain how certain questions can			
	be answered through scientific inquiry and/or technological	1		

design (e.g., investigate to find out if all clay or foil boats designs react the same when filled with paperclips). (Lessons 5 & 6) 3.4.5.C2: Describe how design, as a dynamic process of steps, can be performed in different sequences and repeated. (Lessons 5 & 6) 3.4.5.D3: Determine if the human use of a product or system creates positive or negative results. (Lessons 5 &	
 6) 3.1.5.B6: Developing and Using Models; Analyzing and Interpreting Data; Engaging in Argument From Evidence CCC: Patterns; Cause and Effect; Energy and Matter; System and System Models (Lesson 5 ONLY) 	
3.1.5.B6: Constructing Explanations and Designing Solutions; Obtaining, Evaluating, and Communicating Information CCC: Patterns; Cause and Effect; Energy and Matter (Lesson 6 ONLY)	